1907.01167v3 [cs.NE] 30 Jun 2020

arxXiv

A Tandem Learning Rule for Effective Training and
Rapid Inference of Deep Spiking Neural Networks

Jibin Wu, Yansong Chua, Malu Zhang, Guoqi Li, Haizhou Li, and Kay Chen Tan

Abstract—Spiking neural networks (SNNs) represent the most
prominent biologically inspired computing model for neuromor-
phic computing (NC) architectures. However, due to the non-
differentiable nature of spiking neuronal functions, the standard
error back-propagation algorithm is not directly applicable to
SNNs. In this work, we propose a tandem learning framework,
that consists of an SNN and an Artificial Neural Network
(ANN) coupled through weight sharing. The ANN is an auxiliary
structure that facilitates the error back-propagation for the
training of the SNN at the spike-train level. To this end, we
consider the spike count as the discrete neural representation in
the SNN, and design ANN neuronal activation function that can
effectively approximate the spike count of the coupled SNN. The
proposed tandem learning rule demonstrates competitive pattern
recognition and regression capabilities on both the conventional
frame-based and event-based vision datasets, with at least an
order of magnitude reduced inference time and total synaptic
operations over other state-of-the-art SNN implementations.
Therefore, the proposed tandem learning rule offers a novel
solution to training efficient, low latency, and high accuracy deep
SNNs with low computing resources.

Index Terms—Deep Spiking Neural Network, Object Recog-
nition, Event-driven Vision, Efficient Neuromorphic Inference,
Neuromorphic Computing

I. INTRODUCTION

Deep learning has greatly improved pattern recognition
performance by leaps and bounds in computer vision [1],
speech processing [2], language understanding [3] and robotics
[4]. However, deep artificial neural networks (ANNs) are
computationally intensive and memory inefficient, thereby,
limiting their deployments in mobile and wearable devices that
have limited computational budgets. This prompts us to look
into energy-efficient solutions.

The human brain, with millions of years of evolution,
is incredibly efficient at performing complex perceptual and
cognitive tasks. Although hierarchically organized deep ANNs
are brain-inspired, they differ significantly from the biologi-
cal brain in many ways. Fundamentally, the information is
represented and communicated through asynchronous action
potentials or spikes in the brain. To efficiently and rapidly
process the information carried by these spike trains, biological

J. Wu, M. Zhang and H. Li are with the Department of Electri-
cal and Computer Engineering, National University of Singapore, (e-mail:
jibin.wu@u.nus.edu, maluzhang @nus.edu.sg, haizhou.li@nus.edu.sg).

Y. Chua is with the Institute for Infocomm Research, A*STAR, Singapore,
(Corresponding author, e-mail: james4424 @gmail.com.)

G. Li is with the Center for Brain Inspired Computing Research and Beijing
Innovation Center for Future Chip, Department of Precision Instrument,
Tsinghua University, P. R. China., (e-mail: liguoqi @mail.tsinghua.edu.cn)

K. C. Tan is with the Department of Computer Science, City University of
Hong Kong, Hong Kong, (e-mail: kaytan@cityu.edu.hk).

neural systems evolve the event-driven computation strategy,
whereby energy consumption matches with the activity level
of sensory stimuli.

Neuromorphic computing (NC), as an emerging non-von
Neumann computing paradigm, aims to mimic such asyn-
chronous event-driven information processing with spiking
neural networks (SNNs) in silicon [5]. The novel neuromor-
phic computing architectures, instances include TrueNorth [6]
and Loihi [7], leverage on the low-power, densely-connected
parallel computing units to support spike-based computation.
Furthermore, the co-located memory and computation can
effectively mitigate the problem of low bandwidth between the
CPU and memory (i.e., von Neumann bottleneck) [8]. When
implemented on these neuromorphic architectures, deep SNNs
benefit from the best of two worlds: superior classification
accuracies and compelling energy efficiency [9].

While neuromorphic computing architectures offer attractive
energy-saving, how to train large-scale SNNs that can operate
efficiently and effectively on these NC architectures remains
a challenging research topic. The spiking neurons exhibit a
rich repertoire of dynamical behaviours [10], such as phasic
spiking, bursting, and spike frequency adaptation, which sig-
nificantly increase the modeling complexity over the simplified
ANNSs. Moreover, due to the asynchronous and discontinuous
nature of synaptic operations within the SNN, the error back-
propagation algorithm that is commonly used for the ANN
training is not directly applicable to the SNN.

Over the years, a growing number of neural plasticities
or learning methods, inspired by neuroscience and machine
learning studies, have been proposed for SNNs [11], [12]. The
biological plausible Hebbian learning rules [13] and spike-
timing-dependent plasticity (STDP) [14] are intriguing local
learning rules for computational neuroscience studies and also
attractive for hardware implementation with emerging non-
volatile memory device [15]. Despite their recent successes
on the small-scale image recognition tasks [16], [17], they are
not straightforward to be used for large-scale machine learning
tasks due to the ineffective task-specific credit assignment and
time-consuming hyperparameter tuning.

Recent studies [18]—-[20] show that it is viable to convert
a pre-trained ANN to an SNN with little adverse impacts
on classification accuracy. This indirect training approach as-
sumes that the activation value of analog neurons is equivalent
to the average firing rate of spiking neurons, and simply
requires parsing and normalizing of weights of the trained
ANN. Rueckauer et al. [19] provide a theoretical analysis
of the performance deviation of such an approach as well
as a systematic study on the Convolutional Neural Network

(CNN) models for the object recognition task. This conversion
approach achieves the best-reported results for SNNs on many
conventional frame-based vision datasets including the chal-
lenging ImageNet-12 dataset [19], [20]. However, this generic
conversion approach comes with a trade-off that has an impact
on the inference speed and classification accuracy and requires
at least several hundred of inference time steps to reach an
optimal classification accuracy.

Additional research efforts are also devoted to training
constrained ANNSs that can approximate the properties of
SNNs [21], [22], which allow the trained model to be trans-
ferred to the target hardware platform seamlessly. Grounded
on the rate-based spiking neuron model, this constrain-then-
train approach transforms the steady-state firing rate of spiking
neurons into a continuous and hence differentiable form that
can be optimized with the conventional error back-propagation
algorithm. By explicitly approximating the properties of SNNs
during the training process, this approach performs better
than the aforementioned generic conversion approach when
implemented on the target neuromorphic hardware.

While competitive classification accuracies are shown with
both the generic ANN-to-SNN conversion and the constrain-
then-train approaches, the underlying assumption of a rate-
based spiking neuron model requires a long encoding time
window (i.e., how many time steps the image or sample are
presented) or a high firing rate to reach the steady neuronal
firing state [19], [21], such that the approximation errors
between the pre-trained ANN and the SNN can be eliminated.
This steady-state requirement limits the computational benefits
that can be acquired from the NC architectures and remain
a major roadblock for applying these methods to real-time
pattern recognition tasks.

To improve the overall energy efficiency as well as inference
speed, an ideal SNN learning rule should support a short
encoding time window with sparse synaptic activities. To
exploit this desirable property, the temporal coding has been
investigated whereby the spike timing of the first spike was
employed as a differentiable proxy to enable the error back-
propagation algorithm [23]-[25]. Despite competitive results
on the MNIST dataset, it remains elusive how the temporal
learning rule maintains the stability of neuronal firing such that
the derivatives can be determined, and how it can be scaled
up to the size of state-of-the-art deep ANNSs. In view of the
steady-state requirement of rate-based SNNs and scalability
issues of temporal-based SNNs, it is necessary to develop
new learning methods that can effectively and efficiently train
deep SNNs to operate under short encoding time window with
sparse synaptic activities.

Surrogate gradient learning [26] has emerged recently as an
alternative training method for deep SNNs. With a discrete-
time formulation, the spiking neuron can be effectively mod-
eled as a non-spiking recurrent neural network (RNN), wherein
the leak term in spiking neuron models is formulated as
a fixed-weight self-recurrent connection. By establishing the
equivalence with RNNs, the error Back-propagation Through
Time (BPTT) algorithm can be applied to train deep SNN.
The non-differentiable spike generation function can be re-
placed with a continuous function during the error back-

propagation, whereby a surrogate gradient can be derived
based on the instantaneous membrane potential at each time
step. In practice, the surrogate gradient learning performs ex-
ceedingly well for both static and temporal pattern recognition
tasks [27]-[30]. By removing the constraints of steady-state
firing rate for rate-based SNN and spike-timing dependency of
temporal-based SNN, the surrogate gradient learning supports
rapid and efficient pattern recognition with SNNs.

While competitive accuracies were reported on the MNIST
and CIFAR-10 [31] datasets with the surrogate gradient learn-
ing, it is both memory and computationally inefficient to
train deep SNNs using BPTT, especially for more complex
datasets and network structures. Furthermore, the vanishing
gradient problem [32] that is well-known for vanilla RNNs
may adversely affect the learning performance for spiking
patterns with long temporal duration. In this paper, to improve
the learning efficiency of the surrogate gradient learning, we
propose a novel learning rule with the tandem neural net-
work. As illustrated in Fig.4, the tandem network architecture
consists of an SNN and an ANN that is coupled layer-wise
with weights sharing. The ANN is an auxiliary structure that
facilitates the error back-propagation for the training of the
SNN at the spike-train level, while the SNN is used to derive
the exact spiking neural representation. This tandem learning
rule allows rapid, efficient, and scalable pattern recognition
with SNNs as demonstrated through extensive experimental
studies.

The rest of this paper is organized as follows: in Sec-
tion II, we formulate the proposed tandem learning frame-
work. In Section III, we evaluate the proposed tandem learn-
ing framework on both the conventional frame-based vision
datasets (i.e., MNIST, CIFAR-10, and ImageNet-12) as well
as the event-based vision datasets (i.e., N-MNIST and DVS-
CIFAR10) by comparing with other SNN implementations.
Finally, we conclude with discussions in Section IV.

II. LEARNING THROUGH A TANDEM NETWORK

In this section, we first introduce spiking neuron models
that are used in this work. We then present a discrete neural
representation scheme using spike count as the information
carrier across network layers, and we design ANN activation
functions to effectively approximate the spike count of the cou-
pled SNN for error back-propagation at the spike-train level.
Finally, we introduce the tandem network and its learning rule,
which is called tandem learning rule, for deep SNN training.

A. Neuron Model

The spiking neuron models describe the rich dynamical
behaviors of biological neurons in the brain [33]. In general,
the computational complexity of spiking neuron models grows
with the level of biological plausibility. Therefore, for imple-
mentation on efficient neuromorphic hardware, a simple yet
effective spiking neuron model that can provide a sufficient
level of biological details is preferred.

In this work, we use the arguably simplest spiking neuron
models that can effectively describe the sensory information
with spike counts: the current-based integrate-and-fire (IF)

neuron [19] and leaky integrate-and-fire (LIF) neuron models
[33]. While the IF and LIF neurons do not emulate the rich
spectrum of spiking activities of biological neurons, they are
however ideal for working with sensory input where informa-
tion is encoded in spike rates or coincident spike patterns.

The subthreshold membrane potential U} of LIF neuron i
at layer [can be described by the following linear differential
equation

dU} .
L = (U
where 7, is the membrane time constant. U,..,; and R are the
resting potential and the membrane resistance of the spiking
neuron, respectively. I!(¢) refers to the time-dependent input
current to the neuron i. By removing the membrane potential
leaky effect involved in the LIF neuron, the subthreshold
dynamics of the IF neuron can be described as follows

du!
dt

Without loss of generality, we set the resting potential U,.cs¢
to zero and the membrane resistance R to unitary in this work.
An output spike is generated whenever U/ crosses the firing
threshold ¥

Urest] + RIL(t) (1)

TII!

— RINt) @)

1 1 . 1, Zf €T Z 0
si(t) =9 (Ui () - 19) with © (z) = { 0, otherwise
3)
where st(¢) indicates the occurrence of an output spike from
the neuron ¢ at time step t.
In practice, given a small simulation time step dt, the
linear differential equation of the LIF neuron can be well
approximated by the following discrete-time formulation

Ullt] = aUlt — 1] + I'[t]

§:wl1l1

where a = exp (—dt/7,,). The square brackets are used in the
above formulations to reflect the discrete-time modeling. I}[t]
summarizes the synaptic current contributions from presynap-
tic neurons of the preceding layer. w ! denotes the strength
of the synaptic connection from the afferent neuron j of layer
I —1 and bl is the constant injecting current to the neuron i.
As denoted by the last term of Eq. 4, instead of resetting the
membrane potential to zero after each spike generation, the
firing threshold ¥ is subtracted from the membrane potential.
This effectively preserves the surplus membrane potential that
increased over the firing threshold and reduces the information
loss across layers [19]. Similarly, the discrete-time formulation
of the IF neuron can be expressed as follows

1+ It -

— Isift — 1] (4)

with
1]+ b} (5)

Uilt] = Ujlt - Isilt — 1] (6)

In our experiments, for both IF and LIF neurons, the Uil [0] is
reset and initialized to zero before processing each new input
example. We consider the total number of spikes (i.e., spike
count) generated by spiking neurons as the main information
carrier. For neuron i at layer [, the spike count ¢ can be

determined by summing all output spikes over the encoding

time window T
T

I _ l
=) sl (7)

In this work, we use the activation value of non-spiking
analog neurons to approximate the spike count of spiking
neurons. The transformation performed by the analog neuron
i can be described as

= }:wlll+U) ®)

where wfj ! and bl are the weight and bias terms of the
analog neuron respectively. xé_l and al correspond to the
analog input and output activation values. f(-) denotes the
activation function of analog neurons. Details of the spike
count approximation using analog neurons will be explained

in Section II-C.

B. Encoding and Decoding Schemes

The SNNss process inputs that are represented as spike trains,
which ideally should be generated by event-based sensors, for
instance, silicon retina event camera [34] and silicon cochlea
audio sensor [35]. However, the datasets collected from these
event-driven sensors are not abundantly available in compar-
ison to their frame-based counterparts. To take frame-based
sensor data as inputs, SNNs will require additional neural
encoding mechanisms to transform the real-valued samples
into spike trains.

In general, two neural encoding schemes are commonly
considered: rate code and temporal code. Rate code [18],
[19] converts real-valued inputs into spike trains at each
sampling time step following a Poisson or Bernoulli dis-
tribution. However, it suffers from sampling errors, thereby
requiring a long encoding time window to compensate for
such errors. Hence, the rate code is not the best to encode
information into a short time window that we desire. On
the other hand, temporal coding uses the timing of a single
spike to encode information. Therefore, it enjoys superior
coding efficiency and computational advantages. However, it
is complex to decode and sensitive to noise [33]. Moreover,
it is also challenging to achieve a high temporal resolution,
which is essential for the temporal coding, on neuromorphic
chips.

Alternatively, we take the real-valued inputs as the time-
dependent input currents and directly apply them in Egs. 4 and
6 at every time step. This neural encoding scheme overcomes
the sampling error of the rate code, therefore, it can support the
accurate and rapid inference as been demonstrated in earlier
works [29], [36]. As shown in Fig. 4, beginning from this
neural encoding layer, spike trains and spike counts are taken
as input to the SNN and ANN layers, respectively.

To facilitate pattern classification, a SNN back-end is re-
quired to decode the output spike trains into pattern classes.
For decoding, it is feasible to decode from the SNN output
layer using either the discrete spike counts or the continuous

Fig. 1: Ilustration of spike counts as the discrete neural repre-
sentation in the tandem network (IF neurons). The intermediate
activations of a randomly selected sample from the CIFAR-
10 dataset are provided. The top and bottom row of each
convolution layer refer to the exact and approximated spike
count activations, derived from the SNN and the coupled ANN
layer respectively. Note that only the first 8 feature maps are
given and plotted in separated blocks.

free aggregate membrane potentials (no spiking) Uf 7 that
accumulated over the encoding time window T’

Ul =R <Z wi e bﬁT) 9)
J

In our preliminary study, as shown in Fig. 6, we observe
that the free aggregate membrane potential provides a much
smoother learning curve, as it allows continuous error gra-
dients to be derived at the output layer. Furthermore, the
free aggregate membrane potential can be directly used as
the output for regression tasks. Therefore, we use the free
aggregate membrane potential for neural decoding in this work
unless otherwise stated.

C. Spike Count as a Discrete Neural Representation

Deep ANNSs learn to describe the input data with compact
latent representations. A typical latent representation is in
the form of a continuous or discrete-valued vector. While
most studies have focused on continuous latent representa-
tions, discrete representations have their unique advantages
in solving real-world problems [37]-[41]. For example, they
are potentially a more natural fit for representing natural
language which is inherently discrete, and also native for
logical reasoning and predictive learning. Moreover, the idea
of discrete neural representation has also been exploited in
the network quantization [42], [43], where network weights,
activation values, and gradients are quantized for efficient
neural network training and inference.

In this work, we consider the spike count as a discrete
latent representation in deep SNNs and design ANN activation
functions to approximate the spike count of the coupled

SNN, such that spike-train level surrogate gradients can be
effectively derived from the ANN layer. With such a discrete
latent representation, the effective non-linear transformation at
the SNN layer can be expressed as

1.

cé = g(sl_ ,wﬁ_l,bé) (10)

where ¢(-) denotes the effective neural transformation per-
formed by spiking neurons. Given the state-dependent nature
of spike generation, it is not feasible to directly determine
an analytical expression from s'~! to cl. To circumvent
this problem, we simplify the spike generation process by
assuming the resulting synaptic currents from s'~! are evenly
distributed over time. This yields a constant synaptic current

l,c .
1" at every time step

le _ -1 1-1 l
e = (ijij c +biT> /T

Taking the constant synaptic current [Zl *“ into Eq. 2, we thus
obtain the following expression for the interspike interval of

IF neurons
¥
l_
ISI; =p <RI?’°> (12)

where p(-) denotes the non-linear transformation of the Recti-
fied Linear Unit (ReLU). As mentioned in the earlier section,
the membrane resistance R is assumed to be unitary in this
work and hence dropped. The output spike count can be further
approximated as follows

(1)

T 1 (
! -1 1-1 !
d=—ca=2p(> witdT T (13)
IsI; 9 J
50
45+ |—LIF Neuron B
——IF Neuron
40t .
35+ .
S a0f ,
S
o 57 4
=
o L 4
g
15 .
10+ :
st ,
0
5 0 5

Input Current

Fig. 2: Illustration of the neuronal activation functions that
are designed to approximate the spike count of the IF and
LIF neurons. In this example, a firing threshold of 1 and 0.1
is used for IF and LIF neurons respectively, and a encoding
time window of 10 is considered. The membrane time constant
Tm 18 set to 20 time steps for the LIF neuron.

By setting ¥ to 1, Eq. 13 takes the same form as the
activation function of analog neurons as described in Eq. 8.

(A

~

LD e

0.8 e

L T e NN

0.4

0.2 R Y .

Mean Absolute Deviation of Spike Count

Convl Conv2 Conv3 Conv4 Conv5 FC1

(B

W; =05 ﬂ Time
BN
| C - |
Wy =-0.5)
W3 =0.75

Fig. 3: (A) Summary of the neural representation error that happened with the constrain-then-train approach, i.e., the mean
spike count difference between the actual SNN layer outputs and those approximated from a constrained ANN of the same
weights. The experiment is performed with a network structure of CifarNet (IF neurons) and an encoding time window of 10.
(B) A hand-crafted example for illustration of the spike count approximation error between the SNN and the approximated
ANN, which usually happens when the encoding time window is short and neuronal activities are sparse. In this example,
although the aggregate membrane potential of the postsynaptic IF neuron stays below the firing threshold in the end (a useful
intermediate quantity that is applied to approximate the output spike count), an output spike is generated due to the early

arrival of spikes from excitatory synapses.

Furthermore, by using p(+) as the activation function for analog
neurons, spike count céfl as the input, and aggregated constant
injecting current b7 as the bias term for the corresponding
analog neurons, this configuration allows the spike count and
hence the spike-train level error gradients to be approximated
from the coupled weight sharing ANN layer. As shown in Fig.
1, it is apparent that the proposed ANN activation function can
effectively approximate the exact spike count of the coupled
SNN layers in an image classification task. The approximation
errors can be considered as stochastic noise that was shown
to improve the generalizability of the trained neural networks
[44].

Following the same approximation mechanism for the IF
neuron, one also consider injecting a constant current into the
LIF neuron, the interspike interval can be determined from Eq.
1 by calculating the charging duration for neurons to rise from
the resting potential to the firing threshold. Thus, we obtain

ISIil = Ty, log

1+ (14)

19]
l,c
p(L;" =)
Hence, the approximated spike count can be evaluated as

T
cd="—log |1+

Tm

g -1
e 1 (15)
p(I;" =)

However, the above equation is undefined when If’c < 9,
and it is also numerically unstable when [f’c —1J is marginally
greater than zero. To address this, we replace the ReLU
activation function p(-) with a smoothed surrogate p,(-) that
is defined as follows,

(16)

ps(z) =log(1 +€”)
Same as the IF neurons, by taking the spike count cé-*l
and the aggregated constant injecting current bi7" as inputs

for analog neurons, with Eq. 15 as the activation function, the
spike count of the LIF neurons can be well approximated by
the coupled analog neurons. The two activation functions for
IF and LIF neurons are shown in Fig. 2. The discrete neural
representation with spike count and its approximation with
weight sharing analog neurons allow the surrogate gradients
to be approximated at the spike-train level and applied during
error back-propagation. Hence, it has a learning efficiency
superior to other surrogate gradient methods [26], [28], [29],
which take place at each time step.

D. Credit Assignment in the Tandem Network

As the customized ANN activation functions can effectively
approximate the discrete neural representation of spiking neu-
rons, it prompts us to think whether it is feasible to directly
train a constrained ANN and then transfer its weights to an
equivalent SNN, i.e., the constrain-then-train approach [21],
[22]. In this way, the training of a deep SNN can be achieved
by that of a deep ANN, and a large number of tools and
methods developed for ANNs can be leveraged.

We take Eq. 13 as the activation function for a constrained
ANN, and subsequently transfer the trained weights to the
SNN with IF neurons. The resulting network reports a com-
petitive classification accuracy on the MNIST dataset [22].
However, when applying this approach to the more complex
CIFAR-10 dataset with a time window of 10, a large clas-
sification accuracy drop (around 21%) occurred to the SNN
from that of the pre-trained ANN. By carefully comparing
the ANN approximated ‘spike count’ with the actual SNN
spike count, we observe an increasing spike count discrepancy
between the same layers of ANN and SNN as shown in Fig.
3A. The discrepancy grows as the spike counts travel through
the layers. This is due to the fact that the activation function of

NEURAL DECODING

Forward Pass

—
l o 33& cs T s Backward Pass
H] ———
ANN LAYER SNN LAYER Weight Sharing
Ac
l 0a?) T s ANN Output
fe——— el e, o
ANN LAYER SNN LAYER
c: spike count
1
l Qoa' f < T s! I. api :
H] s' : spike train
ANN LAYER SNN LAYER al: approx. spike count

[el o

NEURAL ENCODING

Fig. 4: Illustration of the proposed tandem learning framework
that consists of an SNN and an ANN with shared weights. The
spike counts are considered as the main information carrier
in this framework. ANN activation function is designed to
approximate the spike counts of the coupled SNN, so as
to approximate the gradients of the coupled SNN layers at
the spike-train level. During training, in the forward pass,
the synchronized spike counts and spike trains derived from
an SNN layer are taken as the inputs to the subsequent
SNN and ANN layers respectively; the error gradients are
passed backward through the ANN layers during error back-
propagation, to update the weights so as to minimize the
objective function.

e

the ANN has ignored the temporal dynamics of the IF neuron.
While such spike count discrepancies could be negligible for a
shallow network used for classifying the MNIST dataset [22]
or with a very long encoding time window [21], it has huge
impacts in the face of sparse synaptic activities and short time
window.

To demonstrate how such an approximation error may occur
during information forward-propagation, namely neural repre-
sentation error, we hand-craft an example as shown in Fig. 3B.
Although the free aggregate membrane potential, at the end of
the encoding time window, of an IF neuron stays below the
firing threshold, an output spike could have been generated due
to the early arrival of spikes from the excitatory synapses. We
understand that the spike count, approximated by the surrogate
activation function in the analog neuron, only provides a mean
estimation, which ignores the temporal jitter of spike trains. It
is worth mentioning that the spike count discrepancy can be
well controlled at the single layer as shown in Fig. 1 and Fig.
3A (the discrepancy in the first layer is insignificant). However,
such a neural representation error will accumulate across
layers and significantly affect the classification accuracy of the

SNN with weights transferred from a trained ANN. Therefore,
to effectively train a deep SNN with a short encoding time
window and sparse synaptic activities, it is necessary to derive
an exact neural representation with SNN in the training loop.

To solve this problem, we propose a tandem learning frame-
work. As shown in Fig. 4, an ANN with activation function
defined in Egs. 13 and 15 are employed to enable error back-
propagation through the ANN layers; while the SNN, sharing
weights with the coupled ANN is employed to determine the
exact neural representation (i.e., spike counts and spike trains).
The synchronized spike counts and spike trains, determined
from the SNN layer, are transmitted to the subsequent ANN
and SNN layers, respectively. It is worth mentioning that,
in the forward pass, the ANN layer takes the output of the
previous SNN layer as the input. This aims at synchronizing
the inputs of the SNN with ANN via the interlaced layers,
rather than trying to optimize the classification performance
of the ANN.

Algorithm 1: Pseudo Codes of the Tandem Learning Rule

Input: Input sample X;,, target label Y, parameters w of a
L-layer network, encoding time window size T’
Output: Updated network parameters w

Forward Pass:

c®, s° = Encoding(X;,)

for layer l=11t0 L — 1 do

// State Update of the ANN Layer

a' = ANN.layer[l].forward(c! 7!, w'~1) *

fort =11t T do
// State Update of the SNN Layer

L s'[t] = SNN.layer[!].forward(s' ~1[t], w'~1)

// Update the Spike Count
L d = Zz:1 s' [t]
/ * Output with Different Decoding Schemes x/
if Decode with ‘Aggregate Membrane Potential’ then
L output = ANN.layer[l].forward(cL71, wk™h

else if Decode with ‘Spike Count’ then

fort= 11t T do

| s™[t] = SNN.layer[l].forward(s"~'[t], w1

output = Zthl sE]

Loss: E = LossFunction(Y, output)

Backward Pass:

% = LossGradient(Y, output)
for layer =L —11t0 1 do

L // Gradient Update through the ANN Layer

aflb:l , % = ANN.layer[l].backward(% A7 wth

Update parameters of the ANN layer based on the calculated
gradients.
Share the updated parameters with the coupled SNN layer.

Note:
* For inference, state updates are performed on the SNN layers
entirely.

By incorporating the dynamics of spiking neurons during
the training of the tandem network, the exact output spike
counts, instead of ANN predicted spike counts, are propa-
gated forward to the subsequent ANN layer. The proposed

Layer /

ANN SNN ;
cl_l g Q a’ O i c[E
— O — O —
g1 E Q gt O E P :
Q1O

Weight Sharing

—> Forward Pass

Layer /+1 —> Backward Pass
ANN SNN ;
Ol .10 .
—_— —
O — O [H—
O+ O m
E— e a—
O 1 O
Weight Sharing

Fig. 5: Illustration of the tandem network implementation in Pytorch and Tensorpack, where the coupled ANN and SNN layers
(i.e., convolution and fully-connected layers) are encapsulated into a customized module that can be imported conveniently to
construct tandem networks. Within each module, the ANN and SNN layers are connected in tandem to allow the appropriate
information to be propagated through the network. During forward pass, the SNN layer takes the input spike train from the
preceding layer to determine the exact output spike counts and spike trains of the layer. During the backward pass, the SNN
layer works effectively as a bridge to transmit the received gradient information to the coupled ANN layer, such that the
spike-train level gradients can be approximated by the coupled ANN layer.

tandem learning framework can effectively prevent the neural
representation error from accumulating forward across layers.
While a coupled ANN is harnessed for error back-propagation,
the forward inference is executed entirely on the SNN after
training. The pseudo code of the proposed tandem learning
rule is given in Algorithm 1.

III. EXPERIMENTAL EVALUATION AND DISCUSSION

In this section, we first evaluate the learning capability of the
proposed tandem learning framework on frame-based object
recognition and image reconstruction tasks. We further discuss
why effective learning can be performed within the tandem
network. Then, we evaluate the applicability of the tandem
learning rule to the asynchronous inputs generated from the
event-driven camera sensors. Finally, we discuss the properties
of high learning efficiency and scalability, rapid inference as
well as synaptic operation reductions that can be achieved with
the proposed tandem learning rule.

A. Experimental Setups

a) Datasets: To conduct a comprehensive evaluation on
the proposed tandem learning rule, we use three conventional
frame-based image datasets: MNIST, CIFAR-10 [31], and
ImageNet-12 [45]. The MNIST dataset consists of gray-scaled
handwritten digits of 28x28 pixels, including 60,000 training
and 10,000 testing samples. The CIFAR-10 consists of 60,000
color images of size 32x32x3 from 10 classes, with a
standard split of 50,000 and 10,000 for training and testing,
respectively. The ImageNet-12 dataset consists of over 1.2

million images from 1,000 object categories, which remains a
challenging benchmark for deep SNN models.

In addition, we also investigate the applicability of tandem
learning to event-driven vision datasets: N-MNIST [46] and
DVS-CIFARI10 [47]. The N-MNIST dataset is collected by
moving the event-driven camera in front of an LCD monitor
that displays samples from the frame-based MNIST dataset.
The event-driven camera mounted on an actuated pan-tilt
camera platform follows three microsaccades for each sample,
and each of these microsaccades takes 100 ms. In contrast,
the DVS-CIFAR10 dataset is collected by fixing the event-
driven camera, while moving the image on the monitor over
four paths that takes a total of 200 ms. The total number of
samples reduced to one-sixth for the collected DVS-CIFAR10
dataset due to the huge size of storage required. Following
the similar data pre-processing procedures adopted in [29],
we reduce the temporal resolution by accumulating the spikes
occurred within every 10 ms intervals for the N-MNIST and
DVS-CIFARI10 datasets.

b) Network and Training Configurations: As shown in
Table. I, we use a convolutional neural network (CNN) with 7
learnable layers for object recognition on both the frame-based
CIFAR-10 and event-based DVS-CIFAR10 datasets, namely
CifarNet. To handle the higher input dimensionality of the
DVS-CIFAR10, we increase the stride of each convolution
layer to 2 and the kernel size to 7 for the first layer. Due to
the high computational cost and large memory requirements
for discrete-time modeling of SNNs, we use the AlexNet
[1] for object recognition on the large-scale ImageNet-12
dataset. For object recognition on the N-MNIST dataset, we

design a 7-layer CNN that called the DigitNet. For image
reconstruction task on the MNIST dataset, we evaluate on a
spiking autoencoder that has an architecture of 784-256-128-
64-128-256-784, wherein the numbers refer to the number of
neurons at each layer.

To reduce the dependency on weight initialization and to
accelerate the training process, we add batch normalization
layer after each convolution and fully-connected layer. Given
that the batch normalization layer only performs an affine
transformation, we follow the approach introduced in [19] and
integrate their parameters into the preceding layer’s weights
before applying them in the coupled SNN layer. We replace
the average pooling operations, that are commonly used in
ANN-to-SNN conversion works, with a stride of 2 convolution
operations, which not only perform dimensionality reduction
in a learnable fashion but also reduce the computation cost
and latency [48].

For SNNs with IF neurons, we set the firing threshold to
1. For SNNs with LIF neurons, we set the firing threshold to
0.1 and the membrane time constant 7, to 20 time steps. The
corresponding ANN activation functions are provided in Fig.
2.

(A) CifarNet (B) AlexNet (C) DigitNet
Convl (3,3, 1, 128) Convl (12, 12, 4, 96) | Convl (3,3, 1,32
Conv2 (3, 3, 2, 256) Conv2 (5, 5, 2, 256) Conv2 (3, 3,2, 64)
Conv3 (3,3,2,512) Conv3 (3, 3,2,384) Conv3 (3, 3,2, 64)
Conv4 (3,3, 1,1024) | Conv4 (3, 3, 1, 384) Conv4 (3, 3,2, 128)
Conv5 3,3, 1,512) Conv5 @3, 3, 2, 256) Conv5 @3, 3, 1, 256)
FC1 (1024) FC1 (4096) FC1 (1024)
Dropout | Prob=0.2 FC2 (4096) Dropout | Prob=0.2
FC2 (10) FC3 (1000) FC2 (10)

TABLE I: Network architectures used for the (A) CIFAR-10
and DVS-CIFAR10, (B) ImageNet-2012, and (C) N-MNIST
experiments. For Conv layers, the values in the bracket refer
to the height, width, stride, and number of filters, respectively.
For the FC layer, the value in the bracket refers to the number
of neurons.

c) Implementation Details: We perform all experiments
with Pytorch [49], except for the experiment on the ImageNet-
12 dataset where we use the Tensorpack toolbox [50]. Tensor-
pack is a high-level neural network training interface based on
the TensorFlow, which optimizes the whole training pipeline
for the ImageNet-12 object recognition task and provide accel-
erated and memory-efficient training on multi-GPU machines.
We follow the same data pre-processing procedures (crop, flip
and mean normalization, etc.), optimizer, learning rate decay
schedule that are adopted in the Tensorpack for ImageNet-
12 object recognition task. For the object recognition task
on the CIFAR-10, we follow the same data pre-processing
and training configurations as in [29]. For the ease of tandem
network implementations, as shown in Fig. 5, we encapsulate
the coupled ANN and SNN layers (convolution and fully-
connected layers) into customized modules that can be im-
ported conveniently to construct tandem networks in Pytorch
and Tensorpack.

d) Evaluation Metrics: For object recognition tasks on
both the frame-based and event-based vision datasets, we
report the classification accuracy on the test sets. For the
image reconstruction task on the MNIST dataset, we report

the mean square error of the reconstructed handwritten digits.
We perform 3 independent runs for all tasks and report the
best result across all runs, except for the object recognition
task on the ImageNet-12 dataset where the performance of
only a single run is reported.

To study the computational efficiency of SNN models
over their ANN counterparts, we follow the convention of
neuromorphic computing community by counting the total
synaptic operations [6], [19]. For SNN, as defined below, the
total synaptic operations (SynOps) correlate with the neurons’
firing rate, fan-out f,,; (number of outgoing connections to
the subsequent layer), and time window size 7.

T L-1 N!

SynOps = > > four;551]

t=1 1=1 j=1

7)

where L is the total number of layers and N' denotes the total
number of neurons in layer .

In contrast, the total synaptic operations that are required to
classify one image in the ANN is given as follows

L
SynOps = > f1,N! (18)

=1

where f! denotes the number of incoming connections to

each neuron in layer [. Given a particular network structure,
the total SynOps is fixed for the ANN. In our experiment,
we calculate the average synaptic operations on a randomly
chosen mini-batch (256 samples) from the test set, and report
the SynOps ratio between SNN and ANN.

B. Frame-based Object Recognition Results

For CIFAR-10, as provided in Table. II, the SNN using
IF neurons, denoted as SNN-IF hereafter, achieves a test
accuracy of 87.41% and 90.98% for spike count and aggregate
membrane potential decoding, respectively. While the result is
slightly worse for the SNN implementation with LIF neurons
(SNN-LIF) that achieves a classification accuracy of 89.04%,
which may be due to the approximation error of the smoothed
surrogate activation function. Nevertheless, with a similar acti-
vation function designed to approximate the firing rate of LIF
neurons [21], the constrain-then-train approach only achieves
a classification accuracy of 83.54% on the CIFAR-10 dataset.
This result confirms the necessity of keeping the SNN in the
training loop as proposed in the tandem learning network.
Moreover, the results achieved by our spiking CifarNet is also
as competitive as the state-of-the-art ANN-to-SNN conversion
[19], [20], [52] and spike-based learning [29], [52] methods.

As shown in Fig. 6A, we note that the learning dynamics
with spike count decoding is unstable, which is attributed
to the discrete error gradients derived at the output layer.
Therefore, we use the aggregate membrane potential decoding
for the rest of the experiments. Although the learning con-
verges slower than the plain CNN with the ReLU activation
function and quantized CNN (with activation value quantized
to 3 bits following the quantization-aware training scheme
[43]), the classification accuracy of the SNN-IF eventually
surpasses that of the quantized CNN. To study the effect of the

(A) (B)
90 1 90 A (PRI R PR B FEN NS
Wa AL 7y SN A TR AV A a1 ‘r;w./o.ﬂqfw
MM S I\“»"\ :\"l \‘!‘;' \J'\' \'IH'\ \"\‘li‘ \',\\L' \ AV My 85 - /M1V¢N
80 A ",’" LA A TR TR T ‘u“\/'\ﬁ&!\’ NN Yy “'{ 2l
! A,"\‘,\:V""‘I," v e ' ! y TRt f?
™~ ' [vl
> I ‘\l' |‘,I l: lI Ill = 80 f
é 70 1 I‘I,‘[I Lyt ’ ' ! \°>
1
2 2751
© ©
5 60 A 'h 5
g ! g 707
i
< 50 41 1! ANN <
1] : 65 -
) Quantized ANN |
] —— SNN-IF (Agg. Mem. Potential) “ T=1
40 1 ~ = SNN-IF (Spike Count) 60 ! —T=2
,' ——— SNN-LIF (Agg. Mem. Potential) [— T=4
/ == SNN-LIF (Spike Count) T=8
30 T T T T T T T 55 4 T T T T T T T
0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140
Epoch Epoch

Fig. 6: (A) Classification accuracy on the CIFAR-10 test set with different training schemes. (B) Classification accuracy on
the CIFAR-10 test set as a function of different encoding window sizes T'. The IF neurons are used in this experiment.

TABLE II: Comparison of classification accuracy and inference speed of different SNN implementations on the CIFAR-10 and

ImageNet-12 test sets.

Model Network Architecture Method Error Rate (%) Inference Time Steps
Panda and Roy (2016) [51] Convolutional Autoencoder — Layer-wise Spike-based Learning 75.42 -
Hunsberger and Eliasmith (2016) [21] AlexNet Constrain-then-Train 83.54 200
Rueckauer et al. (2017) [19] 8-layer CNN ANN-to-SNN conversion 90.85 -
S Sengupta et al. (2019) [20] VGG-16 ANN-to-SNN conversion 91.46 2,500
o Lee et al. (2019) [52] ResNet-11 ANN-to-SNN conversion 91.59 3,000
é Lee et al. (2019) [52] ResNet-11 Spike-based Learning 90.95 100
O Wuetal. (2019) [29] 8-layer CNN Surrogate Gradient Learning 90.53 -
Wu et al. (2019) [29] AlexNet Surrogate Gradient Learning 85.24 -
This work (ANN with full-precision activation) CifarNet Error Backpropagation 91.77 -
This work (ANN with quantized activation) CifarNet Error Backpropagation 89.99 -
This work (SNN-IF with Spike Count) CifarNet Tandem Learning 87.41 8
This work (SNN-IF with Agg. Mem. Potential) CifarNet Tandem Learning 90.98 8
This work (SNN-LIF with Spike Count) CifarNet Tandem Learning 82.78 8
This work (SNN-LIF with Agg. Mem. Potential) CifarNet Tandem Learning 89.04 8
Rueckauer et al. (2017) [19] VGG-16 ANN-to-SNN conversion 49.61 (81.63) 400
B Sengupta et al. (2019) [20] VGG-16 ANN-to-SNN conversion 69.96 (89.01) 2,500
% Hunsberger and Eliasmith (2016) [21] AlexNet Constrain-then-Train 51.80 (76.20) 200
& This work (ANN with full-precision activation) AlexNet Error Backpropagation 57.55 (80.44) -
E This work (ANN with quantized activation) AlexNet Error Backpropagation 50.27 (73.92) -
This work (SNN-IF with Agg. Mem. Potential) AlexNet Tandem Learning 46.63 (70.80) 5
This work (SNN-IF with Agg. Mem. Potential) AlexNet Tandem Learning 50.22 (73.60) 10

encoding time window size 7' on the classification accuracy,
we repeat the CIFAR-10 experiments using IF neurons with
T ranging from 1 to 8. As shown in Fig. 6B, the classification
accuracy improves consistently with a larger time window size.
It suggests the effectiveness of tandem learning in making use
of the encoding time window, which determines the upper
bound of the spike count, to represent information. Notably,
89.83% accuracy can be achieved with a time window size
of only 1, suggesting accurate and rapid inference can be
achieved simultaneously.

To train a model on the large-scale ImageNet-12 dataset
with a spike-based learning rule, it requires a huge amount of
computer memory to store the intermediate states of the spik-
ing neurons as well as huge computational costs for a discrete-
time simulation. Hence, only a few SNN implementations,
without taking into consideration the dynamics of spiking
neurons during training, have made some successful attempts
on this challenging task, including ANN-to-SNN conversion
[19], [20] and constrain-then-train [21] approaches.

As shown in Table. II, with an encoding time window of 10

time steps, the AlexNet trained with the tandem learning rule
achieves top-1 and top-5 accuracies of 50.22% and 73.60%,
respectively. This result is comparable to that of the constrain-
then-train approach with the same AlexNet architecture [21]
with a total number of time steps of 200. Notably, the proposed
learning rule only takes 10 inference time steps which are
at least an order of magnitude faster than the other reported
methods. While the ANN-to-SNN conversion approaches [19],
[20] achieve better classification accuracies on the ImageNet-
12, their successes are largely credited to the more advanced
network models used.

Furthermore, we note tandem learning suffers an accuracy
drop of around 7% from the baseline ANN implementa-
tion with full-precision activation (revised from the original
AlexNet model [1] by replacing pooling layers with a stride
of 2 convolution operations to match the AlexNet used in this
work and adding batch normalization layers). To investigate
the effect on the accuracy of the discrete neural representation
(how much of the drop in the accuracy is due to activation
quantization, and how much of it is due to the dynamics of the

1SININ-N

01dv4dIO-SAd

10

Fig. 7: Illustration of samples collected from the event-based camera. The samples are constructed by aggregating spiking
events that occurred within each 10 ms interval. The ‘On’ and ‘Off’ events at each pixel are color-coded with ‘purple’ and

‘green’, respectively.

TABLE III: Comparison of the object recognition results on the N-MNIST and DVS-CIFAR10 datasets.

Model

Method

Accuracy

N-MNIST DVS-CIFARIO

Neil, Pfeiffer and Liu [53] Phased LSTM 97.30% -
Lee, Delbruck and Pfeiffer [27] Fully-connected SNN 98.78% -
Jin et al. [54] Fully-connected SNN 98.88% -

Li et al. [55] BOE-Random Forest - 31.01%
Orchard et al. [56] H-First 71.20 % 7.7%
Lagorce et al. [57] HOTS 80.80% 27.1%
Sironi et al. [58] Gabor-SNN 83.70% 24.50%
Sironi et al. [58] HATS 99.10% 52.4%
Wau et al. [29] Spiking CNN 99.35% 58.10%
Shrestha and Orchard [28] Spiking CNN 99.20% -
This work (IF) Spiking CNN 99.31% 58.65 %
This work (LIF) Spiking CNN 99.22% 57.18%
This work (IF) + Fine-tuning Spiking CNN - 65.59%
This work (LIF) + Fine-tuning Spiking CNN - 63.73%

IF neuron), we modify the full-precision ANN by quantizing
the activation values to only 10 levels. In a single trial, the
resulting quantized ANN achieves the top-1 and top-5 error
rate of 50.27% and 73.92%, respectively. This result is very
close to that of our SNN implementation, which suggests that
the quantization of the activation function alone accounts for
most of the accuracy drop.

C. Event-based Object Recognition Results

The bio-inspired event cameras capture per-pixel intensity
change asynchronously which exhibits compelling properties
of high dynamic range, high temporal resolution, and no mo-
tion blur. Event-driven vision [59] therefore attracts growing
attention in the computer vision community as a complement
to the conventional frame-based vision. The early research
on event-driven vision focuses on constructing frame-based
feature representation from the captured event streams, such
that it can be effectively processed by machine learning
models [57], [58] or artificial neural networks [60]. Despite the
promising results achieved by these works, the post-processing

of frame-based features increases latency and incurs high
computational cost even during low event rates. In contrast,
the asynchronous SNNs naturally process event-based sensory
inputs and hence hold great potential to build fully event-
driven systems.

In this work, we investigate the applicability of tandem
learning in training SNNs to handle inputs of event camera. To
this end, we perform object recognition tasks on the N-MNIST
and DVS-CIFAR10 datasets (examples from these datasets are
provided in Fig. 7). As shown in Table. III, for the N-MNIST
dataset, our spiking CNNs achieve an accuracy of 99.31% and
99.22% for SNN-IF and SNN-LIF, respectively. These results
outperform many existing SNN implementations [27], [28],
[54], [55] and machine learning models [53], [57], [58], while
on par with the best reported result achieved in a recently
introduced spike-based learning method [29].

Similarly, our SNNs models also report state-of-the-art per-
formance on the DVS-CIFAR10 dataset. This demonstrates the
effectiveness of the proposed tandem learning rule in handling
event-driven camera data. To address the data scarcity of the

DVS-CIFARI10 dataset, we further explored transfer learn-
ing by fine-tuning SNN models (pre-trained on frame-based
CIFARIO dataset), on the DVS-CIFAR10 dataset. Notably,
the SNN models trained in this way achieve approximately
7% accuracy improvements. It is worth noting that, despite
neglecting the temporal structure of spike trains and only
consider spike counts as the information carrier, the tandem
learning rule performs exceedingly well on these datasets,
which can be explained by the fact that negligible temporal
information is added during the collection of these datasets
[61].

D. Superior Regression Capability

To explore the capability of tandem learning for regression
tasks, we perform an image reconstruction task on the MNIST
dataset with a fully-connected spiking autoencoder. As shown
in Fig. 8, the autoencoder trained with the proposed tandem
learning rule can effectively reconstruct images with high
quality. With a time window size of 32, the SNN-IF and SNN-
LIF achieve mean square errors (MSE) of 0.0038 and 0.0072,
a slight drop from 0.0025 of an equivalent ANN. However, it
is worth mentioning that by leveraging the sparsity of spike
trains, the SNNs can provide a much higher data compression
rate over a high-precision floating number representation of
the ANN. As shown in Fig. 9, with a larger time window
size, the network performance approaches that of the baseline
ANN, which aligns with the observation in object recognition
tasks.

% o0
X o9
AN

™

S~ W2 LONVNT ="
S~ AN GO NV NN "
NMRORLESeRPR AN N
NMERORVWEeRR LU
N =N L e PG g O\
ON =N e PH Wy ON
VWOV aNSN NNy
NN S aNSN WYy

o
g 9RXAK
6 6 00
2399
[/00
/ /77
o077
777/
d o FF
AR < <
3344
99 ©80

o
@
)
()

Fig. 8: Illustration of the reconstructed images from a spiking
autoencoder (IF neurons with 7'=32) on the MNIST dataset.
For each digit, the left column is the original image and the
right column is the reconstructed image.

0.035

—— ANN
_ 0.030 —e— SNN (IF)
g —— SNN (LIF)
) 0.025
g
© 0.020
=
%) 0.015
C
T 0.010
()]
=

0.005 4

0.000 T T T T T T

1 2 4 8 16 32

Time Window Size

Fig. 9: Illustration of the image reconstruction performance as
a function of the encoding time window size.

E. Activation Direction Preservation and Weight-Activation
Dot Product Proportionality within the Interlaced Layers

After showing how effective the proposed tandem learning
rule performs on object recognition and image reconstruction
tasks, we hope to explain why the learning can be performed
effectively via the interlaced network layers. To answer this
question, we borrow ideas from a recent theoretical work of
binary neural network [62], wherein learning is also performed
across the interlaced network layers (binarized activations are
forward propagated to subsequent layers). In the proposed
tandem network, the ANN layer activation value at~1 at layer
I — 1 is replaced with the spike count ¢!~! derived from the
coupled SNN layer. We further analyze the degree of mismatch
between these two quantities and its effect on the activation
forward propagation and error back-propagation.

In our numerical experiments on CIFAR-10 with a randomly
drawn mini-batch of 256 test samples, we calculate the cosine
angle between vectorized ¢/ ~! and a'~! for all the convolution
layers. As shown in Fig. 10, their cosine angles are below
24 degrees on average and such a relationship maintains
consistently throughout learning. While these angles seem
large in low dimensions, they are exceedingly small in a
high dimensional space. According to the hyperdimensional
computing theory [63] and the theoretical study of binary
neural network [62], the cosine angle between any two high
dimensional random vectors is approximately orthogonal. It is
also worth noting that the distortion of replacing a'~! with
c!~1 is less severe than binarizing a random high dimensional
vector, which changes cosine angle by 37 degrees in theory.
Given that the activation function and error gradients that back-
propagated from the subsequent ANN layer remains equal, the
distortions to the error back-propagation are bounded locally
by the discrepancy between a!~! and ¢/,

Furthermore, we calculate the Pearson Correlation Coeffi-
cient (PCC) between the weight-activation dot products ¢! - W/
and a' - W, which is an important intermediate quantity
(input to the batch normalization layer) in our current network
configurations. The PCC, ranging from -1 to 1, measures the
linear correlation between two variables. A value of 1 implies
a perfect positive linear relationship. As shown in Fig. 10,
the PCC maintains consistently above 0.9 throughout learning

L(c, a) for CIFAR-10 at Epoch=30
—— Conv 1, dim=65536
= Conv 2, dim=28800
~ Conv 3, dim=57600
Conv 4, dim=25088

PN

0 /a4 /2
Angle

(B)

L(c, a) for CIFAR-10 at Epoch=200

= Conv 1, dim=65536
= Conv 2, dim=28800
= Conv 3, dim=57600

Conv 4, dim=25088

0 Lz w2
Angle

r(c-W,a-Ww) for CIFAR-10 at Epoch=30
—— Conv 2, dim=115200
—— Conv 3, dim=43264
= Conv 4, dim=86528
FC 1, dim=512
I o
0.5 0.6 0.7 0.8 0.9 1.0
Pearson Correlation Coefficient

r(c-W,a-Ww) for CIFAR-10 at Epoch=200

= Conv 2, dim=115200

—— Conv 3, dim=43264

—— Conv 4, dim=86528
FC 1, dim=512

,/2’

0.5 0.6 0.7 0.8 0.9 1.0
Pearson Correlation Coefficient

Fig. 10: Analysis of mismatch errors between output spike counts of ANN and SNN layers. Distribution of cosine angles
between vectorized ¢ and a for all convolution layers at Epoch 30 (A) and 200 (B). While these angles seem large in
low dimensions, they are exceedingly small in a high dimensional space. Distribution of Pearson Correlation Coefficients
between weight-activation dot products ¢ - W and a - W at Epoch 30 (C) and 200 (D). The Pearson Correlation Coefficients
maintain consistently above 0.9 throughout learning, suggesting that the linear relationship of weight-activation dot products

are approximately preserved.

for most of the samples, suggesting the linear relationship of
weight-activation dot products are approximately preserved.

F. Efficient Learning through Spike-Train Level Surrogate
Gradient

In this section, we compare the learning efficiency of the
proposed tandem learning rule to the popular family of surro-
gate gradient learning methods [26]. The surrogate gradient
learning methods describe the time-dependent dynamic of
spiking neurons with a recurrent neural network, whereby the
BPTT-based training method is used to optimize the network
parameters. The non-differentiable spike generation function is
replaced by a continuous surrogate function during the error
back-propagation phase, such that a surrogate gradient can be
determined for each time step. In contrast, the tandem learning
determines the error gradient at the spike-train level, therefore,
it can significantly improve the learning efficiency.

Here, we compare the learning efficiency of tandem learning
with the surrogate learning method presented in [29]. As
shown in Fig. 11, for the experiment on the CIFAR-10 dataset
with LIF neurons, the computation time and GPU memory
usage grow linearly with the time window size 7T for the

BPTT-based method, since it requires to store and calculate
using the intermediate neuronal states. It worth noting that,
taking this BPTT-based method, the SNN is unable to fit onto
a single Nvidia Geforce GTX 1080Ti GPU card with 11 GB
memory space when 7' = 8. Therefore, it prevents a large-
scale deployment of this approach for more challenging tasks
as also mentioned in other works [26]. In contrast, the storage
of the intermediate neuronal state of each time step is not
required for the tandem learning, therefore, it shows a speed-
up of 2.45 time over the BPTT-based approach with 2.37 times
fewer GPU memory usage at 7' = 8. The improvements in
computational efficiency are expected to be further boosted
for larger time window sizes. Furthermore, the SNNs trained
with the tandem learning approach achieved higher test ac-
curacies over the BPTT-based approach consistently for all
different T'. Therefore, the proposed tandem learning approach
demonstrates much better learning effectiveness, efficiency,
and scalability.

G. Rapid Inference with Reduced Synaptic Operations

As shown in Table. II, the SNN trained with the proposed
learning rule can perform inference at least one order of mag-

Computation Time Per Epoch

GPU Memory Usage

Test Accuracy

B Ours
300 1 wmm BPTT

B Ours
s BPTT

10000 4

8000 -

6000 -

MB

4000 1

2000 -

Emm Ours
. BPTT

Percentage (%)

~
o
s

o
[l
s

60 -

Fig. 11: Comparison of the computation time, GPU memory usage and test accuracy of the proposed tandem learning approach
over the BPTT-based surrogate gradient method. The results are provided as a function of the encoding time window size 7.

nitude quicker than other learning rules without compromising
on the classification accuracy. Moreover, as demonstrated in
Figs. 6 and 9, the proposed tandem learning rule can deal with
and utilize different encoding time window size 7. In the most
challenging case when only 1 spike is allowed to transmit
(i.e., T' = 1), we are able to achieve satisfying results for
both object recognition and image reconstruction tasks. This
may be partially credited to the encoding scheme that we have
employed, whereby full input information can be encoded in
the first time step. Besides, the Batch Normalization layer,
which is added after each convolution, and fully-connected
layer ensure effective information transmission to the top
layers. The results can be improved further by increasing the
time window size, therefore, a trade-off between inference
speed and accuracy can be achieved according to different
application requirements.

To study the energy efficiency of the train SNNs, we follow
the convention by calculating the ratio of total SNN SynOps
to ANN SynOps on the CIFAR-10 dataset. To achieve a state-
of-the-art classification accuracy on the CIFAR-10 dataset
(T' = 8), the SNN-IF and SNN-LIF require a SynOps ratio
of only 0.32 and 0.22 to the ANN counterpart, respectively.
This can be explained by the short inference time required
and the sparse synaptic activities as summarized in Fig. 12B.
Notably, the total SynOps required for ANN is a fixed number
that is independent of the time window size, while the total
SynOps required for SNN grows almost linearly with time
window size as shown in Fig. 12A. It is worth noting that the
SNN is more energy-efficient than its ANN counterpart when
such a ratio is below 1. The saving is even more significant
compared to ANNs if we consider the fact that for SNNs,
only an accumulate (AC) operation is performed for each
synaptic operation; while for ANNs, a more costly multiply-
and-accumulate (MAC) operation is performed. This results in
an order of magnitude chip area as well as energy-saving per
synaptic operation [19], [20]. In contrast, the state-of-the-art
SNN implementations with the ANN-to-SNN conversion and
spike-based learning methods require a SynOps ratio of 25.60
and 3.61 respectively on a similar VGGNet-9 network [52].
It suggests our SNN implementation is at least an order of
magnitude more efficient.

IV. DISCUSSION AND CONCLUSION

In this work, we introduce a novel tandem neural network
and its learning rule to effectively train SNNs for classification
and regression tasks. Within the tandem neural network, an
SNN is employed to determine exact spike counts and spike
trains for the activation forward propagation; while an ANN,
sharing the weight with the coupled SNN, is used to approx-
imate the spike counts and hence gradients of the coupled
SNN at the spike-train level. Given that error back-propagation
is performed on the simplified ANN, the proposed learning
rule is both memory and computationally more efficient than
the popular surrogate gradient learning methods that perform
gradient approximation at each time step [26], [28]-[30]. It
is noted that a similar strategy has been explored for the
hardware in-the-loop training on BrainScaleS systems [64]
to counteract the noises induced by the analog substrate.
While the tandem learning approach introduced here addresses
the training effectiveness and efficiency of surrogate gradient
learning methods.

To understand why the learning can be effectively performed
within the tandem learning framework, we study the learning
dynamics of the tandem network and compare it with an intact
ANN. The empirical study on the CIFAR-10 reveals that the
cosine distances between the vectorized ANN output a' and
the coupled SNN output spike count ¢! are exceedingly small
in a high dimensional space and such a relationship maintains
throughout the training. Furthermore, strongly positive Pear-
son Correlation Coefficients are exhibited between weight-
activation dot product ¢!-W and a'-W, an important intermedi-
ate quantity in the activation forward propagation, suggesting
a linear relationship of weight-activation dot products is well
preserved.

The SNNs trained with the proposed tandem learning rule
have demonstrated competitive classification accuracies on
both the frame-based and event-based object recognition tasks.
By making efficient use of the time window size, that de-
termines the upper bound for the spike count, to represent
information, and adding batch normalization layers to ensure
effective information flow; rapid inferences, with at least an
order of magnitude time-saving compared to other SNN imple-

(A) SNN/ANN SynOps Ratio (B) Average Spike Count Per Neuron Per Time Step
= SNN (IF) SNN (IF)
0.30 1{ M SNN (LI} [-----m-mrmememmmememsememen oo S SNN (LIF)
0.05
0.25 -
— 0.04
R 020 oo SR -
o 0.03 1
G5 015 R - R - RN - EEEEEREREER
©
o 0.02
0104 e
0054 NN NN N E— 0.01 -
0.00 : : : ! ! ?
1 2 4 8 Convl Conv2 Conv3 Conv4 Conv5 FC1

Time Window Size

Fig. 12: (A) The total SNN SynOps to ANN SynOps as a function of encoding time window size on the CIFAR-10 dataset. (B)
Average spike count per neuron per time step of the trained SNN model (T" = 8). Sparse neuronal activities can be observed
across all network layers, leading to low power consumption when implemented on the neuromorphic hardware.

mentations are demonstrated in our experiments. Furthermore,
by leveraging on the sparse neuronal activities and short
encoding time window, the total synaptic operations are also
reduced by at least an order of magnitude over the baseline
ANNs and other state-of-the-art SNN implementations. By
integrating the algorithmic power of the proposed tandem
learning rule with the unprecedented energy efficiency of
emerging neuromorphic computing architectures, we expect
to enable low-power on-chip computing on pervasive mobile
and embedded devices.

For future work, we will explore strategies to close the
accuracy gap between the baseline ANN and SNN using the
LIF neurons by designing a more effective approximating
function for the LIF neuron as well as to evaluate more
advanced network architectures. In addition, we would like
to acknowledge that the tandem learning rule, which neglects
the temporal structure of spike trains, is not applicable for
temporal sequence learning because the error function is
required to be determined for each time step or spike rather
than at the spike count level. To solve the tasks where the
temporal structure is important, such as gesture recognition,
we are interested to study whether a hybrid network structure
that includes a feedforward network for feature extraction,
and a recurrent network for sequence modeling could be
useful. Specifically, the feedforward SNN trained with tandem
learning can work as a powerful rate-based feature extractor
on the short time scale, while a subsequent spiking recurrent
neural network [36] can be used to explicitly handle the
temporal structure of underlying patterns on the longer time
scale.

REFERENCES

[1] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton, “Imagenet
classification with deep convolutional neural networks,” in Advances in
neural information processing systems, 2012, pp. 1097-1105.

[2] W. Xiong, J. Droppo, X. Huang, F. Seide, M. L. Seltzer, A. Stolcke,
D. Yu, and G. Zweig, “Toward human parity in conversational speech
recognition,” IEEE/ACM Transactions on Audio, Speech, and Language
Processing, vol. 25, no. 12, pp. 2410-2423, Dec 2017.

[3] J. Hirschberg and C. D. Manning, “Advances in natural language
processing,” Science, vol. 349, no. 6245, pp. 261-266, 2015.

[4] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang,
A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton, et al., “Mastering
the game of go without human knowledge,” Nature, vol. 550, no. 7676,
pp. 354, 2017.

[5] C. D. Schuman, T. E. Potok, R. M. Patton, J. D. Birdwell, M. E. Dean,
G. S. Rose, and J. S. Plank, “A survey of neuromorphic computing and
neural networks in hardware,” arXiv preprint arXiv:1705.06963, 2017.

[6] P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada,
F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, et al., “A
million spiking-neuron integrated circuit with a scalable communication
network and interface,” Science, vol. 345, no. 6197, pp. 668-673, 2014.

[71 M. Davies, N. Srinivasa, T. H. Lin, G. Chinya, S. H. Cao, Y.and Choday,
G. Dimou, P. Joshi, N. Imam, S. Jain, et al., “Loihi: A neuromorphic
manycore processor with on-chip learning,” IEEE Micro, vol. 38, no. 1,
pp- 82-99, 2018.

[8] D. Monroe, “Neuromorphic computing gets ready for the (really) big
time,” Communications of the ACM, vol. 57, no. 6, pp. 13-15, 2014.

[9] S. K. Esser, P. A. Merolla, J. V. Arthur, A. S. Cassidy, R. Appuswamy,
A. Andreopoulos, D. J. Berg, J. L. McKinstry, T. Melano, D. R. Barch,
C. di Nolfo, P. Datta, A. Amir, B. Taba, M. D. Flickner, and D. S.
Modha, “Convolutional networks for fast, energy-efficient neuromorphic
computing,” Proceedings of the National Academy of Sciences, vol. 113,
no. 41, pp. 11441-11446, 2016.

[10] Eugene M Izhikevich, “Which model to use for cortical spiking
neurons?,” IEEE transactions on neural networks, vol. 15, no. 5, pp.
1063-1070, 2004.

[11] M. Pfeiffer and T. Pfeil, “Deep learning with spiking neurons: Op-
portunities & challenges,” Frontiers in Neuroscience, vol. 12, pp. 774,
2018.

[12] A. Tavanaei, M. Ghodrati, S. R. Kheradpisheh, T. Masquelier, and
A. Maida, “Deep learning in spiking neural networks,” Neural Networks,
2018.

[13] D. O. Hebb, The organization of behavior: A neuropsychological theory,
Psychology Press, 2005.

[14] G. Q. Bi and M. M. Poo, “Synaptic modifications in cultured hip-
pocampal neurons: dependence on spike timing, synaptic strength, and
postsynaptic cell type,” Journal of neuroscience, vol. 18, no. 24, pp.
10464-10472, 1998.

[15] G. W. Burr, R. M. Shelby, A. Sebastian, S. Kim, S. Kim, S. Sidler,
K. Virwani, M.i Ishii, P. Narayanan, A. Fumarola, et al., “Neuromorphic
computing using non-volatile memory,” Advances in Physics: X, vol. 2,
no. 1, pp. 89-124, 2017.

[16] Milad Mozafari, Saeed Reza Kheradpisheh, Timothée Masquelier, Abbas
Nowzari-Dalini, and Mohammad Ganjtabesh, “First-spike-based visual
categorization using reward-modulated stdp,” IEEE transactions on
neural networks and learning systems, vol. 29, no. 12, pp. 6178-6190,
2018.

[17] Saeed Reza Kheradpisheh, Mohammad Ganjtabesh, Simon J Thorpe, and
Timothée Masquelier, “Stdp-based spiking deep convolutional neural
networks for object recognition,” Neural Networks, vol. 99, pp. 56-67,
2018.

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[33]

[34]

[35]

[36]

[37]

[38]
[39]

[40]

P. U. Diehl, D. Neil, J. Binas, M. Cook, S. C. Liu, and M. Pfeiffer,
“Fast-classifying, high-accuracy spiking deep networks through weight
and threshold balancing,” in 2015 International Joint Conference on
Neural Networks (IJCNN), July 2015, pp. 1-8.

B. Rueckauer, I. A. Lungu, Y. Hu, M. Pfeiffer, and S. C. Liu, “Con-
version of continuous-valued deep networks to efficient event-driven
networks for image classification,” Frontiers in Neuroscience, vol. 11,
pp. 682, 2017.

A. Sengupta, Y. Ye, R. Wang, C. Liu, and K. Roy, “Going deeper in
spiking neural networks: Vgg and residual architectures,” Frontiers in
neuroscience, vol. 13, 2019.

E. Hunsberger and C. Eliasmith, “Training spiking deep networks for
neuromorphic hardware,” arXiv preprint arXiv:1611.05141, 2016.
Jibin Wu, Yansong Chua, Malu Zhang, Qu Yang, Guoqi Li, and Haizhou
Li, “Deep spiking neural network with spike count based learning rule,”
in 2019 International Joint Conference on Neural Networks (IJCNN).
IEEE, 2019, pp. 1-6.

H. Mostafa, “Supervised learning based on temporal coding in spiking
neural networks,” IEEE Transactions on Neural Networks and Learning
Systems, vol. 29, no. 7, pp. 3227-3235, 2018.

C. Hong, X. Wei, J. Wang, B. Deng, H. Yu, and Y. Che, “Training
spiking neural networks for cognitive tasks: A versatile framework
compatible with various temporal codes,” IEEE transactions on neural
networks and learning systems, 2019.

Malu Zhang, Jiadong Wang, Zhixuan Zhang, Ammar Belatreche, Jibin
Wau, Yansong Chua, Hong Qu, and Haizhou Li, “Spike-timing-dependent
back propagation in deep spiking neural networks,” arXiv preprint
arXiv:2003.11837, 2020.

Emre O Neftci, Hesham Mostafa, and Friedemann Zenke, “Surrogate
gradient learning in spiking neural networks: Bringing the power of
gradient-based optimization to spiking neural networks,” IEEE Signal
Processing Magazine, vol. 36, no. 6, pp. 51-63, 2019.

J. H. Lee, T. Delbruck, and M. Pfeiffer, “Training deep spiking neural
networks using backpropagation,” Frontiers in Neuroscience, vol. 10,
pp. 508, 2016.

S. B. Shrestha and G. Orchard, “Slayer: Spike layer error reassignment
in time,” in Advances in Neural Information Processing Systems 31,
S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,
and R. Garnett, Eds., pp. 1412-1421. Curran Associates, Inc., 2018.
Yujie Wu, Lei Deng, Guoqi Li, Jun Zhu, Yuan Xie, and Luping Shi,
“Direct training for spiking neural networks: Faster, larger, better,” in
Proceedings of the AAAI Conference on Artificial Intelligence, 2019,
vol. 33, pp. 1311-1318.

Friedemann Zenke and Surya Ganguli, “Superspike: Supervised learning
in multilayer spiking neural networks,” Neural computation, vol. 30, no.
6, pp. 1514-1541, 2018.

A. Krizhevsky and G. E. Hinton, “Learning multiple layers of features
from tiny images,” Tech. Rep., Citeseer, 2009.

S. Hochreiter, “The vanishing gradient problem during learning recurrent
neural nets and problem solutions,” International Journal of Uncertainty,
Fuzziness and Knowledge-Based Systems, vol. 6, no. 02, pp. 107-116,
1998.

W. Gerstner and W. M. Kistler, Spiking neuron models: Single neurons,
populations, plasticity, Cambridge University Press, 2002.

C. Posch, T. Serrano-Gotarredona, B. Linares-Barranco, and T. Del-
bruck, “Retinomorphic event-based vision sensors: Bioinspired cameras
with spiking output,” Proceedings of the IEEE, vol. 102, no. 10, pp.
1470-1484, 2014.

S. Liu, A. van Schaik, B. A. Minch, and T. Delbruck, “Asynchronous
binaural spatial audition sensor with 2 X 64 x 4 channel output,” [EEE
Transactions on Biomedical Circuits and Systems, vol. 8, no. 4, pp.
453-464, 2014.

Guillaume Bellec, Darjan Salaj, Anand Subramoney, Robert Legenstein,
and Wolfgang Maass, “Long short-term memory and learning-to-learn
in networks of spiking neurons,” in Advances in Neural Information
Processing Systems, 2018, pp. 787-797.

A. van den Oord, O. Vinyals, and k. kavukcuoglu, “Neural discrete
representation learning,” in Advances in Neural Information Processing
Systems 30, 1. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, Eds., pp. 6306-6315. Curran Asso-
ciates, Inc., 2017.

A. Mnih and K. Gregor, “Neural variational inference and learning in
belief networks,” arXiv preprint arXiv:1402.0030, 2014.

R. Salakhutdinov and G. Hinton, “Deep boltzmann machines,” in
Artificial intelligence and statistics, 2009, pp. 448-455.

A. Mnih and D. J. Rezende, ‘“Variational inference for monte carlo
objectives,” arXiv preprint arXiv:1602.06725, 2016.

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]
(51]

[52]

[53]

[54]

[55]

[56]

(571

(58]

[59]

[60]

[61]

A. Courville, J. Bergstra, and Y. Bengio, “A spike and slab restricted
boltzmann machine,” in Proceedings of the fourteenth international
conference on artificial intelligence and statistics, 2011, pp. 233-241.
M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Ben-
gio, “Binarized neural networks: Training deep neural networks
with weights and activations constrained to+ 1 or-1,” arXiv preprint
arXiv:1602.02830, 2016.

Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew
Tang, Andrew Howard, Hartwig Adam, and Dmitry Kalenichenko,
“Quantization and training of neural networks for efficient integer-
arithmetic-only inference,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2018, pp. 2704-2713.
Hyeonwoo Noh, Tackgeun You, Jonghwan Mun, and Bohyung Han,
“Regularizing deep neural networks by noise: Its interpretation and
optimization,” in Advances in Neural Information Processing Systems,
2017, pp. 5109-5118.

J. Deng, W. Dong, R. Socher, L. Li, Kai Li, and Li Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in 2009 IEEE Conference
on Computer Vision and Pattern Recognition, June 2009, pp. 248-255.
Garrick Orchard, Ajinkya Jayawant, Gregory K. Cohen, and Nitish
Thakor, “Converting static image datasets to spiking neuromorphic
datasets using saccades,” Frontiers in Neuroscience, vol. 9, pp. 437,
2015.

Hongmin Li, Hanchao Liu, Xiangyang Ji, Guoqi Li, and Luping Shi,
“Cifar10-dvs: An event-stream dataset for object classification,” Fron-
tiers in Neuroscience, vol. 11, pp. 309, 2017.

X. Zhang, X. Zhou, M. Lin, and J. Sun, “Shufflenet: An extremely effi-
cient convolutional neural network for mobile devices,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
2018, pp. 6848-6856.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Brad-
bury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein,
Luca Antiga, et al., “Pytorch: An imperative style, high-performance
deep learning library,” in Advances in Neural Information Processing
Systems, 2019, pp. 8024-8035.

Y. Wu et al., “Tensorpack,” https://github.com/tensorpack/, 2016.

P. Panda and K. Roy, “Unsupervised regenerative learning of hierarchical
features in spiking deep networks for object recognition,” in 2016
International Joint Conference on Neural Networks (IJCNN). 1EEE,
2016, pp. 299-306.

C. Lee, S. S. Sarwar, and K. Roy, “Enabling spike-based backpropaga-
tion in state-of-the-art deep neural network architectures,” arXiv preprint
arXiv:1903.06379, 2019.

Daniel Neil, Michael Pfeiffer, and Shih-Chii Liu, “Phased Istm: Accel-
erating recurrent network training for long or event-based sequences,”
in Advances in neural information processing systems, 2016, pp. 3882—
3890.

Yingyezhe Jin, Wenrui Zhang, and Peng Li, “Hybrid macro/micro level
backpropagation for training deep spiking neural networks,” in Advances
in Neural Information Processing Systems, 2018, pp. 7005-7015.
Hongmin Li, Hanchao Liu, Xiangyang Ji, Guoqi Li, and Luping Shi,
“Cifar10-dvs: an event-stream dataset for object classification,” Frontiers
in neuroscience, vol. 11, pp. 309, 2017.

Garrick Orchard, Cedric Meyer, Ralph Etienne-Cummings, Christoph
Posch, Nitish Thakor, and Ryad Benosman, “Hfirst: a temporal approach
to object recognition,” [EEE transactions on pattern analysis and
machine intelligence, vol. 37, no. 10, pp. 2028-2040, 2015.

Xavier Lagorce, Garrick Orchard, Francesco Galluppi, Bertram E Shi,
and Ryad B Benosman, “Hots: a hierarchy of event-based time-surfaces
for pattern recognition,” IEEE transactions on pattern analysis and
machine intelligence, vol. 39, no. 7, pp. 1346-1359, 2016.

Amos Sironi, Manuele Brambilla, Nicolas Bourdis, Xavier Lagorce,
and Ryad Benosman, “Hats: Histograms of averaged time surfaces for
robust event-based object classification,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2018, pp.
1731-1740.

Guillermo Gallego, Tobi Delbruck, Garrick Orchard, Chiara Bartolozzi,
Brian Taba, Andrea Censi, Stefan Leutenegger, Andrew Davison, Joerg
Conradt, Kostas Daniilidis, et al., “Event-based vision: A survey,” arXiv
preprint arXiv:1904.08405, 2019.

Daniel Gehrig, Antonio Loquercio, Konstantinos G Derpanis, and Da-
vide Scaramuzza, “End-to-end learning of representations for asyn-
chronous event-based data,” in Proceedings of the IEEE International
Conference on Computer Vision, 2019, pp. 5633-5643.

Laxmi R Iyer, Yansong Chua, and Haizhou Li, “Is neuromorphic mnist
neuromorphic? analyzing the discriminative power of neuromorphic
datasets in the time domain,” arXiv preprint arXiv:1807.01013, 2018.

https://github.com/tensorpack/

[62]

[63]

[64]

A. G. Anderson and C. P. Berg, “The high-dimensional geometry of
binary neural networks,” arXiv preprint arXiv:1705.07199, 2017.

P. Kanerva, “Hyperdimensional computing: An introduction to comput-
ing in distributed representation with high-dimensional random vectors,”
Cognitive computation, vol. 1, no. 2, pp. 139-159, 2009.

S. Schmitt, J. Kldhn, G. Bellec, A. Griibl, M. Giittler, A. Hartel, S. Hart-
mann, D. Husmann, K. Husmann, S. Jeltsch, V. Karasenko, M. Kleider,
C. Koke, A. Kononov, C. Mauch, E. Miiller, P. Miiller, J. Partzsch,
M. A. Petrovici, S. Schiefer, S. Scholze, V. Thanasoulis, B. Vogginger,
R. Legenstein, W. Maass, C. Mayr, R. Schiiffny, J. Schemmel, and
K. Meier, ‘“Neuromorphic hardware in the loop: Training a deep spiking
network on the brainscales wafer-scale system,” in 2017 International
Joint Conference on Neural Networks (IJCNN), 2017, pp. 2227-2234.

	I INTRODUCTION
	II Learning Through a Tandem Network
	II-A Neuron Model
	II-B Encoding and Decoding Schemes
	II-C Spike Count as a Discrete Neural Representation
	II-D Credit Assignment in the Tandem Network

	III Experimental Evaluation and Discussion
	III-A Experimental Setups
	III-B Frame-based Object Recognition Results
	III-C Event-based Object Recognition Results
	III-D Superior Regression Capability
	III-E Activation Direction Preservation and Weight-Activation Dot Product Proportionality within the Interlaced Layers
	III-F Efficient Learning through Spike-Train Level Surrogate Gradient
	III-G Rapid Inference with Reduced Synaptic Operations

	IV Discussion and Conclusion
	References

