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Abstract— In this article, the H∞ bipartite synchronization
issue is studied for a class of discrete-time coupled switched
neural networks with antagonistic interactions via a distributed
dynamic event-triggered control scheme. Essentially different
from most current literature, the topology switching of the
investigated signed graph is governed by a double-layer switching
signal, which integrates a flexible deterministic switching regu-
larity, the persistent dwell-time switching, into a Markov chain to
represent the variation of transition probability. Considering the
coexistence of cooperative and antagonistic interactions among
nodes, the bipartite synchronization of which the dynamics of
nodes converge to values with the same modulus but the opposite
signs is explored. A distributed control strategy based on the
dynamic event-triggered mechanism is utilized to achieve this
goal. Under this circumstance, the information update of the
controller presents an aperiodic manner, and the frequency
of data transmission can be reduced extensively. Thereafter,
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by constructing a novel Lyapunov function depending on both
the switching signal and the internal dynamic nonnegative
variable of the triggering mechanism, the exponential stability
of bipartite synchronization error systems in the mean-square
sense is analyzed. Finally, two simulation examples are provided
to illustrate the effectiveness of the derived results.

Index Terms— Cooperation-competition neural networks,
double-layer Markov switching, distributed dynamic
event-triggered mechanism, H∞ bipartite synchronization,
simultaneous structural balance.

I. INTRODUCTION

IN THE past several decades, neural networks (NNs) involv-
ing complicated interactions among intricately connected

nodes have stimulated intense interests from academic com-
munities due to their inherent advantages and potential appli-
cations in artificial intelligence [1], pattern recognition [2],
secure communication [3], and some other fields [4]–[10].
In general, the interconnection of dynamical nodes compos-
ing NNs exhibits particular topology, which characterizes
the information interaction among various neurons. When
the interactions among nodes are considered to be mutu-
ally collaborative, which corresponds to nonnegative graphs,
relevant issues have been extensively studied, and tremen-
dous developments have been achieved [11]–[13]. However,
in many practical scenarios, networks involving both coopera-
tive and antagonistic interactions among nodes are ubiquitous
[14]–[16]. Taking social networks as an example, the asso-
ciated relationships among different individuals generally
include trust/distrust, friendly/hostile, like/dislike, and so
on [17]. To characterize these situations, the signed graph that
uses positive and negative weights to describe these two oppo-
site relationships is widely adopted. Considering the practical
significance of cooperation-competition networks and the solid
theoretical support from the graph theory, it is not surprising
that many representative works have emerged in recent years.
In terms of the structurally balanced concept, some essential
properties of networks with antagonistic interactions were
explored in the pioneering work of Altafini [18]. In [19],
the bipartite consensus problem for a group of high-order
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multiagents was discussed, where the structurally balanced
signed graph with fixed topology was investigated. Following
this research line, the consensus/synchronization problems of
systems subject to cooperation-competition interactions were
discussed in [20]–[22]. Under a relatively relaxed restriction
on the topology that the signed digraphs only contain spanning
trees, the interval bipartite consensus issue was further studied
in [23].

In most practical scenarios, the interaction among nodes
may change over time or state, which means that the weighted
signed graph may possess switching property [24]–[27]. Thus,
another research direction about networks with switching
topologies has recently been the research hotspot of many
scholars. Based on the tracker information, the synchronization
problem for discrete-time NNs with Markov jump topolo-
gies was investigated in [28]. Recently, inspired by Liu and
Chen [29], multiagent systems subject to stochastic switching
topologies were discussed in [30]. Furthermore, specific to sys-
tems with antagonistic interactions and switching topologies,
the consensus and synchronization issues were explored in
[31] and [32], respectively. It can be noticed that the developed
results on Markov jump NNs are mainly based on an implicit
constraint, i.e., switching characteristic of the topology can
be described by a perfect Markov chain, which may fail to
cover all situations yet, especially in the circumstance that the
transition probabilities (TPs) of the Markov chain are sensitive
to certain interference and, therefore, exhibit the time-varying
characteristic. In light of this situation, the concept of a non-
homogeneous Markov chain has been introduced to cope with
relevant issues. Corresponding research results can be found
in [33]–[35], where the piecewise homogeneous TPs of the
Markov chain were supposed to be subject to arbitrary switch-
ing, dwell-time switching, and average dwell-time switching
regularities, respectively. These pioneering works have pro-
vided a solid theoretical foundation for follow-up studies.
Furthermore, achievements presented in [36] have certified that
the switching regularity of persistent dwell-time (PDT) is more
general than dwell time and average dwell-time switching
regularities as the former can degrade into the latter two
forms by selecting specific parameters. Therefore, extending
relevant studies to Markov jump cooperation-competition NNs
subject to PDT switched TPs is of great significance, which
has currently not been fully researched yet due perhaps to the
relatively intractable analysis process.

Furthermore, in terms of the switched cooperation-
competition NNs, investigating the complete synchronization
of all nodes is unrealistic due to the competitive behav-
iors among nodes. Thus, the bipartite synchronization, which
requires that nodes belonging to one subgraph converge to a
reference state, while nodes of the other subgraph converge
to the opposite value of the reference, has been intensively
studied. To achieve the bipartite synchronization of networks
with antagonistic interactions, scholars have spared no effort
to explore various available control strategies, and many
remarkable studies have been reported including but not
limited to pinning control and adaptive control [14], [32].
Moreover, in consideration of the constrained communication
bandwidth, data transmission through shared networks usually

suffers from data congestion or collision. In this circumstance,
the event-triggered communication scheme that carries out
data transmission only when a certain condition is violated
can be one of the optimal choices, as it can alleviate the
transmission burden of networks by reducing the frequency
of data transmission. With this superiority, some interest-
ing issues have been discussed in [37]–[41], and references
therein. Very recently, by constructing an internal dynamic
nonnegative variable based on the behavior of the underlying
system, Girard [42] proposed a novel dynamic event-triggered
mechanism that can further reduce the transmission frequency
compared to the static one. Significant extensions can be found
in [43]–[45]. Although the dynamic event-triggered mech-
anism has shown conspicuous advantages, relevant studies
based on distributed control schemes have not yet received
enough attention, let alone taken NNs subject to antag-
onistic interactions and switching topologies into account
simultaneously.

Motivated by the above observations, this article centers
on investigating the H∞ bipartite synchronization issue for
double-layer switched cooperation-competition NNs under the
distributed dynamic event-triggered (DDET) control scheme.
The main contributions are identified in the following three
aspects.

1) The double-layer switching signal, which integrates
the PDT switching into a Markov chain to represent the
variation of transition probability, is introduced for the
first attempt to the analysis of cooperation-competition
NNs to describe the switching of the signed weighted
topology.

2) In the discrete-time context, a DDET controller is
designed in terms of linear matrix inequalities. With
the aid of the developed control strategy, the bipartite
synchronization of the investigated NNs can be realized
at an exponential convergence rate in the mean-square
sense. Meanwhile, the frequency of data transmission
can be significantly reduced via the employed dynamic
event-triggered mechanism.

3) A novel model synthesizing both the coupled switched
NNs with antagonistic interactions and the DDET trans-
mission mechanism is established. Adequate simulation
results, including the analysis of the dynamic behavior
of chaotic networks and the influence of the DDET
mechanism, are provided.

Notations: The notations used in this article are stan-
dard except otherwise stated. “⊗” denotes the Kronecker
product. 1N and In stand for a column vector with all
entries being 1 and an identity matrix, respectively. Ra and
Ra×b severally represent the a-dimensional Euclidean space
and the set of a × b-dimensional matrices. Z+ signifies
the set of nonnegative integers. AT means the transpose of
matrix A, and sym(A) means A + AT . diag{. . .} signifies
the block-diagonal matrix. The expectation operator is repre-
sented by E{·}. “∗” denotes the term induced by symmetry.
sgn(·) signifies the sign function. For a symmetric matrix,
A > 0(≥ 0) describes positive (semipositive) definite matrix.
�λmin(A)(�λmax(A)) means the smallest (largest) eigenvalue of
matrix A.
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II. PROBLEM FORMULATION AND PRELIMINARIES

A. Interaction Graph

Before further presenting, some necessary preliminaries of
algebraic graph theory [46] are presented.

The neural network is composed of N coupled neuron
nodes, and the interactions among nodes are described by the
weighted signed graph Gη(k) � (N ,�η(k),Hη(k)), which is sub-
ject to the switching topology, with η(k) ∈ R � {1, 2, . . . , R}
being the switching signal. N � {1, 2, . . . , N} is the set of
nodes; �η(k) ⊆ N×N and Hη(k) � [hη(k)i j ]N×N denote the edge
set and the weighted adjacent matrix under the topology η(k),
respectively. Since the antagonistic interactions are considered
among nodes, the collaborative and antagonistic behaviors
are represented by edges with positive and negative weights,
respectively. Specifically, directed against the topology η(k),

the entry hη(k)i j > 0 (hη(k)i j < 0) means that node i can
receive information from node j , and ( j, i) ∈ �η(k) is the
positive (negative) edge. hη(k)i j = 0 signifies ( j, i) /∈ �η(k).
Besides, the self-loop (i, i) is not allowed, i.e., hη(k)ii = 0
∀η(k) ∈ R, i ∈ N .

The degree of node i under the topology η(k) is denoted
as d̃η(k)i = �N

j=1 |hη(k)i j |. Then, the Laplacian matrix Lη(k) �
[lη(k)i j ]N×N of graph Gη(k) can be given by

Lη(k) = Dη(k) − Hη(k) (1)

where Dη(k) � diag{d̃η(k)1 , d̃η(k)2 , . . . , d̃η(k)N }.
Definition 1 [31]: The weighted signed graph Gη(k)(η(k) ∈

R) is simultaneously structurally balanced if the node set N
can be uniformly divided into two disjoint subsets N1 and N2,
i.e., N1 ∪ N2 = N and N1 ∩ N2 = ∅, such that hη(k)i j ≥ 0

∀i, j ∈ Nv (v ∈ {1, 2}) ∀η(k) ∈ R, and hη(k)i j ≤ 0 ∀i ∈ Nv , j ∈
Nw, i �= j (v,w ∈ {1, 2}) ∀η(k) ∈ R. Otherwise, Gη(k) is
simultaneously structurally unbalanced.

Lemma 1 [18], [31]: If the weighted signed graph
Gη(k)(η(k) ∈ R) is simultaneously structurally balanced,
there will exist a gauge transformation matrix � �
diag{ψ1, ψ2, . . . , ψN } (ψi ∈ {1,−1}, i ∈ N ), which satisfies
�Hη(k) = �Hη(k)� with �Hη(k) � [|hη(k)i j |]N×N ∀η(k) ∈ R.

Remark 1: Considering that the value of the connected
weight of a graph may change over time in many practical
scenarios, thus, a switching signal η(k) is duly introduced to
describe the variation of the topology. Moreover, if the set R
contains only one element, the topology under consideration
will degrade into the nonswitching case. For any η(k) ∈ R,
it can be noted that the Laplacian matrix Lη(k) is not a zero-
row-sum matrix, which makes relevant analyses more difficult
than these of traditional unsigned graphs. Thus, Lemma 1
concerning the transformation matrix � is introduced in
this article. It should be mentioned that, for networks with
switching topology, the simultaneously structurally balanced
concept in Definition 1 ensures that the graph sequence
{G1,G2, . . . ,GR} is sign consistent, and the requirement that
the entries of �Hη(k)� are all nonnegative can be satisfied
under a unified gauge transformation matrix � ∀η(k) ∈ R.
From the above statements, it is not difficult to find that

�Lη(k) = �Lη(k)� = [�lη(k)i j ]N×N is a zero-row-sum matrix for
each η(k) ∈ R, which will be utilized subsequently.

B. Node Dynamics With Switching Topology

Considering the coupled NNs with antagonistic interactions
and double-layer switching topologies, the dynamics of node
i are presented as follows:

xi(k + 1) = Axi(k)+ B f (xi(k))+ ui (k)+ Ei�(k)

+ c
N�

j=1

��hη(k)i j

���sgn
�
hη(k)i j

�
x j (k)− xi(k)

�
zi (k) = Fψi xi(k), i = 1, 2, . . . , N (2)

where xi(k) � [xi1(k), xi2(k), . . . , xin(k)]T ∈ Rn , ui (k) ∈
Rnu , and zi (k) ∈ Rnz are the state, control input, and out-
put vectors of node i , respectively. �(k) ∈ Rn� denotes
the disturbance input belonging to l2[0,∞). f (xi(k)) �
[ f1(xi1(k)), f2(xi2(k)), . . . , fn(xin(k))]T ∈ Rn represents the
neuron activation functions. c ∈ (0,∞) signifies the coupling
strength. A � diag{a1, a2, . . . , an} ∈ Rn×n, B ∈ Rn×n,
Ei ∈ Rn×n, and F ∈ Rnz×n are known constant matrices with
compatible dimensions.

For the probability space (�̃, �̃,Pr), {η(k), k ∈ Z+} denotes
a Markov chain, which is a right-continuous function taking
values in the fixed set R. It is utilized to describe the switching
of the topology. Since the TPs of the Markov chain are
considered to be piecewise constants, the transition probability
matrix (TPM) can be given as �̂σ(k) � [π̃σ (k)r1r2

]R×R , where

π̃σ (k)r1r2
� Pr{η(k + 1) = r2|η(k) = r1} (3)

with π̃σ (k)r1r2
∈ [0, 1] ∀r1, r2 ∈ R, k ∈ Z+, and

�R
r2=1 π̃

σ (k)
r1r2

= 1
∀r1 ∈ R. In detail, π̃σ (k)r1r2

means the probability that the system
topology jumps from mode r1 at current sampling instant k to
mode r2 at next sampling instant k + 1. The determination
of the TPs is relevant to the current moment k. Specifically,
the variation of the probability along time is governed by
a right-continuous piecewise constant function σ(k), which
satisfies the PDT switching regularity. Furthermore, it is sup-
posed that the signal σ(k) takes values in a predetermined
set, i.e., σ(k) ∈ Q � {1, 2, . . . , Q}. To elaborate on the PDT
switching rule, the following relevant concepts are introduced.

Definition 2 [36]: For scalars τP > 0 (the persistent dwell
time) and TP > 0 (the period of persistence), the signal σ(k)
complies with PDT switching rule if the following constraints
are satisfied.

1) σ(k) takes values as a constant in a series of nonadjacent
intervals with length no smaller than τP .

2) For the segments located in the abovementioned inter-
vals, σ(k) can take different values, and the duration of
each value is less than τP , while the overall duration is
no more than TP .

Remark 2: The total switching times of the PDT switching
signal σ(k) in the interval (k1, k2] are denoted as �(k1, k2),
which satisfies [33]

�(k1, k2) < [(k2 − k1)/(TP + τP )+ 1](TP + 1). (4)
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Fig. 1. Possible switching sequence of {η(k), k ∈ [kgv , kgv+1+1)} under PDT
switching regularity.

Furthermore, it can be noted from Definition 2 that the PDT
switching signal σ(k) can be described in a series of stages.
Each stage consists of a τ -portion and a T -portion. Taking
the vth stage as an example (as depicted in Fig. 1), the actual
length of τ -portion is τ v(τ v ≥ τP ), and the actual length of
T -portion is T v = T (v1) + T (v2) + · · · + T (v�(v))(T v ≤ TP ),
where �(v) signifies the switching times of σ(k) in the
T -portion of the vth stage. In the τ -portion, σ(k) is a constant,
while, in the T -portion, σ(k) can take different values at
different time periods. To facilitate the follow-up analysis,
the switching times sequence of σ(k) is denoted as {kg1 , kg1+1,
kg1+2, . . . , kg1+�(1), . . . , kgv , kgv+1, . . . , kgv+�(v), . . .}. More-
over, the possible jumping sequence {η(k), k ∈ [kgv , kgv+1+1)}
is also presented in Fig. 1.

Remark 3: In this article, the topology variation is embod-
ied in hη(k)i j , of which η(k) denotes a double-layer switching
signal. It is obvious that this signal integrates the random
characteristic of the stochastic Markov jump sequence with
the flexibility merits (describe the intermittent occurrence of
slow and fast events in a uniform framework in terms of
the property of the τ -portion and T -portion) of the deter-
ministic PDT switching rule. Moreover, it can be noted that
the double-layer switching can be degraded into traditional
Markov jump case by considering τP → ∞ when the PDT
switching sequence starts from τ -portion or takes Q � {1}
directly. It means that the adopted switching description model
is more comprehensive.

Before further presentation, some assumptions about signed
graph Gη(k) and activation function f (·) are provided.

Assumption 1: The signed graph Gη(k), η(k) ∈ R of neural
network (2) is simultaneously structurally balanced.

Assumption 2: For i = 1, 2, . . . , n, fi (a) : R �→ R is a
bounded and odd activation function, which satisfies

τ−
i ≤ fi (a)− fi (b)

a − b
≤ τ+

i , a �= b (5)

where fi (0) = 0. τ−
i and τ+

i are known real constants that
can be taken as positive, zero, or negative.

The dynamic of the unforced isolated node corresponding
to neural network (2) is presented as follows:

s(k + 1) = As(k)+ B f (s(k))

z̄(k) = Fs(k) (6)

where s(k) � [s1(k), s2(k), . . . , sn(k)]T ∈ Rn and z̄(k) ∈
Rnz are the state and output vectors of the isolated node,
respectively. Other symbols are consistent with (2).

For simplicity, we consider the following abridged nota-
tions: �̂σ(k) � �̂q1 and Hη(k) � Hr1 ∀σ(k) = q1, η(k) = r1,
and other symbols are similarly defined. Then, based on
Lemma 1, matrix � is employed for vector transformation.
Denote x̃i(k) � ψi xi(k), i = 1, 2, . . . , N . Since �Lr1 � �Lr1�
is a zero-row-sum matrix for each r1 ∈ R, the coupled
switched NNs can be further depicted as

x̃i(k + 1) = Ax̃i(k)+ B f (x̃i(k))+ ψi ui (k)

− c
N�

j=1

�lr1
i j x̃ j(k)+ ψi Ei�(k)

zi (k) = Fx̃i(k), i = 1, 2, . . . , N. (7)

C. Distributed Dynamic Event-Triggered Controller

For the purpose of mitigating the communication burden,
inspired by Girard [42], a DDET mechanism is employed
to determine the instant of data transmission and update
the input signal of the controller. Furthermore, the bipartite
synchronization error is defined as ei (k) � x̃i(k)−s(k), which
will be utilized for the controller design subsequently. The
sequence {km

i |m ∈ Z≥0} represents the set of event-triggered
instants of the i th neuron node. ∀i ∈ N , when the cur-
rent event-triggered instant is km

i , then the next triggering
instant km+1

i can be determined aperiodically by the following
event-triggered mechanism:

km+1
i = inf

�
k ∈ Z+

��k > km
i , and δi (k)

+ θi(ϑi e
T
i (k)ei(k)− ζ T

i (k)ζi(k)) ≤ 0
�

(8)

δi(k + 1) = �iδi(k)+ ϑi e
T
i (k)ei(k)− ζ̄ T

i (k)ζ̄i(k) (9)

where θi ∈ (0,∞), ϑi ∈ (0,∞), and �i ∈ (0, 1) are known
scalars. For k ∈ (km

i , km+1
i ], ζi(k) � ei (k) − ei(km

i ) denotes
the measurement error. Correspondingly, ζ̄i(k) is defined as
ζ̄i(k) � ei (k)− ei (km

i ) with

km
i � sup

�
km̄

i

��km̄
i ≤ k, m̄ = 0, 1, 2, . . .

�
. (10)

δi(k) is an additional introduced internal dynamical variable
of which the initial conditions are considered to be δi(0) ≥ 0
∀i ∈ N .

Lemma 2 [45]: Under the initial state δi(0) ≥ 0∀i ∈ N ,
the internal variable δi (k) of the DDET mechanism given in (8)
and (9) satisfies δi(k) ≥ 0 ∀k ∈ Z+ if the selected parameters
θi ∈ (0,∞) and �i ∈ (0, 1) ensure θi�i ≥ 1 ∀i ∈ N .

Remark 4: It can be noted from (10) that, ∀i ∈ N

ζ̄i(k) =
	

0, k = km
i or k = km+1

i

ζi (k), k ∈ �
km

i , km+1
i

�
.

(11)

Taking the event-triggered condition (8) into account, it is
not difficult to deduce that ∀k ∈ [km

i , km+1
i ),m = 0, 1, 2, . . .

δi (k)+ θi
�
ϑi e

T
i (k)ei(k)− ζ̄ T

i (k)ζ̄i(k)
�
> 0. (12)

For the designed scheme [see (8) and (9)], the bigger the
triggering interval, the lower the frequency of data transmis-
sion, which is conducive to the saving of limited communica-
tion resources. To enlarge the triggering interval, a prevailing
method is introducing a nonnegative internal dynamic variable,
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as stated in [42]. In this article, the constraint conditions
in Lemma 2 are utilized to ensure the nonnegativity of the
variable δi(k). Detailedly, since δi(0) ≥ 0, we suppose that
δi(km

i ) ≥ 0. Then, it can be obtained from (9) and (11) that
δi(km

i +1) ≥ 0 as θi ∈ (0,∞) and �i ∈ (0, 1). ∀k ∈ (km
i , km+1

i ),
in terms of (12) and θi�i ≥ 1, we can further obtain δi(k+1) ≥
0 if δi (k) ≥ 0. Thus, based on the mathematical induction
method, we obtain δi (k) ≥ 0 ∀k ∈ Z+.

Under the above designed DDET mechanism, the control
input is considered to be generated by a zero-order holder.
Then, the event-triggered equivalent control law for node i
can be derived as:

ui (k) = Ki ei(k
m
i ), k ∈ 


km
i , km+1

i

�
(13)

where Ki ∈ Rn×n signifies the controller gain matrix to be
designed of node i . Then, synthesizing (6), (7), and (13),
the bipartite synchronization error system in the compact form
can be derived as follows:

e(k + 1) = Ãr1 e(k)− �̄Kζ̄ (k)
+ B̃ f (e(k))+ Ẽ�(k)

z̃(k) = F̃e(k) (14)

where

x̃(k) �



x̃ T
1 (k) x̃ T

2 (k) · · · x̃ T
N (k)

�T

ζ̄ (k) �


ζ̄ T

1 (k) ζ̄ T
2 (k) · · · ζ̄ T

N (k)
�T

z(k) �



zT
1 (k) zT

2 (k) · · · zT
N (k)

�T

z̄(k) �



z̄T
1 (k) z̄T

2 (k) · · · z̄T
N (k)

�T

e(k) � x̃(k)− 1N ⊗ s(k), �̄ � � ⊗ In

z̃(k) � z(k)− 1N ⊗ z̄(k), K � diag{K1, K2, . . . , KN }
Ãr1 � IN ⊗ A − c( �Lr1 ⊗ In)+ �̄K, F̃ � IN ⊗ F

B̃ � IN ⊗ B, Ẽ � �̄



ET
1 ET

2 · · · ET
N

�T

and

f (e(k)) � f (x̃(k))− 1N ⊗ f (s(k)), f (x̃(k))

�



f T (x̃1(k)) f T (x̃2(k)) · · · f T (x̃N (k))
�T
.

Definition 3 [18], [47]: Given the gauge transformation
matrix � � diag{ψ1, ψ2, . . . , ψN } (ψi ∈ {1,−1}, i ∈ N ),
the systems (2) and (6) achieve bipartite synchronization in
the mean-square sense if limk→∞ E{�ψi xi(k) − s(k)�} = 0
∀i ∈ N .

Remark 5: Suppose that hr1
i j ≥ 0 ∀i, j ∈ N1, and hr1

i j ≤ 0
∀i ∈ N1, j ∈ N2; then, the bipartite synchronization means�

lim
k→∞

E{�xi(k)− s(k)�2} = 0 ∀i ∈ N1

lim
k→∞

E{�xi(k)+ s(k)�2} = 0 ∀i ∈ N2.

Noteworthy, the switching of the graph only involves the
connected weight rather than the cooperation-competition rela-
tionships among nodes, which means that the variation of η(k)
has no effect on the dividing of node set N . Moreover, instead
of proving Definition 3 directly, this article will concentrate
on proving that the bipartite synchronization error system (14)
is mean-square exponentially stable (MSES) [33], i.e.,

E{�e(k)�2} ≤ αβk−k0E{�e(k0)�2} ∀k ≥ k0 (15)

under the condition of ω(l) ≡ 0. The scalars α and β satisfy
α ∈ (0,∞) and β ∈ (0, 1), respectively.

Definition 4 [33]: The bipartite synchronization error sys-
tem (14) is MSES with a prescribed H∞ performance level λ
if system (14) is MSES, and for any ω(k) ∈ l2[0,∞), there
exists λ > 0 such that, under zero-initial conditions, there
holds

∞�
k=0

E{�z̃(k)�2} ≤ λ2
∞�

k=0

E{��(k)�2}. (16)

III. MAIN RESULTS

In this section, the attention is focused on discussing the
bipartite synchronization control scheme based on a DDET
mechanism. The mean-square exponential stability and H∞
performance of the bipartite synchronization error system (14)
are analyzed in Theorem 1. Then, the concrete form of
the designed controller gain is presented in Theorem 2. For
brevity, we denote

ς1 � min
r1∈R,q1∈Q

{�λmin(Pr1q1)}, ε̄ � ε


1

(TP +τP )
+1

�
(TP +1)

ς2 � max
r1∈R,q1∈Q

{�λmax(Pr1q1)}, β̄ � βε(TP +1)/(TP +τP )

γM � max
i∈N

{γi}, δ̄(k) �

δ

1/2
1 (k) · · · δ1/2

N (k)
�T

tk � sup{gv + κ
��kgv+κ ≤ k }, kg1 � k0

�k � z̃T (k)z̃(k)− λ2� T (k)�(k).

A. Stabilization and Performance Analysis

Theorem 1: Construct a candidate Lyapunov function for
the bipartite synchronization error system (14) as

Vη(k)σ (k)(k) = eT (k)Pη(k)σ (k)e(k)+
N�

i=1

γiδi(k) (17)

where δi (k) developed in (8) and (9) satisfies δi(0) ≥ 0, θi >
0, 0 < �i < 1, and θi�i ≥ 1 ∀i ∈ N . For given scalars
0 < β < 1, ε > 1, and λ > 0, if there exist γi > 0(∀i ∈ N )
and symmetric matrices Pr1q1 > 0(∀r1 ∈ R, q1 ∈ Q), such
that, ∀η(k) ∈ R, σ(k) ∈ Q, the following conditions hold:

E{Vη(k+1)σ (ktk )
(k + 1)− βVη(k)σ (k)(k)+�k} ≤ 0 (18)

E{Vη(kgv )σ (kgv )(kgv )− εVη(kgv )σ (k
−
gv )
(kgv )} ≤ 0 (19)

εTP +1βTP +τP − 1 < 0. (20)

Then, the bipartite synchronization of systems (2) and (6) is
achieved, and the prescribed H∞ performance index is

λ̄ = λ

�
ε̄(1 − β)/(1 − β̄). (21)

Proof: Considering k ∈ [kgv , kgv+1), then, based on condi-
tions (18) and (19), the following inequality can be deduced
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by recurrence:
E�Vη(k)σ (k)(k)

�
≤ εβk−kgv E

⎧⎨
⎩Vη(kgv )σ (k

−
gv )
(kgv )+

k−1�
l=kgv

βk−l−1�l

⎫⎬
⎭

≤ ε�(k0,k)βk−k0E{Vη(k0)σ (k0)(k0)}

+
k−1�
l=k0

ε�(l,k)βk−l−1E{�l}. (22)

Subsequently, we will complete the proof of the theorem
from the following two aspects.

Step 1: For ω(k) ≡ 0, we prove the mean-square exponen-
tial stability of the bipartite synchronization error system (14).

It is obvious that it can be derived from (17) and Lemma 2
that

ς1�e(k)�2 ≤ Vη(k)σ (k)(k) ≤ ς2�e(k)�2 + γM

��δ̄(k)��2
. (23)

Under the condition of ω(k) ≡ 0, inequality (22) implies

E�Vη(k)σ (k)(k)
� ≤ ε

�
k−k0

TP +τP
+1

�
(TP +1)

βk−k0E�Vη(k0)σ (k0)(k0)
�
(24)

by taking the constraint (4) about the switching times over
(k0, k] into account. Furthermore, combining (23) with (24)
yields

E{�e(k)�2} ≤ ᾱβ̄k−k0 �e(k0)�2

where ᾱ � ςεTP +1/ς1 with ς � (ς2�e(k0)�2 +
γM�δ̄(k0)�2)/�e(k0)�2. Apparently, ᾱ > 0 and condition (20)
ensure 0 < β̄ < 1. Thus, the synchronization error system (14)
is MSES. This combined with Definition 3 means that the
bipartite synchronization of xi(t) and s(t) is achieved at an
exponential convergence rate in the mean-square sense.

Step 2: Under zero-initial conditions, we prove the H∞
performance of error system (14).

Since Vη(k)σ (k)(k) ≥ 0, under the conditions of e(k0) = 0
and δ̄(k0) = 0, it can be inferred from (22) that

k−1�
l=k0

ε�(l,k)βk−l−1E{�l} ≥ 0

which means that
∞�

k=k0+1

k−1�
l=k0

ε�(l,k)βk−l−1E{�l} ≥ 0. (25)

For inequality (25), by exchanging the summation order and
utilizing the equal ratio summation formula, one can deduce
that

∞�
k=0

E{�z̃(k)�2} ≤ λ̄2
∞�

k=0

E{��(k)�2}. (26)

This completes the proof.
Remark 6: In the construction of the Lyapunov function,

not only the double-layer switching signal η(k) together with
σ(k) is taken into consideration but also the internal dynamic
nonnegative variable δi(k) corresponding to the triggering

scheme is considered. Furthermore, the variation of the Lya-
punov function is considered to have different trends at the
switching and nonswitching instants of the PDT switching
signal, as shown in (18) and (19). The synthesis of the switch-
ing and triggering features to (17) may make the established
Lyapunov function more comprehensive, which is conducive
to deriving conditions with less conservatism.

Remark 7: For networks with antagonistic interactions,
many prominent results about bipartite consensus under struc-
tural balance or stability under structural unbalance have
emerged in recent years [15], [48], [49]. It can be noted that
these results mainly focus on investigating limk→∞ |xi(k)| = c,
where structurally balanced case induces c �= 0 corresponding
to bipartite consensus and structurally unbalanced case derives
c = 0 corresponding to stability. Different from these studies,
this article is interested in achieving limk→∞ E{�ψi xi(k) −
s(k)�} = 0, i.e., enforcing the dynamics of networks con-
verging to a specified trajectory s(k) or the opposite of s(k)
by virtue of the DDET control scheme. Since the dynamic
of s(k) can be stable, oscillating, chaotic, or even diverging,
under structurally unbalanced cases, it may be infeasible to
bipartite synchronize the dynamics of nodes to the special
value 0 as in [49]. Therefore, our attention mainly centers
on the simultaneously structurally balanced signed graph.

B. Event-Triggered Controller Design

Theorem 2: Assume that the internal variable δi(k) of the
event-triggered scheme (8) and (9) satisfies δi(0) ≥ 0, and the
scalars θi > 0 and 0 < �i < 1 meet θi�i ≥ 1 ∀i ∈ N . Given
constants 0 < β < 1, ε > 1, and λ > 0, if there exist γi > 0
and μi

r1q1
> 0(∀i ∈ N ), symmetric matrix Pr1q1 > 0, diagonal

matrix �r1q1 > 0, K̄, and invertible diagonal matrix J , such
that, ∀r1 ∈ R, q1 ∈ Q, inequality (20) and the following
inequalities hold

�r1q1 �

⎡
⎢⎢⎢⎢⎢⎢⎣

ϕ11
r1q1

0 �r1q1 F2 0 ϕ15
r1q1

∗ ϕ22
r1q1

0 0 ϕ25
r1q1

∗ ∗ −�r1q1 0 ϕ35
r1q1

∗ ∗ ∗ ϕ44
r1q1

ϕ45
r1q1

∗ ∗ ∗ ∗ ϕ55
q1

⎤
⎥⎥⎥⎥⎥⎥⎦
< 0 (27)

Pr1q1 − εPr1q2 < 0, q1 �= q2, q1, q2 ∈ Q (28)

where

ϕ11
r1q1

� ϒϑ̂ + F̃T F̃ − βPr1q1 + �r1q1 θ̂ −�r1q1 F1

�q1
r1

�
�

π̃
q1
r11 INn

�
π̃

q1
r12 INn · · ·

�
π̃

q1
r1 R INn

�
ϕ15

r1q1
�


(IN ⊗ AT − c( �Lr1 ⊗ In)

T )J T + �̄K̄T
�
�q1

r1

ϕ22
r1q1

� −ϒ − �r1q1 θ̌ , ϕ25
r1q1

� −�̄K̄T�q1
r1

ϕ35
r1q1

� B̃T J T�q1
r1
, ϕ45

r1q1
�


0 �
q1T
r1 J Ẽ

�T

ϕ44
r1q1

� diag{ϒ̄�̄ − βϒ̄ + �̄r1q1 ,−λ2 In� }
ϕ55

q1
� diag{P1q1 − sym(J ), . . . , PRq1 − sym(J )}
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with

ϒ̄ � diag{γ1, . . . , γN }, ϒ � ϒ̄ ⊗ In

�̄r1q1 � diag
�
μ1

r1q1
, . . . , μN

r1q1

�
, �r1q1 � �̄r1q1 ⊗ In

ϑ̄ � diag{ϑ1, . . . , ϑN }, θ̄ � diag{θ1, . . . , θN }
�̄ � diag{�1, . . . , �N }, ϑ̂ � ϑ̄ ⊗ In, θ̌ � θ̄ ⊗ In

F1 � IN ⊗ diag
�
τ−

1 τ
+
1 , . . . , τ

−
n τ

+
n

�
, θ̂ � θ̌ ϑ̂

F2 � IN ⊗ diag
��
τ−

1 + τ+
1

�
/2, . . . ,

�
τ−

n + τ+
n

�
/2
�
.

Then, systems (2) and (6) achieve bipartite synchronization
with a prescribed H∞ performance index λ̄, and the desired
controller gain matrix is given by

K = J −1K̄. (29)

Proof: Inspired by Liu et al. [50], one can infer from
Assumption 2 that�

e(k)
f (e(k))

 T�−�r1q1 F1 �r1q1 F2

∗ −�r1q1

 �
e(k)

f (e(k))

 
≥ 0. (30)

Furthermore, according to the DDET mechanism (8) and (9)
and the analysis in Remark 4, it holds that

μi
r1q1

�
δi(k)+ θi

�
ϑi e

T
i (k)ei(k)− ζ̄ T

i (k)ζ̄i(k)
��
> 0 (31)

∀k ≥ k0, μ
i
r1q1

> 0. Then, by synthesizing the situation of N
nodes, we obtain

δ̄T (k)�̄r1q1 δ̄(k)+ eT (k)�r1q1 θ̂e(k)− ζ̄ T (k)�r1q1 θ̌ ζ̄ (k) ≥ 0.

(32)

In addition, with regard to inequality (27), apply inequality
−J P−1

r̃q1
J T ≤ Pr̃q1 − sym(J ), equality K̄ = JK, and con-

gruent transformation (with the corresponding matrix being
J̄ = diag{I, I, I, I, IR ⊗ J −1}) to it. Then, for the obtained
inequality, utilizing the Schur complement straightforwardly
deduces

E{Vη(k+1)q1(k + 1)− βVη(k)q1(k)+�k}

=
R�

r̃=1

π̃
q1
r1r̃ eT (k + 1)Pr̃q1 e(k + 1)+�k +

N�
i=1

γi

× δi (k + 1)− β

!
eT (k)Pr1q1 e(k)+

N�
i=1

γiδi(k)

"

≤ ξ̃T (k)�̃r1q1 ξ̃ (k)

≤ 0 (33)

based on (14) and (17), where

ξ̃T (k) �



eT (k) ζ̄ T (k) f T (e(k)) δ̄T (k) � T (k)
�

�̃r1q1 �

⎡
⎢⎣
ϕ̃11

r1q1
0 ϕ̃13

r1

∗ ϒ̄�̄ − βϒ̄ + �̄r1q1 0

∗ ∗ ϕ̂(Ẽ,Ẽ) − λ2 I

⎤
⎥⎦

ϕ̃11
r1q1

�

⎡
⎢⎣
ϕ̆11

r1q1
−ϕ̂( Ãr1 ,�̄K) ϕ̂( Ãr1 ,B̃)

+�r1q1 F2

∗ ϕ̆22
r1q1

−ϕ̂(�̄K,B̃)
∗ ∗ ϕ̂(B̃,B̃) −�r1q1

⎤
⎥⎦

ϕ̆11
r1q1

� ϕ̂( Ãr1 , Ãr1 )
+ ϕ11

r1q1
, ϕ̆22

r1q1
� ϕ̂(�̄K,�̄K)+ϕ22

r1q1

ϕ̃13
r1

�

ϕ̂T
( Ãr1 ,Ẽ)

−ϕ̂T
(�̄K,Ẽ) ϕ̂T

(B̃,Ẽ)

�T

with ϕ̂(Û ,V̂ ) �
�R

r̃=1 π̃
q1
r1 r̃ Û T Pr̃q1 V̂ . Thus, condition (18) holds.

Moreover, condition (28) ensures

E{Vη(kgv )q1(kgv )− εVη(kgv )q2(kgv )} ≤ 0 (34)

∀q1 �= q2, q1, q2 ∈ Q, which means that (19) is satisfied.
Remark 8: For the event-triggered mechanism, there exists

a crucial issue in the processing process, i.e., how to intro-
duce the relevant restrictions on triggering conditions into
the analysis of the Lyapunov function. Thus, the positive
internal variable δi(k) is constructed in the Lyapunov function.
Moreover, since the input of the controller is updated only
when the triggering conditions in (8) and (9) are satisfied, with
the employ of the specially defined variable ζ̄i (k), inequal-
ity (31) holds for ∀k ≥ k0. Besides, for the weighted signed
graph Gr1 containing cooperation-competition interactions, �̄
is employed for matrix transformation. During the treatment
process of inequality (33), there exists coupling term J �̄K
(J and K are unknown), which makes the calculation of
the gain matrix K intractable by using a solver based on
linear matrix inequalities. Therefore, considering the block
diagonal property of the matrix K and the specific form of the
gauge transformation matrix �̄, the transformation K�̄ = �̄K
is performed. Then, we define JK as K̄. On this account,
the matrix inequality no longer contains the coupling term
constituting of unknown matrices.

IV. ILLUSTRATIVE EXAMPLES

In this section, we employ two numerical examples of NNs
with cooperation-competition interactions and double-layer
switching topologies to verify the effectiveness of the designed
DDET H∞ controller. The first example considers the bipartite
synchronization issue of chaotic NNs. The second example
analyzes the advantages of the DDET transmission mecha-
nism in saving communication bandwidth compared with a
traditional static one.

Example 1: The chaotic NNs considered here have four
nodes, and each node contains three neurons. The switching
topologies G1 and G2 are presented in Fig. 2, of which the
node set can be divided as N1 = {1, 4} and N2 = {2, 3},
according to Definition 1. Then, the Laplacian matrices are

L1 =

⎡
⎢⎢⎣

0.2 0 0 −0.2
0.3 0.6 0 0.3
0 −0.4 0.4 0
0 0 0.2 0.2

⎤
⎥⎥⎦

L2 =

⎡
⎢⎢⎣

0.2 0 0 −0.2
0.3 0.3 0 0
0.1 −0.4 0.5 0
0 0 0.2 0.2

⎤
⎥⎥⎦.

Correspondingly, the gauge transformation matrix � can
be selected as � = diag{−1, 1, 1,−1}. The switching of the
topologies is considered to be governed by the double-layer
switching signal η(k), whose parameters are given as follows:

�̂1 =
�

0.65 0.35
0.15 0.85

 
, �̂2 =

�
0.42 0.58
0.33 0.67

 
τP = 6, TP = 8, β = 0.9999, ε = 1.0001
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Fig. 2. Switching topologies G1 and G2. (a) Signed graph G1. (b) Signed
graph G2.

Fig. 3. Possible evolution sequence of the topology switching η(k) and TPs
switching σ(k).

based on which, a set of possible evolution sequences of the
topology switching can be obtained, as shown in Fig. 3.

Moreover, the system parameters of each node given by (2)
are with the form of

A = diag{0.9712, 0.9712, 0.9712}, c = 1

B =
⎡
⎣ 0.0500 −0.0300 0.0125

0.0625 0.0425 0.0287
−0.2225 0 −0.0113

⎤
⎦

F =
⎡
⎣ 0.02 0.04 0

0 0.04 0.06
0.02 0 0.04

⎤
⎦, Ei =

⎡
⎣ 0.2

0.4
0.7

⎤
⎦

where i = 1, 2, 3, 4. The activation function is chosen as
f (x(k)) = tanh(x(k)), which is obviously an odd function
satisfying Assumption 2 with the bound being τ−

ι = 0 and
τ+
ι = 1, ι = 1, 2, 3. The prescribed scalar λ is taken

as 0.5, and the external disturbance is taken as �(k) =
2exp(−0.1k)sin(0.2k).

Besides, for the DDET mechanism, the following parame-
ters satisfying Lemma 2 are considered:

ϑ̄ = diag{0.4, 0.5, 0.6, 0.8}
θ̄ = diag{1.5, 1.7, 1.3, 1.9}
�̄ = diag{0.7, 0.6, 0.8, 0.6}.

Then, by virtue of Theorem 2, the controller gain matrices
under the DDET mechanism can be calculated as:

K1 = diag{0.8051, 0.8392, 0.8878}
K2 = diag{−0.3649,−0.2856,−0.4293}
K3 = diag{−0.3089,−0.2722,−0.4651}
K4 = diag{0.1757, 0.3341, 0.5074}.

Fig. 4. Bipartite synchronization errors of the open-loop system.

Fig. 5. Bipartite synchronization errors of the closed-loop system.

Remark 9: For the constraint conditions in Theorem 2,
we expect to find a set of feasible γ i

r1q1
> 0, μi

r1q1
> 0,

Pr1q1 > 0, �r1q1 > 0, and K̄ and J (∀i ∈ N , r1 ∈ R,
q1, q2 ∈ Q, and q1 �= q2), such that conditions (20), (27),
and (28) hold. Then, the calculating of the desired controller
gain can be transformed to solving the following convex
optimization problem:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

min t
s.t. − γ i

r1q1
< t,−μi

r1q1
< t,−Pr1q1 < −t I

−�r1q1 < −t I, εTP +1βTP +τP − 1 < t,�r1q1 < −t I

Pr1q1 − εPr1q2 < 0 (∀i ∈ N , r1 ∈ R, q1, q2 ∈ Q, q1 �= q2).

If the minimum value of t is negative, it means that
constraints in Theorem 2 are satisfied. Then, based on the
derived solutions K̄ and J , the desired controller gain matrix
K can be calculated from (29).

The nonnegative initial states of the internal variable δi(k)
are selected as δ1(0) = 0.3, δ2(0) = 0.2, δ3(0) = 0.5,
and δ4(0) = 0.4. The initial values of NNs and the
isolated node are chosen as x1(0) = [0.5; −0.5; −1.6],
x2(0) = [1.2; −1.5; 0], x3(0) = [−0.5; 0.6; −0.5], x4(0) =
[−0.5; −0.6; 1.5], and s(0) = [0; −0.76; 0], respectively.
Then, by virtue of Algorithm 1, the simulation results based on
the designed controller gains and the switching sequence given
in Fig. 3 are illustrated in Figs. 4–8. Specifically, the bipartite
synchronization errors of the open- and closed-loop sys-
tems are presented in Figs. 4 and 5, respectively. The state
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Algorithm 1 Updating of u(k) Under DDET Mechanism

Input: N, T all, δi (1), SNi (1), Eei , i ∈ N , ϑ̄ , θ̄ , �̄;
Output: Controller output: u(k).

1 Determine � according to the graph;
2 Compute Ki , i ∈ N based on Theorem 2;
3 Load the switching sequence η(k) of the topology;
4 for k = 1 : T all do
5 for i = 1 : N do
6 ζi(k) = ei (k)− Eei ;
7 if δi (k)+ θi(ϑi eT

i (k)ei(k)− ζ T
i (k)ζi(k)) ≤ 0 then

8 Eei = ei(k);
9 else

10 ζ̄i(k) = ei (k)− Eei ;
11 δi(k + 1) = �iδi(k)+ ϑi eT

i (k)ei(k)− ζ̄ T
i (k)ζ̄i(k);

12 Ee(k) = (Ee1; Ee2 . . . ; EeN );
13 Calculate u(k) = KEe(k);
14 Update ei (k), s(k) based on (6) and (14).

Fig. 6. State trajectories of the isolated node and the network nodes.

trajectories and responses of the isolated node and the network
nodes with control input are presented in Figs. 6 and 7.
Moreover, the updating instants of the controller input under
the event-triggered mechanism are given in Fig. 8. It should
be mentioned that the total interval length under consideration
is [0, 8000]. However, for the purpose of clearer observation,
some figures are presented with the interval length [0, 1000].
It is obvious that, with the designed DDET controller, the
error states converge to zero eventually, which means that the
bipartite synchronization of the isolated node and the network
nodes is achieved. Furthermore, the triggering rates (TRs)
of the four nodes are 4.2750%, 4.8000%, 12.4875%, and
3.6875%, respectively, which indicates that the frequency
transmission has been reduced effectively.

Example 2: Consider the cooperation-competition NNs with
switching topologies G1 and G2 shown in Fig. 2, of which the
dividing of node set and the selection of matrix � are the
same as the ones in Example 1. Moreover, the switching of
the topologies is considered to be governed by the sequence
presented in Fig. 3. Taking the following system parameters

Fig. 7. State responses of the isolated node and the network nodes.

Fig. 8. Updating instants of the controller input under the DDET mechanism.

into consideration:
A = diag{0.95, 0.95, 0.95, 0.95}, c = 1, λ = 8.5

B =

⎡
⎢⎢⎣

0.0425 −0.1000 −0.0250 0.0250
0.0900 0.0575 0.0300 0.0150
0.0550 0.0605 0.1250 0.0025
0.0050 −0.0200 −0.0750 0.0725

⎤
⎥⎥⎦

F =
⎡
⎣ 0.15 0.04 0.13 0.3

0.01 0.25 0.03 0.21
0.04 0.22 0.02 0.05

⎤
⎦, E =

⎡
⎢⎢⎣

0.3
0.5
0.4
0.6

⎤
⎥⎥⎦.

The activation function, the external disturbance, and the
event-triggered relevant parameters are taken the same forms
as the ones in Example 1. Then, the following controller gains
can be obtained based on Theorem 2:

K1 = diag{0.7283, 0.8601, 0.9472, 0.7968}
K2 = diag{−0.3639,−0.3878,−0.5353,−0.4209}
K3 = diag{−0.4018,−0.3999,−0.5262,−0.5020}
K4 = diag{0.4298, 0.4634, 0.6088, 0.5111}.

Consider the total time interval being [0, 2000],
and the initial states are selected as s(0) =
[0.15; 0.2; −0.3; −0.2], x1(0) = [0.1; 0.1; 0.1; 0.2],
x2(0) = [−0.2; 0.2; −0.2; −0.4], x3(0) = [0.1; 0.1; 0.1; 0.2],
and x4(0) = [−0.3; −0.2; 0.5; 0.4]. Then, the bipartite
synchronization errors of the open-loop system and the state
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Fig. 9. Bipartite synchronization errors of the open-loop system.

Fig. 10. State trajectories of the isolated node and the neural network (a).

trajectories of the isolated node and the neural network
are presented in Figs. 9–11, respectively. It can be seen
that the open-loop neural network cannot reach the desired
bipartite synchronization, while the closed-loop system does
so. Moreover, the triggering intervals are plotted in Fig. 12,
which shows the effectiveness of the event-triggered scheme.
Under zero-initial conditions, the actual H∞ performance can
be examined as:$%%& �2000

l=0 E{z̃T (l)z̃(l)}�2000
l=0 E{ωT (l)ω(l)} = 1.0932 < λ̄ = 14.2286

which means that the performance index is within the pre-
scribed value. It should be mentioned that the calculated actual
H∞ performance is much smaller than the prescribed value λ̄.
This is mainly caused by the conservatism of the derived
conditions. Therefore, the adopted method still needs to be
improved.

Furthermore, if the internal variables δi(k)(i ∈ N ) are
considered to be zero, the DDET condition will degrade into
a static one as

km+1
i = inf

�
k ∈ Z+

��k > km
i , ϑi�ei (k)�2

2 − �ζi (k)�2
2 ≤ 0

�
.

Then, for the interval [0, 500], the TRs of nodes 1–4 under
the DDET scheme and static one are calculated in Table I.
Evidently, the dynamic event-triggered mechanism has notable
superiority in reducing the transmission frequency.

Besides, for simplicity, we choose θi = θ for i ∈ N .
In order to investigate the relationship among the triggering

Fig. 11. State trajectories of the isolated node and the neural network (b).

Fig. 12. Triggering intervals.

TABLE I

TRS OF NODES 1–4 UNDER THE DDET SCHEME AND STATIC ONE

TABLE II

OPTIMAL PERFORMANCE INDEX λ̄min FOR DIFFERENT PAIRS (θ, β)

scalar θ , the sampling instant variation rate β, and the system
performance, the optimal performance index λ̄min correspond-
ing to different pairs (θ, β) is presented in Table II. It indicates
that selecting a suitable pair of (θ, β) may be beneficial to
obtain a better performance index of the system.

V. CONCLUSION

In this article, the bipartite H∞ synchronization issue
has been addressed for a class of discrete-time cooperation-
competition coupled neural networks with switching
topologies and constrained communication bandwidth.
The stochastic switching of network topologies has been
supposed to be governed by a double-layer switching
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signal, of which the essential switching framework is a
Markov chain with persistent dwell-time switched transition
probabilities. In consideration of the limited transmission
bandwidth and the complicated structure of neural networks,
the distributed dynamic event-triggered mechanism that
requires only aperiodic intermittent communication between
network and controller has been employed to further reduce
the transmission frequency. With the help of the algebraic
graph theory, the stochastic theory, and the Lyapunov function
method, an event-triggered H∞ controller that ensures that
the bipartite synchronization of networks can be reached
exponentially in the mean-square sense has been constructed.
Finally, simulation results, including the investigation
of chaotic synchronization behavior and the comparison
of distributed dynamic event-triggered mechanism with
traditional static one, have been given to illustrate the validity
of the proposed control scheme. From a practical perspective,
taking the network-induced time delays into consideration
in the designing process of dynamic event-triggered control
scheme for double-layer switched systems deserves further
exploration. Moreover, extending our results to switched
networks with both simultaneously structurally balanced and
unbalanced topologies by other synchronization/consensus
protocols will be also one of our future research directions.
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