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Neural-Network-Based Set-Membership Fault
Estimation for Two-Dimensional Systems under
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Kaiqun Zhu, Zidong Wang, Yun Chen and Guoliang Wei

Abstract—In this paper, the simultaneous state and fault
estimation problem is investigated for a class of nonlinear two-
dimensional (2-D) shift-varying systems, where the sensors and
the estimator are connected via a communication network of
limited bandwidth. With the purpose of relieving the commu-
nication burden as well as enhancing the transmission security,
a new encoding-decoding mechanism is put forward so as to
encode the transmitted data with a finite number of bits. The
aim of the addressed problem is to develop a neural-network-
based set-membership estimator for jointly estimating the system
states and the faults, where the estimation errors are guaranteed
to reside within an optimized ellipsoidal set. With the aid
of the mathematical induction technique and certain convex
optimization approaches, sufficient conditions are derived for
the existence of the desired set-membership estimator, and the
estimator gains as well as the neural network tuning scalars are
then presented in terms of the solutions to a set of optimization
problems subject to ellipsoidal constraints. Finally, an illustrative
example is given to demonstrate the effectiveness of the proposed
estimator design method.

Index Terms—Two-dimensional systems, set-membership es-
timation, fault estimation, neural networks, encoding-decoding
mechanism.

I. I NTRODUCTION

Two-dimensional (2-D) systems have proven to be particu-
larly suitable in modeling practical processes whose dynamics
propagations are bidirectional, see e.g. grid sensor networks,
sheet forming, and water stream heating [25], [34], [37],
[50]. In general, there are three categories of 2-D state-space
models: Attasi model, Fornasini-Marchesini (F-M) first model,
and F-M second model [38]. It is worth mentioning that both
Attasi and F-M first models can be regarded as special cases
of the F-M second model. The system states in the 2-D
setting evolve alongtwo independent directions and, owing
to this distinguishing feature, available paradigms for dealing
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with 1-D systems are no longer directly applicable to 2-D
systems. Accordingly, the past few decades have seen a surge
of research interest devoted to the analysis and synthesis issues
of various kinds of 2-D systems [2], [15], [41], [42] and the
references therein.

In practical engineering, it is often an imperative task to esti-
mate the systems states that evolve over time through collected
measurements possibly corrupted by noises or disturbances
[26], [33]. Accordingly, the state estimation/filtering issue has
long been a popular research topic attracting considerable
research interest from both signal processing and control
communities, see [3], [6], [24], [28], [32], [47]–[49], [53]
for some latest results. Note that, in real-world application-
s, noises could enter the system in different forms (e.g.,
stochastic, energy-bounded, amplitude-bounded) and quite a
few techniques have been specifically developed to address the
individual characteristics of the noises in the context of esti-
mation/filtering. For instance, the celebrated Kalman filtering
(KF) and its variants (e.g., extended KF and unscented KF)
are well known to be especially efficient for state estimation
subject to Gaussian noises based on the minimum variance
criterion. For energy-bounded noises, an effective way is to
quantify the level of noise attenuation/rejection in theH∞

sense and then develop the corresponding strategy for state
estimation. Recently, the set-membership filtering technique
has stirred much attention due to its exceptional capability of
coping with the unknown-but-bounded noises [10], [18], [20],
[51].

Concerning the state estimation problem for 2-D systems,
there have been so far a host of results reported in the
literature. Some recent representative works can be sum-
marized as follows. For 2-D systems subject to stochastic
noises, the Kalman-type filters have been designed in [36],
[46] to accomplish the state estimation task with guaranteed
minimum variance. In [19], [44], theH∞ filtering problems
have been addressed for 2-D systems undergoing energy-
bounded noises, where the energy-to-energy gain (quantifying
the influence from noise to estimation error) is enforced below
a pre-specified level. Unfortunately, when facing the so-called
unknown-but-bounded (UBB) noises, neither KF norH∞

filtering algorithms could provide a satisfactory performance.
In consideration of UBB noises, an ideal state estimation
methodology would be the set-membership (also known as set-
valued) algorithm which aims to confine the estimation error
within certain allowable regions. To date, very little attention
has been paid to the set-membership-estimation (SME) prob-
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lem for 2-D systems, let alone the case wherenonlinearities
and shift-varying parameters are also taken into account.

Along with the ever-increasing demand towards reliabili-
ty/security, fault diagnosis has gradually become pivotal in
many branches of practical engineering such as chemical in-
dustries and military infrastructures [25]. Specifically, the main
tasks of fault diagnosis include fault detection, isolation, and
identification [9]. It should be noted that the fault estimation
serves as a convenient yet powerful way for the fault diagnosis,
and has recently garnered considerable interest with a number
of approaches available in the literature including, but are not
limited to, theH∞ estimation approach, the Kalman filter
method, the sliding-mode technique and the neural network
(NN) based scheme [29], [39].

Among various state/fault estimation methods, the NN-
based method has shown distinct advantages in dealing with
inherently nonlinear systems due primarily to its excellent
learning/approximation capabilities. Nonetheless, it is gener-
ally difficult yet time-consuming to tune the weighting factors
in training an appropriate NN. To cope with this issue, the
SME approach has been applied in [7] to effectively seek the
suitable tuning parameters, where the established framework
is only applicable to the linear 1-D system and cannot be
directly extended to deal with the nonlinear 2-D case. When
it comes to the nonlinear2-D shift-varying systems, theNN-
based fault estimation problem has not been studied yet, and
this constitutes one of the main motivations of this paper.

As is well known, quantization serves as a fundamental
technique in the transmission process of digital data [16],
[22]. Up to now, a number of static and dynamic quantization
strategies have been proposed and extensively utilized [14],
[21], [43], [52]. Among others, the dynamic quantization
scheme can offer great flexibility by manipulating certain
thresholds/parameters and has therefore attracted particular
interest. As a frequently deployed dynamic-quantization-based
scheme, the encoding-decoding mechanism (EDM) has been
recently put forward to deal with various network-induced
issues, where the encoder-decoder pairs is designed based on
the zooming in/out quantization strategy [23]. For instance,
the EDM has been employed in [17] to solve the distributed
consensus problems for multi-agent systems. Moreover, the
iterative learning control strategy has been designed in [31]
via EDM to investigate the tracking control problem for linear
discrete-time systems. Nevertheless, to the best of the authors’
knowledge, theEDM-embedded joint state and fault estimation
(SFE) problem has not been fully examined in the context
of nonlinear 2-D shift-varying systems, and this constitutes
another motivation of our current research.

In connection with the discussions made so far, in this paper,
we concentrate on the NN-based SFE problem for nonlinear
2-D shift-varying systems with the adoption of EDMs. The
difficulties we are facing are summarized as follows: 1) how to
construct an appropriate EDM for 2-D systems with focus on
the inherent characteristics of information propagation along
two independent directions? 2) how to design the estimator
of suitable form for 2-D systems subject to unknown fault
dynamics (UFD) and UBB noises such that the system states
and the faults can be jointly estimated? 3) how to quantify

the influences on the estimation performance from the EDM
and UFD? and 4) how to determine the NN tuning scalars and
estimator gains? The main objective of this paper is, therefore,
to overcome the listed difficulties by initializing a systematic
investigation.

The main contributions of this paper can be highlighted as
follows.

• A new EDM is, for the first time, proposed for a class of
nonlinear 2-D shift-varying systems with aim to reduce
the network communication burden and enhance the
signal transmission security, where the proposed EDM
depends on two indices on account of the bidirectional
evolution of the system dynamics.

• An NN-based set-membership estimator is developed
for nonlinear 2-D shift-varying systems subject to UBB
noises and UFD, and such an estimator is shown to be
capable of jointly estimating system states and faults with
guaranteed performance index.

• The feasibility of the developed NN-based SME algorith-
m is thoroughly analyzed in a rigorous way by resorting
to the two-dimensional mathematical induction technique.

The rest of this paper is organized as follows. In Section
II, the NN-based set-membership estimator is formulated for
nonlinear 2-D shift-varying systems subject to additive faults
under dedicatedly introduced EDMs. In Section III, sufficient
conditions are derived to ensure the feasibility of the recursive
NN-based SME algorithm, and the estimator gains are then
obtained by solving a set of optimization problems. Section IV
utilizes an illustrative example to demonstrate the effectiveness
of the proposed estimator design algorithm. Conclusions are
drawn in Section V.

Notations: Rn and Rm×n denote, respectively, then-
dimensional Euclidean space and the set of allm × n real
matrices.M > 0 means thatM is a positive definite matrix.
{Mi,j}i,j∈N denotes the set of matrices{Mi◦,j◦ | 0 ≤ i◦ ≤
i, 0 ≤ j◦ ≤ j}. diag{·} stands for a block-diagonal matrix.
In symmetric block matrices, “*” is used as an ellipsis for
terms induced by symmetry.I and0 denote the identity matrix
and zero matrix with appropriate dimensions, respectively. The
superscript “T” stands for the transpose of a matrix.

II. PROBLEM FORMULATION AND PRELIMINARIES

A. System Model

Consider a nonlinear 2-D shift-varying system described by
the following general F-M second model:

xi+1,j+1 = A
(1)
i,j+1xi,j+1 +A

(2)
i+1,jxi+1,j

+ f (1)(xi,j+1) + f (2)(xi+1,j)

+ E
(1)
i,j+1wi,j+1 + E

(2)
i+1,jwi+1,j (1a)

yi,j = Ci,jxi,j +Bi,jρi,j +Di,jvi,j (1b)

wherei, j ∈ T , [0, T ] are horizontal and vertical coordinates
with T ∈ N; xi,j ∈ Rnx and yi,j ∈ Rny are the state
vector and the measurement output, respectively;f (1)(xi,j)

andf (2)(xi,j) are known nonlinear functions;A(1)
i,j ,A(2)

i,j , Bi,j ,

Ci,j , Di,j , E
(1)
i,j , andE(2)

i,j are known shift-varying matrices
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with appropriate dimensions;wi,j ∈ Rnw and vi,j ∈ Rnv

are the UBB process noise and UBB measurement noise,
respectively, which are confined to the following ellipsoidal
sets:

Ωw
i,j ,

{
wi,j |wT

i,jR
−1
i,j wi,j ≤ 1

}
(2)

Ωv
i,j ,

{
vi,j | v

T
i,jS

−1
i,j vi,j ≤ 1

}
(3)

with Ri,j andSi,j being known positive definite matrices.
The parameterρi,j ∈ Rnρ in (1b) is the fault signal with

the following dynamics:

ρi+1,j+1 = U
(1)
i,j+1ρi,j+1 + U

(2)
i+1,jρi+1,j

+ µ(1)(ρi,j+1) + µ(2)(ρi+1,j) (4)

whereU (1)
i,j andU (2)

i,j are known shift-varying matrices with
appropriate dimensions, andµ(1)(ρi,j) andµ(2)(ρi,j) areun-
known smooth nonlinear functions.

Assumption 1: Forκ = 1, 2, the known nonlinear functions
f (κ)(xi,j) satisfyf (κ)(0) = 0 and

‖f (κ)(x1)− f (κ)(x2)‖ ≤ ‖̥(κ)(x1 − x2)‖ (5)

for all x1, x2 ∈ Rnx , where ̥(κ) (κ = 1, 2) are known
matrices.

Assumption 2: ( [1], [35]) For κ = 1, 2, the nonlinear
functionsµ(κ)(ρi,j) are on compact setsΩ(κ)

µ .
Remark 1: It should be noted that Assumption 2 is a

standard assumption that ensures the feasibility of the ap-
proximation of nonlinear functionsµ(κ)(ρi,j) by using neural
networks (see e.g., [1], [35]). In practice, such a constraint (on
the boundedness of the addressed nonlinear functions) can be
guaranteed by the implementation of certain devices such as
the signal limiter proposed in [27].

Remark 2: It is seen from the additive fault model (4) that
the dynamics of the investigated faults changes bidirectionally
along both horizontal and vertical horizons. Apparently, (4) is
fairly general that well reflects the engineering practice.

1) If U (1)
i,j+1 = I andU (2)

i+1,j = µ(1)(·) = µ(2)(·) = 0, we
have

ρi+1,j+1 = ρi,j+1

representing thebias fault.
2) If U (2)

i+1,j = I andU (1)
i,j+1 = µ(1)(·) = µ(2)(·) = 0, we

have
ρi+1,j+1 = ρi+1,j

representing thebias fault.
3) If U (1)

i,j+1 6= 0, U (2)
i+1,j 6= 0, andµ(1)(·) = µ(2)(·) = 0, we

have

ρi+1,j+1 = U
(1)
i,j+1ρi,j+1 + U

(2)
i+1,jρi+1,j

representing thedrift fault.
4) If U (1)

i,j+1 6= 0, U (2)
i+1,j 6= 0, µ(1)(·) 6= 0, andµ(2)(·) 6= 0,

we have

ρi+1,j+1 =U
(1)
i,j+1ρi,j+1 + U

(2)
i+1,jρi+1,j

+ µ(1)(ρi,j+1) + µ(2)(ρi+1,j)

representing thedrift fault with unknown nonlinear dy-
namics.

Fig. 1. Block diagram for 2-D systems with EDMs.

Remark 3: Comparing with the rich body of existing re-
sults, the fault model (4) investigated in this paper exhibits
the following distinguish features: 1) the fault model is fairly
general, which covers the bias fault and the drift fault as a
special case; and 2) the fault model takes the shift-varying
parameter and the unknown nonlinear dynamics into account.
Note that the inclusion of the unknown nonlinear dynamics in
the presented faults model imposes substantial difficulties on
the performance analysis and subsequent design of the desired
estimation scheme.

B. Encoding and Decoding Mechanism

In the procedure of data transmission, the signals are
processed by the EDM as shown in Fig. 1, where the main
steps/principles are described as follows.

Encoding:
The encoding rule is given as







χ0,j = χi,0 = 0, ∀ i, j ∈ T

χi,j = αi,jψi,j + k
(1)
i−1,jχi−1,j + k

(2)
i,j−1χi,j−1

ψi,j = Q

{
1

αi,j

(

yi,j − k
(1)
i−1,jχi−1,j − k

(2)
i,j−1χi,j−1

)}

(6)
whereχi,j ∈ Rnχ andψi,j ∈ Rnψ are the internal state and
the output of the encoder, respectively;αi,j is a known scaling
parameter; andk(1)

i,j andk(2)
i,j are known shift-varying matrices

with appropriate dimensions. Here, the uniform quantizerQ

is characterized by

Q(ζ) ,








Q(ζ1)
Q(ζ2)

...
Q(ζnζ )








(7)

where, for~ = 1, 2, . . . , nζ

Q(ζ~) ,







0, − ℓ
2 ≤ ζ~ <

ℓ
2

℘ℓ,
(2℘−1)ℓ

2 ≤ ζ~ <
(2℘+1)ℓ

2

−Q(−ζ~), ζ~ < − ℓ
2

(8)

Here, ζ ∈ Rnζ is the signal vector,ζ~ is the ~th entry of
ζ, ℓ is the interval length of the quantization level,℘ is a
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positive integer taking values in{1, 2, . . . ,R}, and2R+1 is
the number of quantization levels.

Decoding:
The decoding rule is described by
{
ȳ0,j = ȳi,0 = 0, ∀ i, j ∈ T

ȳi,j = αi,jψi,j + k
(1)
i−1,j ȳi−1,j + k

(2)
i,j−1ȳi,j−1

(9)

whereȳi,j ∈ Rny is the output of the decoder.
Letting ei,j , ȳi,j − yi,j be the decoding error, we acquire

ei,j , ȳi,j − yi,j

= αi,jψi,j + k
(1)
i−1,j ȳi−1,j + k

(2)
i,j−1ȳi,j−1 − yi,j

= αi,j

{

Q

{ 1

αi,j

(

yi,j − k
(1)
i−1,jχi−1,j − k

(2)
i,j−1χi,j−1

)}

−
1

αi,j

(

yi,j − k
(1)
i−1,j ȳi−1,j − k

(2)
i,j−1ȳi,j−1

)}

= αi,j

{

Q

{ 1

αi,j

(

yi,j − k
(1)
i−1,jχi−1,j − k

(2)
i,j−1χi,j−1

)}

−
1

αi,j

(

yi,j − k
(1)
i−1,jχi−1,j − k

(2)
i,j−1χi,j−1

)}

, (10)

which indicates that the decoding error satisfies

‖ei,j‖∞ ≤
αi,jℓ

2
.

Remark 4: A novel EDM (6)–(9) is, for the first time,
constructed for nonlinear 2-D shift-varying systems. Different
from the EDM implemented in 1-D systems, the encoding-
decoding rules (6) and (9) proposed in our work are designed
in accordance with the characteristics of bidirectional evo-
lution of 2-D systems. In general, the new developed EDM
possesses the followingadvantages: 1) the quantization input
in (6) is

1

αi,j

(yi,j − k
(1)
i−1,jχi−1,j − k

(2)
i,j−1χi,j−1)

rather thanyi,j , which could reduce the bits used for encoding
the codeword, thereby promoting the efficiency of utilization
of network resources; 2) the parameterαi,j can be dynamically
adjusted, which provides extra flexibility in the subsequent
estimator design for a better performance; and 3) the security
of the transmitted data can be further guaranteed due to the
introduction of coefficientsk(1)

i,j and k
(2)
i,j in the proposed

EDM.

C. NN-Based Set-Membership Estimator

Letting ~xi,j ,
[
xTi,j ρTi,j

]T
, one obtains

~xi+1,j+1 = A
(1)
i,j+1~xi,j+1 + A

(2)
i+1,j~xi+1,j

+ ~f
(1)
i,j+1 +

~f
(2)
i+1,j + ~µ

(1)
i,j+1 + ~µ

(2)
i+1,j

+ E
(1)
i,j+1wi,j+1 + E

(2)
i+1,jwi+1,j (11a)

yi,j = Ci,j~xi,j +Di,jvi,j (11b)

where, forκ = 1, 2

A
(κ)
i,j ,

[

A
(κ)
i,j 0

0 U
(κ)
i,j

]

, ~f
(κ)
i,j ,

[
f (κ)(G~xi,j)

0

]

~µ
(κ)
i,j ,

[
0

µ(κ)(H~xi,j)

]

, G ,
[
I 0

]
, H ,

[
0 I

]

E
(κ)
i,j ,

[

E
(κ)
i,j

0

]

, Ci,j ,
[
Ci,j Bi,j

]
.

Based on the universal approximation property [13], NNs
are used to approximate the unknown nonlinear terms~µ

(1)
i,j+1

and~µ(2)
i+1,j in system (11a) as follows:

~xi+1,j+1 = A
(1)
i,j+1~xi,j+1 + A

(2)
i+1,j~xi+1,j

+ ~f
(1)
i,j+1 +

~f
(2)
i+1,j +W (1)φ(1)(~xi,j+1)

+W (2)φ(2)(~xi+1,j) + E
(1)
i,j+1wi,j+1

+ E
(2)
i+1,jwi+1,j + ξ

(1)
i,j+1 + ξ

(2)
i+1,j (12)

whereW (1) andW (2) are ideal constant weight matrices of
the NNs,φ(1)(·) andφ(2)(·) are activation functions, andξ(1)i,j

andξ(2)i,j are approximation errors.
Assumption 3: ( [45]) For κ = 1, 2, the ideal weight

matricesW (κ), the activation functionφ(κ)(·), and the ap-
proximation errorsξ(κ)i,j satisfy the following conditions:

‖W (κ)‖F ≤ W̄ (κ), ‖φ(κ)(·)‖ ≤ φ̄(κ), ‖ξ
(κ)
i,j ‖ ≤ ξ̄(κ) (13)

whereW̄ (κ), φ̄(κ), and ξ̄(κ) are known positive constants.
In this paper, for the nonlinear 2-D shift-varying system

(1), an NN-based set-membership estimator is constructed as
follows:

x̂−i+1,j+1 = A
(1)
i,j+1x̂i,j+1 + A

(2)
i+1,j x̂i+1,j

+ f̂
(1)
i,j+1 + f̂

(2)
i+1,j + Ŵ

(1)
i,j+1φ̂

(1)
i,j+1

+ Ŵ
(2)
i+1,j φ̂

(2)
i+1,j (14a)

x̂i+1,j+1 = x̂−i+1,j+1 +K
(1)
i,j+1

(
ȳi,j+1 − Ci,j+1x̂i,j+1

)

+K
(2)
i+1,j

(
ȳi+1,j − Ci+1,j x̂i+1,j

)
(14b)

where, forκ = 1, 2, x̂−i,j ∈ Rnx is the one-step prediction,

x̂i,j ∈ Rnx is the estimate ofxi,j , Ŵ
(κ)
i,j are the estimates of

W (κ), K(κ)
i,j are the estimator gains to be determined and

f̂
(κ)
i,j ,

[
f (κ)(Gx̂i,j)

0

]

, φ̂
(κ)
i,j , φ(κ)(x̂i,j).

The adaptive tuning laws for the NN weights are designed
as

Ŵ
(1)
i+1,j+1 = τ

(1,1)
i,j+1Ŵ

(1)
i,j+1 + τ

(1,2)
i,j+1C

T
i,j+1

(
ȳi+1,j+1

− Ci+1,j+1x̂i+1,j+1

)
(φ̂

(1)
i,j+1)

T (15)

Ŵ
(2)
i+1,j+1 = τ

(2,1)
i+1,jŴ

(2)
i+1,j + τ

(2,2)
i+1,jC

T
i+1,j

(
ȳi+1,j+1

− Ci+1,j+1x̂i+1,j+1

)
(φ̂

(2)
i+1,j)

T (16)

where τ (1,1)i,j , τ (1,2)i,j , τ (2,1)i,j , and τ (2,2)i,j are positive tuning
scalars to be determined. In addition, the persistence of exci-
tation is required to be satisfied. Forκ = 1, 2, the estimation
errors betweenW (κ) andŴ (κ)

i,j are derived as

W̃
(1)
i+1,j+1 ,W (1) − Ŵ

(1)
i+1,j+1

= τ
(1,1)
i,j+1W̃

(1)
i,j+1 + (1− τ

(1,1)
i,j+1)W

(1) − τ
(1,2)
i,j+1C

T
i,j+1
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×
(
ȳi+1,j+1 − Ci+1,j+1x̂i+1,j+1

)
(φ̂

(1)
i,j+1)

T (17)

W̃
(2)
i+1,j+1 ,W (2) − Ŵ

(2)
i+1,j+1

= τ
(2,1)
i+1,jW̃

(2)
i+1,j + (1− τ

(2,1)
i+1,j)W

(2) − τ
(2,2)
i+1,jC

T
i+1,j

×
(
ȳi+1,j+1 − Ci+1,j+1x̂i+1,j+1

)
(φ̂

(2)
i+1,j)

T. (18)

Denoting the estimation error asθi,j , ~xi,j − x̂i,j , one
obtains

θi+1,j+1 = (A
(1)
i,j+1 −K

(1)
i,j+1Ci,j+1)θi,j+1

+ (A
(2)
i+1,j −K

(2)
i+1,jCi+1,j)θi+1,j

+ W̃
(1)
i,j+1φ̂

(1)
i,j+1 + W̃

(2)
i+1,j φ̂

(2)
i+1,j

+ f̃
(1)
i,j+1 + f̃

(2)
i+1,j + E

(1)
i,j+1wi,j+1

+ E
(2)
i+1,jwi+1,j −K

(1)
i,j+1ei,j+1

−K
(2)
i+1,jei+1,j −K

(1)
i,j+1Di,j+1vi,j+1

−K
(2)
i+1,jDi+1,jvi+1,j + ~ξ

(1)
i,j+1 +

~ξ
(2)
i+1,j (19)

where, forκ = 1, 2

f̃
(κ)
i,j , ~f

(κ)
i,j − f̂

(κ)
i,j , φ̃

(κ)
i,j , φ

(κ)
i,j − φ̂

(κ)
i,j ,

~ξ
(κ)
i,j ,W (κ)φ̃

(κ)
i,j + ξ

(κ)
i,j .

Before giving the main design objectives of this paper, we
first present the following assumptions on initial conditions
that are of help in the subsequent derivations.

Assumption 4: The evolutions of the estimation error dy-
namics of the neuron weightsW (1) andW (2) are characterized
by (17)–(18) whose initial conditions satisfy

{

tr
{
(W̃

(1)
0,j )

T(P
(1)
0,j )

−1W̃
(1)
0,j

}
≤ 1, ∀ j ∈ T

tr
{
(W̃

(2)
i,0 )

T(P
(2)
i,0 )

−1W̃
(2)
i,0

}
≤ 1, ∀ i ∈ T

(20)

where P (1)
0,j and P (2)

i,0 are known diagonal positive definite
matrices.

Assumption 5: The initial conditions of the state estimation
error dynamics described by (19) are given by

{

θT0,jQ
−1
0,jθ0,j ≤ 1, ∀ j ∈ T

θTi,0Q
−1
i,0 θi,0 ≤ 1, ∀ i ∈ T

(21)

whereQ0,j andQi,0 are known positive definite matrices.
The main purpose of this paper is highlighted in twofold as

follows.
1) First, we aim to design tuning scalarsτ (1,1)i−1,j , τ

(1,2)
i−1,j ,

τ
(2,1)
i,j−1, τ (2,2)i,j−1 and NN-based set-membership estimator gains

K
(1)
i−1,j , K

(2)
i,j−1 such that the estimation errors̃W (1)

i,j , W̃ (2)
i,j

andθi,j are confined to the following sets:

F
(1)
i,j ,

{

W̃
(1)
i,j

∣
∣ g

(
W̃

(1)
i,j

)
≤ 1

}

(22)

F
(2)
i,j ,

{

W̃
(2)
i,j

∣
∣ g

(
W̃

(2)
i,j

)
≤ 1

}

(23)

Si,j ,

{

θi,j
∣
∣ θTi,jQ

−1
i,j θi,j ≤ 1

}

(24)

where, forκ = 1, 2

g
(
W̃

(κ)
i,j

)
, tr

{
(W̃

(κ)
i,j )T(P

(κ)
i,j )−1W̃

(κ)
i,j

}

with P
(1)
i,j , P (2)

i,j being diagonal positive definite matrices and
Qi,j being the positive definite matrix.

2) Second, based on the obtained results in the first step, we
shall determine the optimal values of the tuning scalars and the
estimator gains by minimizing the estimation error constraint
sets (22)–(24) in the sense of matrix trace.

III. M AIN RESULTS

In this section, we will design a joint SFE scheme for
the addressed nonlinear 2-D shift-varying systems subject to
UFD and UBB noises by applying a set-membership approach.
Sufficient conditions are established for the existence of the
desired estimator that guarantees that both the NN weight
estimation error and the state estimation error satisfy the
required performance constraints. Then, the desired tuning s-
calars and estimator gains are obtained by solving the proposed
optimization problems.

Lemma 1: Consider the vectorsχi,j andȳi,j in (6) and (9).
For ∀ i, j ∈ T, we have

χi,j = ȳi,j . (25)

Proof: This lemma is proved by the two-dimensional
version of mathematical induction, which is conducted via the
following two steps.

1) Initial step. From the rules (6) and (9), it is inferred that
χi,j = ȳi,j is true for (i, j) ∈ {(i◦, j◦)|i◦, j◦ ∈ N, i◦ + j◦ =
0}.

2) Inductive step. Suppose thatχi,j = ȳi,j is true for(i, j) ∈
{(i◦, j◦)|i◦, j◦ ∈ N, i◦+j◦ = h} with h being a given positive
integer. Then, it remains to prove thatχi,j = ȳi,j is true for
(i, j) ∈ {(i◦, j◦)|i◦, j◦ ∈ N, i◦ + j◦ = h + 1}. In fact, for
(i, j) ∈ {(i◦, j◦)|i◦, j◦ ∈ N, i◦ + j◦ = h+ 1}, we have

ȳi,j − χi,j

=αi,jψi,j + k
(1)
i−1,j ȳi−1,j + k

(2)
i,j−1ȳi,j−1

− αi,jψi,j − k
(1)
i−1,jχi−1,j − k

(2)
i,j−1χi,j−1

=k
(1)
i−1,j(ȳi−1,j − χi−1,j) + k

(2)
i,j−1(ȳi,j−1 − χi,j−1)

= 0,

which ends the proof.

A. Design of the NN Weight Adaptive Tuning Law

To simplify notations, we denote

~n , nx + nρ, n̂ , 2(ny + nw + nv)

Γ0 , diag{1, 0, 0}, Γ1 , diag{−1, I, 0}

Γ
(κ)
2 , diag{−W̄ (κ), 0, I}

Φ̌i,j , diag
{

Φi,j ,Φi,j , . . . ,Φi,j
︸ ︷︷ ︸

~n

}

Φi,j , ȳi,j − Ci,j x̂i,j , ~Φi,j = I~n ⊗ Φ̌i,j

W̃
(κ)
i,j ,

[

(W̃
(κ,1)
i,j )T (W̃

(κ,2)
i,j )T · · · (W̃

(κ,~n)
i,j )T

]T

where, forκ = 1, 2, W̃ (κ,ι)
i,j are theιth column vector ofW̃ (κ)

i,j

(ι = 1, 2, . . . , ~n).

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final 
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The following theorem is given to provide a sufficient
condition that guarantees that the neuron weights satisfy the
constrained sets (22)–(23).

Theorem 1: Consider the nonlinear 2-D shift-varying sys-
tem (1) and the NN-based set-membership estimator (14). Let
the sequence of matrices{P (1)

0,j }j∈T and{P (2)
i,0 }j∈T be given.

The estimation errorsW̃ (1)
i+1,j+1 and W̃

(2)
i+1,j+1 of neuron

weights belong to the setsF (1)
i+1,j+1 and F

(2)
i+1,j+1 if there

exist tuning scalarsτ (1,1)i,j+1, τ (1,2)i,j+1, τ (2,1)i+1,j , τ
(2,2)
i+1,j , positive s-

calarsε(1,1)i,j+1, ε(1,2)i,j+1, ε(2,1)i+1,j , ε
(2,2)
i+1,j and matricesP (1)

i+1,j+1 > 0,

P
(2)
i+1,j+1 > 0 satisfying

[

−~Γ
(1)
i,j+1 ∗

Π
(1)
i,j+1 −P

(1)
i+1,j+1

]

≤ 0 (26)

[

−~Γ
(2)
i+1,j ∗

Π
(2)
i+1,j −P

(2)
i+1,j+1

]

≤ 0, ∀ i, j ∈ T (27)

where, forκ = 1, 2

τ̄
(κ,1)
i,j , 1− τ

(κ,1)
i,j , ~Γ

(κ)
i,j , Γ0 + ε

(κ,1)
i,j Γ1 + ε

(κ,2)
i,j Γ

(κ)
2

Π
(1)
i,j ,

[

−τ
(1,2)
i,j

~Ci,j
~Φi+1,j

~φ
(1)
i,j τ

(1,1)
i,j Ψ

(1)
i,j τ̄

(1,1)
i,j I

]

Π
(2)
i,j ,

[

−τ
(2,2)
i,j

~Ci,j
~Φi,j+1φ̂

(2)
i,j τ

(2,1)
i,j Ψ

(2)
i,j τ̄

(2,1)
i,j I

]

Či,j , diag{C
(1)
i,j ,C

(2)
i,j , . . . ,C

(~n)
i,j }, ~Ci,j , I~n ⊗ Či,j

P
(κ)
i,j , diag

{

P
(κ)
i,j , P

(κ)
i,j , . . . , P

(κ)
i,j

︸ ︷︷ ︸

~n

}

.

Here, (C
(ι)
i,j )

T is the ιth column vector of Ci,j (ι =
1, 2, . . . , ~n).

Proof: This theorem is proved by the two-dimensional
version of mathematical induction, which is conducted via the
following two steps.

1) Initial step. According to Assumption 4, it is obvious
that

(W̃
(1)
0,j )

T(P
(1)
0,j )

−1
W̃

(1)
0,j ≤ 1, ∀j ∈ T (28)

(W̃
(2)
i,0 )T(P

(2)
i,0 )

−1
W̃

(2)
i,0 ≤ 1, ∀i ∈ T (29)

are true.
2) Inductive step. Supposing that

(W̃
(1)
i,j+1)

T(P
(1)
i,j+1)

−1
W̃

(1)
i,j+1 ≤ 1, ∀i, j ∈ T (30)

(W̃
(2)
i+1,j)

T(P
(2)
i+1,j)

−1
W̃

(2)
i+1,j ≤ 1, ∀i, j ∈ T (31)

are true, we are going to prove that the following inequalities
are also true:

(W̃
(1)
i+1,j+1)

T(P
(1)
i+1,j+1)

−1
W̃

(1)
i+1,j+1 ≤ 1 (32)

(W̃
(2)
i+1,j+1)

T(P
(2)
i+1,j+1)

−1
W̃

(2)
i+1,j+1 ≤ 1. (33)

In fact, it follows from (30)–(31) that there exist̟(1)i,j+1 and

̟
(2)
i+1,j with ‖̟

(1)
i,j+1‖ ≤ 1 and‖̟(2)

i+1,j‖ ≤ 1 such that

W̃
(1)
i,j+1 = Ψ

(1)
i,j+1̟

(1)
i,j+1 (34)

W̃
(2)
i+1,j = Ψ

(2)
i+1,j̟

(2)
i+1,j (35)

where Ψ
(1)
i,j+1 and Ψ

(2)
i+1,j are factorizations ofP(1)

i,j+1 and

P
(2)
i+1,j , i.e., P

(1)
i,j+1 = Ψ

(1)
i,j+1(Ψ

(1)
i,j+1)

T and P
(2)
i+1,j =

Ψ
(2)
i+1,j(Ψ

(2)
i+1,j)

T. In accordance with (17)–(18), one has

W̃
(1)
i+1,j+1 = τ

(1,1)
i,j+1W̃

(1)
i,j+1 − τ

(1,2)
i,j+1

~Ci,j+1
~Φi+1,j+1

~φ
(1)
i,j+1

+ τ̄
(1,1)
i,j+1W

(1) (36)

W̃
(2)
i+1,j+1 = τ

(2,1)
i+1,jW̃

(2)
i+1,j − τ

(2,2)
i+1,j

~Ci+1,j
~Φi+1,j+1

~φ
(2)
i+1,j

+ τ̄
(2,1)
i+1,jW

(2) (37)

where, forκ = 1, 2

~φ
(κ)
i,j , col

{
φ̌
(κ,1)
i,j , φ̌

(κ,2)
i,j , . . . , φ̌

(κ,~n)
i,j

}

φ̌
(κ,ι)
i,j , col

{
φ̂
(κ,ι)
i,j , φ̂

(κ,ι)
i,j , . . . , φ̂

(κ,ι)
i,j

}

W
(κ) ,

[
(W (κ,1))T (W (κ,2))T · · · (W (κ,~n))T

]T

with φ̂
(κ,ι)
i,j being theιth entry of φ̂(κ)i,j andW (κ,ι) being the

ιth column vector ofW (κ) (ι = 1, 2, . . . , ~n).
By denoting

η
(1)
i,j+1 ,

[

1 (̟
(1)
i,j+1)

T (W (1))T
]T

η
(2)
i+1,j ,

[

1 (̟
(2)
i+1,j)

T (W (2))T
]T

,

we have from (34)–(37) that

W̃
(1)
i+1,j+1 = Π

(1)
i,j+1η

(1)
i,j+1 (38)

W̃
(2)
i+1,j+1 = Π

(2)
i+1,jη

(2)
i+1,j . (39)

On the other hand, according to Assumption 2 and (34)–
(35), the following conditions are satisfied

{

‖̟
(1)
i,j+1‖ ≤ 1, ‖̟

(2)
i+1,j‖ ≤ 1

‖W (1)‖ ≤ W̄ (1), ‖W (2)‖ ≤ W̄ (2)
(40)

which can be rearranged in terms ofη(1)i,j+1 and η(2)i+1,j as
follows:

{

(η
(1)
i,j+1)

TΓ1η
(1)
i,j+1 ≤ 0, (η

(2)
i+1,j)

TΓ1η
(2)
i+1,j ≤ 0

(η
(1)
i,j+1)

TΓ
(1)
2 η

(1)
i,j+1 ≤ 0, (η

(2)
i+1,j)

TΓ
(2)
2 η

(2)
i+1,j ≤ 0.

(41)
By applying Schur Complement Lemma [5], it follows from

(26)–(27) that

− ~Γ
(1)
i,j+1 + (Π

(1)
i,j+1)

T(P
(1)
i+1,j+1)

−1Π
(1)
i,j+1 ≤ 0 (42)

− ~Γ
(2)
i+1,j + (Π

(2)
i+1,j)

T(P
(2)
i+1,j+1)

−1Π
(2)
i+1,j ≤ 0. (43)

By further utilizing S-procedure [5], it can be derived from
(38)–(39), (41)–(43) that

(W̃
(1)
i+1,j+1)

T(P
(1)
i+1,j+1)

−1
W̃

(1)
i+1,j+1 ≤ 1 (44)

(W̃
(2)
i+1,j+1)

T(P
(2)
i+1,j+1)

−1
W̃

(2)
i+1,j+1 ≤ 1, (45)

which means that the estimation errors̃W (1)
i+1,j+1 and

W̃
(2)
i+1,j+1 of neuron weights belong to the setsF

(1)
i+1,j+1 and

F
(2)
i+1,j+1. Therefore, according to the principle of mathemat-

ical induction, the proof is now complete.
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B. NN-Based Set-Membership Estimator Design

To facilitate subsequent development, we introduce the
following notations:

Υ
(0)
i,j , diag

{
1, 0, 0, . . . , 0
︸ ︷︷ ︸

8~n+n̂

}

Υ
(1)
i,j , diag

{

− 1, I, 0, 0, . . . , 0
︸ ︷︷ ︸

7~n+n̂

}

Υ
(2)
i,j , diag

{

− 1, 0, I, 0, 0, . . . , 0
︸ ︷︷ ︸

6~n+n̂

}

Υ
(3)
i,j , diag

{

− 1, 0, 0, I, 0, 0, . . . , 0
︸ ︷︷ ︸

5~n+n̂

}

Υ
(4)
i,j , diag

{

− 1, 0, 0, 0, I, 0, 0, . . . , 0
︸ ︷︷ ︸

4~n+n̂

}

Υ
(5)
i,j , diag

{

− ~ξ(1), 0, 0, . . . , 0
︸ ︷︷ ︸

4~n

, I, 0, 0, . . . , 0
︸ ︷︷ ︸

3~n+n̂

}

Υ
(6)
i,j , diag

{

− ~ξ(2), 0, 0, . . . , 0
︸ ︷︷ ︸

5~n

, I, 0, 0, . . . , 0
︸ ︷︷ ︸

2~n+n̂

}

Υ
(7)
i,j , diag

{

− ~αi,j+1, 0, 0, . . . , 0
︸ ︷︷ ︸

6~n

, I, 0, 0, . . . , 0
︸ ︷︷ ︸

2~n+n̂−ny

}

Υ
(8)
i,j , diag

{

− ~αi+1,j , 0, 0, . . . , 0
︸ ︷︷ ︸

6~n+ny

, I, 0, 0, . . . , 0
︸ ︷︷ ︸

2~n+n̂−2ny

}

Υ
(9)
i,j , diag

{

− 1, 0, 0, · · · , 0
︸ ︷︷ ︸

6~n+2ny

, R−1
i,j+1, 0, 0, . . . , 0

︸ ︷︷ ︸

nw+2(~n+nv)

}

Υ
(10)
i,j , diag

{

− 1, 0, 0, · · · , 0
︸ ︷︷ ︸

6~n+2ny+nw

, R−1
i+1,j , 0, 0, . . . , 0

︸ ︷︷ ︸

2(~n+nv)

}

Υ
(11)
i,j , diag

{

− 1, 0, 0, · · · , 0
︸ ︷︷ ︸

6~n+2(ny+nw)

, S−1
i,j+1, 0, 0, 0

}

Υ
(12)
i,j , diag

{

− 1, 0, 0, · · · , 0
︸ ︷︷ ︸

6~n+n̂−nv

, S−1
i+1,j , 0, 0

}

Υ
(13)
i,j , diag

{

0,−~Λ
(1)
i,j+1, 0, 0, · · · , 0

︸ ︷︷ ︸

5~n+n̂

, I, 0
}

Υ
(14)
i,j , diag

{

0, 0,−~Λ
(2)
i,j+1, 0, 0, · · · , 0︸ ︷︷ ︸

5~n+n̂

, I
}

~αi,j , ny

(αi,jℓ

2

)2

, ~Λ
(κ)
i,j , ‖̥(κ)GΛi,j‖ (κ = 1, 2).

In order to calculate estimator gainsK(1)
i,j andK(2)

i,j such
that the estimation errorθi,j is confined to the constrained set
(23), we present the following theorem.

Theorem 2: Consider the nonlinear 2-D shift-varying sys-
tem (1), the EDM (6)–(9), and the NN-based set-membership
estimator (14). Let the sequences of matrices{Q0,j}j∈T and
{Qi,0}i∈T be given. Then, the estimation errorθi+1,j+1 of
state belongs to the ellipsoidal setSi+1,j+1 if there exist
estimator gainsK(1)

i,j+1, K(2)
i+1,j, positive scalarsǫ(m)

i,j (m =
1, 2, . . . , 14) and a matrixQi+1,j+1 > 0 satisfying (26), (27)

and [

−~Υi,j ∗
Ξi,j −Qi+1,j+1

]

≤ 0, ∀ i, j ∈ T (46)

where

~Υi,j , Υ
(0)
i,j +

14∑

m=1

ǫ
(m)
i,j Υ

(m)
i,j

Ξi,j ,

[

0 Ξ
(1)
i,j I I Ξ

(2)
i,j Ξ

(3)
i,j I I

]

Ξ
(1)
i,j ,

[

~A
(1)
i,j+1Λi,j+1

~A
(2)
i+1,jΛi+1,j

~Ψ
(1)
i,j+1

~Ψ
(2)
i+1,j

]

Ξ
(2)
i,j ,

[

−K
(1)
i,j+1 −K

(2)
i+1,j E

(1)
i,j+1 E

(2)
i+1,j

]

Ξ
(3)
i,j ,

[

−K
(1)
i,j+1Di,j+1 −K

(2)
i+1,jDi+1,j

]

~A
(1)
i,j+1 , (A

(1)
i,j+1 −K

(1)
i,j+1Ci,j+1)

~A
(2)
i+1,j , (A

(2)
i+1,j −K

(2)
i+1,jCi+1,j).

Proof: This theorem will be again proved by using
the two-dimensional version of mathematical induction that
consists of the following two steps.

1) Initial step. It is known immediately from Assumption 5
that

θTi,jQ
−1
i,j θi,j ≤ 1 (47)

is true for (i, j) ∈ {(i, j)|i, j ∈ T, i = 0 or j = 0}.
2) Inductive step: Letting

θTi◦,j◦Q
−1
i◦,j◦θi◦,j◦ ≤ 1 (48)

be true for(i◦, j◦) ∈ {(i, j +1), (i+ 1, j)}, we need to show
that

θTi+1,j+1Q
−1
i+1,j+1θi+1,j+1 ≤ 1 (49)

is also true.
For (i◦, j◦) ∈ {(i, j + 1), (i + 1, j)}, it is easy to verify

from (48) that there existςi,j+1 andςi+1,j (with ‖ςi,j+1‖ ≤ 1
and‖ςi+1,j‖ ≤ 1) such that

{

θi,j+1 = Λi,j+1ςi,j+1

θi+1,j = Λi+1,jςi+1,j

(50)

where Λi,j+1 and Λi+1,j are factorizations ofQi,j+1 and
Qi+1,j , respectively, i.e.,Qi,j+1 = Λi,j+1Λ

T
i,j+1 and

Qi+1,j = Λi+1,jΛ
T
i+1,j .

On the other hand, it follows from Theorem 1 that
{

(W̃
(1)
i,j+1φ̂

(1)
i,j+1)

T(P
(1)
i,j+1)

−1(W̃
(1)
i,j+1φ̂

(1)
i,j+1) ≤ φ̆

(1)
i,j+1

(W̃
(2)
i+1,j φ̂

(2)
i+1,j)

T(P
(2)
i+1,j)

−1(W̃
(2)
i+1,j φ̂

(2)
i+1,j) ≤ φ̆

(2)
i+1,j

(51)
which means

{

(W̃
(1)
i,j+1φ̂

(1)
i,j+1)(W̃

(1)
i,j+1φ̂

(1)
i,j+1)

T ≤ ~P
(1)
i,j+1

(W̃
(2)
i+1,j φ̂

(2)
i+1,j)(W̃

(2)
i+1,j φ̂

(2)
i+1,j)

T ≤ ~P
(2)
i+1,j

(52)

with

φ̆
(1)
i,j ,

1

nφ

(φ̂
(1)
i,j )

T(φ̂
(1)
i,j ), φ̆

(2)
i,j ,

1

nφ

(φ̂
(2)
i,j )

T(φ̂
(2)
i,j )

~P
(1)
i,j , φ̆

(1)
i,j P

(1)
i,j ,

~P
(2)
i,j , φ̆

(2)
i,j P

(2)
i,j .
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Similarly, from (52), there also exist~̟ (1)
i,j+1 and ~̟ (2)

i+1,j (with

‖ ~̟
(1)
i,j+1‖ ≤ 1 and‖ ~̟ (2)

i+1,j‖ ≤ 1) such that
{

W̃
(1)
i,j+1φ̂

(1)
i,j+1 = ~Ψ

(1)
i,j+1 ~̟

(1)
i,j+1

W̃
(2)
i+1,j φ̂

(2)
i+1,j =

~Ψ
(2)
i+1,j ~̟

(2)
i+1,j

(53)

where ~Ψ(1)
i,j+1 and ~Ψ

(2)
i+1,j are factorizations of~P (1)

i,j+1 and
~P
(2)
i+1,j , respectively, i.e.,~P (1)

i,j+1 = ~Ψ
(1)
i,j+1(

~Ψ
(1)
i,j+1)

T and
~P
(2)
i+1,j =

~Ψ
(2)
i+1,j(

~Ψ
(2)
i+1,j)

T.
Letting

ϑi,j ,
[

1 (ϑ
(1)
i,j )

T (ϑ
(2)
i,j )

T (ϑ
(3)
i,j )

T
]T

,

in view of (50) and (53), we rewrite (19) as

θi+1,j+1 = Ξi,jϑi,j (54)

where

ϑ
(1)
i,j , col

{
ςi,j+1, ςi+1,j , ~̟

(1)
i,j+1, ~̟

(2)
i+1,j

}

ϑ
(2)
i,j , col

{
~ξ
(1)
i,j+1,

~ξ
(2)
i+1,j , ei,j+1, ei+1,j , wi,j+1, wi+1,j

}

ϑ
(3)
i,j , col

{
vi,j+1, vi+1,j , f̃

(1)
i,j+1, f̃

(2)
i+1,j

}
.

According to Assumption 3, (2), (3), (50) and (53), the
following conditions are satisfied







‖ςi,j+1‖ ≤ 1, ‖ςi+1,j‖ ≤ 1

‖ ~̟
(1)
i,j+1‖ ≤ 1, ‖ ~̟

(2)
i+1,j‖ ≤ 1

‖~ξ
(1)
i,j+1‖ ≤ ~ξ(1), ‖~ξ

(2)
i+1,j‖ ≤ ~ξ(2)

‖ei,j+1‖ ≤ ~αi,j+1, ‖ei+1,j‖ ≤ ~αi+1,j

wT
i,j+1R

−1
i,j+1wi,j+1 ≤ 1

wT
i+1,jR

−1
i+1,jwi+1,j ≤ 1

vTi,j+1S
−1
i,j+1vi,j+1 ≤ 1

vTi+1,jS
−1
i+1,jvi+1,j ≤ 1

(55)

which, in terms ofϑi,j , can be further rewritten as

ϑTi,jΥ
(m̄)
i,j ϑi,j ≤ 0, m̄ = 1, 2, . . . , 12 (56)

with ~ξ(1) , 2W̄ (1)φ̄(1) + ξ̄(1) and~ξ(2) , 2W̄ (2)φ̄(2) + ξ̄(2).
Next, we proceed to handle the nonlinear termsf̃

(1)
i,j+1 and

f̃
(2)
i+1,j in system (19). According to Assumption 1 and (50),

we have

‖f̃
(1)
i,j+1‖ = ‖~f

(1)
i,j+1 − f̂

(1)
i,j+1‖

= ‖f (1)(G~xi,j+1)− f (1)(Gx̂i,j+1)‖

≤ ‖̥(1)Gθi,j+1‖

= ‖~Λ
(1)
i,j+1ςi,j+1‖ (57)

‖f̃
(2)
i+1,j‖ = ‖~f

(2)
i+1,j − f̂

(2)
i+1,j‖

= ‖f (2)(G~xi+1,j)− f (2)(Gx̂i+1,j)‖

≤ ‖̥(2)Gθi+1,j‖

= ‖~Λ
(2)
i+1,jςi+1,j‖ (58)

which, in terms ofϑi,j , are expressed as

ϑTi,jΥ
(13)
i,j ϑi,j ≤ 0 (59)

ϑTi,jΥ
(14)
i,j ϑi,j ≤ 0. (60)

Subsequently, by applying Schur Complement Lemma [5],
it follows from (46) that

−~Υi,j + ΞT
i,jQ

−1
i+1,j+1Ξi,j ≤ 0. (61)

By further resorting toS-procedure [5], it can be derived
from (54), (56), (59)–(61) that (49) is true for(i + 1, j +
1), which means that the estimation errorθi+1,j+1 of state
belongs to the ellipsoidal setSi+1,j+1. Therefore, according
to the principle of mathematical induction, the proof is now
complete.

C. Optimization Problem

Theorems 1–2 outline principles of seeking tuning scalars
in NN weight tuning laws and NN-based set-membership
estimator gains. It should be noted that neither of the schemes
provides an optimal solution. In what follows, a corollary is
presented to determine the tuning scalars and the estimator
gains via optimizing the constraint sets in the sense of matrix
trace.

Corollary 1: Consider the nonlinear 2-D shift-varying sys-
tem (1), the EDM (6)–(9), and the NN-based set-membership
estimator (14). Let the sequences of matrices{P

(1)
0,j }j∈T,

{P
(2)
i,0 }j∈T, {Q0,j}j∈T and {Qi,0}i∈T be given. The con-

straint setsF (1)
i+1,j+1, F

(2)
i+1,j+1 andSi+1,j+1 are minimized

in the sense of matrix trace if there exist tuning scalarsτ
(1,1)
i,j+1,

τ
(1,2)
i,j+1, τ (2,1)i+1,j , τ

(2,2)
i+1,j and estimator gainsK(1)

i,j+1, K(2)
i+1,j such

that the following optimization problem(OP) is feasible:

OP : min
τ
(1,1)
i,j+1,τ

(1,2)
i,j+1,τ

(2,1)
i+1,j ,

τ
(2,2)
i+1,j ,K

(1)
i,j+1,K

(2)
i+1,j

tr (Mi+1,j+1)

subject to(26), (27), (46) (62)

whereMi,j , ̟1P
(1)
i,j +̟2P

(2)
i,j +̟3Qi,j and̟1, ̟2, ̟3

are positive scalars satisfying
∑3

ν=1̟ν = 1.
For the purpose of numerical calculation, we describe the

estimator design procedure in Algorithm 1, which is based on
the recursive linear matrix inequality (RLMI) approach.

Algorithm 1: NN-based SME algorithm

Input : System initial conditionsŴ (1)
0,j , Ŵ (2)

i,0 , ~x0,j , ~xi,0,
x̂0,j , x̂i,0.

Output : τ (1,1)i,j , τ (1,2)i,j , τ (2,1)i,j , τ (2,2)i,j , K(1)
i,j , K(2)

i,j .
1 for i=1:T do
2 for j=1:T do
3 Compute the tuning parametersτ (1,1)i,j , τ (1,2)i,j ,

τ
(2,1)
i,j , τ (2,2)i,j and the estimator gainsK(1)

i,j , K(2)
i,j

by solving theOP from Corollary 1;
4 Compute the estimated state by (14);
5 Update the NN weights by (15)–(16);

6 return τ
(1,1)
i,j , τ (1,2)i,j , τ (2,1)i,j , τ (2,2)i,j , K(1)

i,j , K(2)
i,j ;
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Remark 5: So far, the SFE problem has been solved for
the addressed nonlinear 2-D shift-varying system. Note that,
in comparison to the rich body of existing literature on
fault estimation problems, our results exhibit the following
distinguishing features: 1) the addressed SFE problem is new
that represents one of the first few attempts to cope with
nonlinear 2-D shift-varying systems with EDMs and UBB
noises by utilizing the NN-based SME algorithm; 2) the
proposed EDM is new, which is designed under the 2-D
framework and is capable of dealing with dynamics evolving
along both horizontal and vertical coordinates; and 3) the two-
dimensional version of the mathematical induction method
is utilized to examine the feasibility of the developed NN-
based SME algorithm that confines the estimation error to an
optimized ellipsoidal set.

Remark 6: This paper launches a systematic investigation
on the SFE problem for a class of nonlinear 2-D shift-
varying systems in the context of networked systems with
certain engineering-oriented complexities (i.e., EDMs, UFD,
and UBB noises). By exploiting a common consideration
for several up-to-date approaches such as set-membership
estimation method, two-dimensional version of the mathe-
matical induction approach, and NN approximation method,
the addressed problem has been thoroughly examined and
the desired parameters (i.e., NN tuning scalars and estimator
gains) have been formulated in terms of the solutions to a set
of optimization problems. Within the established framework,
it is not difficult to extend our results to more general systems
with more complicated dynamics with more complex network-
induced phenomena.

IV. I LLUSTRATIVE EXAMPLE

In this section, the effectiveness of the proposed NN-based
SME algorithm is verified by the Darboux equation which
can model several industrial processes such as water stream
heating and gas absorption. In practical applications, the 2-D
systems are inevitably suffering from environmental chances
(e.g., temperature fluctuations and harmonic vibration), and
accordingly, the parameters of the 2-D systems may be affect-
ed to some extent. The system parameters are taken from [36]
as

A
(1)
i,j =

[
0.3 −0.1 sin(i+ j)
0.2 0.1

]

A
(2)
i,j =

[
0.1 + 0.15e−3i 0

0.2 0.2

]

Bi,j =

[
0.2

0.05 + 0.1 cos(2i)

]

Ci,j =
[
1 0.5 + 0.15 sin(i+ j)

]
, Di,j = 0.3− 0.1e−2i

E
(1)
i,j =

[
0.3

0.25e−3i

]

, E
(2)
i,j =

[
0.1 + 0.1 sin(i)

0.35

]

U
(1)
i,j = 0.1 + 0.15e−3i, U

(2)
i,j = 0.1 + 0.05 cos(j)

f (1)(xi,j) = 0.1
[

|x
(1)
i,j | |x

(2)
i,j |

]T

f (2)(xi,j) = 0.15
[

|x
(1)
i,j | |x

(2)
i,j |

]T

µ(1)(ρi,j) = 0.25 cos(ρi,j), µ
(2)(ρi,j) = 0.25 sin(ρi,j).

TABLE III
TUNING SCALARSτ

(1,1)
i,j

i

τ
(1,1)
i,j

j
1 2 · · · 20

1 0.2732 0.2651 · · · 0.2066

...
...

...
...

...
20 0.2891 0.2901 · · · 0.2103

TABLE IV
TUNING SCALARSτ

(1,2)
i,j

i

τ
(1,2)
i,j

j
1 2 · · · 20

1 0.5011 0.4986 · · · 0.4306

...
...

...
...

...
20 0.5161 0.5007 · · · 0.4138

The process noisewi,j and the measurement noisevi,j
are selected aswi,j = 0.5 sin(0.1(i + j)) and vi,j =
0.3 cos(0.1(i+ 2j)), whose weighting matrices are chosen as
Ri,j = 0.3I andSi,j = 0.2I. The scaling parameter is selected
asαi,j = 0.8 andk(1)

i,j = k
(2)
i,j = 0.5I. The activation function

vectors are constructed as

φ(κ)(~xi,j) = 0.3
[

tanh(~x
(1)
i,j ) tanh(~x

(2)
i,j ) tanh(~x

(3)
i,j )

]T

.

Let the initial conditions be given as






Ŵ
(1)
0,j = 1.5I, ∀ j ∈ [0 10]

Ŵ
(1)
0,j = 0, ∀ j ∈ [11 20]

Ŵ
(2)
i,0 = 2I, ∀ i ∈ [0 10]

Ŵ
(2)
i,0 = 0, ∀ i ∈ [11 20].







~x0,j = ~xi,0 =
[

1 1.4 0.5
]T

, ∀ i, j ∈ [0 10]

~x0,j = ~xi,0 =
[

0 0 0
]T

, ∀ i, j ∈ [11 20]

x̂0,j = x̂i,0 =
[

0.9 1 0.3
]T

, ∀ i, j ∈ [0 10]

x̂0,j = x̂i,0 =
[

0 0 0
]T

, ∀ i, j ∈ [11 20].

According to Algorithm 1, the estimator gains and the
tuning scalars can be calculated recursively as listed in Tables
I–VI (only partial results are shown here due to limited space).
The simulation results are presented in Figs. 2–9. Among
them, Figs. 2–7 plot the system statexi,j , the system faultρi,j ,
and the estimation errorθi,j , which show the effectiveness of
the proposed NN-based SME algorithm. Figs. 8–9 depict the
evolution of ‖Ŵ (1)

i,j ‖ and ‖Ŵ
(2)
i,j ‖ according to the designed

adaptive tuning laws, respectively.

V. CONCLUSION

This paper has addressed the SFE problem for a class of
nonlinear 2-D shift-varying systems subject to additive faults
and UBB noises. A new EDM has been designed for 2-D
systems, where the zooming-in/out-based encoder and decoder
have been utilized to improve the communication efficiency.
An NN-based SME algorithm has been developed for 2-
D systems to confine the estimation error to an optimized
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TABLE I
ESTIMATOR GAINSK

(1)
i,j

i

K
(1)
i,j

j
1 2 · · · 20

1
[

0.2282 0.2049 0.1139
]T [

0.2701 0.1965 0.1311
]T

· · ·

[

0.3074 0.2144 0.0157
]T

...
...

...
...

...
20

[

0.2081 0.1534 0.1401
]T [

0.1903 0.1407 0.1228
]T

· · ·

[

0.2597 0.1891 0.0224
]T

TABLE II
ESTIMATOR GAINS K

(2)
i,j

i

K
(2)
i,j

j
1 2 · · · 20

1
[

0.1508 0.2566 0.0998
]T [

0.1622 0.3014 0.1327
]T

· · ·

[

0.1004 0.2589 0.1199
]T

...
...

...
...

...
20

[

0.0901 0.2442 0.1194
]T [

0.1197 0.2865 0.1272
]T

· · ·

[

0.1061 0.2485 0.0831
]T

TABLE V
TUNING SCALARSτ

(2,1)
i,j

i

τ
(2,1)
i,j

j
1 2 · · · 20

1 0.2465 0.2507 · · · 0.2726

...
...

...
...

...
20 0.1387 0.1514 · · · 0.2955

TABLE VI
TUNING SCALARSτ

(2,2)
i,j

i

τ
(2,2)
i,j

j
1 2 · · · 20

1 0.3726 0.4265 · · · 0.4716

...
...

...
...

...
20 0.4597 0.4013 · · · 0.4026
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Fig. 2. The system statex(1).
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Fig. 3. The system statex(2).
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Fig. 4. The system faultρ.
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Fig. 5. The estimation errorθ(1).
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Fig. 6. The estimation errorθ(2).
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Fig. 7. The estimation errorθ(3).
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Fig. 8. The weight matrixŴ (1).
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Fig. 9. The weight matrixŴ (2).

ellipsoidal set. By utilizing the two-dimensional mathematical
induction approach, the feasibility of the proposed estimation
algorithm has been examined, and the desired gains can
be computed by solving a series of optimization problems.
Finally, a simulation example has been provided to verify the
usefulness of the proposed estimator design method. Further
research topics include the extension of the main results to
more complex systems, such as fuzzy systems [12], [40],
positive systems [11] and complex networks [8], [30].
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worked fusion estimation with multiple uncertainties and time-correlated
channel noise,Information Fusion, vol. 54, pp. 161–171, 2020.

[7] W. Chai, J. Qiao and H. Wang, Robust fault detection using set
membership estimation and TS fuzzy neural network, inProceedings
of 2013 American Control Conference, pp. 893–898, 2013.

[8] Y. Cui, Y. Liu, W. Zhang and F. E. Alsaadi, Sampled-based consensus
for nonlinear multiagent systems with deception attacks: The decoupled
method,IEEE Transactions on Systems, Man, and Cybernetics: Systems,
vol. 51, no. 1, pp. 561–573, 2021.

[9] Z. Gao, Fault estimation and fault-tolerant control for discrete-time
dynamic systems,IEEE Transactions on Industrial Electronics, vol. 62,
no. 6, pp. 3874–3884, 2015.

[10] X. Ge, Q.-L. Han, X.-M. Zhang, L. Ding and F. Yang, Distributed event-
triggered estimation over sensor networks: A survey,IEEE Transactions
on Cybernetics, vol. 50, no. 3, pp. 1306–1320, 2020.

[11] L. V. Hien and H. Trinh, Observers design for 2-D positive time-delay
Roesser systems,IEEE Transactions on Circuits and Systems II: Express
Briefs, vol. 65, no. 4, pp. 476–480, 2018.

[12] L. V. Hien and H. Trinh, Stability analysis and control of two-
dimensional fuzzy systems with directional time-varying delays,IEEE
Transactions on Fuzzy Systems, vol. 26, no. 3, pp. 1550–1564, 2018.

[13] K. Hornik, M. Stinchcombe and H. White, Multilayer feedforward
networks are universal approximators,Neural Networks, vol. 2, no. 5,
pp. 359–366, 1989.

[14] J. Hu, Z. Wang, G.-P. Liu and H. Zhang, Variance-constrained recursive
state estimation for time-varying complex networks with quantized
measurements and uncertain inner coupling,IEEE Transactions on
Neural Networks and Learning Systems, vol. 31, no. 6, pp. 1955–1967,
2020.

[15] Y. B. Huang, J. An, Y. He and M. Wu, Quasi-convex combination
method and its application to the stability analysis of 2D discrete-
time Roesser systems with time-varying delays,IET Control Theory &
Applications, vol. 12, no. 6, pp. 718–727, 2018.

[16] B. Li, Z. Wang, Q.-L. Han and H. Liu, Distributed quasiconsensus
control for stochastic multiagent systems under Round-Robin protocol
and uniform quantization,IEEE Transactions on Cybernetics, in press,
DOI: 10.1109/TCYB.2020.3026001.

[17] T. Li, M. Fu, L. Xie and J. F. Zhang, Distributed consensus with limited
communication data rate,IEEE Transactions on Automatic Control,
vol. 56, no. 2, pp. 279–292, 2010.

[18] X. Li, F. Han, N. Hou, H. Dong and H. Liu, Set-membership filtering
for piecewise linear systems with censored measurements under Round-
Robin protocol,International Journal of Systems Science, vol. 51, no. 9,
pp. 1578–1588, 2020.

[19] J. Liang, T. Huang, T. Hayat and F. Alsaadi,H∞ filtering for two-
dimensional systems with mixed time delays, randomly occurring sat-
urations and nonlinearities,International Journal of General Systems,
vol. 44, no. 2, pp. 226–239, 2015.

[20] L. Liu, L. Ma, J. Zhang and Y. Bo, Distributed non-fragile set-
membership filtering for nonlinear systems under fading channels and
bias injection attacks,International Journal of Systems Science, vol. 52,
no. 6, pp. 1192–1205, 2021.

[21] S. Liu, Z. Wang, L. Wang and G. Wei,H∞ pinning control of complex
dynamical networks under dynamic quantization effects: A coupled
backward Riccati equation approach,IEEE Transactions on Cybernetics,
in press, DOI: 10.1109/TCYB.2020.3021982.

[22] Q. Liu, Z. Wang, Q.-L. Han and C. Jiang, Quadratic estimation for
discrete time-varying non-Gaussian systems with multiplicative noises
and quantization effects,Automatica, vol. 113, art. no. 108714, 2020.

[23] Q. Liu and Z. Wang, Moving-horizon estimation for linear dynamic net-
works with binary encoding schemes,IEEE Transactions on Automatic
Control, vol. 66, no. 4, pp. 1763–1770, 2021.

[24] Y. Liu, B. Shen and H. Shu, Finite-time resilientH∞ state estimation
for discrete-time delayed neural networks under dynamic event-triggered
mechanism,Neural Networks, vol. 121, pp. 356–365, Jan. 2020.

[25] Y. Luo, Z. Wang, G. Wei and F. E. Alsaadi, Non-fragileℓ2-ℓ∞ fault
estimation for Markovian jump 2-D systems with specified power
bounds,IEEE Transactions on Systems, Man, and Cybernetics: Systems,
vol. 50, no. 5, pp. 1964–1975, 2020.

[26] L. Ma, Z. Wang, Y. Chen and X. Yi, Probability-guaranteed distributed
filtering for nonlinear systems with innovation constraints over sensor
networks,IEEE Transactions on Control of Network Systems, in press,
DOI: 10.1109/TCNS.2021.3049361.

[27] M. G. Perhinschi, M. R. Napolitano, G. Campa, B. Seanor, J. Burken
and R. Larson, Design of safety monitor schemes for a fault tolerant

flight control system,IEEE Transactions on Aerospace and Electronic
Systems, vol. 42, no. 2, pp. 562–571, 2006.

[28] W. Qian, Y. Li, Y. Chen, and W. Liu,L2-L∞ filtering for stochastic
delayed systems with randomly occurring nonlinearities and sensor
saturation,International Journal of Systems Science, vol. 51, no. 13,
pp. 2360–2377, 2020.

[29] R. Rahimilarki, Z. Gao, A. Zhang and R. Binns, Robust neural net-
work fault estimation approach for nonlinear dynamic systems with
applications to wind turbine systems,IEEE Transactions on Industrial
Informatics, vol. 15, no. 12, pp. 6302–6312, 2019.

[30] B. Shen, Z. Wang, D. Wang and Q. Li, State-saturated recursive filter
design for stochastic time-varying nonlinear complex networks under
deception attacks,IEEE Transactions on Neural Networks and Learning
Systems, vol. 31, no. 10, pp. 3788–3800, 2020.

[31] D. Shen and C. Zhang, Zero-error tracking control under unified
quantized iterative learning framework via encoding-decoding method,
IEEE Transactions on Cybernetics, in press, DOI: 10.1109/TCY-
B.2020.3004187.

[32] H. Shen, M. Xing, Z.-G. Wu, J. Cao and T. Huang,l2-l∞ state
estimation for persistent dwell-time switched coupled networks subject
to Round-Robin protocol,IEEE Transactions on Neural Networks and
Learning Systems, in press, DOI: 10.1109/TNNLS.2020.2995708.

[33] Y. Shen, Z. Wang, B. Shen and H. Dong, Outlier-resistant recursive
filtering for multi-sensor multi-rate networked systems under weighted
Try-Once-Discard protocol,IEEE Transactions on Cybernetics, in press,
DOI: 10.1109/TCYB.2020.3021194.

[34] M. B. Sumanasena and P. H. Bauer, Realization using the Fornasini-
Marchesini model for implementations in distributed grid sensor net-
works, IEEE Transactions on Circuits and Systems I: Regular Papers,
vol. 58, no. 11, pp. 2708–2717, 2011.

[35] H. A. Talebi, K. Khorasani and S. Tafazoli, A recurrent neural-network-
based sensor and actuator fault detection and isolation for nonlinear
systems with application to the satellite’s attitude control subsystem,
IEEE Transactions on Neural Networks, vol. 20, no. 1, pp. 45–60, 2008.

[36] F. Wang, Z. Wang, J. Liang and X. Liu, Recursive distributed filter-
ing for two-dimensional shift-varying systems over sensor network-
s under stochastic communication protocols,Automatica, vol. 115,
art. no. 108865, 2020.

[37] F. Wang, Z. Wang, J. Liang and J. Yang, A survey on filtering issues
for two-dimensional systems: Advances and challenges,International
Journal of Control, Automation and Systems, vol. 18, no. 3, pp. 629–
642, 2020.

[38] J. Wang, J. Liang and J. Qiu, Asynchronousl2 control for 2D switched
positive systems with parametric uncertainties and impulses,Nonlinear
Analysis: Hybrid Systems, vol. 37, art. no. 100887, 2020.

[39] Y. Wang, D. Zhao, Y. Li and S. X. Ding, Unbiased minimum vari-
ance fault and state estimation for linear discrete time-varying two-
dimensional systems,IEEE Transactions on Automatic Control, vol. 62,
no. 10, pp. 5463–5469, 2017.

[40] Y. Wang, Z. Wang, L. Zou and H. Dong, Multi-loop decentralizedH∞

fuzzy PID-like control for discrete time-delayed fuzzy systems under
dynamical event-triggered schemes,IEEE Transactions on Cybernetics,
in press, DOI: 10.1109/TCYB.2020.3025251.

[41] Z.-G. Wu, Y. Shen, P. Shi, Z. Shu and H. Su,H∞ control for 2-
D Markov jump systems in Roesser model,IEEE Transactions on
Automatic Control, vol. 64, no. 1, pp. 427–432, 2019.

[42] Z. Xu, H. Su, R. Lu and Z.-G. Wu, Non-fragile dissipative filtering for
2-D switched systems,Journal of the Franklin Institute, vol. 354, no. 14,
pp. 6234–6246, 2017.

[43] F. Yang and Q.-L. Han, Quantized set-membership filtering with com-
munication constraints, inProceedings of 2013 IEEE International
Symposium on Industrial Electronics, pp. 1–6, 2013.

[44] R. Yang and W. X. Zheng,H∞ filtering for discrete-time 2-D switched
systems: An extended average dwell time approach,Automatica, vol. 98,
pp. 302–313, 2018.

[45] P. Zhang, Y. Yuan and L. Guo, Fault-tolerant optimal control for discrete-
time nonlinear system subjected to input saturation: A dynamic event-
triggered approach,IEEE Transactions on Cybernetics, in press, DOI:
10.1109/TCYB.2019.2923011.

[46] D. Zhao, S. X. Ding, H. R. Karimi, Y. Li and Y. Wang, On robust Kalman
filter for two-dimensional uncertain linear discrete time-varying systems:
A least squares method,Automatica, vol. 99, pp. 203–212, 2019.

[47] D. Zhao, Z. Wang, G. Wei and X. Liu, NonfragileH∞ state estimation
for recurrent neural networks with time-varying delays: On proportional-
integral observer design,IEEE Transactions on Neural Networks and
Learning Systems, in press, DOI: 10.1109/TNNLS.2020.3015376.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final 
publication. Citation information: DOI10.1109/TNNLS.2021.3102127, IEEE Transactions on Neural Networks and Learning Systems



FINAL 13

[48] Z. Zhao, Z. Wang, L. Zou and G. Guo, Finite-time state estimation
for delayed neural networks with redundant delayed channels,IEEE
Transactions on Systems, Man, and Cybernetics: Systems, vol. 51, no. 1,
pp. 441–451, 2021.

[49] Z. Zhao, Z. Wang, L. Zou and J. Guo, Set-membership filtering for time-
varying complex networks with uniform quantisations over randomly
delayed redundant channels,International Journal of Systems Science,
vol. 51, no. 16, pp. 3364–3377, 2020.

[50] K. Zhu, J. Hu, Y. Liu, N. D. Alotaibi and F. E. Alsaadi, Onℓ2-ℓ∞
output-feedback control scheduled by stochastic communication protocol
for two-dimensional switched systems,International Journal of Systems
Science, in press, DOI: 10.1080/00207721.2021.1914768.

[51] L. Zou, Z. Wang, H. Geng and X. Liu, Set-membership filtering subject
to impulsive measurement outliers: A recursive algorithm,IEEE/CAA
Journal of Automatica Sinica, vol. 8, no. 2, pp. 377–388, 2021.

[52] L. Zou, Z. Wang, J. Hu and D. H. Zhou, Moving horizon estimation with
unknown inputs under dynamic quantization effects,IEEE Transactions
on Automatic Control, vol. 65, no. 12, pp. 5368–5375, 2020.

[53] L. Zou, Z. Wang, J. Hu, Y. Liu and X. Liu, Communication-protocol-
based analysis and synthesis of networked systems: Progress, prospects
and challenges,International Journal of Systems Science, in press, DOI:
10.1080/00207721.2021.1917721.

Kaiqun Zhu received the M.Sc. degree in control
science and engineering, in 2018, from University
of Shanghai for Science and Technology, Shanghai,
China, where he is currently pursuing the Ph.D. de-
gree. Since 2020, he has been a visiting Ph.D.
student with the Department of Computer Science,
Brunel University London, Uxbridge, U.K. His cur-
rent research interests include networked control
systems, set-membership filtering, model predictive
control, and neural networks.

Zidong Wang (SM’03-F’14) was born in Jiang-
su, China, in 1966. He received the B.Sc. degree
in mathematics in 1986 from Suzhou University,
Suzhou, China, and the M.Sc. degree in applied
mathematics in 1990 and the Ph.D. degree in elec-
trical engineering in 1994, both from Nanjing Uni-
versity of Science and Technology, Nanjing, China.

He is currently Professor of Dynamical Systems
and Computing in the Department of Computer
Science, Brunel University London, U.K. From 1990
to 2002, he held teaching and research appointments

in universities in China, Germany and the UK. Prof. Wang’s research interests
include dynamical systems, signal processing, bioinformatics, control theory
and applications. He has published more than 600 papers in international
journals. He is a holder of the Alexander von Humboldt Research Fellowship
of Germany, the JSPS Research Fellowship of Japan, William Mong Visiting
Research Fellowship of Hong Kong.

Prof. Wang serves (or has served) as the Editor-in-Chief forInternational
Journal of Systems Science, the Editor-in-Chief for Neurocomputing, the
Editor-in-Chief for Systems Science & Control Engineering, and an Asso-
ciate Editor for 12 international journals including IEEE Transactions on
Automatic Control, IEEE Transactions on Control Systems Technology, IEEE
Transactions on Neural Networks, IEEE Transactions on Signal Processing,
and IEEE Transactions on Systems, Man, and Cybernetics-Part C. He is a
Member of the Academia Europaea, a Member of the European Academy
of Sciences and Arts, an Academician of the International Academy for
Systems and Cybernetic Sciences, a Fellow of the IEEE, a Fellow of the Royal
Statistical Society and a member of program committee for many international
conferences.

Yun Chen was born in Zhejiang Province, China. He
received the B.E. degree in thermal engineering in
1999 from Central South University of Technology
(Central South University), Changsha, China, and
the M.E. degree in engineering thermal physics
in 2002 and Ph.D. degree in control science and
engineering in 2008, both from Zhejiang University,
Hangzhou, China.

From August 2009 to August 2010, he was a
visiting fellow with the School of Computing, En-
gineering and Mathematics, University of Western

Sydney, Australia. From December 2016 to December 2017, he was an
academic visitor with the Department of Mathematics, Brunel University
London, UK. In 2002, he joined Hangzhou Dianzi University, China, where
he is currently a Professor. His research interests include stochastic and hybrid
systems, robust control and filtering.

Guoliang Wei received the B.Sc. degree in math-
ematics from Henan Normal University, Xinxiang,
China, in 1997 and the M.Sc. degree in applied
mathematics and the Ph.D. degree in control en-
gineering, both from Donghua University, Shang-
hai, China, in 2005 and 2008, respectively. He is
currently a Professor with the College of Science,
University of Shanghai for Science and Technology,
Shanghai, China.

From March 2010 to May 2011, he was an
Alexander von Humboldt Research Fellow in the In-

stitute for Automatic Control and Complex Systems, University of Duisburg-
Essen, Germany. From March 2009 to February 2010, he was a post doctoral
research fellow in the Department of Information Systems and Computing,
Brunel University, Uxbridge, U.K., sponsored by the Leverhulme Trust of
the U.K.. From June to August 2007, he was a Research Assistant at the
University of Hong Kong. From March to May 2008, he was a Research
Assistant at the City University of Hong Kong.

His research interests include nonlinear systems, stochastic systems, and
bioinformatics. He has published more than 100 papers in refereed interna-
tional journals. He is a very active reviewer for many international journals.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final 
publication. Citation information: DOI10.1109/TNNLS.2021.3102127, IEEE Transactions on Neural Networks and Learning Systems




