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Neural-Network-Based Set-Membership Fault
Estimation for Two-Dimensional Systems under
Encoding-Decoding Mechanism

Kaigqun Zhu, Zidong Wang, Yun Chen and Guoliang Wei

Abstract—In this paper, the simultaneous state and fault with 1-D systems are no longer directly applicable to 2-D
estimation problem is investigated for a class of nonlinear two- systems. Accordingly, the past few decades have seen a surge
dimensional (2-D) shift-varying systems, where the sensors and ot rasearch interest devoted to the analysis and synthesis issues

the estimator are connected via a communication network of . .
limited bandwidth. With the purpose of relieving the commu- of various kinds of 2-D systems [2], [15], [41], [42] and the

nication burden as well as enhancing the transmission security, reference_s thereir_w. S _ _ _
a new encoding-decoding mechanism is put forward so as to In practical engineering, it is often an imperative task to esti-

encode the transmitted data with a finite number of bits. The mate the systems states that evolve over time through collected
aim of the addressed problem is to develop a neural-network- e5qrements possibly corrupted by noises or disturbances

based set-membership estimator for jointly estimating the system . . . S
states and the faults, where the estimation errors are guaranteed [26], [33]. Accordingly, the state estimation/filtering issue has

to reside within an optimized ellipsoidal set. With the aid long been a popular research topic attracting considerable
of the mathematical induction technique and certain convex research interest from both signal processing and control

optimization approaches, sufficient conditions are derived for communities, see [3], [6], [24], [28], [32], [47]-[49], [53]
the existence of the desired set-membership estimator, and thefor some latest results. Note that, in real-world application-

estimator gains as well as the neural network tuning scalars are - Id ter th t in diff tf
then presented in terms of the solutions to a set of optimization s, noises could enter the system in different forms (e.g.,

problems subject to ellipsoidal constraints. Finally, an illustrative  Stochastic, energy-bounded, amplitude-bounded) and quite a
example is given to demonstrate the effectiveness of the proposedfew techniques have been specifically developed to address the

estimator design method. individual characteristics of the noises in the context of esti-
Index Terms—Two-dimensional systems, set-membership es- mation/filtering. For instance, the celebrated Kalman filtering
timation, fault estimation, neural networks, encoding-decoding (KF) and its variants (e.g., extended KF and unscented KF)
mechanism. are well known to be especially efficient for state estimation
subject to Gaussian noises based on the minimum variance
criterion. For energy-bounded noises, an effective way is to
qguantify the level of noise attenuation/rejection in theg,
Two-dimensional (2-D) systems have proven to be particdense and then develop the corresponding strategy for state
larly suitable in modeling practical processes whose dynamiggtimation. Recently, the set-membership filtering technique
propagations are bidirectional, see e.g. grid sensor networkgs stirred much attention due to its exceptional capability of
sheet forming, and water stream heating [25], [34], [37}oping with the unknown-but-bounded noises [10], [18], [20],
[50]. In general, there are three categories of 2-D state-sp f).
models: Attasi model, Fornasini-Marchesini (F-M) first model, concerning the state estimation problem for 2-D systems,
and F-M second model [38]. It is worth mentioning that botthere have been so far a host of results reported in the
Attasi and F-M first models can be regarded as special cagggature. Some recent representative works can be sum-
of the F-M second model. The system states in the 24Rarized as follows. For 2-D systems subject to stochastic
setting evolve alongwo independent directions and, owing noises, the Kalman-type filters have been designed in [36],

to this distinguishing feature, available paradigms for dealings) to accomplish the state estimation task with guaranteed
. . . _ ‘minimum variance. In [19], [44], thé] . filtering problems
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lem for 2-D systems, let alone the case wheoalinearities the influences on the estimation performance from the EDM
and shift-varying parameters are also taken into account. and UFD? and 4) how to determine the NN tuning scalars and
Along with the ever-increasing demand towards reliabilestimator gains? The main objective of this paper is, therefore,
ty/security, fault diagnosis has gradually become pivotal e overcome the listed difficulties by initializing a systematic
many branches of practical engineering such as chemical investigation.
dustries and military infrastructures [25]. Specifically, the main The main contributions of this paper can be highlighted as
tasks of fault diagnosis include fault detection, isolation, arfdllows.
identification [9] It should be noted that the fault estimation « A new EDM iS’ for the first time, proposed for a class of
serves as a convenient yet powerful way for the fault diagnosis, nonlinear 2-D shift-varying systems with aim to reduce
and has recently garnered considerable interest with a number the network communication burden and enhance the
of approaches available in the literature including, but are not = sjgnal transmission security, where the proposed EDM
limited to, the I, estimation approach, the Kalman filter ~ depends on two indices on account of the bidirectional
method, the sliding-mode technique and the neural network eyolution of the system dynamics.
(NN) based scheme [29], [39]. « An NN-based set-membership estimator is developed
Among various state/fault estimation methOdS, the NN- for nonlinear 2-D Shift-varying systems Subject to UBB
based method has shown distinct advantages in dealing with nojses and UFD, and such an estimator is shown to be

inherently nonlinear systems due primarily to its excellent capable of jointly estimating system states and faults with
learning/approximation capabilities. Nonetheless, it is gener- guaranteed performance index.

ally difficult yet time-consuming to tune the weighting factors , The feasibility of the developed NN-based SME algorith-
in training an appropriate NN. To cope with this issue, the m js thoroughly analyzed in a rigorous way by resorting
SME approach has been applied in [7] to effectively seek the o the two-dimensional mathematical induction technique.
suitable tuning parameters, where the established frameworlThe rest of this paper is organized as follows. In Section

1S only applicable to the I|_near 1-D system and cannot tfle the NN-based set-membership estimator is formulated for
Fjlrectly extended to _deal with Fhe nor_llmear 2-D case. Whanlinear 2-D shift-varying systems subject to additive faults
It comes to th? no.nllneBZ—D shift-varying systems., thaiN- under dedicatedly introduced EDMs. In Section lll, sufficient
b"’@d fauI.t estimation problem- has n_ot F’ee“ stud.|ed yet, ar(]:%nditions are derived to ensure the feasibility of the recursive
this constitutes one of the main motivations of this paper. \n pased SME algorithm, and the estimator gains are then
As S we_ll known, quantization serves as a fundamen:%ﬁained by solving a set of optimization problems. Section IV
technique in the transmission process of d|g|tal datg [1_ tilizes an illustrative example to demonstrate the effectiveness
[22]. UI.O to now, a number of static and dyngmlc quantizatiofy e proposed estimator design algorithm. Conclusions are
strategies have been proposed and extensively utilized [1& awn in Section V.
[21], [43], [52]. Among others, the dynamic quantization Notations R and R™*" denote, respectively, the:-
scheme can offer great flexibility by manipulating certaig; o sional Euclidean space and the set Ofmllx,n real
thresholds/parameters and has therefore attracted particylat.-os 3/ ~ 0 means that\/ is a positive definite matrix.
interest. As a frequently deployed dynamic-quantization-basi ', Vi jen denotes the set of matricgS\e jo |0 < i© <
scheme, the encoding-decoding mechanism (EDM) has b% 0 i ;3 < j}. diag{-} stands for a bIoch—dJiagongl matrix.
recently put forward to deal with various network-induce symmetric block matrices, “*" is used as an ellipsis for

issues, where the encoder-decoder pairs is designed base s induced by symmetry.and0 denote the identity matrix
the zooming in/out quantization strategy [23]. For instancs

: . d zero matrix with appropriate dimensions, respectively. The
the EDM has been employed in [17] to solve the dlstrlbutﬁﬂ erscript T” stands for the transpose of a matrix.
consensus problems for multi-agent systems. Moreover, ep

iterative learning control strategy has been designed in [31]
via EDM to investigate the tracking control problem for linear
discrete-time systems. Nevertheless, to the best of the authdrsSystem Model

knowledge, théeDM-embedded joint state and fault estimation  consider a nonlinear 2-D shift-varying system described by

(SFE) problem has not been fully examined in the conteye following general F-M second model:
of nonlinear 2-D shift-varying systems, and this constitutes

Il. PROBLEM FORMULATION AND PRELIMINARIES

another motivation of our current research. Lit1,j+1 = AE}J')+1xi,j+l + Agi)l,jwiﬂ,j
In connection with the discussions made so far, in this paper, + f(l)(xi,j+1) 4 f(Q)(xiH,j)
we concentrate on the NN-based SFE problem for nonlinear 1) @)
2-D shift-varying systems with the adoption of EDMs. The + B jawige + B jwig (1a)
difficulties we are facing are summarized as follows: 1) how to Yij = Cijxij + Bijpij + Dijvi (1b)

construct an appropriate EDM for 2-D systems with focus on o R ] ] ]
the inherent characteristics of information propagation alofy€"€i,j € T = [0,7] are horizontal and vertical coordinates
two independent directions? 2) how to design the estimatffh 7 € N 2;; € R™ andy,; € R™ are the state
of suitable form for 2-D systems subject to unknown faulfector and the measurement output, respelctlvtél?,(xi,j)
dynamics (UFD) and UBB noises such that the system staffd [ (w; ;) are known nonlinear fU”Ctionstz(',j)' Ag,j)' Bij,

and the faults can be jointly estimated? 3) how to quantity; ;, D; ;, Eflj) and Ef? are known shift-varying matrices



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final
publication. Citation information: DOI10.1109/TNNLS.2021.3102127, IEEE Transactions on Neural Networks and Learning Systems

FINAL 3
i i i i . Ny - Ny Yij Vij
with appropriate dimensionsy; ; € R™ andv;; € R Plant Sensor Encoder
are the UBB process noise and UBB measurement noise,
respectively, which are confined to the following ellipsoidal
sets: S —
: Communication Network
OF; 2 {wiy |wl Ry jwi; <1} @) O :
v A T -1 A\d
;= {vig [vigSijvig <1} (3) By ——— 5
with R; ; and S; ; being known positive definite matrices. it Diggoder
The parametep; ; € R in (1b) is the fault signal with
the following dynamics: r Neural Networks {----
1 2
Pit1j+1 = Ui(7j)-§-1pi.,j+l + Ui(+)1,jpi+1,j
+ M(l)(pi,j—H) + M(Q) (Pi+1,j) (4) Fig. 1. Block diagram for 2-D systems with EDMs.
where U") and U{>) are known shift-varying matrices with
appropriate dimensions, and" (p; ;) andu? (p; ;) areun-  Remark 3: Comparing with the rich body of existing re-
known smooth nonlinear functions. _ ~ sults, the fault model (4) investigated in this paper exhibits
(A;ssumptlon_l: F?V)/’v = 1,2, the known nonlinear functions he following distinguish features: 1) the fault model is fairly
f (@i ;) satisfy f+)(0) = 0 and general, which covers the bias fault and the drift fault as a
Hf(“)(fvl) — f) (22| < HF(“)(M — ) (5) special case; and 2) the fault model takes the shift-varying

parameter and the unknown nonlinear dynamics into account.
for all 1,2, € R", where /") (x = 1,2) are known Npote that the inclusion of the unknown nonlinear dynamics in

matrices. _ the presented faults model imposes substantial difficulties on
Assumption 2: (' [1], [35]) For » = 1,2, the nonlinear the performance analysis and subsequent design of the desired
functionsy(*)(p; ;) are on compact sef(;". estimation scheme.

Remark 1: It should be noted that Assumption 2 is a
standard assumption that ensures the feasibility of the aé)- ) _ )
proximation of nonlinear functions*) (p; ;) by using neural B- Encoding and Decoding Mechanism
networks (see e.qg., [1], [35]). In practice, such a constraint (onin the procedure of data transmission, the signals are
the boundedness of the addressed nonlinear functions) carplstessed by the EDM as shown in Fig. 1, where the main
guaranteed by the implementation of certain devices suchsasps/principles are described as follows.
the signal limiter proposed in [27]. Encoding:
Remark 2: It is seen from the additive fault model (4) that The encoding rule is given as
the dynamics of the investigated faults changes bidirectionall o
along both horizontal and vertical horizons. Apparently, (4) i X0.5 = Xi,0 = 0, Vi,jeT

fairly general that well reflects the engineering practice. Xij = Q4% + ‘iﬂl iXi—1,j T 1§2J?71Xi7j_1
1) f U, = TandU) ;= u@() = u@() =0, we 1 (1) (2)
have i =2 (yu — L Xi-1,y — -ii,jflle,j—l)
%,J

Pit1,j+1 = Pij+1 (6)
representing théias fault. wherey; ; € R andy; ; € R™ are thg internal state _and
2) If U_(z)1 — T andU® L= W) = p®@) =0, we the output of thelencoderz,)respectweiy;j is a known scaling
have nr parameter; andl;' and™{*) are known shift-varying matrices
Ditl il = Pitli with appropriate dimensions. Here, the uniform quantiger
o R is characterized by

representing théias fault.

3) 1t UL, #0, U2, #0, andu® () = u® () = 0, we 2(C1)
have ’ . | 2@)
N " Qe | )
Pit1,j+1 = U f1pijrr + Ui jpiv1g o@(é )
representing thelrift fault. h forh — 1.2 ‘
4) I UF?)Jrl 7é 01 UZ(JQr)lj 7é 01 M(l)() 7é 01 andM(2)() 7é 01 where, forh = 1,2, 1
we have ¢ ¢
(1) (2) A > (_22—§1)€<h Sz (2p+1)¢
Pir1j+1 =Uj japijrr + Uil jpita 2(Ch) = | 0, T <G < S (8)
+ 1 (pij1) + 1P (piy1 ) —2(=Cr), (< —%

representing thalrift fault with unknown nonlinear dy- Here,( € R™ is the signal vector(, is the iith entry of
namics. ¢, ¢ is the interval length of the quantization level, is a
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positive integer taking values ifil,2,..., R}, and2R + 1 is ﬁ(_r») A { " 0 } G2 [I O} CH2 [O I]
the number of quantization levels. W W (HT )|
Decoding: ) o [EX) A
The decoding rule is described by S = { 0’7 } , €5 =[Ciy Bijl.
Yoj =¥io=0, Vi,je€T ©) Based on the universal approximation property [13], NNs
Tij = i i + 7§£)1,j?i—1,j + 1572}71@.,]._1 are used to approximate the unknown nonlinear tefi$ ,

wherey; ; € R is the output of the decoder. andz “Hl 4 In system (11a) as follows:

Letting e; £ 7, ; — y; + be the decoding error, we acquire - N o
9€ij =Yij— Yij g q Tiv1j41 = 9{1(721-1%’ i1+ JZ{Z_H oy

A =
€y = Yig (:lg)” @ + fu+ f;(-iQ-)l S AWM 540)
= ai i+ iy Y1+ o ig-1 — Vi T W@ (7, ) + @“’fﬁlwz‘ i
1
- ai’j{g{a. . (y” - -[El—)l,in—laj - -'z(?a?—lxz'»j‘l) } + g(+)1 GWit1,5 T 5u+1 + 5z+1 g (12)
i

1 - . @ where W™ and W) are ideal constant weight matrices of
oy (y” = lim1Yie1g T i,j—lyiﬂ'—l) the NNs »™M(-) and ¢ (.) are activation functions, ar@lj)
1 W @) andg are approximation errors.
= Qi Q{ai_j (y” = X1 — _Ii,j—IXiaJ'—l)} Assumptlon 3 ( [45]) For k = 1,2, the ideal weight
' matricesW (%), the activation funcUonb (®)(.), and the ap-

1
T (yu - 751_)1,,in—1,.7' - -lz('?j)—lxaj—l) }7 (10)  proximation errorgg? satisfy the following conditions:
%, ’
which indicates that the decoding error satisfies W p < WO, e ()] < ¢, el | < €9 (13)
lesilloo O‘l_ﬂf whereW ), ¢(%) and£(%) are known positive constants.
’ -2

In this paper, for the nonlinear 2-D shift-varying system

Remark 4: A novel EDM (6)—(9) is, for the first time, (1), an NN-based set-membership estimator is constructed as
constructed for nonlinear 2-D shift-varying systems. Differefipllows:

from the EDM implemented in 1-D systems, the encoding- 1)
decoding rules (6) and (9) proposed in our work are designed Ti+1,j+1 = A %G1+ ’Q{Hl i1

in accordance with the characteristics of bidirectional evo- + fz(g+1 + fz(i)lj + W(g+1¢§lg)+1
lution of 2-D systems. In general, the new developed EDM @) 22
possesses the followirggvantages: 1) the quantization input Werl JPid (142)
in (6) is Tiprj41 =Lipq jp1 T Kz(lg)ﬂ (i1 — Cigrrdige)

1 2 (s -

i ~(Yij — T, JXi=14 = 1z('?j)—ﬂ(i,jfl) + Ki+1 Wiv1g — i1t ) (14b)
]
where, fork = 1,2, &, R"= is the one-step prediction,

rather thary; ;, which could reduce the bits used for encoding " Tig © PP

the codeword, thereby promoting the efficiency of utilizatiofii-; € R™* IS the estimate of; ;, ( ) are the estimates of
of network resources; 2) the parameter; can be dynamically W), K. f?) are the estimator gains tO be determined and
adjusted, which provides extra flexibility in the subsequent ) (G K

estimator design for a better performance; and 3) the security f(") £ {f (0 xm)} , ¢Z(.:‘7.) 2 ) (&i)-

of the transmitted data can be further guaranteed due to the '

introduction of coefficientsT{") and T{>) in the proposed  The adaptive tuning laws for the NN weights are designed

EDM. as
i7(1) _ (1,1) y7,(1) (1,2) T ,
C. NN-Based Set-Membership Estimator Wett = mfe Wi + ”“%”“( T
) T
Letting 7 ; £ [z} p-T-]T, one obtains X 151 +1’J+1)( J“) (15)
s .9 i, W(Q) (2 1) W(Q) (2 2) ch .
. d(l) . n g{ i+1,5+1 = Tit+1,5"Vi+1 ] Tit1,5 z+1 ( i+1,5+1
Tit1,j4+1 = F; Tij+1 i Tig1,j
+1,5+ J+1 J+ +1i(1)+ J . _ (gi—l—l,j—l—lxi-i—l,j-i—l)( 2 J)T (16)
’ fz ﬁ fZH a7 P where 7—(1 b (1 2) @Y and 7—(2 ) are positive tuning
X J L /L 1
+ ‘52]+1w%-7+1 + ‘53+1 GWitlg (11a) scalars to be determmed In add|t|on the persistence of exci-
Yij = Ci,jTi,j + Dijvij (11b) tation is required to be satisfied. Fer= 1,2, the estimation
where fors — 1.2 errors betweenV (") and /) are derived as
K (1) 1 (1)
%(n) A(J) 0 f‘(n) [f(n)(GfZJ)] WH—l J+1 T W( ) — Wz-i—l J+1
i, )| Jiy = 1,1) 1 1,1) 1,2
N 0 Ui-,j ! 0 = z(7+1Wz(]2|—1 (1 - Tz(7+1)W(1) - Tz(]-l—)l% 4,j+1
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X (11 — Girrjerdipn jon) (57T (17)
77(2) N 2 ir(2)
Wi+1,j+1 £ W( ) — Wi+1,j+1
2,1) 15,(2 2,1 22
= Ti(Jrl,)g'Wi(Jr)l,j +(1 - Tz'(+1.,)j)W(2) - Ti(+1,)j<5i£1,j
X (G141 — ‘51‘+1,j+1f@i+1,j+1)(¢§i)1,j)T- (18)

Denoting the estimation error & ; £ Z;; — #; j, one
obtains

Oit1,j41 = (%Sll - Ki(,lj)+1‘5i,j+1)9i,j+1
+ (] = K G0,
+ Wz(;zrléglg)ﬂ + Wz(i)u égi)lj
+ F PR + &g
+ éi-(ﬁ,jwiﬂ,j - Ki(.,lj)Jrlei,j-i-l
- Ki(i)l,jei-l‘l,j - Ki(,lj)+1Di,j+1vi,j+1
- Ki(i)l,jDi-i-l,jvi-i-l,j + 5,13')“ + 5?1,3- (19)
where, fork = 1,2
e e S R
&9 & Wi s 6

Before giving the main design objectives of this paper,

first present the following assumptions on initial conditions

that are of help in the subsequent derivations.

5

with Pl(;) Pl._?) being diagonal positive definite matrices and
Q;,; being the positive definite matrix.

2) Second, based on the obtained results in the first step, we
shall determine the optimal values of the tuning scalars and the
estimator gains by minimizing the estimation error constraint

sets (22)—(24) in the sense of matrix trace.

IIl. M AIN RESULTS

In this section, we will design a joint SFE scheme for
the addressed nonlinear 2-D shift-varying systems subject to
UFD and UBB noises by applying a set-membership approach.
Sufficient conditions are established for the existence of the
desired estimator that guarantees that both the NN weight
estimation error and the state estimation error satisfy the
required performance constraints. Then, the desired tuning s-
calars and estimator gains are obtained by solving the proposed
optimization problems.

Lemma 1: Consider the vectorg; ; andy; ; in (6) and (9).
Forvi,j € T, we have

Xij = i (25)

Proof: This lemma is proved by the two-dimensional
version of mathematical induction, which is conducted via the

Vnglowing two steps.

1) Initial step. From the rules (6) and (9), it is inferred that
Xij = Yij is true for (i, j) € {(i°,7°)[i°,j° € N,i® 4 j° =

Assumption 4: The evolutions of the estimation error dy-O}'

namics of the neuron weight® (") andW (?) are characterized

by (17)-(18) whose initial conditions satisfy
{tr{(Wéfj))T(Pé}j))117[/0(71]»)} <1, VjeT 0

w{ (W) (P W <1, VieT

where Po(}j) and PZ%) are known diagonal positive definite

2) Inductive step. Suppose thay; ; = ¥, ; is true for(i, j) €
{(#°,7°)|i°, j° € N,i°+3° = h} with h being a given positive
integer. Then, it remains to prove thgt; = v, ; is true for
(1,7) € {(i°,4°)i°,j° € N,i® + j° = h + 1}. In fact, for
(i,7) € {(3°,5°)]i°, j° € N,i® + j° = h + 1}, we have

1 _ 2 _
= ;i + T gy + T G

matrices.
Assumption 5: The initial conditions of the state estimation — Vi — 71('1—)1 iXi-1j — —'523*)—1Xi7j71
error dynamics described by (19) are given b _ 7 o
y y (19)are g Y =T @iy = Xie1g) + 1 @ — Xig—1)
{9({7.Q(;;90,j <1, VjeT 1) —0,
T ~—1p. .
Oi0Qiglio <1, VieT which ends the proof. [ |

whereQo ; andQ; o are known positive definite matrices.

The main purpose of this paper is highlighted in twofold a8 Design of the NN Weight Adaptive Tuning Law

follows. To simpli . q
1) First, we aim to design tuning scala i’ll,?j, Ti(iﬁ)j, 0 simplify notations, we denote
21, 722 and NN-based set-membership estimator gains 7 = na + 7, 7 = 2(ny + 1y + 10
K", K| such that the estimation errof&, ), W,> Ty 2 diag{1,0,0}, T'; 2 diag{—1,1,0}
andd; ; are confined to the following sets: an) N diag{—W(“), 0,1}
73 & {Wz‘(j) lg(Wi7) < 1} (23) A - T -
. 7,00 D5 = Yij — CijTig, Pij =15 @iy
x-jz{eij an.—jeijgl} (24) . i i g
). > 1,] %1, > K) K,1 K,2 KT
Wz,(j £ |:(WZ(] ))T (Wz(g ))T (WZ(] ))T
where, fork = 1,2 )

o) & {0V (2L )

where, fors = 1,2, W,

;.;  are theith column vector OWiS;)

(t=1,2,...,7).
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The following theorem is given to provide a sufficienivhere \IJEl.) . and \Ilgi)l . are factorizations ot@i(yljlrl and

iti i i 2 N 1 ' 1 1 2
gg:ggl;)igetgaste?su?;;r;te(zgg)that the neuron weights satisfy tg%;)l)j’ |(.2e)., c@i().j)ﬂ = \115).7?+1(\1;§7J?+1)T and ‘@i(—ﬁ-)l,j =
O : : _ v (P, )T, In accordance with (17)—(18), one has
Theorem 1. Consider the nonlinear 2-D shift-varying sys- ”LJ( i+1) with (17)-(18)
tem (1) and the NN-based set-membership estimator (14). Let,7(1) ~ _ (11,70 (12§ (g(l)
the sequence of matricé®, "/} jer and{P3/} e be given. LG T T L e B LI Ve

The estimation errorsV’\}, .., and W}, .., of neuron i +%i(,.lji~)lw(l) o ) (36)
weights belong to the set@fﬂdH and ﬁi{ﬂﬂl if there AL e Y AR e g IR RIS
exist tuning scalars; ), 742, 7D 732 positive s- +r @ (37)
calarset /), el 3D <GP and matricesP) > 0, where, fors — 1.2

rP® >0 satisfying
i+1,74+1 K (K (K, GRD
oy £ col{g5, 57, 65

_f('l') * T(kyt (k) (ke T(kyL
(11’)'7+1 (1) ] <0 (26) ¢§J )2 C01{¢1('_,j.’ )7 ¢£] )7 e ¢§g )}
Hi,jJrl _f@z‘+1,j+1 ~ T
# (k) & [(W(ml))T (W2nT .. (W(mn))T]
—F(-2) . *
i @) <0, VigeT @7) (e (k) () bei
IGY;, 2+ with ¢, 7 being thecth entry of ¢; "7 and W'**) being the
’ ’ ’ W) (,=1,2,....7
where, fors = 1,2 (th column yector ofWs) (v =1,2,...,1).
By denoting
%i(';’l) 21— Ti(*;’l), FE*}) 2T+ az(-”j’l)ﬂ + 55*}’2)F§”) T
7(1) A ¢ 2) > = (1) (11) (1) _(71 1) nl(.lj)Jrl = {1 (wz(lj)Jrl)T (W(l))T}
;5 = [_Ti,j) CijPit1,50:; T Vi Tif I} ('2) (7) T
2 e = 2 i D2 @2 ey
H7(;7_j) £ {—Ti(z-'z)(fi,jq)i,j-i-l(25%.) Tz‘(.?l)wgi') Ti(ﬂi-’l)l} Mi+1,5 (wl-‘rlu) ( )
(5” s diag{(fi(_;)aﬁ(?a N 7%§?)}7 (5‘1‘7 L ® (5” we have from (34)—(37) that
K . K K K (1 p— 1 1
‘@i(,j) £ dlag{ Pi(,j)a Pz(,j)a cee aPz(,y) } Wigriijrl - H§=J>+1nl(=j)+1 (38)
(2 2 2
i Wigri,jJrl = Hz('Jr)l.,jnz(Jr)l,j' (39)
Here, (‘Kif‘j))T is the «th column vector of%;;, (¢« = On the other hand, according to Assumption 2 and (34)—
1,2,...,1). (35), the following conditions are satisfied
Proof: This theorem is proved by the two-dimensional 1) )
version of mathematical induction, which is conducted via the ”wi.,j+1|| <1 HWHLJH =1 (40)
following two steps. |7 D <w®pr@) <w®
1) Initial step. According to Assumption 4, it is obvious
that which can be rearranged in terms of!,, and n{?) ; as
~ . follows:
Do V(o)) <1, vieT (28
O ™ <0, 42 YT, <0
7(2)\T (2)\—1.7(2) . (nl,jJrl) 1M 541 = Us (771+1,]) M1, =
Wia ) (Fig)™ g <1, VieT (29) (1) TR, (1) (2) \Tp@), (2
(771'.,3'+1) Iy i j+1 <0, (77i+1,j) Iy Ni+1,5 <0.
are true. _ (41)
2) Inductive step. Supposing that By applying Schur Complement Lemma [5], it follows from
> 1. . 26)—(27) that
D@D, <1, vigeT @0 PO ()1) o .
~ )y ~ T —1
(%fij)T(f@ﬁ)lj)_l%fi ;<1 Vi,jeT (31) =i + AL 50) (P ) 1 <0 (42)
’ ’ ’ F(2) ) \T( (2 1)
are true, we are going to prove that the following inequalites Lidry + () (P )™ Wi <0. (43)
are also true: By further utilizing S-procedure [5], it can be derived from
-1 1 1 _ _
A TP ) i <1 (2) (B9 (40-449) ha
~ 1 (1 1 — 1. (1
(%fl),j-ﬁ-l)T(‘@i(i)l,j—ﬁ-l) 1%‘%,3&@1 <L (33) (Wisrl)».Hl)T(‘@i(Jr)l»jH) 1%&%,%1 <1 (44)
7(2) T/ (2 —1.(2)
In fact, it follows from (30)—(31) that there existg)lj)+1 and Wil ie) (Pidd )™ Wi <1 (45)
2 . 1 2 . ~
WEJF)LJ- with ||w§,j)+1|| <land ||w§+)1,j|| < 1 such that which means that the estimation errof[ai/z.(+1)u+1 and
. 77(2) i (1)
%(;J)rl — @§3)+1w£73)+1 (34) Wi 41 of neuron weights belong to the sef§ 1 ;,, and

(35) Z:11.541- Therefore, according to the principle of mathemat-

7(2) _g®@ (2
L =V w ical induction, the proof is now complete. [ |

i+1,5 i+1,7 Pit+1,5
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B. NN-Based Set-Membership Estimator Design and .
—Ti' * ..
To facilitate subsequent development, we introduce the {E 7 CQir 1] <0, Vi,jeT (46)
following notations: ! Al
where
T\ £ diag{1,0,0,...,0} 14
’ N— ¥4 m m
87+ Y = T + Z 61('-,3')1\1('-0’)
r® édiag{ —1,1,0,0,...,0}
g AL R ”“} 1152 =9 1 1]
7ﬁ+ﬁ ’ 9, El
=(1) 2 1 2
TZ(.Qj) 2 diag{ —1,0,1,0,0,.. .,0} 53 £ ﬁfzjilAi.jH ﬁf;&i it ‘I/Z( ,)+1 ‘I/Z(Jr)l,]}
677 =2 2 [ KO _K®@ Pty &2 }
3 a i, i,j+1 i+1,j5 4,J+1 i+1,5
T§._j_diag{—1,0,0,1,0,0,...,0} ) o @
' — =ig = [ K jir1Dijn _KiJrl,jDiJrlJ}
e A a0 0
T 2 dlag{ ~1,0,0,0,1,0,0,. o} f‘?ff(g)ﬂ (%(JH Kz(g)+1‘5‘,j+1)
B h,—/ 2 2
4747 %Jrl J = (”(Z{Hl J Ki+1,j<5i+l,j)-
T édiag{ — &M 0,0,...,0,1,0,0,. ,0} Proof: This theorem will be again proved by using
4"ﬁ 3ﬁ"+ﬁ the two-dimensional version of mathematical induction that
) & 12) consists of the following two steps.
Y= dlag{ -&7.0,0,...,0,1,0,0,. ’O,} 1) Initial step. It is known immediately from Assumption 5
57 27+ that
) 2 diag{ — d@i;41,0,0,...,0,1,0,0,...,0} 07;Qi;0i5 <1 (47)
’ E/—/ S—— )
6it 2fi+i—n, is true for (4, j) € {(¢,7)]i,5 € T,i =0 or j = 0}.
Z(ssj) N diag{ — @41,,0,0,...,0,1,0,0,.. .,O} 2) Inductive step: Letting
b —_—— ——
674mny 2741 —2n,y, 9;-1;7]»0 Ql_o?jo oio,jo < 1 (48)
1) 2 diag{ -1,0,0,---,0,R; 1, 0,0,...,0 } be true for(i°, j°) € {(i,j +1),(i +1,5)}, we need to show
6742n, Nw+2(A+ny) that T .
(10) £ dlag{ -1,0,0,---,0 Rz_+1 30,0 ,O} Oip1,j41Qiv1 jr1bit141 <1 (49)
6n+2n’y+nw 2(7itny) is also(true.) {( y ) o
For (i°,j°) € {(4,7 +1),(i 4+ 1,7)}, it is easy to veri
(11) A 1 )] )J s yJ) S Yy
dlag{ 1,0,0,---,0,5 41,0, O’O} from (48) that there exisy; ;11 andg;1; (With ||¢; ;41 < 1
6742(ny+nw) and|s;y1,;]| < 1) such that
(12) A 1
T 2 diag{ ~1,0,0,--+,0,87% ;,0,0} 01 = Aijercison 50
) bita—n, Oit1,5 = Niv1,5Si+1,5
13 A
i, dlag{o’ ”+1’_\,"_’9’I’0} where A; j1; and A;4; ; are factorizations ofQ; ;,, and
5+ Qit+1,j, respectively, i.e., Qi1 = Ai7j+1Azj+1 and
T 2 diag{0,0,-41),,,0,0,- 0,1} Qir1j = Nir1AN
T On the other hand it follows from Theorem 1 that
SN2 pL -1 7(1)
a2 ny(alTJE) 7 Az('.’;) 2 |F®GA || (k=1,2). { (W, ,J+1¢”+1) (P j41) W, ,J+1¢”+1) Pijr1
’ 2 2 2 — 2 (2 2
(W00 ) (PR T W ;080 ) < 634,
In order to calculate estimator galﬁé(l) and K(Q) such hich )
that the estimation errdt; ; is confined to the constramed setVNICh means
(23), we present the following theorem. ( u+1¢u+1)( ”H¢”H) < ﬁl(;)ﬂ
Theorem 2: Consider the nonlinear 2-D shift-varying sys- (W(z) ¢(2) (W ¢ )T < ﬁ(é) (52)
tem (1), the EDM (6)—(9), and the NN-based set-membership i+1,j i+ 1L] Z+1 ST LGS = Ly
estimator (14). Let the sequences of matri¢€s ;};cr and with
{Qio}ieT be given. Then, the estimation errfy. ;41 of . 1 . R . 1 . R
state belongs to the ellipsoidal sef;,, ;,, if there exist ol e — o @NT(@)), o7 2 n—(b((bg?)T(ébg?)
2

(1) (2) (m)
estimator gainss; /., ;, K7 ;, positive scalars;””’ (m = AU & ¢(1)P(1), ﬁ(2> N ¢(_2_)P.(2.)'
1,2,...,14) and a matnxQzH,,H >0 satlsfymg (26), (27) i,j i,j 0. 7,
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S|m|larly, from (52), there also eX|3ﬁ(1) 1 andw  (with
Hw”+1|| <1 and|\wl+1j|| < 1) such that
_gm =0)
7 ]Jrl(bz J+1 = \Ijl g+1w1 Jj+1 (53)
w® _¢(2) 9@ =22
i+1,77i+1,5 1+1,7 1+1 .
W?Qe)re \If§1j+1 and \Ijz-l—l_] a(rS factorlzag)ons (2{1)31 E)Jrl and
%(Jg)lj reﬁs(g)ectwe(l%, e P, = ‘I’zg+1(‘1’i,J+1)T and
Pi+1,j = ‘I’i+1,g(\1/z+1,7)T'
Letting
T
1 2 3
dig =1 00T O WE)T]

in view of (50) and (53), we rewrite (19) as

Oit1,5+1 = Zi Vi (54)
where

(1) a - (1) ~(2)
L2 —COl{%Ha<i+17jawi,j+1v H—l,_]}

(2) & F(2)
v, = COl{iz 7+1’€i+1,j’ei-,jJrl’eiJrl-,j’wi-,jJrl’wiJrl-,j}

(3) & #(1) 7(2)
19 ij — COI{Ui,jJrla Vi41,55 fi,j_Ha i+1,j}-

8

14
IF M, <. (60)

Subsequently, by applying Schur Complement Lemma [5],
it follows from (46) that

1
T ,J + =1 Qz+1 ]+1‘—‘17 S 0.

By further resorting toS-procedure [5], it can be derived
from (54), (56), (59)—(61) that (49) is true fdi + 1,5 +
1), which means that the estimation ermjt., ;.1 of state
belongs to the ellipsoidal se¥;. ;+1. Therefore, according
to the principle of mathematical induction, the proof is now
complete. |

(61)

C. Optimization Problem

Theorems 1-2 outline principles of seeking tuning scalars
in NN weight tuning laws and NN-based set-membership
estimator gains. It should be noted that neither of the schemes
provides an optimal solution. In what follows, a corollary is
presented to determine the tuning scalars and the estimator
gains via optimizing the constraint sets in the sense of matrix
trace.

Corollary 1: Consider the nonlinear 2-D shift-varying sys-

According to Assumption 3, (2), (3), (50) and (53), theem (1), the EDM (6)—(9), and the NN-based set-membership

following conditions are satisfied

llsijrill <1, flsivr, ]l <1
- (2
Il <1, |8 ,1<1
2
€D ) < €D, 1ED, ) < €@

lleijrill < dijrrs el < digry

55)
T “1 (
wi 1 Ry jwijen <1
T -1
wi+1,jRi+1,jwi+1,j <1
o7 —1
v; ]+ISZ ]+1Uiaj+1 < 1

T
Vit1, jSH—l _]’U“Fl J S 1

which, in terms ofd); ;, can be further rewritten as
IF T, <0, m=1,2,...,12 (56)

with £ 2 27 WM 4 (1) and {2 2 2@ p(2) 4 £,
Next, we proceed to handle the nonlinear terfﬁ?+1 and

estimator (14). Let the sequences of matric{d%?hen

{PQ}ser, {Qos}ser and {Qio}ier be given. The con-
straint sets%ﬁr)1 1 /i(f)l_ﬁl and.“;;1,j+1 are minimized
in the sense of matrix trace if there exist tuning scakﬂs}) ,

fif)l, fill)j, fH ; and estimator gamelJ)H, Kfﬁl j such

that the following optimization problerfOP) is feasible:
OP: min tr (Aig1,41)

ARG,
T Ko K
subject to(26), (27), (46) (62)
Where///” = wlP(l) + o P( ) + wSQi,j andwl, wo, W3
are positive scalars satlsfymﬁ,/:1 w, = 1.
For the purpose of numerical calculation, we describe the
estimator design procedure in Algorithm 1, which is based on

the recursive linear matrix inequality (RLMI) approach.

f(i)l  In system (19). According to Assumption 1 and (50)
we have Algorithm 1: NN-based SME algorithm
1D = 179 = £ Input : System initial conditionsi"), W3, 7o, 7,
. Zo,;
= [fD(GTi 1) = fD (G i) Output: 7 7(1 1), S D50 50 K K.
<|FYGO; 4l  for i=1:T do
—1 _
= |IA} g)+1<i,j+1|\ (57) 2 | forj=1:7do L) (1,2)
172 = 172 | 3 Compute the tuning parametefié , ” ,
o (”1 g e I @)1 (3 Y. 722 and the estimator galnﬁz?, K(2
=l (GIHLJ’) = [P(GEi)] by solvmg theOP from Corollary 1;
< NFDGO:1 4| 4 Compute the estimated state by (14);
v 5 Update the NN weights by (15)—(16);
= HAz(i)ngiﬂ,jH (58) p g y (15)—(16)
which, in terms of9; ;, are expressed as 6 return T(l D, Tz—(;"z), 1(3 b, 1(? 2) Kflj) Kfi)
I <0 (59)
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TABLE Il
Remark 5: So far, the SFE problem has been solved for TUNING scALARS (1D
the addressed nonlinear 2-D shift-varying system. Note that, 7
in comparison to the rich body of existing literature on SLONG
fault estimation problems, our results exhibit the following = 1 2 20
distinguishing features: 1) the addressed SFE problem is new T 02732 02651 - 0.2066
that represents one of the first few attempts to cope with . . . : :
no_nllnear 2-D__s_h|ft-vary|ng systems with EDMS and UBB 20 02891 0.2901 --- 02103
noises by utilizing the NN-based SME algorithm; 2) the
proposed EDM is new, which is designed under the 2-D TABLE IV
; ; ; ; ; TUNING scALARs T 1?2
framework and is capable of dealing with dynamics evolving i
along both horizontal and vertical coordinates; and 3) the two- e
dimensional version of the mathematical induction method g N 1 9 20
is utilized to examine the feasibility of the developed NN- i

based SME algorithm that confines the estimation error to an
optimized ellipsoidal set. : : : : :

Remark 6: This paper launches a systematic investigation 20 0.5161  0.5007 ---  0.4138
on the SFE problem for a class of nonlinear 2-D shift-
varying systems in the context of networked systems with . .
certain engineering-oriented complexities (i.e., EDMs, UFD, 1he process noisev; ; and the measurement noisg,;
and UBB noises). By exploiting a common consideratiod® Selected asv;; = 0.5sin(0.1(7 + j)) and v;; =
for several up-to-date approaches such as set-memberéhios(0-1(i +2j)), whose weighting matrices are chosen as
estimation method, two-dimensional version of the mathélij = 0-31 a”d5i=a'1: 0-22 The scaling parameter is selected
matical induction approach, and NN approximation metho@$«i,; = 0.8 andT}") = 71 = 0.51. The activation function
the addressed problem has been thoroughly examined Xfgtors are constructed as
the desired parameters (i.e., NN tuning scalars and estimatar,.), _, (1 (2 (3
gains) have l;:)Jeen formulgted in terms gf the solutions to a s@f )(xi’j) =03 [tanh(x;j)) tanh(:vl(-_’j)) tanh(:vl(-_’j))
of optimization problems. Within the established framework, Let the initial conditions be given as
it is not difficult to extend our results to more general systems () )
with more complicated dynamics with more complex network- VYOJ =151, Vje[010]
induced phenomena. Wy =0, Vj € [11 20]
W) =21, Vielo10]

IV. ILLUSTRATIVE EXAMPLE Wi(%)) —0, Vi e [11 20].

In this section, the effectiveness of the proposed NN-based " _ T
SME algorithm is verified by the Darboux equation which Zoj =Ti0= |1 1.4 0.5} , Vi,j€][010]
can model several industrial processes such as water stream| _ . r T o
heating and gas absorption. In practical applications, the 2-D J #0.; = Zio = |0 0 O} , Vi, j € [11 20]
systems are inevitably suff_ering from enviro.nmelzntallchances Boj = Bio = '0_9 1 03 T’ Vi, j e [0 10]
(e.g., temperature fluctuations and harmonic vibration), and ’ ' L

1 0.5011  0.4986 ---  0.4306

T

accordingly, the parameters of the 2-D systems may be affect- | 2o, =20 = [0 0 O}T, Vi, j € [11 20].
ed to some extent. The system parameters are taken from [36}1\ ) o ) )
as ccording to Algorithm 1, the estimator gains and the
PP tuning scalars can be calculated recursively as listed in Tables
Aglj) — {0'3 —0.1sin(i + ])] I-VI (only partial results are shown here due to limited space).
’ 0.2 0'1_ The simulation results are presented in Figs. 2-9. Among
A® _ {0-1 +0.15¢7% 0 ] them, Figs. 2—7 plot the system statg;, the system faulp; ;,
” 0.2 0.2 and the estimation errd#; ;, which show the effectiveness of
_ 0.2 the proposed NN-based SME algorithm. Figs. 8-9 depict the
Bii = 0.05 + O.lcos(2i)} evolution of |[W})|| and ||W?|| according to the designed

Ciy=[1 05+0.15sin(i+j)], Di;=03—0.1e % adaptive tuning laws, respectively.

EY) = [0 2%’3_31} , B = [0'1 +00315sm(i>} V. CONCLUSION
W ' L @ ' , This paper has addressed the SFE problem for a class of
Uiy =01+40.15e7, U;y = 0.1+ 0.05cos(j) nonlinear 2-D shift-varying systems subject to additive faults

FO () = 0.1 {|x(1)| |x(2)|}T and UBB noises. A new EDM has been designed for 2-D
4 : 0. 0. systems, where the zooming-in/out-based encoder and decoder
FO(z;,) =0.15 {|x(1)| ® }T have been utilized to improve the communication efficiency.
“J 0] 0] An NN-based SME algorithm has been developed for 2-
1P (pij) = 0.25cos(pis), P (pij) = 0.25sin(p; ;). D systems to confine the estimation error to an optimized
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TABLE |
ESTIMATOR GAINS K| )
(DNJ
Km 1 2 e 20
K3
1 [0.2282 0.2049 0.1139] T [0.2701 0.1965 0.1311] ©  --.-  [0.3074 0.2144 0.0157] "
20 [0.2081 0.1534 0.1401] " [0.1903 0.1407 0.1228] © [0.2597 0.1891 0.0224] "
TABLE i )
ESTIMATOR GAINS Ki(,j)
2NJ
2 1 2 . 20
i
1 [0.1508 0.2566 0.0998] T [0.1622 0.3014 0.1327] " [0.1004 0.2589 0.1199] "
20 [0.0901 0.2442 0.1194] " [0.1197 0.2865 0.1272] © [0.1061 0.2485 0.0831] "
TABLE V
TUNING SCALARS T ")
CRWV
i 1 2 . 20
i
I 0.2465 0.2507 ---  0.2726
20 0.1387 0.1514 .- 0.2955
TABLEVI
TUNING SCALARST,L-(’J-’ )
2,2\ j
Ti.j 1 2 . 20
i
I 0.3726 0.4265 --- 0.4716
: : : . . Fig. 3. The system state(2).
20 0.4597 0.4013 .- 0.4026

(3)
J

Fig. 2. The system state(!). Fig. 4. The system faulp.
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Fig. 5. The estimation erra#(1).

Fig. 6. The estimation erra#(2),

0.3

Fig. 7. The estimation erra#(®).

11

Fig. 8. The weight matrixy (1),

5 20
15

Fig. 9. The weight matrixi (2),

ellipsoidal set. By utilizing the two-dimensional mathematical
induction approach, the feasibility of the proposed estimation
algorithm has been examined, and the desired gains can
be computed by solving a series of optimization problems.
Finally, a simulation example has been provided to verify the
usefulness of the proposed estimator design method. Further
research topics include the extension of the main results to
more complex systems, such as fuzzy systems [12], [40],
positive systems [11] and complex networks [8], [30].
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