
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. XX, NO. XX, XXXX 1

RelativeNAS: Relative Neural Architecture
Search via Slow-Fast Learning

Hao Tan, Ran Cheng, Senior Member, IEEE, Shihua Huang, Cheng He, Member, IEEE,
Changxiao Qiu, Fan Yang, Ping Luo

Abstract—Despite the remarkable successes of Convolutional
Neural Networks (CNNs) in computer vision, it is time-consuming
and error-prone to manually design a CNN. Among various
Neural Architecture Search (NAS) methods that are motivated to
automate designs of high-performance CNNs, the differentiable
NAS and population-based NAS are attracting increasing inter-
ests due to their unique characters. To benefit from the merits
while overcoming the deficiencies of both, this work proposes a
novel NAS method, RelativeNAS. As the key to efficient search,
RelativeNAS performs joint learning between fast-learners (i.e.
decoded networks with relatively lower loss value) and slow-
learners in a pairwise manner. Moreover, since RelativeNAS only
requires low-fidelity performance estimation to distinguish each
pair of fast-learner and slow-learner, it saves certain computation
costs for training the candidate architectures. The proposed
RelativeNAS brings several unique advantages: (1) it achieves
state-of-the-art performances on ImageNet with top-1 error rate
of 24.88%, i.e. outperforming DARTS and AmoebaNet-B by
1.82% and 1.12% respectively; (2) it spends only nine hours with
a single 1080Ti GPU to obtain the discovered cells, i.e. 3.75× and
7875× faster than DARTS and AmoebaNet respectively; (3) it
provides that the discovered cells obtained on CIFAR-10 can be
directly transferred to object detection, semantic segmentation,
and keypoint detection, yielding competitive results of 73.1%
mAP on PASCAL VOC, 78.7% mIoU on Cityscapes, and 68.5%
AP on MSCOCO, respectively. The implementation of Relative-
NAS is available at https://github.com/EMI-Group/RelativeNAS.

Index Terms—AutoML, Convolutional Neural Network, Neural
Architecture Search, Population-Based Search, Slow-Fast Learn-
ing.

I. INTRODUCTION

DEEP Convolutional Neural Networks (CNNs) have
achieved remarkable results in various computer vision

tasks (e.g., image classification [1], [2], [3], object detec-
tion [4], and semantic segmentation [5], [6]), and a number
of state-of-the-art networks have been designed by experts
since 2012 [7], [8], [9]. Since the manual designs of CNNs
heavily rely on expert knowledge and experience, it is usually
time-consuming and error-prone. To this end, researchers have
turned to automatic generation of high-performance network

H. Tan, R. Cheng, S. Huang, and C. He are with University Key
Laboratory of Evolving Intelligent Systems of Guangdong Province,
Department of Computer Science and Engineering, Southern University
of Science and Technology, Shenzhen 518055, P.R. China. E-mails:
tanbox@live.com, ranchengcn@gmail.com, shihuahuang95@gmail.com,
chenghehust@gmail.com. (Corresponding author: Ran Cheng)

C. Qiu and F. Yang are with Hisilicon Research Department, Huawei
Technologies Co.,Ltd. Shenzhen 518055, P.R. China. E-mails: {qiuchangxiao,
yangfan74}@huawei.com.

P. Luo is with Department of Computer Science, The University of Hong
Kong, Hong Kong, P.R. China. E-mail: pluo.lhi@gmail.com.

architectures for any given tasks, a.k.a. Neural Architecture
Search (NAS) [10]. Without loss of generality, the problem of
NAS for a target dataset D = {Dtrn,Dvld,Dtst} and a search
space A can be formulated as [11]:

minimize Lvld(α,ω∗) (1)
subject to ω∗ ∈ arg min

ω
Ltrn(α,ω),

where α ∈ A defines the model architecture, ω defines the
associated weights, and ω∗ defines the corresponding optimal
weights. Besides, Dtrn, Dvld, and Dtst are the training data,
validation data, and test data, respectively. Ltrn and Lvld

denote the loss on the training data and validation data
respectively.

Despite the promising performance of recent NAS methods
on image classification [12], [13], object detection [14], [15],
semantic segmentation [16], [17], and designing generative
adversarial networks [18], there are two major challenges: (1)
NAS is treated as a black-box optimization problem due to the
lack of a priori knowledge adopted with the exact functional
relationship between architectures and their performances; (2)
NAS suffers from high computation costs due to a large
number of performance estimations of candidate architectures.

Among various NAS methods, the differentiable NAS (i.e.
DARTS) [19] and population-based NAS [20] are among the
most popular ones due to their unique merits for tackling each
challenge: DARTS mainly benefits from the merit of high
search efficiency due to relaxing the search space to be con-
tinuous; population-based NAS mainly benefits from the merit
of diversified candidate architectures in the population and
involving genetic operators (e.g., crossover/mutation) to drive
the search process. Nevertheless, they also suffer from some
deficiencies: since DARTS jointly trains a supernet and search
for an optimal solution merely by gradient, it suffers from low
robustness in terms of flexibility and versatility; population-
based NAS mainly relies on stochastic crossover/mutation for
search, and it usually requires a large amount of computation
cost for performance evaluations.

One research question is: can we benefit from the merits of
both differentiable NAS and population-based NAS while over-
coming their deficiencies? To answer it, this work proposes
a novel RelativeNAS method, as shown in Fig. 1 (right).

Particularly, this work proposes a novel continuous encoding
scheme for cell-based search space by considering connections
between pairwise nodes and the corresponding operations,
inspired by [19]. However, in contrast to the encoding method
as given in [19], the proposed one has no requirement of

ar
X

iv
:2

00
9.

06
19

3v
3

 [
cs

.C
V

]
 1

3
Ju

l 2
02

1

https://github.com/EMI-Group/RelativeNAS

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. XX, NO. XX, XXXX 2

,&$+-./G%4-$.&4.;%&

5#)$'#.$2*(K2// 0%#$*$*+(K2//

"2=;)#.$2*

I)27PS#/.(

K&#%*$*+

I)27PK&#%*&%(

G%4-$.&4.;%&

"2=;)#.$2*

L&*&.$4(

M=&%#.2%

G%4-$.&4.;%&

6GH0I

S#/.PK&#%*&%(

G%4-$.&4.;%&

0%#$*$*+(K2//

,&$+-./

0%#$*$*+(K2// 0%#$*$*+(K2//

,&$+-.(I&.

H&)#.$:&!GI9O$/.$*+("2=;)#.$2*PQ#/&'(!GI

?='#.& ?='#.&

>*-&%$.?='#.&?='#.&

I&)&4.$2* H#*'23("#$%$*+

Fig. 1: Illustration of the three general frameworks of different NAS methods. LEFT: DARTS updates the solo candidate
architecture and its weights simultaneously by gradients generated by validation loss and training loss respectively. MIDDLE:
existing population-based NAS updates a population of architectures by stochastic crossover/mutation. In order to obtain the
ranking of the architectures in each generation, the newly generated architectures need to be trained on the training set for
a certain number of epochs. RIGHT: RelativeNAS updates a population of architectures by the proposed slow-fast learning
paradigm (instead of gradient or crossover/mutation). For each pair of architectures, slow-learner is distinguished from fast-
learner by their relative performances, where for such low-fidelity performance estimation, each architecture only needs to
inherit its weights from a weight set, and is trained by only one epoch to update the weights.

differentiability, neither does it consider the probability/weight
of choosing an operation; instead, it directly encodes the
operations between pairwise nodes into real values in a naive
manner (as shown in Fig. 2). The main advantages of the
proposed continuous encoding method are: (1) it provides
more flexibility and versatility; (2) the enlarged search space
encourages the search for diverse architectures when applied
to population-based NAS [21].

With the proposed continuous encoding scheme, this work
further proposes a slow-fast learning paradigm for efficient
search in the encoded space, inspired by [22]. In this paradigm,
a population of architecture vectors is iteratively paired and up-
dated. Specifically, in each iteration of the proposed slow-fast
learning, the architecture vectors are randomly paired; for each
pair of architecture vectors, the one with worse performance
(denoted as slow-learner) is updated by learning from the one
with better performance (denoted as fast-learner). In contrast
to the population-based NAS methods such as large-scale
evolution [23] and AmoebaNet [20], the proposed slow-fast
learning paradigm does not involve any genetic operator (e.g.,
crossover/mutation), but essentially, the architecture vectors
are updated using a pseudo-gradient mechanism which aims to
learn the joint distribution between each pair of slow-learner
and fast-learner implicitly. Specifically, the pseudo-gradient is
determined by the pairwise learning between the fast-learner
and slow-learner. The main advantages of the proposed slow-
fast learning paradigm are: (1) it provides a scheme to perform
NAS in generic continuous search space without considering
its specific properties (e.g. differentiability); (2) it suggests a
way to learn joint distributions of multiple architectures.

To improve the computation efficiency of RelativeNAS, this
work further adopts a weight set as a knowledge base to
estimate the performances when comparing the architectures
in each pair, where the weight set is an operation collection
of all the candidate architectures, as well as a gathering of
the promising knowledge in the population. Since the slow-

@

AB

"! "" "# #

$ % BC@ BCD BC@ BCA

& $ % BCA BC@ BCE BCF

6GH0IJ

H&)#.$:&!GIJ

#

"! "" "#

%&

!"##$%&'"#(

)#%"*'#+

,-$./&'"#(

)#%"*'#+

$ % & $ %

& % (

)!

)"

)#

Fig. 2: Examples of the encoding schemes of DARTS [19] and
RelativeNAS. LEFT: an architecture to be encoded. Boxes,
dashed lines, and solid lines represent different nodes, the
candidate operations, and chosen operations respectively. Node
2 needs to choose two operations (i.e. two out of the six
lines). RIGHT: the two different continuous encoding schemes.
a→ b represents the connection between Node a and Node b
while o1, o2, and o3 denote the candidate operations. DARTS
encodes every operation by its weight and uses 0, i.e. zero
operation, to denote that there is no connection between
two nodes; each real number means the probability/weight
of choosing the corresponding operation. RelativeNAS uses
four continuous variables, including two connections and their
corresponding operations, to encode the architecture; the real
number falling into each interval means that the corresponding
connection exists or the corresponding operation is chosen.
Note that, since each node in RelativeNAS must connect to
two predecessor nodes, zero operation is not considered in the
search space.

fast learning only requires low-fidelity performance estimation
when distinguishing slow-learner and fast-learner in each pair,
a newly discovered network is trained for only one epoch
to obtain the estimated performance, thus saving substantial
computation cost for performance evaluations. It is worth
noting that the weight set is not directly trained but updated

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. XX, NO. XX, XXXX 3

by the trained weights of each paired networks in an online
manner. The contributions of this paper can be summarized as
follows:

1) We propose a novel continuous encoding scheme and
a slow-fast learning paradigm for NAS. Specifically, a
population of architecture vectors is iteratively updated
by pseudo-gradients, towards optima.

2) We propose a novel performance estimation strategy
to expedite the evaluation of architectures, where the
weight set is not directly trained but updated using
other trained weights. It couples weight set updating and
searching into a single integrated online process.

3) The proposed RelativeNAS significantly reduces the
general computation cost of NAS, spending only nine
hours with a single 1080Ti GPU to obtain the discov-
ered architecture on CIFAR-10. Furthermore, we show
that the searched architecture achieves state-of-the-art
performance (97.66% accuracy) on CIFAR-10.

4) We transfer the searched architecture to multiple intra-
and inter-domain tasks, including image classifica-
tion, object detection, image segmentation, and key-
point detection. The consistently better performances
across these tasks demonstrate that the improvement on
CIFAR-10 is an actual advancement from the architec-
ture as obtained by RelativeNAS.

The rest of the paper is organized as follows. The back-
ground knowledge, including some related works and the
motivation of this work, is given in Section II. The details
of the proposed RelativeNAS are elaborated in Section III.
Experimental studies are presented in Section IV. Finally, the
conclusions are drawn in Section V.

II. BACKGROUND

In this section, we first present some related works, includ-
ing those in differentiable NAS and population-based NAS.
Then, we briefly summarize the motivation of this work.

A. Differentiable Neural Architecture Search

Differentiable NAS is motivated to relax the architecture
into continuous and then use gradient-based approaches for op-
timization. DARTS [19] is a pioneering work in differentiable
NAS, where three components have significantly improved
the computation efficiency: the cell-based search space, the
continuous relaxation approach, and the approximation tech-
nique. Specifically, the cell-based search space modularizes the
entire CNN into a stack of several cells to reduce the number
of parameters to be optimized; the continuous relaxation
schema transforms the choices of discrete operations into a
differentiable learning objective for the joint optimization of
the architecture and its weights; moreover, the approximation
technique approximates the architecture gradient for reducing
the expensive inner optimization.

Following DARTS, SNAS [24] has proposed to optimize
the architecture distribution for the operations during the back-
propagation. Specifically, the search space is differentiable by
relaxing a set of one-hot random variables, which is used to
select the corresponding operations in the graph. Since SNAS

Algorithm 1 RelativeNAS Framework

Require: Training set Ltrn, validation set Lvld, population
size N , generation number G

1: Initialize a population {α0}Nn=1 and a weight set Ω;
2: for g = 1, 2, . . . , G do
3: {αg}Nn=1 is randomly divided into N/2 pairs;
4: for p = 1, 2, . . . , N/2 do
5: The p-th pair of encoded vectors {αg

p,j}j=1,2 are
decoded into networks {Cαg

p,j
}j=1,2;

6: {Cαg
p,j
}j=1,2 inherit weights {ωαg

p,j
}j=1,2 from

weight set Ω;
/* train each network with one epoch */

7: for j = 1, 2 do
8: ω′

αg
p,j

= step(ωαg
p,j
|Cαg

p,j
);

9: Lαg
p,j

= Lvld(Cαg
p,j
,ω′
αg

p,j
);

10: end for
/* distinguish slow-learner and fast-learner */

11: αg
p,f = arg min

α
(Lαg

p,1
,Lαg

p,2
);

12: αg
p,s = arg max

α
(Lαg

p,1
,Lαg

p,2
);

/* update weight set Ω */
13: Ω is updated with (6);

/* slow-learner learns from fast-learner */
14: αg

p,s is updated with (4);
15: end for
16: end for

has used search gradient as the reward instead of training loss
for reinforcement learning, the objective is not changed but
the process is more efficient. ProxylessNAS [25] has used the
binarized architecture parameters to reduce the GPU memory.
Besides, it makes latency differentiable and adds the expected
latency into the loss function as a regularization term.

However, a recent work [26] has discovered that the bi-
level optimization of weights and architecture in DARTS will
collapse when the search epochs become larger. Since the
number of weight parameters is larger than the number of
architecture parameters, weight optimization will restraint the
architecture optimization, and more identity operations are
chosen to deteriorate the performance. Essentially, it is mainly
attributed to the lack of diversity when the solo candidate
architecture in DARTS is optimized by the gradient.

B. Population-Based Neural Architecture Search

As indicated by the term itself, population-based NAS main-
tains a population where each individual inside it represents a
candidate architecture. Cooperation among candidate architec-
tures modifies their attributes, and competition for removing
the worse and retaining the better pushes the population
towards optima. Neuroevolution is a traditional approach that
evolves the neural network topologies and their weights simul-
taneously [27], [28]. Along with the deeper layers of the neural
networks and increasing parameters, evolving the weights
becomes prohibitively time-consuming. Hence, population-
based NAS merely evolves the neural network topologies but
train the neural networks using the back-propagation method.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. XX, NO. XX, XXXX 4

Node 3

Pred1 Node: 0.2

Pred2 Node: 1.7

Pred1 Operation: 4.2

Pred2 Operation: 5.5

Pred1 Node: 0.8

Pred2 Node: 2.4

Pred1 Operation: 0.2

Pred2 Operation: 3.6

Node 2

Node 4

Pred1 Node: 3.2

Pred2 Node: 3.7

Pred1 Operation: 2.2

Pred2 Operation: 5.1

Normal Cell

Reduction Cell

Normal Cell

Reduction Cell

Normal Cell

Input Image

Encoding Level Node Level Cell Level

Softmax

×

×

×

Fig. 3: An example of an encoded vector which maps to the intermediate nodes of the cell-based structure. LEFT: An encoded
vector with three blocks. MIDDLE: the corresponding architecture by the encoded vector with three intermediate nodes. RIGHT:
the overall cell-based architecture.

Most existing population-based NAS methods have adopted
the genetic algorithm or genetic programming [29], [30], [31]
to mimic the process of natural evolution, which requires the
elaborate designs of stochastic crossover/mutation operators.
The research in [23] is a pioneering work in population-based
NAS, where 11 mutation operators are designed to modify the
attributes of the networks, including altering learning rate, re-
setting weights, inserting convolution, removing convolution,
etc. This research has indicated good feasibility in designing
different genetic operators, showing that a neural network
could be evolved starting from a very simple form and grow-
ing into complex architecture. Afterwards, AmoebaNet [20]
discovered an architecture that surpassed the human-craft
architectures by using NAS for the first time. In AmoebaNet,
a macro architecture is predefined to comprise a number of
identical cells, such that the search space is reduced to the cell
architecture instead of the entire one. On top of such a cell-
based framework, two different kinds of mutation operators
are designed to change the operation types and the connections
among different nodes.

Despite the promising performance of population-based
NAS, the existing methods mainly suffer from low compu-
tation efficiency. This can be attributed to two factors. First,
the stochastic crossover/mutation, as commonly adopted in
existing population-based NAS methods, can be inefficient in
generating high-performance candidate architectures. Second,
the performance evaluations of newly generated candidate
architectures can be computationally expensive.

Several methods have been proposed in order to improve
the efficiency of the population-based NAS. Lower fidelity
estimates are common strategies for speeding up NAS, where
the performance is estimated on the basis of lower fidelities of
the actual performance, including a reduced number of training

epochs, models with smaller sizes, or training on a subset of
the datasets. For example, AmoebaNet [20] uses each model
trained for 25 epochs with a fewer number of cells. Another
strategy to speed up the estimation of architectures is the one-
shot approach [32], [33], where only the weights of a single
supernet are trained. The searchable architectures can then
be evaluated using the weights inherited from the supernet
without further training.

C. Motivation

While differential NAS has opened a new dimension in the
literature, its development is still in its infancy. One pivotal is-
sue is how to make the best of the continuously encoded search
space. Due to the limitations of back-propagation, searching
over one solo architecture by gradient can be ineffective due
to the lack of proper diversity. By contrast, population-based
NAS is intrinsically advanced in maintaining diversity when
searching over multiple candidate architectures, but its search
efficiency is poor due to the stochastic crossover/mutation
and a large number of performance evaluations. Therefore,
this work is essentially motivated to design an effective and
efficient NAS method, which benefits from the merits of
both differentiable NAS and population-based NAS while
overcoming their deficiencies.

III. METHODOLOGY

We present the pseudo-code of the proposed slow-fast
learning paradigm in Algorithm 1. The proposed RelativeNAS
mainly involves three pivotal components: encoding/decoding
of the search space (Line 1 and Line 5), performance esti-
mation of the candidate architectures (Line 6 to Line 13),
and slow-fast learning among the architecture vectors (Line
14). The computational complexity of performance estimation

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. XX, NO. XX, XXXX 5

strategy mainly depends on the task (i.e., classification, detec-
tion, etc.) and the scale of dataset. Apart from the performance
estimation strategy, another major computational complexity
in RelativeNAS is associated with the update of the slow-
learner, which is an inevitable operation for population-based
NAS. Accordingly, the computational complexity of updating
the population is O(N ∗ |α|), where N is the population
size and |α| is the dimensionality of the searched architecture
vector. In the following subsections, we will elaborate the three
components respectively.

A. Search Space

To limit the scale of search space, this work adopts the cell-
based architecture inspired by [19]. Specifically, There are two
types of cells: the normal cell Gn and the reduction cell Gr.
The only difference between the two types of cells is the output
feature size. The normal cell does not change the size of the
feature, while the reduction cell is served as down-sampling to
reduce the size of the feature by stride operation. The internal
structure of the two types of cells is represented by a directed
acyclic graph. As shown in Fig. 3 (middle), there are two
input nodes from the two previous cells. Every intermediate
node contains two predecessor nodes and applies operations
on them. Consequently, the edge in the graph is denoted as
the possible operation and information flow between different
nodes. Edges are only allowed to point from low indexed nodes
to higher ones. On the other hand, a cell only contains one
output and all the intermediate nodes are concatenated to the
output node. Besides, the reduction cell is connected after s
normal cells as shown in Fig. 3 (right). In detail, the cell-based
search space can be formulated as:

Gc ={Gn1 , ...,Gns ,Grs+1,

Gns+2, ...,Gn2s+1,Gr2s+2,

Gn2s+3, ...,Gn3s+2}.

Since there are 3s + 2 different cells in total, the search
space can be too large for efficient NAS. To address this
issue, all the normal cells are identified, so are the reduction
cells. Therefore, the cell-based search space is constrained to
a normal cell Gn and a reduction cell Gr as below:

Gc = {Gn,Gr}.

Specifically, such a cell-based architecture has the following
advantages. First, it maintains diversity inside the cells. While
all of them share the same macro architecture, the different
connections among nodes and operations inside the two types
of cells diversify the structure of the network. Second, under
the cell-based design, networks can achieve promising perfor-
mance and high transferability for different tasks by adjusting
the total number of cells in the final architecture.

To transform a directed acyclic graph into uniform repre-
sentation in the continuous space, this work proposes a novel
continuous encoding scheme, as illustrated in Table I. Since
the input nodes and the output node are fixed, this work only
needs to encode every intermediate node along with its two
predecessor nodes and the corresponding operations. To be
more specific, this work encodes the node and the operation

TABLE I: Illustration of the encoding scheme in RelativeNAS.
An operation is determined by the operation type and its kernel
size. Each node or operation corresponds to a unique range in
real number space.

Node Operation

Range Index Range Type Kernel Size

[0, 1) 0 [0, 1) Max Pooling 3

[1, 2) 1 [1, 2) Avg Pooling 3

[2, 3) 2 [2, 3) Identity 0

[3, 4) 3 [3, 4) Sep Conv 3

[4, 5) 4 [4, 5) Sep Conv 5

[5, 6) 5 [5, 6) Dil Conv 3

[6, 7) 6 [6, 7) Dil Conv 5

separately. Each node or operation is represented by a real
value interval. Each interval is left-closed and all intervals
added together are continuous. To guarantee uniqueness, there
is no overlap among different intervals of the nodes or oper-
ations. Without bias, each interval of a node or an operation
has the same length.

Specifically, there are seven different operations, including
3 × 3 max pooling, 3 × 3 average pooling, two depth-wise
separable convolutions [34] (Sep Conv 3 × 3, 5 × 5), two
dilated separable convolutions (Dil Conv 3 × 3 and 5 × 5),
and identity. Unless specified, each convolutional layer in the
network is fronted by ReLU activation and followed by batch
normalization [35], and each separable convolution is applied
twice.

With the proposed encoding scheme, the cell-based search
space Gc is encoded into a new one A, i.e.the encoded search
space. In this way, every architecture vector α ∈ A can be
decoded into its corresponding cell architecture Cα ⊂ Gc by
mapping the vector into the connections and operations of the
intermediate nodes in the cell.

An illustrative example of the above encoding process is
given in Fig. 3. This work uses a list of blocks to represent
an architecture vector as shown in Fig. 3 (left). Each block
represents an intermediate node in the cell and needs to be
specified by four variables, including Pre1 Node (the first
predecessor node) and Pre2 Node (the second predecessor
node), and their corresponding operations. Fig. 3 (middle)
shows a cell architecture decoded from Fig. 3 (left) using the
mapping rules in Table I.

B. Slow-Fast Learning

The general target of NAS is to search for an architecture
vector α∗ ∈ A such that the decoded architecture Cα∗ mini-
mizes validation loss Lvld(Cα∗ ,ω∗α∗), where the weights ω∗α∗

associated with the architecture are obtained by minimizing
the training loss Ltrn(Cα∗ ,ωα∗). To this end, the slow-fast
learning paradigm in the proposed RelativeNAS is essentially
an optimizer to approximate α∗.

Specifically, given an architecture vector αg obtained at the

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. XX, NO. XX, XXXX 6

*$%!
&

*$%"
&

!

*!
&'!

**
&'!

!

*!
&

**
&

! H#*'23(

"#$%$*+(

"2=;)#.$2*(#.(L&*&%#.$2*(+

*$%+
&

*$%)
&

!

*,$%+
&

*,$%)
&

!

I)27PS#/.(K&#%*$*+ "2=;)#.$2*(#.(L&*&%#.$2*(+ - &

!! !

Fig. 4: Illustration of the slow-fast learning process at generation g. A population of N architecture vectors is randomly
divided into N/2 pairs. For each pair p, slow-learner αg

p,s updates its vector by learning from a fast-learner αg
p,f using (2)

and (4), while fast-learner αg
p,f itself remains unchanged. After the slow-fast learning process, all fast-learners and updated

slow-learners are re-merged to become the new population of the next generation g + 1.

g-th generation1 of slow-fast learning, it is iteratively updated
by:

αg+1 = αg + ∆αg, (2)

where Lvld(Cαg+1 ,ω∗αg+1) < Lvld(Cαg ,ω∗αg) holds, such
that:

lim
g→+∞

αg = α∗. (3)

To efficiently generate the pseudo gradient ∆αg , this work
proposes to use a population of N architecture vectors
{α}Nn=1. As illustrated in Fig. 4, at each generation, the
population is randomly divided into N/2 pairs. Then, for each
pair p, a fast-learner αg

p,f and a slow-learner αg
p,s are specified

by the paritial ordering of validation loss values, where the
one having smaller loss is the fast-learner and the other is the
slow-learner (i.e. Lvld(Cαg

p,f
,ω∗
αg

p,f
) < Lvld(Cαg

p,s
,ω∗
αg

p,s
)).

Then, αg
p,s is updated by learning from αg

p,f with:

∆αg
p,s = λ1(αg

p,f −α
g
p,s) + λ2∆αg−1

p,s , (4)

where λ1, λ2 ∈ [0, 1] are randomly generated values by
uniform distribution. Specifically, λ1 determines the step size
that αg

p,s learns from αg
p,f , and λ2 determines impact of the

momentum term ∆αg−1
p,s . Such a pseudo gradient is inspired

by the second derivatives in the gradient descent of the back
propagation [36]. Thanks to such a pseudo-gradient based
mechanism, the proposed RelativeNAS is applicable not only
to the search space in this work, but also to any other generic
continuously encoded search space.

Eventually, all fast-learners and updated slow-learners are
re-merged to become the new population of the next generation
g + 1. By such an iterative process of slow-fast learning,
each architecture vector in the population is expected to move
towards optima by learning from those converging faster than
them.

C. Performance Estimation

As described above, the proposed RelativeNAS needs to
evaluate the performances of candidate architectures thus
decoded from the architecture vectors in the population of
each generation, such that for each pair of architecture vectors,
fast-learner can be distinguished from slow-learner by their

1To distinguish the iteration in network training, this work uses the term
generation to denote the iteration in slow-fast learning

,&$+-.(>*-&%$.#*4&

. / 01!

&
' 1"

&
' 2 3 . / 01-

!
&
' 1-

"
&
' 2 3

,&$+-.(?='#.&

0%#$*$*+

G%4-$.&4.;%&(4
.!"#
$

G%4-$.&4.;%& 4
.!"%
$

S#/.PK&#%*&%

I)27PK&#%*&%

Fig. 5: Illustration of the architecture evaluation process. Given
two paired architectures Cαg

p,1
and Cαg

p,2
, they inherit weights

from the weight set Ω firstly. After that, we train each network
only for one epoch and differ them to fast-learner and slow-
learner. Finally, the weight set is updated by all the trained
weights ω′g .

validation losses. Ideally, the performance of a candidate
architecture Cαg can by evaluated by solving the following
optimization problem:

ω∗αg = optimize(ωαg |Cαg)

= step(step(...step(ωαg |Cαg)...|Cαg)|Cαg), (5)

where ω∗αg is the optimal weights of the candidate archi-
tecture, and function step(·) is one step2 of the iterative
optimization procedure to update the weights of the neural
network. In practice, however, solving such an optimization
(i.e. training the candidate architecture) can be quite compu-
tationally expensive, especially when there are a large number
of candidate architectures obtained during the iterative slow-
fast learning process. Hence, to reduce the computation cost of
performance evaluations in RelativeNAS, this work proposes
a performance estimation strategy.

In contrast to existing differentiable NAS methods (e.g.
DARTS [19]), the validation losses in RelativeNAS are not
directly involved in updating the candidate architectures; in-
stead, they are merely used to determine the partial orders
among each pair of candidate architectures (i.e. to distinguish
fast-learner and slow-learner). Therefore, in RelativeNAS, it
is intuitively feasible to use performance estimations (instead
of exact performance evaluations) to obtain the approximate
validation losses of the candidate architectures.

2In this work, one step is specified as one epoch in the training process.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. XX, NO. XX, XXXX 7

Fig. 6: Searching process on CIFAR-10. TOP: trajectories of validation losses using our performance estimation method for
all candidate architectures decoded from the architecture vectors in the population. The red line indicates a randomly selected
architecture in the population. BOTTOM: architectures of a randomly selected candidate architecture in the population at
generation 1, 30, and 50 respectively. Each box contains a normal cell (top) and reduction cell (bottom).

Specifically, the proposed performance estimation strategy
first randomly initializes a weight set Ω to contain the weights
of all possible operations in Gc. During the search process,
given the p-th pair of candidate architecture {Cαg

p,j
}j=1,2 at

generation g, they inherit the corresponding weights ωαg
p,1

and ωαg
p,2

from Ω according the their own operations respec-
tively. With the inherited weights as warm-up, the weights of
{Cαg

p,j
}j=1,2 only need to be updated on training set Dtrn by

one step of optimization:

ω′αg
p,j

= step(ωαg
p,j
|Cαg

p,j
).

Then, the updated weights {ω′
αg

p,j
}j=1,2 are used to es-

timate the validation losses {Lvld(Cαg
p,j
,ω′
αg

p,j
)}j=1,2 of

{Cαg
p,j
}j=1,2 on validation set Dvld. Finally, Ω is updated

by {ω′
αg

p,j
}j=1,2 as:

Ω = ω′αg
p,f
∪{ω′αg

p,s
−ω′αg

p,f
∩ω′αg

p,s
}∪{Ω−ω′αg

p,f
∪ω′αg

p,s
},

(6)
where ω′

αg
p,f

and ω′
αg

p,s
are weights from fast-learner and

slow-learner (refer to Section III-B), respectively. The first
term ω′

αg
p,f

means that Ω receives all the weights from

ω′gp,f as it is assumed that ω′gp,f , as the weights of fast-
learner, is generally more valuable than ω′gp,s. The second term
{ω′

αg
p,s
−ω′

αg
p,f
∩ω′

αg
p,s
} means that Ω receives the weights in

ω′
αg

p,s
but not in ω′

αg
p,f

. The third term {Ω−ω′
αg

p,f
∪ω′

αg
p,s
}

mean that Ω keeps those unused weights unchanged.
With the above procedure as further illustrated in Fig. 5,

it is expected that the weight set Ω becomes increasingly
knowledgeable by co-evolving with the candidate architectures
during the iterative slow-fast learning process, such that the
performance estimation strategy is able to save substantial
computation costs.

IV. EXPERIMENTS

In this section, we first provide the basic experiment on
architecture search using RelativeNAS. Then, we elaborate two
analytical experiments to investigate some core properties of
RelativeNAS. Afterwards, we present experimental results on
CIFAR-10 to evaluate the discovered cell architectures and
comparisons with other state-of-the-art networks. Finally, we
show the transferability of our discovered cell architectures in
both intra- and inter-tasks.

A. Architecture Search

Basically, this work performs NAS on CIFAR-10 [37]
which is widely used for benchmarking image classification.
Specifically, CIFAR-10 contains 60K images with a spatial
solution of 32× 32 and these images are equally divided into
10 classes, where the training set and the testing set are 50K

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. XX, NO. XX, XXXX 8

!"#"$%&'(#)*+

!"#"$%&'(#),*

!"#"$%&'(#)-

.%/&01"%$#"$))!"#
$

23(401"%$#"$),!"%
$

23(401"%$#"$)!"%
$

Fig. 7: Illustration of the slow-fast learning with decoded architectures at generation 1, 25, and 50 respectively. Slow-learner
updates its connections and operations by learning from fast-learner. The red lines denote the common connections between
fast-learner and slow-learner, and the green lines denote the new connections after learning.

and 10K, respectively. Half of the training images of CIFAR-
10 are randomly taken out as the search validation set.

In RelativeNAS, the population size N and the generation
number are set to 20 and 50, respectively. To evaluate the
discovered architectures, every architecture vector α is first
decoded into a small network with 8 cells (i.e. s = 2) and
initial channels set to 16. Then, this work trains those networks
on the training set for one epoch using SGD with the weight
decay and batch size set to 3 × 10−4 and 256 respectively.
In addition, the initial learning rate lr is 0.1 which decays to
zero following a cosine annealing schedule with Tmax set to
the generation number, and Cutout [38] of length 16 and the
path dropout [39] with the probability of 0.3 are both applied
for regularization. The trained networks are assessed on the
validation set to distinguish fast-learners and slow-learner by
comparing the validation losses. All in all, it takes about nine
hours with a unique 1080Ti or seven hours with a Tesla
V100 to complete the above search procedure.

B. Population Searching Analysis

Fig. 6 (top) provides the validation losses of all the 20
decoded candidate architectures in a population over the
searching process. Initially, the losses differ widely among
the candidate architectures due to the randomly initialized
architectures; as the search proceeds, the differences of the
losses gradually decrease towards a stable value, indicating
convergence of the population.

For more insightful observations, this work randomly se-
lects one decoded candidate architecture in the population
to trace its architectures obtained over the searching process.
As shown in Fig. 6 (bottom), at the initial stage (generation
1) of the searching process, the normal and reduction cells
are randomly generated, without any specified property; at
the middle stage (generation 30), however, the normal cell
becomes denser while the reduction cell remains flat; at the
final stage (generation 50), the topologies of the two types
of cells remain stable, despite the changes in the detailed

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. XX, NO. XX, XXXX 9

TABLE II: Comparisons with other state-of-the-art methods on CIFAR-10.

Architecture Test Error
(%)

Params
(M)

Search Cost
(GPU days)

GPU
Device

Search
Method

FractalNet [40] 5.22 38.6 - - manual
Wide-ResNet [41] 4.17 36.5 - - manual
DenseNet-BC [9] 3.46 25.6 - - manual
PNAS [42] 3.41 3.2 225 - SMBO
NAONet + Cutout [43] 2.48 10.6 200 V100 NAO
Random search + Cutout [19] 3.29 3.2 4 1080Ti random
DARTS(first) + Cutout [19] 3.0 3.3 1.5 1080Ti gradient-based
DARTS(second) + Cutout [19] 2.76 3.3 4.0 1080Ti gradient-based
SNAS+mild constraint + Cutout [24] 2.98 2.9 1.5 TITAN Xp gradient-based
SNAS+moderate constraint + Cutout [24] 2.85 2.8 1.5 TITAN Xp gradient-based
SNAS+aggressive constraint + Cutout [24] 3.10 2.3 1.5 TITAN Xp gradient-based
ProxylessNAS + Cutout [25] 2.08 5.7 4.0 V100 gradient-based
MetaQNN [44] 6.92 11.8 100 - RL
NASNet-A + Cutout [45] 2.65 3.41 2000 K40 RL
BlockQNN + Cutout [12] 2.80 39.8 32 1080Ti RL
ENAS + Cutout [46] 2.89 4.6 0.5 1080Ti RL
AmoebaNet-A [20] 3.34 3.2 3150 K40 population-based
AmoebaNet-B + Cutout [20] 2.55 2.8 3150 K40 population-based
Large-Scale Evolution [23] 5.4 5.4 2600 - population-based
Hierarchical Evolution [47] 3.75 15.7 300 P100 population-based
EffPnet [48] 3.49 2.54 <3 RTX 2070 population-based
RelativeNAS + Cutout 2.34 3.93 0.4 1080Ti population-based

connections inside them. Such observations indicate that the
population searching process would generate expected candi-
date architectures towards converged optima, in terms of both
connections and operations. Indeed, this work further trains the
architecture shown at the final stage on the different datasets
to validate its performance.

C. Slow-Fast Learning Analysis

To empirically analyze the slow-fast learning process, this
work randomly picks up three pairs of architectures obtained at
generation 1, generation 25, and generation 50, respectively,
to provide the illustrative example in Fig. 7. At generation
1, the architectures of fast-learner and slow-learner both are
randomly initialized at the beginning. Hence, there exist
substantial differences between fast-learner and slow-learner,
such that slow-learner substantially changes its connections
as well as operations after learning from fast-learner. At
generation 25, there are some common connection patterns
between fast-learner and slow-learner, e.g. the two predecessor
nodes of Node 4 are both Node 1 in the normal cells, and
the two predecessor nodes of Node 3 are both Node 0 in
the reduction cells. Therefore, slow-learner will not change
these patterns during slow-fast learning. By contrast, due to
the differences between operations Dil Conv 3 × 3 and Sep
Conv 5×5 in the connection between Node 2 and Node 0 for
fast-learner and slow-learner, slow-learner learns from fast-
learner and changes to Dil Conv 3 × 3. At generation 50,
the connections of the normal cells are exactly the same, and
thus slow-learner only makes some minor adjustments in its
operations by learning from fast-learner. Besides, despite that
there is still a gap between fast-learner and slow-learner in the
reduction cells, while the overall architectures become quite
similar after 50 generations of slow-fast learning. Based on
the above observations, this work can conclude that the slow-
fast learning paradigm is generally effective over the search
process, showing different functionalities at different stages.

D. Results on CIFAR-10

In this work, we follow the training settings of DARTS [19]
for image classification tasks to train networks from randomly
initialized weights, for fair comparisons between the searched
architectures. A large network of 20 cells (i.e. s is set to 6)
is built with the selected normal and reduction cells while
the initial number of channels is set to 36. Most hyper-
parameters are the same as the ones used in the above search
process except lr, path dropout, and batch size which are set
to 0.025, 0.2, and 128, respectively. For further enhancement,
an auxiliary head with weight 0.4 is added into the network.
Instead of half training images, this work trains the network
from scratch over the whole training set for 600 epochs and
evaluate it over the test set.

The results and comparisons with other state-of-the-art
networks (including manual and NAS) on CIFAR-10 are sum-
marized in Table II. Besides, we label all the GPU devices for
different NAS methods. Compared with the manual networks,
our RelativeNAS has fewer parameters while outperforms
them by a large margin. The proposed RelativeNAS gains
an encouraging improvement to DARTS [19] and a random
search baseline [19] in terms of test error and search cost.
Compared with other NAS networks, it can be observed
that ours needs the least cost on time while gets superior
results in terms of test error and parameters. Although Prox-
ylessNAS [25] achieves less test error than ours (2.08% vs
2.34%), it has much more parameters (5.7M vs 3.9M) and
costs 10× longer search time than ours (4 vs 0.4). While
EffPnet [48] has fewer parameters (2.54M vs 3.9M), the
test error and search cost are larger than ours. Furthermore,
RelativeNAS is the only one involving the pseudo gradient
between architecture vectors among those population-based
NAS. To the best of our knowledge, our RelativeNAS is
the most efficient search method among those population-
based methods. With ENAS [46] and RelativeNAS proposed,
RL-based and population-based methods are no longer time-

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. XX, NO. XX, XXXX 10

TABLE III: Comparison with other state-of-the-art networks on CIFAR-100. † denotes directly searching on CIFAR-100, while
others are searched on CIFAR-10.

Architecture Test Error
(%)

Params
(M)

Search Cost
(GPU days)

Search
Method

FractalNet [40] 23.30 38.6 - manual
Wide-ResNet [41] 20.50 36.5 - manual
DenseNet-BC [9] 17.18 25.6 - manual
NAONet + Cutout [43] 15.67 10.8 200 NAO
MetaQNN [44] 27.14 11.8 100 RL
Large-Scale Evolution† [23] 23.0 40.4 2600 population-based
EffPnet [48] 18.49 2.54 <3 population-based
RelativeNAS + Cutout 15.86 3.98 0.4 population-based

TABLE IV: Comparison with other state-of-the-art methods on ImageNet. † denotes directly searching over ImageNet, while
others are searched on CIFAR-10.

Architecture Test Error (%) Params × + Search Cost Search
top-1 top-5 (M) (M) (GPU days) Method

Inception-V1 [7] 30.2 10.1 6.6 1448 - manual
MobileNet-V1 (1x) [49] 29.4 10.5 4.2 575 - manual
MobileNet-V2 (1.4) [50] 25.3 - 6.9 585 - manual
ShuffleNet-V1 (2x) [51] 26.4 10.2 5 524 - manual
ShuffleNet-V2 (2x) [52] 25.1 - 5 591 - manual
PNAS [42] 25.8 8.1 5.1 588 225 SMBO
NAONet [43] 25.7 8.2 11.35 584 200 NAO
DARTS (second order) [19] 26.7 8.7 4.7 574 4.0 gradient-based
SNAS (mild constraint) [24] 27.3 9.2 4.3 533 1.5 gradient-based
ProxylessNAS (GPU)† [25] 24.9 7.5 7.1 465 8.3 gradient-based
NASNet-A [45] 26.0 8.4 5.3 564 1800 RL
NASNet-B [45] 27.2 8.7 5.3 488 1800 RL
NASNet-C [45] 27.5 9.0 4.9 558 1800 RL
AmoebaNet-A [20] 25.5 8.0 5.1 555 3150 population-based
AmoebaNet-B [20] 26.0 8.5 5.3 555 3150 population-based
AmoebaNet-C [20] 24.3 7.6 6.4 570 3150 population-based
EffPnet [48] 27.01 9.25 2.54 - <3 population-based
RelativeNAS 24.88 7.7 5.05 563 0.4 population-based

consuming and even 2× faster than gradient-based methods.
Moreover, the proposed RelativeNAS outperforms ENAS in
all aspects.

E. Transferability Analyses

In this subsection, we will validate the transferability of
the normal and reduction cells discovered by the proposed
RelativeNAS on CIFAR-10. We first validate their generality
in other image classification tasks (i.e. intra-tasks), and then
demonstrate their transferability in inter-tasks, including object
detection, semantic segmentation, and keypoint detection.

1) Intra-task Transferability: The discovered normal cell
and reduction cell on CIFAR-10 both are directly transferred
to CIFAR-100 and ImageNet without further search. Since the
architecture is transferred, the overall search cost is the same
as on CIRAR-10.

CIFAR-100. CIFAR-100 contains 60K images with a spatial
resolution of 32 × 32, where 50K images are used as the
training set and the left 10K images are used as the testing set.
Moreover, these images are distributed equally for 100 classes.
The network used in CIFAR-10 is directly transferred to
CIFAR-100 with a small modification in the last classification
layer to adapt to the different number of classes. The training
details are the same as CIFAR-10 except the weight decay and
batch size which is set to 5× 10−4 and 96, respectively.

Table III shows the experimental results and comparisons
with other state-of-the-art networks. Surprisingly, our direct

transferred network achieves a test rate of 15.86% and still
outperforms most networks. In particular, RelativeNAS outper-
forms Large-Scale Evolution [23] by about 7 points which is
searching on CIFAR-100 instead of transferring from CIFAR-
10. It can be concluded that our RelativeNAS derived from
CIFAR-10 is indeed transferable to a more complicated task
(i.e. CIFAR-100) while maintains its superiority.

ImageNet. ImageNet 2012 dataset [53] is one of the most
challenging benchmarks for image classification, which is con-
sisted of 1.28M and 50K images for training and validation,
respectively. Those images are unevenly distributed in the
1000 different classes, and they do not have unified spatial
resolution but usually much larger than 32 × 32. In order
to fit such a difficult dataset, this work follows the common
practice [19] to modify the network structure used in CIFAR-
10/100. To be more concrete, the macro-architecture starts
with three convolutional layers with stride set to 2, which
can reduce the spatial resolution of input images 8 times. In
the following, 14 cells (i.e. s is set to 4) are stacked. With
the consideration of the mobile setting (i.e. the number of
multiply-add operations should be less than 600M), the initial
channel is set to 46. This work trains the model over the train
set while reporting the results on the validation set. During
training, this work adopts some common data augmentation
strategies, including randomly resize and crop, random horizon
flip, and color jitter. There are 1024 examples in each training
batch and the size of each image is equal to 224 × 224. The

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. XX, NO. XX, XXXX 11

model is optimized with SGD for 250 epochs, where the initial
learning rate, momentum, and weight decay are set to 0.5,
0.9, and 3× 10−5, respectively. This work applies the warm-
up strategy over the first 5 epochs, where the learning rate
is gradually increasing linearly from 0 to the initial value.
During the left 245 epochs, the learning rate decays linearly
from 0.5 to 1×10−5. In addition, this work also uses the label
smoothing [54] to regularize our model, and the smoothing
parameter ε is equal to 0.1.

The results of RelativeNAS compared with other state-of-
the-art networks on the ImageNet are presented in Table IV.
It is worth noticing that RelativeNAS achieves competitive
performance, i.e.top-1 and top-5 test error rate of 24.88% and
7.7%, respectively. Interestingly, our transferred RelativeNAS
performs a little better than ProxylessNAS (GPU) [25] which
is searching on ImageNet directly. The results further demon-
strate that the proposed method enables the transformation of
simple cells to complex macro architectures for solving more
complicated tasks with low cost but high performance.

2) Inter-task Transferability: We will further demonstrate
the transferability by transferring our network pretrained on
ImageNet to other tasks instead of image classification. To
be more specific, we will train and evaluate SSD [55],
BiSeNet [6], and SimpleBaseline [56] with different mobile-
setting backbones under the same training settings for ob-
ject detection, semantic segmentation, and keypoint detection,
respectively. We note that all compared models (network
structures as well as the ImageNet pretrained weights) in this
part are from PyTorch repository except DARTS [19], which
is from the official released GitHub repository.

Object Detection. For object detection, this work compares
our network with other counterparts on PASCAL VOC, in
which thousands of images over 20 object classes are an-
notated with bounding boxes. Among those object classes,
bottles and plants are both small objects. Following [50], this
work adopts the SSDLite as our object detection framework,
which is a mobile-friendly variant of Single Shot Detector
(SSD) [55]. Specifically, all the regular convolutions are
replaced with separable convolutions in SSD extra layers
and prediction layers, with which SSDLite is slighter and
more efficient than the original SSD. This work trains all
models over the combined trainval sets of VOC 2007 and
2012 using SGD with a batch size of 32, the momentum of
0.9, and weight decay of 5 × 10−4. Besides, input images
are resized to 320 × 320 and the learning rate is set to
0.01 which will decay to zero in 200 epochs with cosine
annealing scheduler without a restart. Table V presents the
performance achieved by those models on PASCAL VOC
2007 test set. This work can conclude that our RelativeNAS
achieves the best performance while keeps comparable in
terms of parameters and FLOPs under the same settings.
Moreover, the discovered model outperforms others in small
objects by a large margin, which can be attributed to the fact
that our model has a strong ability to retain spatial details
while extracting abstract semantic information. In addition
to the quantitative comparison, this work also provides some
qualitative results in Fig. 8. From it, this work can see that our
model indeed surpasses others in detecting the bottle (first row)

and bird (second row). Furthermore, it seems our model can
well exploit the surrounding context to improve performance,
as it can identify this is a boat instead of a bird in the last
row.

Semantic Segmentation. Cityscapes [58] is a large-scale
dataset containing pixel-level annotations of 5000 images
(2975, 500, and 1525 for the training, validation, and test
sets respectively) and about 20000 coarsely annotated images.
Following the evaluation protocol [58], 19 semantic labels
are used for evaluation without considering the void label.
This work evaluates the BiSeNet [6] with different mobile-
setting backbones on the validation set when training with
only 2975 images (i.e.train fine set). All models are trained
for 80K iterations with the initial learning rate and batch size
set to 1× 10−2 and 16, respectively. Similar to [6], this work
decays the lr with the ”poly” learning rate strategy. To be more
concrete, the initial lr is multiplied by (1− iter

max iter)0.9. This
work follows the BiSeNet to augment our training images.
Specifically, this work employs the color jitter, random scale
(scales = {0.75, 1, 1.25, 1.5, 1.75, 2.0}), and random horizon-
tal flip. After that, this work randomly crops the augmented
images into a fixed size that is 1024× 1024 for training. Note
that, the multi-crop testing is adopted during the test phase,
and the test crop size is equal to 1024× 1024, too. Table VI
provides the comparison with several representative mobile-
setting backbones on the Cityscapes val set in terms of the
parameter, computation complexity (i.e. FLOPs) and mIoU.
It can be seen that our RelativeNAS has fewer parameters
and FLOPs than the NASNet while outperforming NASNet
by 0.8 points in terms of mIoU. Furthermore, when compared
with BiSeNet that adopts ResNet101 as the backbone [6],
our RelativeNAS achieves a better result over val set (80.4
vs 80.3) when adopting the same multi scales (scales =
{0.5, 0.75, 1, 1.25, 1.5, 1.75}) as well as flipping during infer-
ence. Some visual examples are displayed in Fig. 9, where it
can be seen that the BiSeNet paired with our RelativeNAS can
better segment the boundaries of objects.

Keypoint Detection. Keypoint detection aims to detect the
locations of k human parts (e.g., ankle, shoulder, etc) from
an image. The MSCOCO [59] is a widely used benchmark
dataset for keypoint detection which includes over 250k person
instances labelled with 17 keypoints. SimpleBaseline [56] is
adopted as our general keypoint detection framework, and this
work assesses it when paired with different backbones. This
work trains all models on the MSCOCO train2017 set and
evaluate them on the val2017 set, containing 57K and 5K
images, respectively. Following the SimpleBaseline [56], this
work crops the human detection boxes from the images which
are then resized to 256×192. In addition, the random rotation,
scale, and flipping are all applied to data augmentation. Each
model is trained with the Adam optimizer [60] for 140 epochs
and the initial learning rate is set to 1 × 10−3 which will
drop to 1× 10−4 and 1× 10−5 at the 90th and 120th epoch,
respectively. Moreover, each batch contains 128 examples.
Similar as [56], a two-stage top-down paradigm is adopted
during inference. To be more specific, an independent person
detector is applied to detect the person instances and then
those instances are input to the trained keypoint detector for

https://pytorch.org/docs/stable/torchvision/models.html
https://github.com/quark0/darts

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. XX, NO. XX, XXXX 12

TABLE V: Results of SSDLite [50] with different mobile-setting backbones on PASCAL VOC 2007 test set.

Backbone # Params (M) # FLOPs (M) Small Objets (AP (%)) mAP (%)Bottle Plant
ShuffleNet-V2 (1x) [52] 2.17 355.76 29.9 38.1 65.4
MobileNet-V2 (1x) [50] 3.30 680.88 37.9 43.9 69.4
NASNet [45] 5.22 1238.92 41.5 46.1 71.6
MnasNet [57] 4.18 708.72 37.7 44.4 69.6
DARTS [19] 4.73 1138.16 38.3 49.3 71.2
RelativeNAS 5.07 1202.97 45.9 50.3 73.1

Fig. 8: Visual examples achieved by SSDLite with different backbones. From left to right are groudtruth, ShuffleNetV2,
MobileNetV2, NASNet, MnasNet, DARTS, and RelativeNAS, respectively. The confidence threshold is 0.5. Different colors
represent different classes.

Fig. 9: Visual examples achieved by BiSeNet with different backbones. From left to right are ground truth, ShuffleNetV2,
MobileNetV2, NASNet, MnasNet, DARTS, and RelativeNAS, respectively. Different colors denote different classes.

Fig. 10: Visual examples achieved by SimpleBaseline with different backbones. From left to right are ground truth,
ShuffleNetV2, MobileNetV2, NASNet, MnasNet, DARTS, and RelativeNAS, respectively. Different colors represent different
keypoints.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. XX, NO. XX, XXXX 13

TABLE VI: Results of BiSeNet [6] with different mobile-
setting backbones on Cityscapes val set. (single scale and no
flipping).

Backbone # Params (M) # FLOPs (G) mIoU (%)
ShuffleNet-V2 (1x) [52] 4.10 26.30 73.0
MobileNet-V2 (1x) [50] 5.24 29.21 77.1
NASNet [45] 7.46 36.51 77.9
MnasNet [57] 6.12 29.50 76.8
DARTS [19] 6.64 34.77 77.5
RelativeNAS 6.94 35.35 78.7

predicting human keypoints. This work reports the experi-
mental results of SimpleBaseline with different mobile-setting
backbones in Table VII. Our RelativeNAS still performs better
than others in terms of AP while is comparable in the other
two aspects. Moreover, our claims are supported by visual
examples in Fig. 10.

TABLE VII: Results of SimpleBaseline [56] with different
mobile-setting backbones on MS COCO2017 val set. Flip is
used during validation.

Backbone # Params (M) # FLOPs (M) AP (%)
ShuffleNet-V2 (1x) [52] 7.55 154.37 60.4
MobileNet-V2 (1x) [50] 9.57 306.80 649
NASNet [45] 10.66 569.11 67.9
MnasNet [57] 10.45 320.17 62.5
DARTS [19] 9.20 531.77 66.9
RelativeNAS 9.43 564.19 68.3

V. CONCLUSIONS

This paper has presented a framework, called RelativeNAS,
for the effective and efficient automatic design of high-
performance networks. Within RelativeNAS, a novel contin-
uous encoding scheme for cell-based search space has been
proposed firstly. To further utilize the continuously encoded
search space, a slow-fast learning paradigm has been applied
as an optimizer to iteratively update the architecture vectors. In
contrast to existing learning/optimization methods in NAS, the
proposed one does not directly use loss-based knowledge to
update the architectures. Instead, the candidate architectures
are made to learning from each other by the pariwisely
generated pseudo-gradients, i.e. slow-learner learning from
fast-learner in each pair of candidate architectures. In addi-
tion, a performance estimation strategy has been proposed
to reduce the cost of evaluating candidate architectures. The
effectiveness of such a strategy can be largely attributed to the
fact that the validation loss is merely used for distinguishing
slow-learner and fast-learner by partial ordering, which only
requires estimated (instead of exact) loss values.

With the proposed RelativeNAS as above, consequently, it
takes about nine 1080Ti GPU hours (i.e. 0.4 GPU Day) for
our RelativeNAS to search on CIFAR-10. Furthermore, our
discovered network has been able to outperform or match
other state-of-the-art manual and NAS networks on CIFAR-
10 while showing promising transferability in other intra- and
inter-tasks, such as ImageNet, object detection. In particular,
our transferred network has yielded the best performance on
PASCAL VOC, Cityscapes, and MS COCO. In conclusion,
this work highlights the merits of differentiable NAS and

combining population-based NAS, to be more effective and
more efficient. Moreover, the proposed slow-fast learning
paradigm can be also potentially applicable to other generic
learning/optimization tasks.

ACKNOWLEDGMENT

This work was supported by the National Natural Sci-
ence Foundation of China (No. 61903178, 61906081, and
U20A20306), the Shenzhen Science and Technology Pro-
gram (No. RCBS20200714114817264), the Program for
Guangdong Introducing Innovative and Entrepreneurial Teams
(No. 2017ZT07X386), the Shenzhen Peacock Plan (No.
KQTD2016112514355531), the Program for University Key
Laboratory of Guangdong Province (No. 2017KSYS008), and
the General Research Fund of Hong Kong (No. 27208720).
The authors are grateful to Zhichao Lu for his comments and
support on the paper.

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classifica-
tion with deep convolutional neural networks,” in Proceedings of the
Advances in Neural Information Processing Systems, 2012, pp. 1097–
1105.

[2] Y. Kong, X. Kong, C. He, C. Liu, L. Wang, L. Su, J. Gao, Q. Guo,
and R. Cheng, “Constructing an automatic diagnosis and severity-
classification model for acromegaly using facial photographs by deep
learning,” Journal of Hematology & Oncology, vol. 13, no. 1, pp. 1–4,
2020.

[3] Z. Lu, K. Deb, and V. N. Boddeti, “MUXConv: Information multiplexing
in convolutional neural networks,” in IEEE Conference on Computer
Vision and Pattern Recognition, 2020.

[4] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-
time object detection with region proposal networks,” in Proceedings
of the Advances in Neural Information Processing Systems, 2015, pp.
91–99.

[5] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2015, pp. 3431–3440.

[6] C. Yu, J. Wang, C. Peng, C. Gao, G. Yu, and N. Sang, “BiSeNet:
Bilateral segmentation network for real-time semantic segmentation,”
in Proceedings of the European Conference on Computer Vision, 2018,
pp. 325–341.

[7] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2015, pp. 1–9.

[8] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2016, pp. 770–778.

[9] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition, 2017, pp. 4700–4708.

[10] T. Elsken, J. H. Metzen, F. Hutter et al., “Neural architecture search:
A survey.” Journal of Machine Learning Research, vol. 20, no. 55, pp.
1–21, 2019.

[11] Z. Lu, I. Whalen, Y. Dhebar, K. Deb, E. Goodman, W. Banzhaf, and
V. N. Boddeti, “Multiobjective evolutionary design of deep convolu-
tional neural networks for image classification,” IEEE Transactions on
Evolutionary Computation, vol. 25, no. 2, pp. 277–291, 2021.

[12] Z. Zhong, Z. Yang, B. Deng, J. Yan, W. Wu, J. Shao, and C.-L. Liu,
“BlockQNN: Efficient block-wise neural network architecture genera-
tion,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
2020.

[13] Z. Lu, G. Sreekumar, E. Goodman, W. Banzhaf, K. Deb, and V. N.
Boddeti, “Neural architecture transfer,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, pp. 1–1, 2021.

[14] G. Ghiasi, T.-Y. Lin, and Q. V. Le, “NAS-FPN: Learning scalable feature
pyramid architecture for object detection,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2019, pp.
7036–7045.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. XX, NO. XX, XXXX 14

[15] H. Xu, L. Yao, W. Zhang, X. Liang, and Z. Li, “Auto-FPN: Automatic
network architecture adaptation for object detection beyond classifica-
tion,” in Proceedings of the IEEE International Conference on Computer
Vision, 2019, pp. 6649–6658.

[16] C. Liu, L.-C. Chen, F. Schroff, H. Adam, W. Hua, A. L. Yuille, and
L. Fei-Fei, “Auto-DeepLab: Hierarchical neural architecture search for
semantic image segmentation,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2019, pp. 82–92.

[17] W. Chen, X. Gong, X. Liu, Q. Zhang, Y. Li, and Z. Wang, “FasterSeg:
Searching for faster real-time semantic segmentation,” in Proceedings
of the International Conference on Learning Representations, 2020.

[18] X. Gong, S. Chang, Y. Jiang, and Z. Wang, “AutoGAN: Neural architec-
ture search for generative adversarial networks,” in Proceedings of the
IEEE International Conference on Computer Vision, 2019, pp. 3224–
3234.

[19] H. Liu, K. Simonyan, and Y. Yang, “DARTS: Differentiable architecture
search,” in Proceedings of the International Conference on Learning
Representations, 2019.

[20] E. Real, A. Aggarwal, Y. Huang, and Q. V. Le, “Regularized evolution
for image classifier architecture search,” in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 33, no. 01, 2019, pp. 4780–
4789.

[21] K. O. Stanley, J. Clune, J. Lehman, and R. Miikkulainen, “Designing
neural networks through neuroevolution,” Nature Machine Intelligence,
vol. 1, no. 1, pp. 24–35, 2019.

[22] C. Feichtenhofer, H. Fan, J. Malik, and K. He, “Slowfast networks for
video recognition,” in Proceedings of the IEEE International Conference
on Computer Vision, 2019, pp. 6202–6211.

[23] E. Real, S. Moore, A. Selle, S. Saxena, Y. L. Suematsu, J. Tan, Q. V.
Le, and A. Kurakin, “Large-scale evolution of image classifiers,” in
Proceedings of the International Conference on Machine Learning,
2017, pp. 2902–2911.

[24] S. Xie, H. Zheng, C. Liu, and L. Lin, “SNAS: stochastic neural
architecture search,” in Proceedings of the International Conference on
Learning Representations, 2019.

[25] H. Cai, L. Zhu, and S. Han, “ProxylessNAS: Direct neural architecture
search on target task and hardware,” in Proceedings of the International
Conference on Learning Representations, 2019.

[26] H. Liang, S. Zhang, J. Sun, X. He, W. Huang, K. Zhuang, and
Z. Li, “DARTS+: Improved differentiable architecture search with early
stopping,” arXiv preprint arXiv:1909.06035, 2019.

[27] X. Yao, “Evolving artificial neural networks,” Proceedings of the IEEE,
vol. 87, no. 9, pp. 1423–1447, 1999.

[28] K. O. Stanley and R. Miikkulainen, “Evolving neural networks through
augmenting topologies,” Evolutionary Computation, vol. 10, no. 2, pp.
99–127, 2002.

[29] M. Suganuma, S. Shirakawa, and T. Nagao, “A genetic programming
approach to designing convolutional neural network architectures,” in
Proceedings of the Genetic and Evolutionary Computation Conference,
2017, pp. 497–504.

[30] Z. Lu, I. Whalen, V. Boddeti, Y. Dhebar, K. Deb, E. Goodman,
and W. Banzhaf, “NSGA-Net: neural architecture search using multi-
objective genetic algorithm,” in Proceedings of the Genetic and Evolu-
tionary Computation Conference, 2019, pp. 419–427.

[31] Z. Lu, K. Deb, E. Goodman, W. Banzhaf, and V. N. Boddeti, “NS-
GANetV2: Evolutionary multi-objective surrogate-assisted neural archi-
tecture search,” in European Conference on Computer Vision, 2020.

[32] A. Brock, T. Lim, J. M. Ritchie, and N. Weston, “SMASH: one-shot
model architecture search through hypernetworks,” in Proceedings of
the International Conference on Learning Representations, 2018.

[33] G. Bender, P.-J. Kindermans, B. Zoph, V. Vasudevan, and Q. Le, “Under-
standing and simplifying one-shot architecture search,” in Proceedings
of the International Conference on Machine Learning, 2018, pp. 549–
558.

[34] F. Chollet, “Xception: Deep learning with depthwise separable convolu-
tions,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2017, pp. 1251–1258.

[35] S. Ioffe and C. Szegedy, “Batch Normalization: Accelerating deep
network training by reducing internal covariate shift,” in Proceedings
of the International Conference on Machine Learning, vol. 37, 2015,
pp. 448–456.

[36] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning repre-
sentations by back-propagating errors,” Nature, vol. 323, no. 6088, pp.
533–536, 1986.

[37] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features
from tiny images,” Tech Report, 2009.

[38] T. DeVries and G. W. Taylor, “Improved regularization of convolutional
neural networks with cutout,” arXiv preprint arXiv:1708.04552, 2017.

[39] G. Ghiasi, T.-Y. Lin, and Q. V. Le, “Dropblock: A regularization method
for convolutional networks,” in Proceedings of the Advances in Neural
Information Processing Systems, 2018, pp. 10 727–10 737.

[40] G. Larsson, M. Maire, and G. Shakhnarovich, “FractalNet: Ultra-deep
neural networks without residuals,” in Proceedings of the International
Conference on Learning Representations, 2017.

[41] S. Zagoruyko and N. Komodakis, “Wide residual networks,” in In
Proceedings of the British Machine Vision Conference (BMVC), 2016.

[42] C. Liu, B. Zoph, M. Neumann, J. Shlens, W. Hua, L.-J. Li, L. Fei-Fei,
A. Yuille, J. Huang, and K. Murphy, “Progressive neural architecture
search,” in Proceedings of the European Conference on Computer Vision,
2018, pp. 19–34.

[43] R. Luo, F. Tian, T. Qin, E. Chen, and T.-Y. Liu, “Neural architecture
optimization,” in Proceedings of the Advances in Neural Information
Processing Systems, 2018, pp. 7816–7827.

[44] B. Baker, O. Gupta, N. Naik, and R. Raskar, “Designing neural net-
work architectures using reinforcement learning,” in Proceedings of the
International Conference on Learning Representations, 2017.

[45] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning transferable
architectures for scalable image recognition,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2018, pp.
8697–8710.

[46] H. Pham, M. Y. Guan, B. Zoph, Q. V. Le, and J. Dean, “Efficient
neural architecture search via parameter sharing,” in Proceedings of the
International Conference on Machine Learning, vol. 80, 2018, pp. 4095–
4104.

[47] H. Liu, K. Simonyan, O. Vinyals, C. Fernando, and K. Kavukcuoglu,
“Hierarchical representations for efficient architecture search,” in Pro-
ceedings of the International Conference on Learning Representations,
2018.

[48] B. Wang, B. Xue, and M. Zhang, “Surrogate-assisted particle swarm
optimization for evolving variable-length transferable blocks for image
classification,” IEEE Transactions on Neural Networks and Learning
Systems, pp. 1–14, 2021.

[49] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “MobileNets: Efficient convo-
lutional neural networks for mobile vision applications,” arXiv preprint
arXiv:1704.04861, 2017.

[50] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mo-
bileNetV2: Inverted residuals and linear bottlenecks,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
2018, pp. 4510–4520.

[51] X. Zhang, X. Zhou, M. Lin, and J. Sun, “ShuffleNet: An extremely effi-
cient convolutional neural network for mobile devices,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
2018, pp. 6848–6856.

[52] N. Ma, X. Zhang, H.-T. Zheng, and J. Sun, “ShuffleNet V2: Practical
guidelines for efficient cnn architecture design,” in Proceedings of the
European Conference on Computer Vision, 2018, pp. 116–131.

[53] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet:
A large-scale hierarchical image database,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2009, pp. 248–
255.

[54] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking
the inception architecture for computer vision,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2016,
pp. 2818–2826.

[55] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and
A. C. Berg, “SSD: Single shot multibox detector,” in Proceedings of the
European Conference on Computer Vision, 2016, pp. 21–37.

[56] B. Xiao, H. Wu, and Y. Wei, “Simple baselines for human pose
estimation and tracking,” in Proceedings of the European Conference
on Computer Vision, 2018, pp. 466–481.

[57] M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler, A. Howard,
and Q. V. Le, “MnasNet: Platform-aware neural architecture search for
mobile,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2019, pp. 2820–2828.

[58] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Be-
nenson, U. Franke, S. Roth, and B. Schiele, “The cityscapes dataset
for semantic urban scene understanding,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2016, pp.
3213–3223.

[59] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick, “Microsoft COCO: Common objects in

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. XX, NO. XX, XXXX 15

context,” in Proceedings of the European Conference on Computer
Vision, 2014, pp. 740–755.

[60] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in Proceedings of the International Conference on Learning Represen-
tations, 2015.

Hao Tan received the B.Eng. degree in computer
science and technology from the Southern University
of Science and Technology, Shenzhen, China, in
2020. He is currently a Research Assistant with the
Department of Computer Science and Engineering,
Southern University of Science and Technology,
Shenzhen, China. His current research interests in-
clude computer vision, neural architecture search,
and swarm intelligence.

Ran Cheng (Senior Member, IEEE) received the
B.Sc. degree in computer science and technology
from the Northeastern University, Shenyang, China,
in 2010, and the Ph.D. degree in computer science
from the University of Surrey, Guildford, U.K., in
2016. He is currently an Associate Professor with the
Department of Computer Science and Engineering,
Southern University of Science and Technology,
Shenzhen, China. Dr. Cheng was a recipient of
the IEEE TRANSACTIONS ON EVOLUTIONARY
COMPUTATION Outstanding Paper Award in 2018

and 2021, the IEEE Computational Intelligence Society Outstanding Ph.D.
Dissertation Award in 2019, and the IEEE COMPUTATIONAL INTELLI-
GENCE MAGAZINE Outstanding Paper Award in 2020. He is an Associate
Editor of the IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE.

Shihua Huang received the B.Eng. degree from
Northeastern University, Shenyang, China, in 2018.
He is currently a Research Assistant with the Depart-
ment of Computer Science and Engineering, South-
ern University of Science and Technology, Shen-
zhen, China. His current research interests include
representation learning, multiobjective optimization,
and their applications.

Cheng He (Member, IEEE) received the B.Eng.
degree from the Wuhan University of Science and
Technology, Wuhan, China, in 2012, and the Ph.D.
degree from the Huazhong University of Science and
Technology, Wuhan, China, in 2018. He is currently
a Research Assistant Professor with the Department
of Computer Science and Engineering, Southern
University of Science and Technology, Shenzhen,
China. His current research interests include model-
based evolutionary algorithms, multiobjective op-
timization, large-scale optimization, deep learning,

and their applications. He is a recipient of the SUSTech Presidential Outstand-
ing Postdoctoral Award from Southern University of Science and Technology,
and the leading guest editor for “SPECIAL ISSUE: Emerging Topics in
Evolutionary Multiobjective Optimization” of the Complex & Intelligent
Systems.

Changxiao Qiu received the B.S. degree in 2012,
and the M.S. degree in 2015 from the Uni-
versity of Electronic Science and Technology of
China(UESTC), Chengdu, China. He is currently a
Senior Engineer with the Hisilicon Research De-
partment, Huawei Technologies Co., Ltd., Shenzhen,
China. His research interests include deep learning
and computer vision.

Fan Yang received the electronic bachelor and mas-
ter degree from the Paris-Sud University (University
of Paris XI), 91400 Orsay, France, and the Ph.D.
degree in informatics from the Paris-Saclay Univer-
sity, 91400 Orsay, France, in 2015. He is currently
a Principal Engineer and Project Manager with the
Hisilicon Research Department, Huawei Technolo-
gies Co., Ltd., Shenzhen, China. His current research
interests include neural network compression and
acceleration.

Ping Luo is an Assistant Professor in the department
of computer science, The University of Hong Kong
(HKU). He received his PhD degree in 2014 from
Information Engineering, the Chinese University of
Hong Kong (CUHK), supervised by Prof. Xiaoou
Tang and Prof. Xiaogang Wang. He was a Post-
doctoral Fellow in CUHK from 2014 to 2016. He
joined SenseTime Research as a Principal Research
Scientist from 2017 to 2018. His research interests
are machine learning and computer vision. He has
published 100+ peer-reviewed articles in top-tier

conferences and journals such as TPAMI, IJCV, ICML, ICLR, CVPR, and
NIPS. His work has high impact with 13000 citations according to Google
Scholar. He has won a number of competitions and awards such as the
first runner up in 2014 ImageNet ILSVRC Challenge, the first place in
2017 DAVIS Challenge on Video Object Segmentation, Gold medal in 2017
Youtube 8M Video Classification Challenge, the first place in 2018 Drivable
Area Segmentation Challenge for Autonomous Driving, 2011 HK PhD Fellow
Award, and 2013 Microsoft Research Fellow Award (ten PhDs in Asia).

	I Introduction
	II Background
	II-A Differentiable Neural Architecture Search
	II-B Population-Based Neural Architecture Search
	II-C Motivation

	III Methodology
	III-A Search Space
	III-B Slow-Fast Learning
	III-C Performance Estimation

	IV Experiments
	IV-A Architecture Search
	IV-B Population Searching Analysis
	IV-C Slow-Fast Learning Analysis
	IV-D Results on CIFAR-10
	IV-E Transferability Analyses
	IV-E1 Intra-task Transferability
	IV-E2 Inter-task Transferability

	V Conclusions
	References
	Biographies
	Hao Tan
	Ran Cheng
	Shihua Huang
	Cheng He
	Changxiao Qiu
	Fan Yang
	Ping Luo

