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Abstract—Good generalisation performance is the fundamental
goal of any machine learning algorithm. Using the uniform
stability concept, this paper theoretically proves that the choice
of loss function impacts on the generalisation performance of
a trained deep neural network (DNN). The adopted stability
based framework provides an effective tool for comparing the
generalisation error bound with respect to the utilised loss
function. The main result of our analysis is that using an effective
loss function makes stochastic gradient descent more stable which
consequently leads to the tighter generalisation error bound, and
so better generalisation performance. To validate our analysis,
we study learning problems in which the classes are semantically
correlated. To capture this semantic similarity of neighbouring
classes, we adopt the well-known semantics-preserving learn-
ing framework, namely label distribution learning (LDL). We
propose two novel loss functions for the LDL framework and
theoretically show that they provide stronger stability than the
other widely used loss functions adopted for training DNNs.
The experimental results on three applications with semantically
correlated classes, including facial age estimation, head pose es-
timation and image aesthetic assessment, validate the theoretical
insights gained by our analysis and demonstrate the usefulness
of the proposed loss functions in practical applications.

Index Terms—Generalisation performance, deep neural net-
works, loss function, statistical learning theory, semantic-
preserving learning.

I. INTRODUCTION

THE fundamental goal of any machine learning approach
is finding optimal solutions which generalise well from

training data to unseen test data. In other words, a small
gap, called generalisation error, between the performance
on the training data and the test data is the fundamental
objective of an arbitrary learning algorithm. Learning with
powerful models such as deep neural networks (DNN) has
achieved a step change in performance over recent years across
a wide variety of tasks [2]–[7]. However, although learning
algorithms, such as stochastic gradient descent (SGD), are able
to recover solutions with small training error, understanding
the generalisation performance is particularly critical for DNNs
due to their well-known over-fitting issue.

One way to assess the generalisation performance is to derive
upper bounds for the generalisation error. This can be achieved
using the notion of uniform stability of learning algorithms,
introduced by Bousquet and Elisseeff [8], [9] for traditional
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learning algorithms and then developed by Hardt et al. [10]
for randomised learning algorithms such as SGD. In fact, in
training of DNNs with SGD, the distribution and the order of
images in the training set introduce elements of randomness to
the trained model. The uniform stability measures the sensitivity
of the learnt solution to these perturbations in the training set.
Intuitively, a good learning algorithm should be uniformly
stable with respect to changes in the distribution of data and
also the order of images in the training set. Hardt et al. [10]
connect the concept of uniform stability to the generalisation
error of a model trained by SGD. As a main consequence of
this work, if the uniform stability holds for a learning algorithm
(specifically SGD), then its generalisation error will be bounded
with high probability [9].

As the current theoretical understanding of the effect of loss
function on the generalisation performance is limited, it is not
obvious how different loss functions affect the generalisation
performance of an optimiser of the empirical risk minimisation,
specifically the one found by SGD. As our main contribution
in this paper, using statistical learning theory, we theoretically
analyse the generalisation performance of a trained DNN with
respect to the loss function adopted by the learning algorithm.
We build our theoretical framework based on the uniform
stability concept in [10] in order to compare the generalisation
error bound of DNN models trained with SGD in conjunction
with different loss functions. The main result of our analysis
is that the tighter bound on the generalisation error can be
obtained by utilising an effective and stable loss function for
training DNNs via SGD. The proposed stability analysis method
developed in this paper advances the theoretical understanding
that could provide guidance for the selection of a loss function
in practice. In essence, our result implies that the model trained
using a stable loss function with moderate gradients generalises
better.

We validate our theoretical analysis on machine learning
problems in which there exists a semantic correlation among
the adjacent classes. Considering these problems as standard
classification problem, the correlation among the classes
is ignored. Recently, Geng et al. [11] introduced a kind
of a semantics-preserving learning framework, called label
distribution learning (LDL), to capture the semantic similarity
information among classes during training. Given an input
instance, the LDL framework allocates a descriptive degree
to each label in the label set, which signifies the extent to
which the label describes the instance. The true label of
the instance has the highest degree. The complete set of all
descriptive degrees of labels constitutes a label distribution
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Fig. 1. The real-world applications of the LDL framework. (a) Facial age estimation – due to similarity between neighbouring ages, the label is a Gaussian
distribution for a facial image at the age of 25. (b) Head pose estimation – since there exists similarity between faces with closed yaw angles, Gaussian
distribution function is used to encode pose labels (shown image has yaw angle=−60◦). (c) Image aesthetic assessment – the label is a mixture distribution for
a given image, specified by crowd opinions, ranging from 0 to 10, on the aesthetic impact of the image.

over the label space. For instance, there is a strong correlation
between the facial features of a person at a certain age and
at the immediately preceding and subsequent ages [12], [13].
To capture this correlation, the LDL framework represents
each age label as a discrete Gaussian distribution, called label
distribution, which tries to introduce the cross-age correlations
into the training phase. The expected value of each label
distribution is set to equal the true age, and the variance of the
label distributions corresponding to different ages is assumed to
be the same. Fig. 1 shows three real-world applications which
are tailor-made for being modelled by the LDL framework.

The well-known Kullback-Leibler (KL) divergence is cur-
rently employed as the loss function to measure the similarity
between the predicted and the ground-truth label distributions
for LDL [14]. As our second contribution in this paper, we
propose two novel loss functions for the LDL framework
which address the generalisation issue more effectively than
the commonly used loss function, i.e. the KL divergence.
We theoretically analyse the generalisation performance of
the learnt DNN models using the proposed loss functions
in comparison with the KL divergence. To this end, first,
we derive upper bound on the values of the proposed loss
functions and compare it with that of the KL divergence.
Specifically, we prove that the proposed loss functions are
upper bounded by the KL divergence. Moreover, we show
that SGD using the proposed loss functions is generally
more stable. These results are then used to compare the
generalisation error bound of the DNN models trained by these
loss functions. Finally, we experimentally demonstrate on three
class-correlated applications, i.e. age estimation from a single
face image of the subject, head pose estimation and image
aesthetic assessment, that training DNNs with the proposed loss
functions improves the generalisation performance compared
to the DNN model trained by the KL divergence.

The rest of this paper is organised as follows: we briefly
summarise the related work in Section II. We introduce the
preliminaries and review the tools used to derive inequalities
in Section III. Formulating the LDL framework, we introduce
the proposed loss functions and compare their properties with
those of the KL divergence in Section IV. The behaviour
of the proposed loss functions is theoretically analysed in
Section V. The theoretical findings are experimentally validated
in Section VI. The last section concludes the paper.

Notation

The following notation is adopted in the rest of the paper.
Uppercase and lowercase boldface letters are used for matrices
and vectors, respectively. Scalars and sets are represented by
standard and calligraphic fonts, respectively. The notation E{·}
and P{·} denote expectation and probability, respectively. The
random variables over which the expectation and probability
are defined will be specified in subscript. Wherever it is clear
from the text, we remove the subscripts for the sake of brevity.
| · | and ‖ · ‖ stand for absolute value and the `2-norm of a
vector. Moreover, xi denotes the i-th element of a set.

II. RELATED WORK

In order to design an efficient learning method [1], [12],
[15]–[19], a deep understanding of the impact of various
design choices on the generalisation performance is partic-
ularly critical. There is a venerable line of research focusing
on insights into the generalisation performance of learning
algorithms dating back more than thirty years [9], [20]–
[22]. The existing strategies to improve the generalisation
performance are drop-out [23], fast training [10], adversarial
training [24], multitask learning [25], [26], dynamic learning
rate and regularisation mechanisms [27], [28], neural network
ensemble approach [29], designing residual based network
architectures [30] and regularised algorithms which implement
structured sparsity constraints [31], [32]. Although these
approaches provide practical algorithms for improving the
generalisation performance, there is still a lack of theoretical
insight into how the above-mentioned method improve the
generalisation performance.

To theoretically analyse the generalisation performance,
one established approach in the literature is to derive upper
bounds for the generalisation error. Focusing on the empirical
error, there are different ways to establish upper bounds for
the generalisation error, including stability [9], [10], [20],
[33], [34], Vapnik-Chervonenkis (VC) dimension [33], [35],
robustness [36] and PAC-Bayesian theory with the help of
the properties of specific hypotheses [37]. The notion of
uniform stability, which our work relies on, was introduced by
Bousquet and Elisseeff [9] as a tool for deriving bounds for the
generalisation error of deterministic learning algorithms. The
follow-up works have since extended the notion of uniform
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stability to randomised algorithms such as bagging [8] and
stochastic gradient descent [10]. According to these results,
the optimiser of an empirical risk minimisation problem,
implemented by the aforementioned learning algorithms, are
uniformly stable under certain assumptions on regularity or
convexity of the loss function.

The main outcome of the above-mentioned theoretical work
is that the generalisation error is bounded by a vanishing
function of the sample size. That means more training data leads
to the tighter bound on the generalisation error. However, these
work provide no guidance as to how to build a model with more
generalisation capability where the the size of training data is
fixed. Hardt et al. [10] also bounds the generalisation error of a
model in terms of the number of iterations of SGD. Differs from
these work, our focus in this paper is on theoretical insight into
the effect of loss function on the generalisation performance of
DNNs. To this end, we derive bounds on the generalisation error
with respect to the properties of the employed loss function
that induces stability. Rather than providing new insights into
learning procedure or network architecture that yields the tighter
bound on the generalisation error, our paper provides new
theoretical understanding of how to design the loss function
such that it improves the generalisation performance of DNNs
trained by SGD.

III. PRELIMINARIES

In this paper, the goal is to learn a model fθ : X → Y ,
described by parameters θ ∈ H, between the input space X
and its corresponding output space Y . A common setting of
such a learning algorithm is defined as

argmin
fθ∈F

Ez∼D[`(fθ; z)], (1)

where it seeks a model fθ over some hypothesis space F that
minimises the true (expected) risk Rtrue(f

θ) , Ez∼D[`(fθ; z)]
with respect to sample z = (x,y) ∈ X × Y , drawn according
to an unknown distribution D. ` : Y × Y → R+ is the loss
function which measures the accuracy of a hypothesis fθ based
on the discrepancy between the predicted and real outputs. We
also sometime write `(fθ; z) = `(fθ(x);y) instead.

Since the distribution D is unknown, the minimisation
problem (1) cannot be solved directly. Instead, the true
risk Rtrue(f

θ) is estimated with the empirical risk over a
training set. Consider a finite set of N training samples
S = {zi, i = 1, 2, · · · , N}, where zi = (xi,yi), i.i.d. sampled
according to an unknown distribution D. The empirical risk is
then defined as Remp(fθ) , 1

N

∑N
i=1 `(f

θ; zi).
A learning algorithm A : (X × Y)N → YX is used to

solve the minimisation problem (1). In the context of neural
networks, SGD is the learning algorithm A for dealing with
such an optimisation problem. SGD is a randomised algorithm.
The randomness of SGD algorithm appears either in the
initialisation procedure by which the network’s weights are
randomly initialised or in the random selection of training
samples S during the network’s update. To simplify the notation,
throughout this paper, we consider the random choice of one
sample from the training set S at each iteration to indicate
the only nature of randomness of the learning algorithm

A. To model this randomness of SGD algorithm, let set
R = {r1 · · · rT } denote the set of random indices of samples
in the training set S. We denote fθS,R as the output of the
algorithm A applied to a training dataset S, with a random
set R. Note that Rtrue(f

θ
S,R) and Remp(fθS,R) are random

variables depending on S and R.
The essential task of a learning algorithm, such as SGD

algorithm, is to find a good hypothesis fθ w.r.t. a suitably
chosen loss function ` such that the difference between the
performance of the learnt model fθS,R over the training set S
and any other test set endowed with an unknown distribution D
is minimised. One way to evaluate the efficiency of the learning
algorithm is to derive upper bounds for the generalisation error
as a measure of the performance of the learning algorithm.

Definition 1 (Generalisation Error). Given a training set S , the
generalisation error of the output model fθS,R, trained using
the learning algorithm A on S with a set of random indices
R, is the difference between the empirical and true risk, i.e.
E(S,R) = Rtrue(f

θ
S,R)−Remp(fθS,R). Note that E(S,R) is

a random variable depending on S and R.

A manifestation of the lack of generalisation is also called
over-fitting. If an algorithm has the tighter bound, its generalisa-
tion performance is expected to be better. The study we describe
here intends to compare the upper bounds on the generalisation
error of the obtained model fθS,R using the learning algorithm
A with respect to different loss functions. In our analysis, we
will use the notion of uniform stability [9] to uncover the
link between stability and generalisation performance of SGD
algorithm using different loss functions. Our analysis concerns
the LDL based formulation being appropriate for the tasks
with strong correlation among the classes. For brevity, in the
following, fS,R, Rtrue(fS,R) and Remp(fS,R) are sometimes
used as shorthand for fθS,R, Rtrue(f

θ
S,R) and Remp(fθS,R) if

their meaning is clear from the context.

A. Bounded difference inequality

In our analysis, the bounded difference inequality (BDI),
proved by McDiarmid [38], is central to linking the uniform
stability and generalisation. Let Z be some set and G : Zn →
R be any measurable function. Consider two sets Q,Q′ ∈ Zn,
such that Q and Q′ differ in at most one element. If there
exists constant ρ such that

sup
Q,Q′∈Zn

|G(Q)−G(Q′)| ≤ ρ, (2)

then ∀ε > 0

PQ
[
G(Q)− EQ[G(Q)] ≥ ε

]
≤ exp(−2ε2/nρ2). (3)

The inequality (2) is called bounded difference condition.
Intuitively, G(·) satisfies the bounded differences property (2)
if changing only one element of Q at a time cannot make G(·)
deviates too far. It should not be too surprising that these types
of functions thus concentrate somewhat strongly around their
average, and this intuition is made precise by Eq. (3).
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B. Semantics-Preserving Learning

Let (x, y) denote a training sample, where x and y represent
the input instance and its corresponding class label, respectively.
The class label y is a scalar value from the set of possible
age labels L = {lmin, · · · , lmax}. Here, the goal is to learn
a mapping function between the input instance x and its
corresponding label y. A typical learning algorithm models this
problem as general classification problem and uses one-hot
encoding for representing the labels. In this type of modelling,
label y is encoded by a binary vector y ∈ RK , whose n-th
element is one if the input sample x belongs to the n-th label
in L.

In the one-hot label modelling, it is assumed the classes
are uncorrelated rather than dependent. However, this is a
strong assumption. In some real-world application, there exists
semantic correlation among classes. For instance, in age
estimation from the face appearance, close classes (ages)
are correlated due to the fact that the images of faces of
close age labels usually share some visual features. Therefore,
we need to build a semantics-preserving learning framework
for this kind of learning problems. Instead of using the
one-hot label encoding, recently, Geng et al. [11] model
this correlation among neighbouring classes by assigning a
label distribution y = [y1, y2, · · · , yK ] ∈ RK to each input
sample x, where ∀yi, 0 ≤ yi ≤ 1 and

∑K
i=1 yi = 1. For

instance, in this type of modelling for the age estimation
problem, the label vector y is assumed to have a Gaussian
distribution, centred at the true age y with a standard deviation,
σ (see Fig. 1 for other applications.) With this kind of label
modelling, a semantic-preserving learning framework, namely
label distribution learning problem, is built.

IV. LOSS FUNCTIONS

To optimise the parameters of a DNN model so that the
model describes the label distributions well, we need to
choose an appropriate loss function to accurately measure the
meaningful distance between the predicted and ground-truth
label distributions to work with the adopted learning algorithm.
Given a typical face sample x, let y and ŷ = fθ(x) denote
the corresponding ground-truth label distribution and output
label distribution estimated by the DNN, respectively. Further,
consider yk and ŷk as the k-element of y and ŷ, respectively.
In the existing LDL based methods, the KL divergence is
widely employed as the loss function to measure the similarity
between the estimated label distribution and ground-truth [14].
The KL loss function is defined as

`KL(ŷ,y) =

K∑
k=1

yk log(
yk
ŷk

). (4)

However, the KL divergence, due to some well-known limi-
tations including being unbounded and asymmetric [3], [12],
is unable to accurately measure the distance between two
distributions. Different from the exiting work, we propose two
novel loss functions for the LDL frameworks which address
the aforementioned issues associated with the KL divergence
and can handle the LDL problem more effectively.

We propose the use of symmetric version of the KL
divergence, i.e. Jensen-Shannon divergence (JS) as the loss
function for the LDL framework. The JS loss function is defined
as

`JS(ŷ,y) =
1

2

K∑
k=1

yk log(
yk
ỹk

) + ŷk log(
ŷk
ỹ

), (5)

where ỹ = (ŷk+yk)/2. Further, we consider a novel parametric
loss function for the LDL framework via generalising the
Jeffries-Matusita distance [12], [39]. We call this loss as
Generalised Jeffries-Matusita distance (GJM). The GJM loss
function is defined as

`GJM (ŷ,y) =

K∑
k=1

|yαk − ŷαk |
1
α =

K∑
k=1

yk

∣∣∣∣1− ( ŷkyk
)α∣∣∣∣

1
α

,

(6)
where α is in the range (0, 1]. In our experiments, we found
the best performance is obtained when 0.3 ≤ α ≤ 0.6. In the
rest of the paper, we consider α as 0.5, unless stated otherwise.

In the following sections, our generalisation error analysis
with respect to these loss functions will be presented. We will
theoretically prove the superiority of the GJM measure in terms
of generalisation, and experimentally confirm the theoretical
finding by measuring its performance in comparison with the
two other measures, i.e. KL and JS divergences. Throughout
this paper, the architecture of the network is the same.

Loss Function Properties

The following definitions and theorems provide the foun-
dation for our analysis of how the loss function impacts on
the generalisation ability of the trained model, which will be
discussed in the next section. In our analysis, a loss function
needs to satisfy the following properties:

Definition 2 (Lipschitz property). A loss function `(ŷ,y) is
γ-Lipschitz (admissible) with respect to the output vector ŷ, if
for γ ≥ 0 and ∀u,v ∈ RK we have

|`(u,y)− `(v,y)| ≤ γ‖u− v‖. (7)

We use ‖ · ‖ to denote the `2-norm of vectors. Intuitively, a
Lipschitz function is bounded in terms of how fast it is allowed
to change.

Definition 3 (Smoothness). A loss function `(ŷ,y) is η-smooth
with respect to the prediction output vector ŷ, if its gradient
∇`(ŷ,y) is η-Lipschitz, that is for η ≥ 0 and ∀u,v ∈ RK we
have

‖∇`(u,y)−∇`(v,y)‖ ≤ η‖u− v‖. (8)

Intuitively, the curvature of the loss function is bounded by the
property of the η-smoothness.

Theorem 1. Let function h : (0,∞)→ R be convex, such that
h(1) = 0. Let us define

I(ŷ,y) =

K∑
k=1

ykh

(
ŷk
yk

)
, (9)

as a distance function. If h(·) is γ-Lipschitz, i.e.

|h(x)− h(z)| ≤ γ|x− z| ∀x, z, (10)
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then I(ŷ,y) is also γ-Lipschitz. Further, since h(·) is convex,
I(ŷ,y) is also convex with respect to its first argument.

Proof. Let x = uk
yk

and z = vk
yk

. Then, from (10), we have∣∣∣∣h(ukyk
)
− h

(
vk
yk

)∣∣∣∣ ≤ γ ∣∣∣∣ukyk − vk
yk

∣∣∣∣ ∀k ∈ {1, · · ·L}.
(11)

Multiplying both sides of (11) by yk, and then employing sum-
mation on all the obtained inequalities for all k ∈ {1, · · ·L},
we obtain

K∑
k=1

∣∣∣∣ykh(ukyk
)
− ykh

(
vk
yk

)∣∣∣∣ ≤ γ K∑
k=1

|uk − vk| . (12)

Using the generalised triangle inequality, we get∣∣∣∣∣
K∑
k=1

ykh

(
uk
yk

)
−

K∑
k=1

ykh

(
vk
yk

)∣∣∣∣∣
≤

K∑
k=1

∣∣∣∣ykh(ukyk
)
− ykh

(
vk
yk

)∣∣∣∣ ≤ γ K∑
k=1

|uk − vk| .

(13)

Finally, we obtain

|I(u,y)− I(v,y)| ≤ γ‖u− v‖. (14)

and the Lipschitz property of I(ŷ,y) is proved.
We now prove that the convexity of h(·) implies the

convexity of I(ŷ,y) with respect to its first argument. Let
u,v ∈ Y be two probability distributions with all values
nonzero and t ∈ [0.1]. Then we have

I(tu + (1− t)u,y) =

K∑
k=1

ykh

(
tuk + (1− t)vk

yk

)
. (15)

Due to the convexity of h, we have ∀k ∈ {1, · · · ,K}

h

(
tuk + (1− t)vk

yk

)
≤ th

(
uk
yk

)
+ (1− t)h

(
vk
yk

)
. (16)

Summing over k from 1 to K and utilizing (15) we get

I(tu + (1− t)u,y) ≤ tI(u,y) + (1− t)I(v,y) (17)

proving the desired result. �

Remark. With hKL(x) = − log(x), x > 0 and hJS(x) =
x log( 2x

x+1 ) + log( 2
x+1 ), then obviously `KL(ŷ,y) = I(ŷ,y)

and `JS(ŷ,y) = I(ŷ,y), respectively. It is also obvious that
if hGJM (x) = |1− xα| 1α , x > 0, then `GJM (ŷ,y) = I(ŷ,y).
Consequently, since hKL(x), hJS(x) and hGJM (x) are convex
functions, then `KL(ŷ,y), `JS(ŷ,y) and `GJM (ŷ,y) are also
convex.

Lemma 1. A function h : (0,∞) → R is γ-Lipschitz, if γ
satisfies

γ = sup
x
|h′(x)|. (18)

That means the value of γ must equal the maximum value
|h′(x)| can assume.

Proof. This lemma can be easily derived from the definition
of Lipschitz property. �

The practical result is embodied in the following corollary,
which is a prerequisite for our analysis in the next section.

Corollary 1. Given that the GJM, JS and KL loss functions are
γGJM -Lipschitz, γJS-Lipschitz and γKL-Lipschitz, respectively,
the following inequality holds:

γGJM ≤ γKL
γJS ≤ γKL

(19)

Proof. As hKL(x) = − log(x), x > 0 and hJS(x) =
x log( 2x

x+1 ) + log( 2
x+1 ), then obviously `KL(ŷ,y) = I(ŷ,y)

and `JS(ŷ,y) = I(ŷ,y), respectively. It is also obvious that
if hGJM (x) = |1− xα| 1α , x > 0, then `GJM (ŷ,y) = I(ŷ,y).
Then, we have

h′KL(x) = − 1

x
,

h′JS(x) = log

(
2x

x+ 1

)
− 1

x+ 1
,

h′GJM (x) = sign(xα − 1)xα−1|xα − 1|
1−α
α .

(20)

Figure 2 shows the absolute value of the derivative of the
KL, JS and GJM loss functions as a function of x. As can
be seen |h′GJM (x)| is close to but smaller than |h′JS(x)| and
both |h′GJM (x)| and |h′JS(x)| are smaller than |h′KL(x)|. From
Lemma 1, this implies the inequality in (19) holds. We further
provide a proof for above-mentioned observation. First, we
prove that |h′JS(x)| ≤ |h′KL(x)|, i.e.∣∣∣∣ 1

x+ 1
− log

(
2x

x+ 1

)∣∣∣∣ ≤ ∣∣∣∣ 1x
∣∣∣∣ . (21)

First, given the fact that
∣∣∣ 1
x+1

∣∣∣ ≤ ∣∣ 1x ∣∣ ,∀x. Then, exploiting the
logarithmic inequality log(x) ≤ x− 1 for x ≥ 0, after some
mathematical simplification, we have∣∣∣∣ 1

x+ 1
− log

(
2x

x+ 1

)∣∣∣∣ ≤ ∣∣∣∣ 1

x+ 1
− (log(2) + x− 1− x)

∣∣∣∣
≤
∣∣∣∣ 1

x+ 1

∣∣∣∣ < ∣∣∣∣ 1x
∣∣∣∣ .

(22)

This implies the inequality (21). Next, we aim to prove that
|h′GJM (x)| ≤ |h′KL(x)|, i.e.∣∣∣∣1− 1√

x

∣∣∣∣ ≤ ∣∣∣∣ 1x
∣∣∣∣ . (23)

Equation (23) is equivalent to |x−
√
x| ≤ 1, which results in

x ≤ 2.7 after some mathematical simplification. Note that we
experimentally found that the variable x always satisfies the
above condition.

�

As the last theorem in this section, we now provide upper
bounds for the above-mentioned loss functions.

Theorem 2. For two distribution y, ŷ ∈ RK , the KL and JS
loss functions provide upper bounds on the GJM loss function
with the parameter α = 0.5, i.e. we have:

`GJM (ŷ,y) ≤ `KL(ŷ,y)

`GJM (ŷ,y) ≤ `JS(ŷ,y).
(24)
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Fig. 2. Absolute value of derivative of loss functions at different points x.

Proof. First, we prove the first inequality. The use of binomial
theorem and Jensen’s inequality gives

`GJM (ŷ,y) =

K∑
k=1

yk

∣∣∣∣1− ( ŷkyk
)α∣∣∣∣

1
α

(a)
=

K∑
k=1

yk

1/α∑
i=0

(−1)i
(

1/α

i

)(
ŷk
yk

)iα

=

K∑
k=1

yk

1/α∑
i=0

(−1)i
(

1/α

i

)
exp

(
iα log

(
ŷk
yk

))
(b)

≤
1/α∑
i=0

(−1)i
(

1/α

i

)
exp

(
iα

K∑
k=1

yk log

(
ŷk
yk

))

=

1/α∑
i=0

(−1)i
(

1/α

i

)
exp(−iα`KL(ŷ,y))

= (1− exp(−α`KL(ŷ,y)))
1
α ,

(25)

where inequalities a and b are due to the Binomial theorem and
the Jensen’s inequality, respectively. Note that `KL(ŷ,y) ∈
[0,∞) [40]. The use of Bernoulli’s inequality exp(x) ≥ 1 + x
gives

`GJM (ŷ,y) ≤ (1− exp(−α`KL(ŷ,y)))
1
α

≤ 1− exp(−α`KL(ŷ,y)) ≤ `KL(ŷ,y),
(26)

and the first inequality is proved. The proof of the second
inequality can be inferred by combining the inequalities in [41,
p. 48] and [42, Theorem 3.2]. �

V. STABILITY AND GENERALISATION ERROR BOUND

In this section, we analyse the generalisation error of DNNs
trained with SGD with respect to different loss functions using
the notion of stability as a tool. As mentioned in Section III,
our approach to upper bounding the generalisation error E is
based on the concept of uniform stability, introduced in [9],
[10]. We follow the notion of stability introduced by Hardt et
al. [10] with respect to randomness of the learning algorithm
A. Here, stability refers to the stability of the hypothesis at
the output of the algorithm with respect to small changes of
its input.

Definition 4 (Uniform Stability). Let set S ′ denote a training
set of the same size as set S drawn according to an unknown
distribution D, such that S and S ′ differ in only one element.
Let fS,R and fS′,R denote the optimal neural models obtained
by the learning algorithm A with a set of random parameters
R over the training sets S and S ′, respectively. The learning
algorithm A is β-uniformly stable with respect to a specific
loss function `, if the following condition holds:

∀ S, S ′ sup
z

ER
[
|`(fS,R; z)− `(fS′,R; z)|

]
≤ β, (27)

where the expectation is taken over randomness of the learning
algorithm A which appears in the random selection of training
samples S during the network’s update.

From the above definition, if a given learning algorithm is
β-uniformly stable, it has the property that changing one point
in the training set and keeping others fixed leads to at most
β-change in the error of the produced model with any random
permutation of training samples in S .

As proved by Bousquet and Elisseeff [9], if a deterministic
learning algorithm is β-uniformly stable, its generalisation
error is also upper bounded by a factor of β. This implies the
following: If a learning algorithm with a specific loss function
satisfies the stability condition with a more restrictive stability
measure, the tighter generalisation error bound may be expected.
However, these results concern only deterministic learning
algorithms. Different from Bousquet’s stability definition, our
notion of stability concerns the randomness of the learning
algorithm, similar to works presented in [10], [20]. Based
on this, we present a new result which uncovers the relation
between stability and generalisation of randomised learning
algorithms, being suitable for analysing the performance of
neural networks with respect to employed loss function. This
assertion is reformulated in the following theorem.

Theorem 3. Consider a loss function ` whose value ranges in
[0, L]. Let fS,R denote the optimal neural model obtained by
the learning algorithm A with the set of random parameters
R over the training sets S . Let A be β-uniformly stable with
respect to the loss function `. Further, assume there exists a
constant ρ for which the loss function `(fS,R, z) satisfies the
bounded difference condition (2) with respect to the set of
random parameters R. Then, for any random draw of S and
R, the following bound holds with probability at least 1− δ:

Rtrue(fS,R)−Remp(fS,R) ≤

ρ
√
T log(2/δ) + β

(
1 +

√
2N log(2/δ)

)
+ L

√
log(2/δ)

2N
.

(28)

Proof. Let E(S,R) = Rtrue(fS,R) − Remp(fS,R), be a
random variable depending on S and R. Let fS,R and fS,R′ be
two output models using the learning algorithm A applied on
the training set S with the two sets of random parametersR and
R′, respectively. We apply the BDI (3) by considering function
G and set Q as `(fS,R; z) and R, respectively. Assume R
and R′ differ only in two elements1. Note the BDI cannot be

1Recall that R is a set of random indices in S. So, if R and R′ differ in
one element, unavoidably R and R′ would differ in another element as well.
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applied directly in this case. So we partition each R and R′ in
two subsets R1,R2 and R′1,R′2 such that the corresponding
subsets, i.e. R1,R′1 and R2,R′2 differ only in one element.
Using the bounded difference conditions (2), there would be
a constant ρ = max(ρ1, ρ2) such that for every z and S, we
have the following bounded difference conditions with respect
to `:

sup
R1,R′1

∣∣`(fS,R1
; z)− `(fS,R′1 ; z)

∣∣ ≤ ρ (29)

and

sup
R2,R′2

∣∣`(fS,R2 ; z)− `(fS,R′2 ; z)
∣∣ ≤ ρ, (30)

Then, for every S,R1,R′1, we have

|E(S,R1)− E(S,R′1)|
=
∣∣Ez∼D

[
`(fS,R1

; z)
]
− Ez∼D

[
`(fS,R′1 ; z)

]
− 1

N

N∑
i=1

`(fS,R1 ; zi) +
1

N

N∑
i=1

`(fS,R′1 ; zi)

∣∣∣∣∣
≤ Ez∼D

[ ∣∣`(fS,R1
; z)− `(fS,R′1 ; z)

∣∣ ]
+

1

N

N∑
i=1

∣∣`(fS,R1 ; zi)− `(fS,R′1 ; zi)
∣∣

≤ 2ρ.
(31)

Applying the BDI (3) results in the following inequality

PR1

[
E(S,R1)− ER1 [E(S,R1)] ≥ ε

]
≤ exp(−ε2/2Tρ2).

(32)
Following the same lines forR2,R′2, the following inequality

also holds

PR2

[
E(S,R2)− ER2

[E(S,R2)] ≥ ε
]
≤ exp(−ε2/2Tρ2).

(33)
By combining the above two inequalities, we obtain:

PR
[
E(S,R)− ER [E(S,R)] ≥ ε

]
≤ exp(−ε2/Tρ2). (34)

By setting the r.h.s. equal to ν, the following inequality holds
with probability at least 1− ν:

E(S,R) ≤ ρ
√
T log(1/ν) + ER [E(S,R)] . (35)

To bound the random variable E(S,R), we now provide the
upper bound for ER [E(S,R)]. To this end, we again apply
the BDI (3) for function G and set Q being ER [E(S,R)]
and set of training samples S, respectively. Note that, in this
case, the bounded difference condition (2) equals the uniform
stability (27), so ρ = β. Let fS,R and fS′,R be the two output
models using the learning algorithm A with the set of random
parameters R applied on two training sets S,S ′, respectively.

Assume S,S ′ differ only in j-th element. For every S, S′,R,
we have

∣∣∣∣ER [E(S,R)]− ER [E(S ′,R)]

∣∣∣∣
=

∣∣∣∣∣ER
[
Ez∼D

[
`(fS,R; z)

]
− 1

N

N∑
i=1

`(fS,R; zi)

]

−ER

[
Ez∼D

[
`(fS′,R; z)

]
− 1

N

N∑
i=1

`(fS′,R; zi)

]∣∣∣∣∣
=

∣∣∣∣Ez∼D

[
ER
[
`(fS,R; z)− `(fS′,R; z)

]]
− 1

N

N∑
i=1

ER
[
`(fS,R; zi)− `(fS′,R; zi)

]∣∣∣∣∣
≤ Ez∼D

[
ER
[
|`(fS,R; z)− `(fS′,R; z)|

]]
︸ ︷︷ ︸

a

+
1

N

N∑
i=1,i6=j

ER
[
|`(fS,R; zi)− `(fS′,R; zi)|

]
︸ ︷︷ ︸

b

+
1

N
ER
[
|`(fS,R; zi)− `(fS′,R; zi)|

]
≤ 2β +

L

N
,

(36)

where the terms (a) and (b) are upper bounded by β using the
definition of uniform stability. Therefore, we have

sup
S,S′∈RN

∣∣∣∣ER [E(S,R)]− ER [E(S ′,R)]

∣∣∣∣ ≤ 2β +
L

N
. (37)

Applying the BDI (3) results in the following inequality

PS
[
ER [E(S,R)]− ES,R [E(S,R)] ≥ ε

]
≤ exp(−2Nε2/(2Nβ + L)2).

(38)

By setting the r.h.s. equal to ν, the following inequality holds
with probability at least 1− ν:

ER [E(S,R)] ≤
(2Nβ + L)

√
log(1/ν)√

2N
+ ES,R [E(S,R)] .

(39)
Now, we provide the upper bound for ES,R [E(S,R)]. Denote
by T = {ti, i = 1, 2, · · · , N}, a set of N training samples
that are independent from S and are drawn from an unknown
distribution D. Denote S ′ the set obtained by replacing the
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i-th sample in the set S with i-th sample from the set T .

ES,R [E(S,R)]

= ES,R

[
Ez∼D

[
`(fS,R; z)

]
− 1

N

N∑
i=1

`(fS,R; zi)

]

= ES,R
[
Ez∼D

[
`(fS,R; z)

]]
− ES,T ,R

[
1

N

N∑
i=1

`(fS,R; ti)

]

+ ES,T ,R

[
1

N

N∑
i=1

`(fS,R; ti)

]

− ES,R

[
1

N

N∑
i=1

`(fS,R; zi)

]

= ES,R
[
Ez∼D

[
`(fS,R; z)

]]
− ES,R

[
Et∼D

[
`(fS,R; t)

]]
+ ES,T ,R

[
1

N

N∑
i=1

`(fS,R; ti)

]

− ES,T ,R

[
1

N

N∑
i=1

`(fS′,R; ti)

]

= ES,T ,R

[
1

N

N∑
i=1

`(fS,R; ti)

]

− ES,T ,R

[
1

N

N∑
i=1

`(fS′,R; ti)

]

= ES,T ,R

[
1

N

N∑
i=1

(
`(fS,R; ti)− `(fS′,R; ti)

)]
≤ sup
S,S′,z

ER
[
|`(fS,R; z)− `(fS′,R; z)|

]
≤ β.

(40)

The last line is derived from the uniform stability definition (27)
and amounts to changing t to z. By combining (35), (39) and
(40) , the following inequality holds with probability at least
1− 2ν.

E(S,R)

≤ ρ
√
T log(1/ν) + β

(
1 +

√
2N log(1/ν)

)
+ L

√
log(1/ν)

2N
.

(41)

The results follows by setting δ = 2ν. �

The stability parameter β and the BDI constant ρ depend on
the properties of the learning algorithm A used for solving the
minimisation problem (1). Considering SGD as the learning
algorithm, we state the following theorem [10] which provides
upper bounds for β and ρ.

Theorem 4. Suppose that SGD update rule is executed for
T iterations with an annealing learning rate λt to solve
the optimisation problem (1). If `(fθ(x),y) is convex, γ-
Lipschitz and η-smooth with respect to its first argument

for every z = (x,y), then SGD satisfies the property of
being β-uniformly stable and holds the ρ-bounded difference
condition (2) with respect to the loss function `(fS,R, z) and
the set of random parameters R. We have

β ≤ 2γ2

N

T∑
t=1

λt

ρ ≤ 4γ2

T

T∑
t=1

λt.

(42)

Proof. We first prove the first inequality which is similar
to [10, Theorem 3.7]. We include the proof here for the
sake of completeness. Then we show how to prove the second
inequality. For the sake of simplicity of notation, we represent
the output model fθS,R as θS,R in this proof. We will omit
S,R when it is clear from the context. Given a learning rate
λ ≥ 0 and a training set S, SGD performs the gradient
descent update rule, defined as G(θ) = θ − λ∇θ`(θ; z), T
steps over all samples in S . Here, sample z is randomly picked
from S. Assume the gradient update G is τ -expansive, i.e.
supu,v∈H ‖

G(u)−G(v)‖
‖u−v‖ ≤ τ , and σ-bounded, i.e. supθ∈H ‖θ−

G(θ)‖ ≤ σ. Since `(fθ(x),y) = `(< θ,x >,y) is convex,
γ-Lipschitz and η-smooth with respect to its first argument
for every z = (x,y), we have ‖θ −G(θ)‖ ≤ λ‖∇θ`(θ; z)‖ =
λ‖∇θ`(< θ,x >,y)‖ ≤ λγ. Therefore the update rule is
λγ-bounded.

Let θ1S , · · · θTS and θ1S′ , · · · θTS′ be two sequences of output
models resulting respectively from performing two sequences of
the gradient updates G(θ1S), · · ·G(θTS ) and G(θ1S′), · · ·G(θTS′)
applied to two training sets S,S ′. Assume sets S,S ′ differ only
in one element and the initialisation weights θ0S = θ0S′ . Let
∆t = ‖θtS − θtS′‖. The proof is based on the growth recursion
concept [10, Lemma 2.4] which investigates how two distinct
sequences of update rules applied to a deep neural model
diverge when they start from the same initialisation point and
the training set is perturbed at each step. For simplicity, we
recall here the growth recursion result.

Growth recursion rule. [10, Lemma 2.4] There exists the
following relation recurrence between ∆t+1 and ∆t:

• If G(θtS) and G(θtS′) are equal and τ -expansive, then
∆t+1 ≤ τ∆t

• G(θtS) and G(θtS′) are σ-bounded and τ -expansive,
then ∆t+1 ≤ min(τ, 1)∆t + 2σt

At each step t, there are two cases when two samples z
and z′ are picked by SGD from S and S ′ respectively: 1) z
and z′ are the same with probability 1− 1/N , which implies
GtS = GtS′ , 2) z and z′ are different with probability 1/N .
Further, if the loss function is smooth and convex and the
learning rate λt is small enough, it is proved that the gradient
update rule GtS is 1-expansive [10]. Beside that, as mentioned
before, GtS is λγ-bounded. Applying the growth recursion rule
results:

∆t+1 ≤
(

1− 1

N

)
∆t +

1

N
∆t +

2λγ

N
. (43)
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Considering this inequality recursively through all steps, we
obtain

∆T ≤ 2γ

N

T∑
t=1

λt. (44)

Using (43) and the fact that the loss function `(fθ(x),y) =
`(< θ,x >,y) is γ-Lipschitz with respect to its first argument,
the following inequality is obtained for any z, S, S ′:

ER
[ ∣∣`(θTS,R; z)− `(θTS′,R; z)

∣∣ ]
≤ ER

[ ∣∣`(< θTS,R,x >,y))− `(< θTS′,R,x >,y))
∣∣ ]

≤ γER
[∥∥< θTS,R,x > − < θTS′,R,x >

∥∥]
≤ γER

[∥∥θTS,R − θTS′,R∥∥] = γER
[
∆T
]
≤ 2γ2

N

T∑
t=1

λt,

(45)

where the expectation is taken over randomness of the SGD
algorithm, which appears in the random set R. Without loss
of generality, we assume ‖x‖ ≤ 1 in the last inequality. The
inequality (45) implies the uniform stability (27), which renders
the desired inequality.

Now, we derive the second inequality. The proof follows the
same reasoning as that used for deriving the first inequality,
except that the sequences of the update rule relate to R,R′.
Let θ1R, · · · θTR and θ1R′ , · · · θTR′ be two sequences of output
models resulting respectively from performing two sequences of
the gradient updates G(θ1R), · · ·G(θTR) and G(θ1R′), · · ·G(θTR′)
applied to the training sets S with two different random sets
R,R′. Assume sets R,R′ differ only at two element and the
initialisation weights θ0S = θ0S′ . Let ∆t = ‖θtR− θtR′‖. At each
step t, there are two cases when two samples z and z′ are picked
by SGD by the permutation order in R and R′ respectively: 1)
z and z′ are the same with probability 1−2/N , which implies
GtR = GtR′ , 2) z and z′ are different with probability 2/N .
Following the same chain of equations (43)-(45) results in:∣∣`(θTS,R; z)− `(θTS,R′ ; z)

∣∣
≤
∣∣`(< θTS,R,x >,y))− `(< θTS,R′ ,x >,y))

∣∣
≤ γ

∥∥< θTS,R,x > − < θTS,R′ ,x >
∥∥

≤ γ
∥∥θTS,R − θTS,R′∥∥ = γ∆T ≤ 4γ2

T

T∑
t=1

λt,

(46)

The inequality (46) implies the desired inequality. �

In the previous section, we have proved that the GJM, JS
and KL loss functions satisfy the Lipschitz continuity and
smoothness properties. So, the upper bounds (42) are valid for
SGD when these loss functions are used2. We can now get the
following theorem by combining Theorem 3 and Theorem 4.

Theorem 5. Consider a loss function ` such that 0 ≤
`(f(·; z) ≤ L for any point z. Suppose that SGD update

2Modern results, obtained under some strong assumptions such as strong
convexity of the loss function [10], [43], [44], bound the generalisation gap
tighter. One may expect that designing a strongly convex loss function would
improve the generalisation ability of a trained model by SGD.

rule is executed for T iterations with an annealing learning
rate λt to solve the optimisation problem (1). Then, we have
the following generalisation error bound with probability at
least 1− δ:

Rtrue(fS,R)−Remp(fS,R)

≤ 2γ2
T∑
t=1

λt

(
2

√
log(2/δ)

T
+

√
2 log(2/δ)

N
+

1

N

)

+ L

√
log(2/δ)

2N
.

(47)

Remark. Theorem 5 implies that the generalisation error
decreases inversely with the size of the training set. The first
term in (47) improves the bound due to the Lipschitz property
of the loss function and vanishes as γ decreases. The second
term in (47) depends on the maximum value that the loss
function can assume. Both, the first and second terms can be
controlled by the type of loss function used.

We now assess the impact of the above-mentioned loss func-
tions on controlling the uniform stability and the generalisation
error bound. Specifically, we are interested in proving that the
generalisation error bound of a model, being trained by the
GJM loss function, gets the tighter upper bound in comparison
with the models trained by the JS and KL loss functions. The
following corollary compares the generalisation error bounds
for the learning algorithm which uses different loss functions.

Corollary 2. Consider a DNN is trained using the GJM
loss, KL loss and CE loss functions, separately over the
same training set S and settings. Denote fGJMS,R , fJSS,R, f

KL
S,R

as the corresponding output models. We have the following
inequalities:

E(fGJMS,R ) ≤ E(fJSS,R) ≤ EKL(fKLS,R), (48)

where E(fS,R) = Rtrue(fS,R)−Remp(fS,R).

Proof. These inequalities immediately follow from Corollary 1.
Regarding the last term, note the JS and KL loss functions are
upper bounded by log2K and ∞, respectively [45] and the
GJM is upper bounded by the JS loss function according to
Theorem 2. �

Corollary 2 provides the tighter bound on the generalisation
error of SGD when GMD is used as the loss function. In other
words, the generalisation error of a model trained with the
proposed loss function is upper bounded by the generalisation
error obtained by the other loss functions.

VI. EXPERIMENTAL EVALUATION

In this section, the theoretical findings obtained by our
analysis in the previous sections are experimentally validated
across a variety of tasks. We focus on applications where
there exists semantic correlation between classes, i.e. facial
age estimation, head pose estimation and image aesthetics
assessment. None of these results are intended to represent
the state-of-the-art for any particular task — our goal is to
demonstrate how the loss function affects the generalisation
performance of a learnt DNN model trained by SGD. We will
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show that across a variety of tasks, replacing the loss function
with our proposed loss functions can provide a significant
improvement in the generalisation performance of the trained
models.

A. Settings

Our algorithms are implemented with MatConvNet frame-
work [46]. In all experiments, the VGG model [47] is used as
the backbone of the system. We use the VGG model pre-trained
on face recognition datasets [48] for the age prediction and
head pose estimation tasks. For the image aesthetic assessment,
we train the VGG model from scratch. We replace the last
class fully-connected (FC) layer in the VGG model with a
K-neurons FC layer, where K is the number of classes in the
target task. We set the number of age, pose and aesthetic score
classes to 101, 61 and 10, respectively, The FC layer’s weights
are randomly initialised. For the experiments on all the tasks,
we use the following settings: 1. The batch size, parameter α,
initial learning rate, weight decay and momentum are set to
64, 0.5, 0.001, 0.0005 and 0.9 respectively. 2. The learning
rate is decreased exponentially to reach 10−5 over 30 epochs.
3. We do online augmentation by performing random cropping
and flipping of images during the training phase.

To measure the generalisation performance, we follow the
cross-dataset evaluation setting introduced in [12]. We keep
aside several test sets T ∈ (X × Y)M , so that the model
fS,R, which has been picked by the learning algorithm A
using the training set S, is statistically independent of T s.
For the age estimation and head pose estimation tasks, we
also guarantee no overlap between the sets of subjects in the
training and test sets. Under these constraints, we enforce the
trained models to be blind to the characteristics of the images
in the test datasets. Therefore, the generalisation performance
of the trained models in unseen and uncontrolled scenarios can
be more reliably evaluated.

B. Baselines

We consider several baseline to validate the performance
of our models. The performance is first compared with the
standard classification based framework [49], where the labels
are one-hot encoded and the cross entropy (CE) is used as the
loss function for training the network. It should be noted that
the CE loss function is a special case of the KL loss, because
`KL(ŷ,y) = `CE(ŷ,y) +H(y), where H(y) is the negative
entropy of y, which is constant. Further, when σ → 0, the KL
loss will approach the CE loss. Within the LDL framework,
we also evaluate the performance of the model trained via
the KL divergence [14] and χ2-statistic [50] employed as the
loss function. For a fair comparison, we trained the models
on a training dataset with the same network architecture and
implementation settings, including the pre-processing steps
and the data augmentation techniques. Finally, we investigate
the merit of the JS divergence and our proposed loss function
(α = 0.5) in the context of deep LDL based systems, compared
with the above-mentioned algorithms.

C. Facial Age Estimation

A typical facial age estimation algorithm maps a face image
into its corresponding chronological age label, a real number
between 0 to 100. Its aim is to learn discriminative features so
that the feature space can be divided into homogeneous parti-
tions, one for each age class. However, due to the fact that the
face images of the adjacent ages may have quite similar facial
appearance, the facial feature spaces across ages are heavily
overlapping. In order to deal with such semantic correlation
among classes in the age estimation problem, some recent work
in the literature [14], [51] model the age estimation problem
as the LDL problem, by which each age label is encoded as a
label distribution y = [y0, y1, · · · , y100], where each element
of yi is assumed to be a real number in the range [0, 1] and all
elements are constrained to

∑K
k=1 yk = 1. The highest value

is at the true chronological age and the probabilities gradually
decrease on both sides of the chronological age. As seen in
Fig. 1, all ages in the range 20 to 40 can describe the 30-years
old face image to varying extent. To transfer the age estimation
problem into the LDL framework, we follow the same strategy
used in [14], [51] and generate a Gaussian distribution, centred
at the age label with a standard deviation σ = 2, for each face
image.

Training Set: We combine the two existing ageing datasets,
namely AgeDB [52] and UTKFace [53], for building the
training set S . The AgeDB [52] and the UTKFace [53] datasets
contain 16, 488 and 21, 374 images, respectively. Due to limited
number of images in very young and old ages, we also crawled
a set of 23, 876 facial images from the Internet in the range of
0− 20 years and 70− 100 years. We added this set of images
to the training set. In contrast to the above-mentioned datasets,
our training set has enough images with the age labels, ranging
from 0 to 100.

Test Sets: MORPH [55], FG-NET [56], FACES [57] and SC-
FACE [58] datasets are used as the test sets. MORPH dataset
contains 55, 134 images from 13, 617 subjects of different races
in the age range from 16 to 72 years old. It provides a suitable
dataset for analysing the generalisation performance because
most of images in the dataset are African people, while this
ethnic group is under represented in our training dataset. The
FG-NET dataset contains 1, 002 images of 82 subjects in the
age range from 0 to 69 years old. It is challenging due to its
large variations in pose, expression and lighting conditions.
The FACES dataset has 2, 052 images of 171 subjects with
six expressions (neutrality, happiness, anger, fear, disgust, and
sadness) in the age range from 19 to 80 years old. SC-FACE
dataset contains 4, 160 images of 130 subjects in the age range
from 21 to 75 years old. We separate this dataset into two
separate datasets, namely SC-FACE-ROT and SC-FACE-SUR
datasets, which contain 1, 170 and 2, 990 images, respectively.
Taken by a digital high-quality camera, each subject in the SC-
FACE-ROT dataset has one high-resolution frontal image and 9
images with different head poses ranging from −90◦ to +90◦

in equal steps of 22.5◦. Each subject in the SC-FACE-SUR
dataset has 17 images with different qualities.

We apply two pre-processing steps to all images in the
training and test sets. First, face bounding box and 5 facial
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TABLE I
AGE ESTIMATION EVALUATION (MAE & CS) ON THE TEST DATASETS.

FG-NET MORPH FACES SC-FACE-ROT SC-FACE-SUR Average

Method MAE CS (%) MAE CS (%) MAE CS (%) MAE CS (%) MAE CS (%) MAE CS (%)

Human Workers [54] 4.70 69.5 6.30 51.0 NA NA NA NA NA NA 5.50 60.25

CE [49] 3.57 78.94 6.54 53.38 6.59 50.83 6.45 49.32 6.19 65.05 5.86 59.50
KL [14] 3.24 81.54 6.01 57.36 6.11 55.60 5.90 54.79 6.52 60.64 5.55 61.98
χ2 3.29 80.44 5.98 56.10 6.05 55.77 5.61 58.55 5.75 66.89 5.33 63.55

JS [ours] 3.33 79.74 5.64 58.17 6.49 53.27 5.37 62.14 5.11 68.73 5.18 64.41
GJM [ours] 3.21 81.59 5.63 59.13 5.90 57.55 5.32 62.14 5.37 67.96 5.08 65.67

landmarks of each face (i.e. the left and right centre of the
eyes, the nose tip, the left and right corner of the mouth) are
extracted by applying the MTCNN face detector [59] on each
image of the training and test sets. Second, the alignment
method, proposed in [60], is used to align a face in the centre
of the input image to the DNN. Finally, the aligned image is
squeezed to 256× 256 pixels.

Evaluation: At the evaluation step, we use the central
cropped image as the input to the network. To demonstrate
the generalisation performance of age estimation systems,
we calculate the mean absolute error (MAE) defined as∑M

k=1
|l̂k−lk|
M , where M is the total number of test images

and l̂k is the predicted age of the l-th image obtained by taking
the age corresponding to the maximum value of the output
distribution of the DNN. We also report the cumulative score
(CS) [61] which is defined as MI

M × 100%, where MI is the
number of images such that |ŷk − yk| < I . In this paper, we
set I as 5.

In Table I, we evaluate the performance of several age
estimation systems in terms of MAE and CS measures. We can
see that the age estimation accuracy of the LDL based methods
is higher than those of the classification based method. This
indicates that utilising label distribution is helpful to improve
the age estimation performance. This is reasonable because
the classification based model does not consider the effect of
the correlation during the training process. Further, it can be
inferred from Tables I that adopting the GJM loss function
for the age estimation leads to higher prediction accuracy
compared to the prediction accuracy achieved by the other
loss functions, including KL divergence, χ2-statistic, and JS
divergence. Other things being equal, the GJM loss leads to a
generalisation performance which is practically distinguishable
from the JS loss function and much better than the KL loss
function.

D. Head Pose Estimation

Head pose estimation is useful in a wide variety of appli-
cations, such as behaviour analysis, gaze estimation, fatigue
driving detection, and face recognition [62]. A typical head
pose estimation algorithm predicts pitch and yaw angles which
are real numbers between −90◦ to +90◦. Due to the scarcity
of datasets that are annotated with both, yaw and pitch angles,
we focus on the yaw angle prediction in this paper. Similar
to the age estimation problem, the face images of the close

poses are quite similar in facial appearance. Thus, the facial
feature spaces across poses are heavily overlapping. By virtue
of considering a label distribution for each pose label, the
correlation among neighbouring poses are effectively taken
into consideration during the training process [14]. To transfer
the head pose estimation problem into the LDL framework,
we follow the same strategy adopted in the age estimation
problem. We generate a Gaussian label distribution, centred at
the ground-truth of head pose label (yaw angle) with a standard
deviation σ = 3, for each face image. Fig. 1 shows a label
distribution with the yaw angle = 60◦.

Training Set: The AFLW dataset [63] is used for training. It
contains about 24k in-the-wild face images. We select 22, 490
faces to ensure the yaw angles fall within the range from −90◦

to +90◦. The ground-truth head pose (yaw) angles are given
as real numbers from −90◦ to +90◦ in steps of 3◦. So, we
have 61 yaw categories in this dataset.

Test Sets: We evaluate the generalisation performance of
the proposed head pose predictors on four public datasets:
Pointing’04 [64], NCKU [65], SC-FACE [58], MULTI-PIE [66]
and BIWI [67]. The Pointing’04 dataset contains 2, 790 images
of 15 subjects. The images display variations in expressions,
skin colours, and occlusions (e.g.wearing glasses). The yaw
angles range between −90◦ and +90◦ with increments of 15◦.
The NCKU dataset contains 6, 660 images of 90 subjects (78
males and 12 females). Each subject has 74 images, where
37 images were taken every 5◦ from −90◦ to +90◦. The
SC-FACE dataset contains 1, 170 images of 130 subjects with
different head poses ranging from −90◦ to +90◦ in equal steps
of 22.5◦. The MULTI-PIE dataset is a collection of faces of
337 subjects. The yaw angles range between −90◦ and +90◦

with increments of 15◦. Images in this dataset exhibit variation
through differences in illumination and facial expressions. For
our evaluation, we randomly selected 100 subjects from the
original MULTI-PIE dataset. BIWI Kinect dataset contains
over 15K images of 20 subjects. The head pose range covers
between −75◦ and +75◦.

For all images in the training and test sets, the faces are
first detected in the input images by using the MTCNN face
detector [59]. They are then cropped from the original images
and normalised to images of 256× 256 pixels.

Evaluation: Given an input image, we determine the bin of
the output pose distribution with the maximum value as the
predicted yaw angle. The MAE and CS scores are used for
measuring the performance of the trained head pose estimators.
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TABLE II
HEAD POSE ESTIMATION EVALUATION (MAE & CS) ON THE TEST DATASETS.

Pointing’04 NCKU SC-FACE MULTI-PIE BIWI Average

Method MAE CS (%) MAE CS (%) MAE CS (%) MAE CS (%) MAE CS (%) MAE CS (%)

CE [49] 15.10 55.95 12.31 73.24 10.59 75.04 12.25 78.25 15.45 54.44 13.14 67.38
χ2 12.77 58.80 12.01 71.33 10.67 71.70 10.56 75.10 15.57 53.76 12.31 66.13
KL [14] 13.00 59.52 12.68 72.07 7.53 85.21 8.39 86.90 15.41 55.01 11.40 71.74

JS [ours] 12.81 60.71 11.34 78.85 9.57 80.08 9.69 79.70 15.10 55.92 11.70 71.05
GJM [ours] 12.40 61.42 11.52 78.60 7.04 89.05 7.86 89.85 14.95 56.12 10.75 75.00

We set I as 15. Table II reports the results achieved by the
different methods on the test datasets. We observe that using
the GJM loss function for training DNN achieves the best
performance: it has much lower MAE and higher accuracy
than the other methods. As can be seen, the performance on
the BIWI dataset is nearly the same for all competing methods.
It is worth mentioning that the subjects in this dataset were
recorded while turning their heads, sitting in front of the sensor,
at roughly one meter of distance. Consequently, the head pose
angles in this dataset are not very precise. Nevertheless, the
performance of the model trained by our proposed method on
this dataset is slightly better than the others.

E. Image Aesthetics Assessment

The image aesthetics assessment problem involves rating
images on the basis of the subjective impression felt by several
viewers when looking at them [68]–[71]. Each user gives a
score to each viewed images captured by different devices,
reflecting their opinion as to whether the photo has been
acquired by an expert photographer, the scene context etc.
To transform the image aesthetics assessment into the LDL
framework, we adopt, as the label distribution, the normalised
histogram of human opinion scores of each image. The label
distributions in this application are mixture distributions, as
shown in Fig. 1. Our approach for the image aesthetics
assessment is to predict the label distribution. We then compute
the expected (mean) value of the label distribution over the
aesthetic bins of a given image as the aesthetic score.

Training and Test Sets: We train the VGG model on a large
publicly available aesthetic assessment dataset, called aesthetic
visual analysis (AVA) dataset [72]. The AVA dataset contains
about 255, 000 images, collected from an amateur photography
contest site3. The aesthetic quality of each image was rated by
about 200 human annotators. The aesthetic score ranges from
1 to 10 according to the viewers’ aesthetic judgements, with
10 indicating the highest quality. Following the cross-dataset
setting [12], we train the VGG model on all the images in the
AVA dataset and then evaluate the performance on two other
datasets, namely AADB [73] and FLICKER-AES [74]. The
AADB dataset contains 10, 000 photographic images of real
scenes collected from Flickr. Each image was annotated with an
aesthetic score for eleven attributes, averaged by five annotators.
Aesthetic scores range from 0 to 1 with 1 denoting the highest
quality. The FLICKER-AES dataset contains 40, 000 images.

3http://www.dpchallenge.com/

Aesthetic scores range from 1 to 5, representing the lowest to
the highest aesthetic levels. Each image was rated by about
five annotators and the corresponding aesthetic score is set to
be the mean of these scores. These datasets differ from AVA
which contains a significant number of professional images
that have been highly manipulated, covered with advertising
text, etc.

Evaluation: We evaluate the performance of image aesthetics
grading in terms of ρ value [73] and accuracy score [75]. The
ρ value is defined as ρ = 1 −

∑M
k=1 lk−l̂k
M3−M , where M is the

total number of test images. lk and l̂k are the ground-truth
and predicted aesthetic scores of the l-th image obtained by
computing the expected values of the predicted and ground-
truth label distributions over the 10 aesthetic bins. The accuracy
(Acc.) is measured by following the approach proposed in [75].
We compute the expected ground-truth and predicted aesthetic
scores according to the ground-truth and the predicted label
distributions. The accuracy is then assessed by means of
a binary categorisation of the aesthetic scores. Images are
categorised as high quality, if their expected score is greater
than the cut-off score of 5. The Acc. measure is then defined
as MI

M × 100%, where MI is the number of images such that
l̂k = lk.

The Acc. and ρ values of used in our evaluation on the AVA
dataset are reported in Table III. As shown in Table III, our
proposed loss function outperforms others in terms of both,
the Acc. measure and the ρ value. It should be noted that the
performance of image aesthetic assessment significantly drops
under cross-dataset evaluation. This confirms that the models
trained on the AVA dataset have a very limited generalisation
capability. We conjecture that there are two reasons doe this
behaviour. First, the AVA and test datasets are annotated by
different groups of raters who might have different aesthetics
tastes. Second, the AVA datasets contain photos with different
distributions of visual characteristics than those of the AADB
and FLICKER-AES datasets. Many images in the AVA datasets
are professionally photographed, while the images in the AADB
dataset contain many daily life photos from casual users. This
observation establishes the need for a further exploration into
the mechanisms for learning aesthetic rates, that would enable
adaptation to the tastes of a variety of user groups and the
diverse content of photo collections. As can be seen in Table III,
our system exhibits a better generalisation capability compared
with the existing ones.
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TABLE III
IMAGE AESTHETICS ASSESSMENT (ρ VALUE & ACC. MEASURE) ON THE

TEST DATASETS.

AADB FLICKER-AES Average

Method ρ Acc.(%) ρ Acc.(%) ρ Acc.(%)

CE [49] 0.319 58.45 0.228 49.12 0.273 53.78
χ2 0.320 58.61 0.238 49.45 0.279 54.03
KL [14] 0.322 58.76 0.242 49.44 0.282 54.10

JS [ours] 0.324 58.99 0.252 49.78 0.288 54.38
GJM [ours] 0.327 60.32 0.261 50.10 0.294 55.21

F. Discussions

α is the hyper-parameter in the proposed GJM loss function
which affects the performance of the trained model. In the above
experiments, we have empirically set α = 0.5. In order to study
the impact of α, we evaluate the generalisation performance
with different α values, changing from 0 to 1. Here, we take the
age estimation and head pose estimation problems as examples.
Table IV shows the MAE performance of the age and head
pose estimators on the FG-NET and Pointing’04 datasets with
respect to different α. We can see that a proper α is important
for low MAE. But generally speaking, an α value that is
close to 0.5 is a good choice. Finally, it should be noted that
using one GPU TITAN X 12 GB, the training time of one
epoch of all methods discussed in this paper, over a training
dataset, including 50K images of size 224 × 224 pixels, all
takes 639 seconds on average. At the inference time, the output
is predicted in 0.001 seconds.

TABLE IV
THE INFLUENCE OF VALUES OF PARAMETER α

α 0.2 0.3 0.4 0.5 0.6 0.7 0.8
FG-NET 3.7 3.3 3.2 3.2 3.5 4 4.8

Pointing’04 13.9 13.0 12.8 12.8 12.9 13.1 15.25

VII. CONCLUSION

Our main goal in this paper was to theoretically study the
effect of loss function on the generalisation properties of a
DNN model trained by the stochastic gradient descent (SGD).
We proved that SGD towards a DNN model, trained with an ap-
propriate loss function, exhibits a stronger uniform stability, and
this results in a tighter bound on the generalisation error. The
practical benefit of the stronger stability is better generalisation
of the resulting machine learning algorithms. Accordingly, we
proposed a novel loss function for which we proved the tighter
generalisation bound using the notion of uniform stability. We
experimentally validated our theoretical findings by comparing
the generalisation performance of different models, trained with
diverse loss functions, including the proposed loss function, on
a variety of class-correlated learning tasks formulated using the
well-known label distribution learning (LDL) framework. The
main outcome of our theoretical and experimental analyses is
that the proposed loss function appears to be the criterion of
choice for deep semantics-preserving learning tasks.
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