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Neural Networks as Geometric Chaotic Maps
Ziwei Li, and Sai Ravela

Abstract—The use of artificial neural networks as models
of chaotic dynamics has been rapidly expanding. Still, a the-
oretical understanding of how neural networks learn chaos
is lacking. Here, we employ a geometric perspective to show
that neural networks can efficiently model chaotic dynamics
by becoming structurally chaotic themselves. We first confirm
neural network’s efficiency in emulating chaos by showing that a
parsimonious neural network trained only on few data points can
reconstruct strange attractors, extrapolate outside training data
boundaries, and accurately predict local divergence rates. We
then posit that the trained network’s map comprises sequential
geometric stretching, rotation, and compression operations. These
geometric operations indicate topological mixing and chaos,
explaining why neural networks are naturally suitable to emulate
chaotic dynamics.

Index Terms—Neural networks, chaos, topological mixing,
nonlinear dynamical systems.

I. INTRODUCTION

CHAOTIC dynamics are ubiquitous in observed and sim-
ulated trajectories of physical systems [1]. Finding the

exact solutions to such dynamics is often impossible due to
the nonlinearities in the system equations and the characteristic
exponential divergence from two initially close-by trajectories.
In the absence of first-principle theories, data-driven low-
dimensional models are often implemented to capture the
observed behavior, from which theoretical understanding may
emerge. When theories are explicitly available, modelers may
numerically simulate the governing equations. Using an en-
semble simulation with randomly perturbed initial conditions,
they quantify errors, uncertainty, and predictability in the
solutions. However, doing so is often challenging because the
simulations are high-dimensional (thus expensive), the equa-
tions are nonlinear, and the uncertainties are non-Gaussian [2].
In both the data-driven and numerical modeling frameworks,
approximate low-complexity schemes are sought to predict
and understand chaotic systems. Devising efficient models of
chaotic systems is thus an important subject in engineering
and physical sciences.

The emergence of artificial neural networks and the associ-
ated universal approximation theorem (UAP) [3]–[6] suggest
that the neural network is a generalized modeling tool. It would
seem that, provided with enough neurons, they can emulate
any dynamical system of any complexity. Indeed, a surge of
interest in using neural networks to emulate chaotic systems
has emerged [7]–[24], with additional theoretical development
using them to control nonlinear dynamical systems [25]–[28].

Prior work using neural networks to model chaotic dy-
namics can be divided into two categories, a) designing
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simple networks that achieve chaotic behavior (top-down) and
b) learning from data generated by detailed simulation or
observation (bottom-up).

Numerous top-down approaches through numerical simu-
lations and hardware-programming already show that simple
neural networks become chaotic in specific parameter regimes.
Models of 3 or 5 neurons with a truncated polynomial ac-
tivation function, for example, show chaotic behaviors [7].
Likewise, 3D [9], [10] and 2D [15] neural maps show period-
doubling bifurcations to give onset of chaos. A 3D cellular
network is shown to obtain a horseshoe map for some weight
matrices [12]. A delayed 2D network depicts chaotic dynam-
ics [14], and a 3D variant of memristor circuits inspired by
biological neuron firings [16] is found to be chaotic through
the fold and Hopf bifurcations [24].

The bottom-up approach addresses using artificial neural
networks to learn from data to reproduce chaotic dynamics.
Bakker et al. (2000) [8] use multilayer perceptron models in
addition to linear models to propagate embedded data from
a chaotic pendulum. Bahi et al. (2012) [13] establish the
equivalence between a class of neural networks and Devaney’s
definition of chaos. The dynamics of the classic Lorenz-
63 system [29] can be emulated with simple feedforward
networks [17], [18], with recurrent networks [19], and with
LSTM [21]. Neural networks are also thought of as nonlinear
ODE propagators [22], [30] and find use in quantifying
Lyaponuv exponents in higher dimensional chaotic systems
[20], [23].

In contrast to previous research, this paper explains how
trained neural networks become chaotic. We refer to “neural
networks” as the traditional static feedforward neural network
(NN). The novelty of our work is that:
• We use the finite-time Lyapunov exponent as a pre-

dictability measure. It reveals that the dynamics of NN
is “as chaotic as” the true system at both short and long
timescales.

• We propose a novel geometric perspective, which ex-
plains how trained NNs are able to efficaciously model
chaos at very low complexity (number of neurons).

We illustrate NN’s efficacy in emulating chaos by training a
parsimonious single-hidden-layer NN on the Lorenz-63 system
(L63). This NN reconstructs the L63 attractor structure with
well-matched predictability and very high fidelity. Training
with a one-sided segment of the attractor also delivers well-
behaved trajectories on the other side, indicating that the
trained NN extrapolates far beyond the training set.

To the best of our knowledge, no existing theory seems to
explain why chaos appears learnable1 to such simple neural

1“Learnable” is used in the sense of a matched predictability between the
true dynamical system and NN, quantified by finite-time Lyapunov exponents.
It is different from, e.g., Valiant’s definition [31].
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networks. Unfortunately, the universal approximation theorem
is of little help because it neither explains the emergence of
chaos in NN nor the efficacy with which it emerges.

Instead, we posit through a new geometric view that the
trained network’s flow induces topological mixing, which
explains how chaos develops in NN. The NN flow alternately
rotates, stretches, and compresses in phase space, which are
the defining characteristics of chaotic dynamics [32]. Tucker
(2002) [33] also uses a similar view to devise a geometric
Lorenz map to explain the topological properties of L63. These
geometric transformations required by chaos theory enable
the effective reconstruction of strange attractors by NN while
matching the true system’s predictability. Simplicity in NN’s
structure is central in the effectiveness argument. Using a new,
tighter bound on NN’s complexity, we show that simple NN
in fact learns from chaotic systems with great efficacy.

The remainder of this paper is organized as follows. Section
II reports experimental results about the learnability of NN on
chaotic dynamics using L63. Section III explains the efficacy
of NN from a geometrical perspective. We then provide bounds
on the complexity of neural networks in section IV and
conclude in V.

II. NEURAL LORENZ-63 EMULATION

The L63 model originally describes the 2D Rayleigh-Bénard
convection. Truncating the spectral components of the dynam-
ical fields yields a set of ordinary differential equations [29]:

Ẋ = σ(Y −X),

Ẏ = ρX − Y −XZ,
Ż = −βZ +XY,

(1)

where X and Y are the magnitudes of the stream function
and temperature modes, and Z is the deviation of the vertical
temperature profile from linearity. Consistent with typical
applications [29], we set σ = 10, β = 8/3, and ρ = 28.
The solutions of L63 are known to be dissipative (volume in
phase space contracts rapidly) and chaotic (sensitive to initial
perturbations). The discrete L63 map describes a map from
the current state of the system xn = (X,Y, Z)T to the state
at the next timestep xn+1

ΦL63(xn) 7→ xn+1. (2)

We analyze the discrete maps of L63 and NN because they
provide a direct geometric connection between the dynamics
of L63 and NN, as we shall discuss in section III. Since the
analytical form of (2) is unknown, the discrete map of L63 is
obtained by numerically integrating (1) with a uniform time
step dt = 0.01.

A. Compact neural model
We use single-hidden-layer feedforward neural networks to

learn the dynamics of L63. Networks with more hidden layers
are no doubt feasible, but we seek the simplest network which
is easy to interpret geometrically and also agrees well with the
numerical solution. The functional form of an L-neuron NN
map is:

ΦNN(xn) = W2g(W1xn + b1) + b2, (3)

where xn is the 3 × 1 input vector, W1 is an L × 3 weight
matrix, b1 is an L × 1 bias term, and g(·) is the activation
function. An L× 3 weight matrix W2 and an L× 1 bias b2

connect the hidden layer to the output.
The discrete map of L63 is solved with Matlab function

ode45 to generate training data. To obtain data on the at-
tractor, we randomly initialize 1000 trajectories from region
[−20, 20]× [−20, 20]× [0, 50] with uniform distribution. Each
trajectory is integrated for 2500 timesteps. We abandon the
first 2000 timesteps to remove the transient parts (typically
much shorter than 2000 steps). The remaining 500 timesteps of
the 1000 trajectories are aggregated as pairs (x,x′) that satisfy
x′ = ΦL63(x) to form the training data pool. The ensemble
of x represents the L63 attractor (AL63), and the ensemble of
location pairs provides information about the L63 flow. We
randomly sample 20, 30, 40, 60, 100, 150 location pairs from
the training data pool and train single-hidden-layer NNs with
3-8 neurons. Each NN is trained for 103 epochs with Bayesian
regularization [34].

Fig. 1. Two trajectories produced by L63 (blue) and the 4-neuron NN trained
on 40 data points sampled from the whole attractor (red-dashed). They start
from the same location on the L63 attractor (red dot), and are both 2000
timesteps long.

Here, tanh is chosen as the activation function, g(·), for
the rest of the paper, which is representative for the necessary
nonlinearity in the neural networks. For completeness, we find
that the choice of g(·) matters for the performance of the
NN (Fig. S2). Nonlinear sigmoidal functions such as Elliot
sigmoid and log sigmoid have a similar performance to tanh,
most likely due to their similar functional forms. Nonlinear
radial basis function (e−|x|

2

) and softplus [ln(1 + ex)] also
perform comparably. Linear or piecewise linear functions such
as ReLU or triangular function cannot reproduce the L63
dynamics within the tested range of training data and neurons.
We shall use a geometric perspective to show that such failure
may be due to the inability of (piecewise) linear functions to
develop the nonlinear flow required by chaos.

Our experiments show that NN learns L63 dynamics effi-
ciently with a small number of data and neurons. We now
analyze a 4-neuron NN, the smallest viable network. Trained
on only 40 data points, it accurately reconstructs the strange
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TABLE I
PARAMETERS OF THE 4-NEURON NN TRAINED ON 40 DATA POINTS FROM

L63. MATRICES W1 , W2 , b1 , b2 ARE AS IN (3). Sjj ARE BOTH THE
ELEMENTS OF DIAGONAL MATRIX S AND THE SINGULAR VALUES OF W∗ .

Matrix Values

W1

0.0091 0.0008 −0.0004
0.0140 0.0063 −0.0016
0.0061 0.0023 −0.0049
0.0085 0.0036 0.0041

bT
1 0.1697 −0.6054 −0.0449 0.1773

W2

94.6004 8.7248 −8.0364 3.0535

−349.8684 11.3885 207.0634 227.4161

32.1244 93.9784 −214.6608 11.9787

bT
2 −12.1241 34.2950 33.6097

Sjj 2.7988 1.2134 0.6438 0.0000

attractor. Table I shows the network’s parameters after training.
The blue solid trajectory in Fig. 1 follows the L63 flow, and
the red dashed one follows the flow of the trained NN. They
interlace with each other, and both trace out the well-known
Lorenz attractor. NN trajectories starting from other locations
on the attractor follow the same behavior and do not diverge.
The close resemblance between the two structures indicates
that the NN’s dynamics is similar to L63. This is especially
notable since this NN is very simple with only 4 neurons
and is trained on 40 data points; far fewer than the typical
training practice in the literature. The root-mean-square (RMS)
prediction error on testing data (Fig. S2a) decreases with
increasing number of neurons and training data, consistent
with Zhang (2017) [18]. We will not focus on the prediction
error since it has already been discussed in past work. Instead,
we compare the short-term and long-term predictability of the
two systems in the following section.

B. Comparison of predictability

To quantify the predictability of NN and L63 in terms of
local divergence rates, we use maximum finite-time Lyapunov
exponent (FTLE) [35]. Here, maximum FTLE describes the
largest possible exponential divergence rate of nearby trajec-
tories originating from the L63 attractor:

λmax :=
1

Nt
ln

∣∣∣∣max
δx0

δxNt

∣∣∣∣
|δx0|

=
1

Nt
ln
√
σmax, (4)

where δx0 is the initial perturbation that achieves maximum
divergence, δxNt

is the distance after Nt steps, and λmax is
the maximum FTLE. FTLE reduces to the Lyapunov expo-
nent [36] when Nt → ∞ and δx0 → 0. In Eq. (4), λmax
is calculated using the largest eigenvalue (σmax) of JT

Nt
JNt ,

where JNt
is the Jacobian matrix evaluated using perturbations

around x0 (see supplementary text S1).
We now compare the FTLE of NN and L63 dynamics on

the attractor. Because FTLE depends on trajectories’ initial
locations, the starting points of L63 and NN trajectories should
be close for a valid comparison. For the selected NN with
4 neurons and trained with 40 data points, we first generate
points using the same generation process as in section II-A

to represent the NN attractor (ANN). Second, we randomly
choose 2000 starting positions on AL63. Each point is paired
with the closest point on ANN. A pair of trajectories then
initializes from each pair of points, and the former trajectory
follows the L63 flow, whereas the latter follows the NN
flow. The FTLE of the trajectory pairs is compared under
different integration steps: Nt = 5, 50, 100, 500 as shown in
Fig. 2. When Nt = 5, 50, NN accurately reproduces local
divergence rates over the whole attractor, showing that the
two systems’ short-term predictability agrees with each other.
As Nt increases (Nt = 100), the chaotic nature of the two
flows begin to emerge so that some NN-L63 trajectory pairs
end up being faraway from each other. For the trajectory
pairs whose end points are separated by a large distance,
the FTLE measures the accumulated divergence rates along
distinct regions in the phase space. Therefore, we expect the
FTLE correspondence to diverge. At Nt = 500, the FTLE
collapses to the long-term maximum Lyapunov exponent of
L63 (roughly 0.91 as in [37]), indicating that the two systems’
long-term behavior is also similar.

Fig. 2. One-to-one scatter plot of FTLE with L63 (x axis) and NN (y axis).
The NN used in this plot is the same as that in Fig. 1. The panels (from left
to right, top to bottom) correspond to increasing integration steps, Nt.

The FTLE errors at Nt = 50 generally decrease with in-
creasing numbers of neurons and training data points (Fig. 3).
This trend is similar to the decreasing trend of the RMS
prediction errors (Fig. S2a). The reduction in the FTLE and
prediction errors follows from the bias and variance trade-
off [38]: increased complexity in learning models generally
translates into lower bias in prediction, provided that regular-
ization techniques prevent the learning algorithm from entering
the high-variance (overfitting) regime. Although the learning
process only minimizes prediction error, it also improves the
agreement in FTLE.

Remarkably, NN can extrapolate with incomplete training
data from a segment of the attractor. Similar to Fig. 1, Fig. 4
compares two same-origin trajectories separately predicted by
NN and L63. In this case, the NN has 5 neurons and is trained
on 100 data points sampled from the X > −5 part of AL63,
which amounts to knowing 73% of the attractor structure.
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Fig. 3. The FTLE test errors (also root-mean-square) of neural networks for
each neuron and number-of-data configuration. The FTLE is calculated with
Nt = 50 and averaged over 2000 trajectories that are randomly initialized on
the attractor. The red dot represents the example configuration used in Figs. 1
and 2. The red surface is located at z = 0.04.

Despite originating from the unknown region of X ≤ −5,
the NN trajectory still traces a smooth path which closely
resembles the original attractor in the extrapolated region. The
NN trajectory is close to the L63 one in the first 100 timesteps
and then bifurcate onto the two branches of the attractor (not
shown). The one-to-one correspondence of FTLE between L63
and the 5-neuron NN trained on the incomplete data is similar
to Fig. 2 (see Fig. S3).

Fig. 4. Similar to Fig. 1, but the red-dashed trajectory is produced by a 5-
neuron NN trained on 100 data points sampled from the X > −5 part of the
L63 attractor. The region to the right of the grey partition is the training data
range, and the region to the left is unknown to the NN.

III. A GEOMETRIC PERSPECTIVE OF THE NN FLOW

The agreement in FTLE between NN and L63 and NN’s ex-
trapolation skill suggest that NN has surprisingly good efficacy
in learning chaotic dynamics, which UAP cannot explain. The
UAP states that NN can approximate maps like ΦL63 arbitrarily
well, but this does not explain NN’s efficacy in reconstructing
the strange attractor nor its extrapolation skill. We instead
draw inspiration from the exact mathematical correspondence
between the geometric Lorenz flow and L63 [33], [39] (see

supplementary text S2) and provide a geometric understanding
of why NN can emulate chaos efficiently.

A. Mathematical formulation

The dynamics of NN (Eq. 3) can be seen as a map in a
multi-dimensional Riemann space (this interpretation was also
used in classification problems [40]). In the discrete map of
the 4-neuron NN in the previous section (table I), the input
vector x in the 3D phase space is mapped into a 4-D neuron
space and then mapped back to the phase space. Let an Nt-step
phase-space trajectory be LNt

0 = {x0,x1, ...,xNt
}, Nt ≥ 2.

From step n to n + 1, there exists a 4-D intermediate vector
y in the neuron space:

yn+1 = g(W1xn + b1), (n = 0, 1, ..., Nt − 1). (5)

We refer to y as the neuron vector. The recurrence relation of
y is

yn+1 = g(W∗yn + b∗), (n = 1, 2, ..., Nt − 1). (6)

where W∗ = W1W2 is a 4-by-4 matrix, and b∗ = W1b2 +
b1 is a 4-by-1 vector. We denote Eq. (6) as the neuron map.
Understanding the neuron map is equivalent to understanding
the dynamics of NN because the neuron map (6) is only
different from the NN map (3) by a homomorphism, Eq. (5).

The neuron map comprises 4 sub-steps: rotation, stretch,
rotation, and compression. To see how, we use singular value
decomposition (SVD) to rewrite W∗ as USVT, and rewrite
Eq. (6) as

yn+1 = g(USVTyn + b∗), (7)

where U and V are 4-D orthonormal matrices, and S is a
diagonal matrix of rank 32. This expression suggests that every
neuron vector (y) is sequentially rotated by VT, stretched by
S, rotated by U, and compressed by g(·). Note that “rotation”
here takes the generalized sense of orthogonal transformation
while preserving the L2 norm, and this also includes reflection.
The sigmoidal function only applies a compressing effect
because it squashes the distance between any two points on
the real line.

The compressing and stretching in the NN map are seen
more clearly through the growth of perturbations in the neuron
space. Let δy be a small perturbation between two trajectories
near location y. Linear expansion of Eq. (6) gives the pertur-
bation at the next timestep

δy′ = g′ (W∗y + b∗)�W∗δy, (8)

where � denotes element-wise (or Hadamard) product. Let
Gjj = g′

(∑L
i=1W

∗
jiyi + b∗j

)
and G = diag{G11, G22, ...},

and rewrite W∗ with its singular value decomposition, the
squared distance at the next timestep can be written as

|δy′|2 = |GUSVTδy|2. (9)

In Eq. (9), all elements in G are smaller than 1 because
g′(x) ∈ (0, 1], ∀x ∈ R. This implies that G, or the activation

2Because W∗ is the product of a 4-by-3 matrix and a 3-by-4 matrix, the
rank of W∗ is at most 3, and so is the rank of S. For the 4-neuron network
at question, S has 3 diagonal elements.
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function, only applies a compressing effect on perturbations,
consistent with our analysis of Eq. (7) above. Consequently,
at least one element in S must be larger than 1 to obtain
one or more unstable directions as required by chaos [41].
For the 4-neuron NN in table I, S has two elements larger
than 1 and therefore applies stretching in two dimensions in
the neuron space. Given the information of y, G controls the
degrees of compression in each dimension of the neuron space.
The rotations by U and VT control the orientations of the
compression and stretching by G and S while not changing
the magnitude of the perturbations.

The above framework can be easily generalized into an
N -hidden-layer network. The neuron vector dynamics is am-
biguous here as multiple hidden layers have multiple neuron
vectors. We can nevertheless apply the same method to per-
turbations in the phase space. For a perturbation of δx around
x, its squared length at the next timestep is

|δx′|2 = |WN+1GNWN ...G1W1δx|2. (10)

Gradient matrix Gi = diag{g′(Wiyi−1+bi)}, in which yi−1
is the neuron vector of the ith layer for i > 1, and y0 = x.
Wi is the weight matrix that connects layers i and i + 1.
The weight and gradient matrices consecutively parameterize
multiple stretching and compressing operations in a single NN
map.

B. Topological mixing in NN with the Hénon map

The stretch and compression sub-steps in neuron maps are
thought of as the typical way to give rise to topological
mixing and chaos (although strictly speaking, it is neither
the necessary nor the sufficient condition [42]). The ability
to obtain these geometric operations makes NN very good at
approximating discrete chaotic maps. Since it is challenging
to visualize the 4-D neuron-space dynamics in the NN trained
on the L63 system, we now use a 2-neuron NN trained on the
Hénon map for illustration. The Hénon map is a discrete 2D
chaotic map designed such that trajectories in the x-y plane are
stretched in one direction and compressed in the other [43].
The map comprises three sub-steps: an area-preserving stretch,
a compression, and a reflection along x = y:

(x1, y1) = (x, 1− ax2 + y), (stretch)
(x2, y2) = (bx1, y1), (compression)
(x′, y′) = (y2, x2), (reflection)

(11)

where (x, y) is the starting location and (x′, y′) is the finishing
location after one iteration. We set a = 1.4, b = 0.3 and
generate training data. A 2-neuron network is trained with
only 20 randomly-sampled data points following the same
training procedure as L63. The reconstructed strange attractor
is virtually indistinguishable from the original one (Fig. S4).
Table II shows the parameters of this network after training.

The 2-neuron network shows how the stretching, rotation,
and compression operations take place in the neuron map. Let
H be a group of points that form a straight line in the phase
space. H is initialized into the neuron space by (5) as H0. H0

is shown as the blue dots in Fig. 5, and the two neuron-space
dimensions are denoted as y(1) and y(2). Then H0 undergoes

TABLE II
PARAMETERS OF THE 2-NEURON NN TRAINED WITH 20 DATA POINTS OF

THE HÉNON MAP.

Matrix Values Bias Values

W1
0.0960 0.0043
−0.0866 0.0041

bT
1 0.8688, 0.9188

W2
220.7978 263.0327

3.0292 −3.6975 bT
2 −344.5050, 0.5593

a series of geometric maps following the NN flow. First, VT

rotates H0 around the origin by 130.0◦ counter-clockwise to
H1 (red). Next, S stretches H1 in y(1) and compresses it in
y(2), yielding H2 (yellow). H2 is reflected by U along a line
of 69.0◦ to the positive y(1) axis and becomes H3 (purple).
The addition of bias b∗ and element-wise compression by
g(·) transform H3 to H4 (green). The next step of the neuron
map then initiates from H4. Compared with H0, H4 extends
along the point cloud’s principal direction and wraps around
the lower-right tip of H0. Hence, each iteration of the neuron
map is effectively a horseshoe transformation that leads to
topological mixing and chaos.

The geometric view also explains why single-layer networks
with linear and piecewise linear activation functions such as
ReLU fail to reproduce the L63 dynamics within the tested
range of neurons and training data. For linear functions, or in
the linear regime of piecewise linear activation functions, G
in Eq. (9) is a constant matrix. Hence, they cannot emulate
chaos because perturbations in each dimension either expands
or contracts indefinitely, yielding a fixed point if all eigen-
values of GW∗ are smaller than 1, or a diverging system
if otherwise. Indeed, linear models dramatically fail when
used to model chaotic dynamics [11]. NNs with nonlinear
activation functions are trained to use G as a function of y
to modify and control the degree of compression in neuron
space dimension, thereby making NN an effective tool to
emulate chaotic dynamics. However, this does rule out the
possibility that some piecewise linear functions can produce
chaotic behaviors. For example, the piecewise-linear triangular
basis function expresses a folding operation of x ∈ (−1, 1)
onto x′ ∈ (0, 1). Therefore, if a stretch ratio of 2 and a bias
of -1 are applied, it’s conceivable to use this activation function
to reproduce a horseshoe map with only one hidden unit.

IV. LOWER-BOUNDING THE NUMBER OF NEURONS

The necessary numbers of neurons that reproduce the L63
and Hénon maps are surprisingly small compared to predic-
tions of previous theoretical results. Since the Euler-forward
scheme of (1) is a 3D (n=3) polynomial with a degree of
at most d=2, we use previous theoretical results on learning
polynomials with NNs [44], [45] to establish lower bounds on
the necessary number of neurons. We assume that polynomials
characterize the true dynamics, but the learning system doesn’t
know the exact coefficients for each term. The number of
neurons (L) for learning a polynomial with RMS error target
ε is bounded by L = Ω(n6d/ε3) according to [45]. This is a
rather rough estimate as more than 5× 105 nodes are needed
when ε ∼ 1 (for Hénon map, the estimate is 4× 103).
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H0 H1 H2 H3 H4&H0

(2) expansion by S

(3) reflection by     U

(4) bias by 
     and compression by

b⇤

g(·)
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(1) rotation by VT

Fig. 5. Schematic of an iteration of the neuron map described by the 2-neuron NN trained on the Hénon map. The positions of points in the neuron space at
each sub-step is shown in the upper figure, and the detailed structure is sketched in the lower panels. H0 (blue) is rotated counter-clockwise to H1 (orange),
stretched and contracted to H2 (yellow), reflected to H3 (purple), and then compressed to H4 (green) which occupies the same region as H0. The first step
is magnified in the inset.

Matching the near-equilibrium norms of neural and poly-
nomial regression [46] gives a more reasonable bound. A
PolyNet [47] asymptotically needs L =

(
n+d
d

)
− (n+ 1) ≈ 6

hidden nodes to exactly match a full polynomial (n=3, d=2).
An incomplete polynomial with several coefficients fixed a
priori can correspond to the L63 system exactly, and only
two hidden nodes are needed for the regression norms to
match. However, this is an unreasonable amount of knowl-
edge for bottom-up learning to assume. The standard net-
work (NN) used here (3) has an asymptotic bound of L ∼
n

2n+1

[(
n+d
d

)
− 1
]
≈ 5 neurons. Note that these estimates

based on the training process do not provide a training error
guarantee.

A more direct but less rigorous bound can be obtained
via a Taylor-expansion of the sigmoid function to the third
order: tanh(x) = x − x3/3 + O(x5), which allows (3) to
be modeled as a polynomial of degree 3 (NN polynomial).
We further require all coefficients of the NN polynomial to
be equal to those in (1). Then for an NN with L hidden
nodes, biases, and n-dimensional input/output, a total of
2nL + n + L parameters should satisfy 3

(
n+3
3

)
constraining

equations. The parameters in NN should be under-determined
for a good fit, i.e., 2nL + n + L ≥ 3

(
n+3
3

)
. Hence, at

least L = d(3
(
n+3
3

)
− n)/(2n + 1)e = 9 hidden nodes are

needed. To obtain an error estimate, we substitute table I
into the NN polynomial to obtain ΦNN−poly and calculate
the expected error over data sampled from the L63 attractor:

ε2 = 〈(ΦNN−poly − ΦL63)2〉AL63 . Five thousand random
samples give a normalized error of ε ∼ 0.14. Therefore, this
estimation gives a lower bound of 9 neurons at the error level
of at most 0.14. Thus, the network sizing in the experiments
cannot be interpreted as overfitting.

V. CONCLUSION AND DISCUSSION

We have demonstrated that single-hidden layer feedforward
neural networks with nonlinear activation functions can emu-
late chaotic systems such as Lorenz-63 and Hénon map with
surprising efficacy. Our results suggest that NN is potentially a
good candidate to represent a broad class of chaotic dynamics.
It learns efficaciously from data and offers good generalization
skill. Such success is explained by revealing NN’s structural
similarity to the chaotic maps in terms of the stretching
and compression operations. The high-dimensional rotations
are also important to reproduce the flow-like dynamics of
L63. Therefore, NN may serve as a suitable non-parametric
model for chaotic systems in data-driven problems because,
contrary to conventional thinking, it requires low complexity
in model design and is not data-hungry. Conversely, one could
also consider the trained NNs as a unifying formulation of
dissipative chaotic systems because NN reproduces the Hénon
and L63 maps under the same mathematical framework.

On the other hand, the compression operation imposed by
the sigmoid function makes NN of the form of (3) preferable
to emulate low-dimensional dissipative systems. Its ability
to model chaotic non-dissipative Hamiltonian dynamics and



submitted to IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 7

systems of much higher dimensionality is yet to be tested.
More work is also needed, possibly with the aid of Riemann
geometry, to fundamentally understand the geometric opera-
tions in the high-dimensional neuron space.
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S1. Numerical computation of FTLE

We define the map over Nt time steps as Φ0→Nt : x0 7→ xNt . When a perturbation δx
around x0 is sufficiently small andNt is finite, the resulting distance, δxNt , can be linearly
approximated as

δxNt = JNt(x0)δx +O(|δx|2), (S1)

where JNt(x0) is the Jacobian of mapping Φ0→Nt evaluated by forward-propagating per-
turbations around x0 for Nt steps. The magnitude of δx is 10−9 for all 6 directions in the
3D phase space. Neglecting higher-order terms in Eq. (S1) and taking its norm, we have

|δxNt|2 = δxTJNt(x0)
TJNt(x0)δx, (S2)

Then, the problem of finding the direction of x0 that maximizes perturbation growth rate
reduces to solving for the eigenvector that corresponds to the largest eigenvalue of matrix
JNt(x0)

TJNt(x0), and the largest growth rate corresponds to the largest eigenvalue of the
matrix. The maximum FTLE is therefore evaluated as

λmax =
1

Nt

ln
√
σmax, (S3)

where σmax is the largest eigenvalue of JNt(x0)
TJNt(x0). Eq. (S3) is used to find the

local maximum FTLE in section II-B.

S2. Exact correspondence between the geometric Lorenz map and L63

The fact that L63 system is a first-order ordinary differential equation set and cannot be
analytically solved means an exact solution can never be obtained. Fortunately, Ref. [1]
rigorously proved that the numerical solution of the original dynamical equations has
the same topological properties as the geometric Lorenz flow proposed by [2], which has
been extensively studied since its first publication. The geometric flow has a compress-
ing operation in the x direction and a stretching mainly in the y-z plane (Fig. S1). The
stretching has two important properties: first, it has an anti-symmetric x component such
that the surfaces S1 and S2, which were originally separated in the y direction are now
separated in x; second, it stretches in the y direction such that S ′′1 and S ′′2 becomes mixed
on the original S1 and S2 manifold. These geometric operations are such that topological
mixing takes place on the joint surface of S1 and S2, leading to chaotic behavior.
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S3. Supplementary figures
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Figure S1: Schematic of the geometric Lorenz flow, similar to Figs. 1 and 2 in [2]. (a) A rectangle, S,
parallel to the x-y plane intercepting the positive z axis is divided into S1 (y < 0) and S2 (y > 0). S1 is
moved to the lower left, compressed in x and becomes triangle S′1, whereas S2 is moved symmetrically to
the right and becomes S′2. (b) S′1 and S′2 are swirled and mapped back onto the original rectangle as S′′1
and S′′2 , respectively. S′′1 satisfies x < 0, and S′′2 satisfies x > 0, so that they occupy mutually exclusive
regions. After multiple iterations of this geometric flow, two fractal attractors emerge on the joint rectangle
of S1 and S2. Note that the directions of x and y are rotated 45◦ counter-clockwise compared to the original
L63 system for ease of illustration.

4



Figure S2: RMS prediction error on testing data for different activation functions. The function forms are
shown in the inset of each panel. The red transparent surfaces in each panel show a reference error level of
10−2.

5



Figure S3: Similar to Fig. 2, but for the 5-neuron NN trained on 100 data points sampled from the X > −5
part of the L63 attractor.

Figure S4: Reconstructed attractor of the 2-neuron neural network trained on the Hénon map. The inset
shows a magnified region of [0.295, 0.313] × [0.206, 0.214], which shows the difference between the NN
attractor and the Hénon attractor.
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