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Abstract—Over the last few years, convolutional neural net-
works (CNNs) have proved to reach super-human performance
in visual recognition tasks. However, CNNs can easily be fooled
by adversarial examples, i.e., maliciously-crafted images that
force the networks to predict an incorrect output while being
extremely similar to those for which a correct output is predicted.
Regular adversarial examples are not robust to input image
transformations, which can then be used to detect whether an
adversarial example is presented to the network. Nevertheless, it
is still possible to generate adversarial examples that are robust
to such transformations.

This paper extensively explores the detection of adversarial ex-
amples via image transformations and proposes a novel method-
ology, called defense perturbation, to detect robust adversarial
examples with the same input transformations the adversarial
examples are robust to. Such a defense perturbation is shown to
be an effective counter-measure to robust adversarial examples.

Furthermore, multi-network adversarial examples are intro-
duced. This kind of adversarial examples can be used to simul-
taneously fool multiple networks, which is critical in systems that
use network redundancy, such as those based on architectures
with majority voting over multiple CNNs. An extensive set
of experiments based on state-of-the-art CNNs trained on the
Imagenet dataset is finally reported.

Index Terms—adversarial examples, adversarial defense, in-
put transformation, deep neural network, convolutional neural
network, redundant neural networks

I. INTRODUCTION

During the last few years, convolutional neural networks
(CNNs) have been used in many fields with outstanding, and
sometimes super-human, performance [1], [2], [3]. At the same
time, a lot of research has been devoted to the robustness of
such models, often focusing on adversarial examples [4], [5].

Adversarial examples (AEs) are maliciously-crafted inputs
(in this case, images) that have the power to fool a neural
network by forcing its prediction towards an erroneous class,
by slightly changing the intensity values of the pixels, keeping
almost the same digital representation. From the perspective of
a human observer, a typical AE has the same visual appearance
as the original image.

AEs are a serious concern for the safety and security of
systems based on artificial intelligence (AI). For instance, they
could be used to attack a neural network for object recognition
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Fig. 1. BASELINE architecture used to detect standard adversarial examples.

in an autonomous (or even semiautonomous) vehicle, possibly
causing a catastrophic consequence [6], [7], [8], [9].

These facts motivate the search for an effective defense
against AEs. For instance, Guo et al. [10] showed that stan-
dard1 AEs are not robust to input transformations, such as
translation, rotation, and other input changes. These findings
suggest that standard AEs can be detected by measuring
how the network prediction changes when an input image is
replaced with the same one processed with a given transforma-
tion. The two network predictions can then be compared by
the Kullback-Leibler (KL) divergence [11], so that an input
image is considered to be adversarial if the two predictions
are “distant” from each other, and non-adversarial if the two
predictions are “close” to each other. A binary classification
can then be obtained by applying a threshold to the output
of the KL module. This approach can easily be implemented
using the architecture illustrated in Figure 1, referred to as
BASELINE detection architecture.

Input transformations are attractive because they are simple,
require a limited computational cost (thus can be performed at
run-time), and do not need any training procedure. Neverthe-
less, they suffer from two major problems: (i) they might not
have a good detection performance (also due to the accuracy
degradation they may cause), and (ii) it has been shown [12]
that it is still possible to construct AEs that are robust to input
transformations.

1In this paper, standard AEs refer to those AEs crafted without considering
image transformations, using the classical formulation presented in Section II
by Equation (1).
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A. This paper

This work addresses the two problems mentioned above.
To evaluate how different input transformations affect the
performance of the detection system and the accuracy of the
network, an extensive experimental campaign is reported both
for adversarial and non-adversarial images. To the best of
our knowledge, a similar experimental study has never been
presented in the literature.

To cope with the second problem, different new methods
and architectures are proposed to include a novel counter-
measure for detecting robust AEs. The counter-measure is
based on the assumption that the defender is aware that the at-
tacker knows how to craft robust AEs and has also knowledge
about the transformations that are used. To counteract this kind
of attacks, a new defense method, called defense perturbation,
is introduced to “convert” robust AEs into non-robust ones.
Such a defense perturbation is generated from robust AEs,
similarly to how universal adversarial perturbations [13] are
generated.

As a further evolution, this work considers a multi-network
architecture composed of three different state-of-the-art CNNs
for image recognition (trained on ImageNet [14]), which are
combined by means of a majority voting algorithm (2 out of 3).
For instance, this approach was proposed by Biondi et al. [15]
as a solution for adopting neural networks in safety-critical
control systems. Although there exist methods to transfer AEs
between different models and architectures [16], multi-network
adversarial examples are introduced as a new kind of AEs
that are capable of fooling multiple networks simultaneously
without applying any network-specific perturbation.

Contribution and paper structure. In summary, this paper
makes the following novel contributions:
• It reports an extensive experimental evaluation on the

detection capabilities of input transformations.
• It presents a methodology for setting up a counter-

measure against robust adversarial examples.
• It introduces multi-network adversarial examples to sys-

tematically fool multiple networks at once.
• The proposed methods are finally combined to design

an effective architecture for detecting robust adversarial
examples.

The rest of the paper is organized as follows: Section II
introduces the problem and the notation; Section III provides
a brief overview of background and related work; Section IV
describes the proposed approaches; Section V presents the
experimental results; and Section VI states the conclusions.

II. SYSTEM AND THREAT MODEL

This paper considers CNNs for image recognition. Let
X = [0, 1]h×w×c be the image space (of dimensions w, h,
and c, namely the width, height, and the number of channels
of the image, respectively). A CNN behaves as a function
f(·) : X → [0, 1]n that takes as input an image of fixed
dimensions and outputs a discrete probability distribution
vector with dimension n equal to the number of classes
considered for the classification problem. The class predicted

by a neural network classifier is represented by the function
f̂(·) = argmax f(·).

An adversarial perturbation can be modeled as a tensor r ∈
[−ε, ε]h×w×c, where ε ∈ (0, 1) (typically small) is a parameter
typically named adversarial strength. Given a source image
x ∈ X , an AE is then an image x + r ∈ X such that, if
f̂(x) = t, where t is the correct target class of the image x,
then f̂(x + r) = tadv , being tadv 6= t the adversarial target
class.

AEs can be characterized by (i) the knowledge level of the
attacker, (ii) the target specificity, and (iii) the similarity metric
used to minimize the distance of an AE from the source image.
The AEs considered in this paper are:

(i) White-box, i.e., the attacker has perfect knowledge of
the structure of the network and its parameters (this is
the strongest type of attack);

(ii) Targeted, i.e., they are crafted to force the prediction of
the network to a specific class;

(iii) Generated using the L2 norm, i.e., the Euclidean norm,
to express the distance of an AE from the source image.

An AE of this type can be crafted by optimizing

min
r

[L(f(x+ r), tadv) + k‖r‖22], (1)

where L in the above equation is a loss function expressing
the distance between the target tadv and the output distribution
of the network, and k is a constant that reflects how much the
magnitude of the perturbation is weighted in the minimization.
Typically, the loss function L is a cross-entropy, but it can
also assume other more complex forms (e.g., as in the Carlini-
Wagner attack [17], described in Section III). The optimization
is iteratively performed with a stochastic gradient descent
approach for a certain number of epochs: this optimization
strategy is used throughout the whole paper for the generation
of AEs. When searching for the minimum-perturbation AE, a
further optimization is usually performed to find the optimal
k. This fine-grained optimization is out of the scope of this
work, and hence k is fixed to 0.01 for all the AEs.

The AEs crafted with the procedure described above are sen-
sitive to input transformations and are referred to as standard
AEs. Conversely, robust AEs are generated with a slightly
modified optimization process based on the architecture illus-
trated in Figure 2, which is named ROBUST ADV GEN. Let
{gj(x; θj), j = 1, . . . N} be a set of N transformations of the
input image (e.g., translation, rotation, etc.), each of which
depends on a parameter θj . AEs that are robust to each of
these transformations can then be generated by minimizing

min
r

[L(f(x+r), tadv)+
N∑
j=1

L(f(gj(x+r; θj)), tadv)+k‖r‖22].

(2)
Most image transformations depend on a parameter θj

that varies in a known range. At each iteration step of the
optimization procedure, the parameters of the transformations
are uniformly sampled from their corresponding ranges, hence
generating AEs that are robust to a wide spectrum of configu-
rations of the image transformations. Details on the generation
of robust AEs used in this work are reported in Section V.
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Fig. 2. ROBUST ADV GEN architecture used to craft robust adversarial
examples.

Since a deep neural network is naturally prone to classi-
fication errors, especially when considering grey cases (i.e.,
previously unseen, possibly harmful inputs), an ensemble of
networks can be used [15] to mitigate the errors of a single
network, by combining the outputs with a voting algorithm.
The resulting architecture is illustrated in Figure 3 and consists
in applying a voting algorithm (such as majority voting) over
M different CNNs. This architecture is referred to as VOT-
ING BASELINE. This paper only considers M = 3 networks,
which are described in details in Section V. Standard AEs, as
those described above, result adversarial for a single network.
With this kind of voting architecture, an AE that fools a single
network is a less dangerous threat, since the voting algorithm
will cover for that mistake with the predictions from the other
two networks.

Note that single-network AEs may also fool other networks.
However, in order to assess the detection capabilities of
such system, it is more convenient to craft images that are
adversarial for the three networks simultaneously. Such AEs
are also adversarial for each single network and can be used
to evaluate the detection performance of input transformations
for each single network. For this reason, multi-network AEs
are introduced. Given a set of M classifiers, each denoted
by fi(·), i = 1, . . . ,M , and a set of N transformations
of the input image, denoted as {gj(x; θj), j = 1, . . . N},
multi-network robust adversarial examples can be crafted by
minimizing the following extension of Equation (2):

min
r

[

M∑
i=1

L(fi(x+ r), tadv)+

+

N∑
j=1

M∑
i=1

L(fi(gj(x+ r; θ)), tadv) + k‖r‖22]. (3)

If generated in this way, an image results to be adversarial
not only for all the M networks, but also for all the N
transformations.

These AEs have been used for the experimental evaluation
and proved to be more difficult to detect than single-networks
AEs, as they are adversarial for each of the selected networks.
The methodology presented above extends a series of state-
of-the-art attack methods, which are reviewed next.

Fig. 3. The VOTING BASELINE architecture used in this work.

III. BACKGROUND AND RELATED WORK

The literature concerning AEs has been growing exponen-
tially over the last years, and several different attack and
defense methods have been proposed. This section reviews
the most common attacks and defenses, highlighting how this
work is positioned within the published literature.

A. Attacks

a) L-BFGS attack: Szegedy et al. [4] first introduced
AEs against deep neural networks. The approach is the one
described in Equation (1). The loss function they used is a
cross-entropy.

b) Carlini-Wagner (CW) L2 attack: Carlini and Wagner
[17] proposed a set of more complex loss functions (and
different threat models), among which the most relevant is
L = max(0,max{Z(x + r)k : k 6= tadv} − Z(x + r)tadv

),
where Z(x) is the output of the logits layer (i.e., before the
softmax layer), and Z(x)k is the logit value corresponding
to class k. The effect of using this loss is that, during
the optimization process, this term falls to zero as soon as
the predicted class matches the adversarial target, without
considering the confidence associated with that prediction.
This allows minimizing the adversarial perturbation only as
soon as the first term drops to zero.

c) FGSM attack: Fast Gradient Sign Method was intro-
duced by Goodfellow et al. [18], and it is a non-iterative,
untargeted method for adverarsarial examples generation. It
is sufficient to compute the gradient with respect to the
image of a certain loss function ∇xL(f(x), t) (usually cross-
entropy). The adversarial perturbation is then generated as
ε sign(∇xL(f(x), t)). Although this type of AE is one of
the most popular for its simplicity and fast generation, the
focus of this paper is on AEs that are able to simultaneously
fool multiple networks, and targeted AEs are more suited for
this purpose. Hence, this kind of attack is not considered in
this work since, for an accurate assessment of the detection
capabilities of this multi-network system, it would require an
accurate filtering of the perturbations that resulted adversarial
for the ensemble of the three networks.

d) Robust adversarial examples: AEs can be made ro-
bust (in expectation) to a certain transformation distribution
T [12] by randomizing the parameters of the transformation
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during the optimization of the adversarial perturbation. This
kind of AEs are, by construction, not easily detectable with
the BASELINE architecture (Figure 1).

e) Universal adversarial perturbation: this kind of attack
crafts an image-agnostic adversarial perturbation [13], which
is generated to result adversarial for a set of different images
belonging to different classes. A universal perturbation has the
property of making regular images become AEs, even when
considering images that were not used for the optimization of
the perturbation. Although this kind of attack is not considered
in this work because weaker than the ones presented above,
it is worth citing it since it inspired the defense perturbation
presented in this paper, as described in Section IV.

f) Other attacks: The literature presents many other
different attacks that are not considered in this paper for
space limitations. Among these, the most relevant to us are
DeepFool [19] and JMSA [20].

B. Defenses

The defenses proposed in the literature can be divided into
three categories, briefly described below:

a) Modifying Data: the defenses that fall in this category
are the ones that modify the input data at run-time to defend
from AEs. Possible approaches are based on data compression
and filtering [10], [21], [11] or data randomization [22]. The
underlying idea is similar to the one presented in this work.
However, the objective of this work is to detect AEs rather
than predicting the correct class; moreover, it presents an
extensive experimental evaluation of the most common image
transformations.

b) Modifying Model: this type of defenses includes the
ones that act on the classifier in order to prevent attacks. For
instance, regularization (i.e., adding a penalty term to the loss
function during training in order to improve generalization) is
a widely diffused method. Adversarial training [4] was the first
defense to be proposed. It consists of enlarging the original
dataset with a set of AEs, which is used to retrain the network.
It has been criticized because it just shifts the problem to
find new AEs. Among others, it is worth citing defensive
distillation [23], which trains a second, simpler network over
soft targets (i.e., the output values of the original network) and
deep contractive networks [24], which improve the defense
performance of denoising convolutional autoencoders.

c) Auxiliary Tools: these approaches make use of an
external tool to defend or detect AEs. Among these, Defense-
GAN [25] and MagNet [26] present good performance.

Many other works are present in the literature. The inter-
ested reader may refer to the reviews presented by Yuan et al.
[27], and by Xu et al. [28].

C. This work

Although many of the defenses listed above show good
performance, the work presented in this paper focuses on data
modification techniques, since they are simple and computa-
tionally cheap to detect AEs, without changing or retraining
the neural network. The proposed detection system can also be
seen as an external tool aimed at detecting AEs, but without

considering complex models (such as generative adversarial
networks or additional neural networks) as previous works do.

Previous work used input transformations [22], [11], [21],
[10] but, to the best of our records, none of them presented an
extensive experimental evaluation to determine which trans-
formations are the most effective in terms of detection rate.
Furthermore, still to our records, no counter-measure for robust
AEs has been presented before. This latter aspect is crucial,
since any defense based on differentiable input transformations
(as in the work of Xie et al. [22]) can be completely fooled
by robust AEs.

This paper presents a novel method to detect robust AEs
with input transformations, which, to our records, was never
proposed in the literature. An experimental comparison with
similar state-of-the-art methods is performed in Section V.

IV. DETECTION ALGORITHMS

The objective of this work is to detect different kinds of AEs
and evaluate the detection performance of four different archi-
tectures. The AEs considered in this work can be classified into
(i) standard, i.e., those generated by the attacks reviewed at
the beginning of Section III), and (ii) robust ones, i.e., those
that cannot be detected by input transformations. Orthogonally,
they can be also classified as (i) single-network, i.e., those
generated to attack just a single CNN, and (ii) multi-network,
i.e., those that are capable of attacking multiple CNNs subject
to majority voting. Note that this taxonomy allows defining
four classes of AEs.

The BASELINE and VOTING BASELINE architectures (Fig-
ures 1 and 3) are suited for the detection of standard AEs only,
as they fail in detecting robust ones. The former is suited for
single-network AEs, while the latter for multi-network ones.

Other two architectures are proposed to detect both standard
and robust AEs by leveraging a defense perturbation that is
assumed not be known by the attacker. The ENHANCED ar-
chitecture is designed to detect single-network AEs, while the
VOTING ENHANCED architecture is designed to detect multi-
network AEs by combining voting and defense perturbations.

A. Baseline detection architectures

The BASELINE architecture has been considered to evaluate
the detection performance of a set of input transformations.
The input image x ∈ X (that might be an AE) is transformed
by means of the chosen input transformation, producing x′.
Then both images are fed into the network and a distance
between the two output probability distributions is computed
using the KL divergence. Since the KL divergence is not
symmetric, it is not a proper distance. Hence, the actual
distance is computed as the maximum KL of the two possible
combinations:

D(f(x), f(x′)) = max {KL(f(x), f(x′)),KL(f(x′), f(x))} .
(4)

The computed distance is then thresholded in order to
classify the image as adversarial or not. Note that this is
different from the approach proposed by Kantaros et al. [11],
where the minimum of the two KL divergences is used.
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Fig. 4. DEFENSE GEN architecture used to craft the defense perturbation.

This is because all our experiments showed that the detection
algorithm obtains a significantly better classification accuracy
using the maximum, rather than the minimum. This can
be explained by considering that the maximum is a more
conservative estimate of the distance and has more impact
on AEs, as they are characterized by more asymmetrical KL
divergences than regular images.

The VOTING BASELINE architecture is also considered to
assess the performance of a multi-network ensemble in de-
tecting AEs. In particular, three pre-trained state-of-the-art
CNNs are used, as shown in Figure 3. The three networks are
subject to majority voting, which is a common algorithm for
fault detection and exclusion and in general for fault-tolerant
systems. Here, it is used to decide whether an input image
is adversarial for the majority of the networks, meaning that
as long as there are two networks detecting potential AEs,
the voting algorithm classifies the input as adversarial. The
detection performance of such an architecture is discussed in
Section V.

These two architectures are based on image transformations
only and both fail in detecting robust AEs. The following sec-
tion introduces new architectures to overcome this limitation.

B. Enhanced detection architectures: counter-measures
against robust adversarial examples

AEs have great fooling power. During the experimental
campaign conducted for this work, it was possible to find
AEs that were robust to any kind of differentiable input
transformation and even robust to any possible combination
of four consecutive transformations, chosen between three
different transformations. Also, randomization does not help:
during the experiments it was possible to find AEs that are
robust to additive Gaussian noise.

Since AEs have such great fooling power, the key idea of
this work is to use the same crafting procedure to generate a
defense perturbation, which is basically a mask of pixels added
to the input image at run-time. This perturbation is optimized
to make robust AEs sensitive again to input transformations.

The idea behind the generation of the defense perturbation
is inspired by the one used to compute universal adversar-
ial perturbations [13]. This generation process is aimed at
producing an image-agnostic pixel mask that is capable of

removing the robustness to specific transformations, once it is
added to a robust AE. The defense perturbation is generated
by using the architecture shown in Figure 4, which is named
DEFENSE GEN, and takes as input a dataset constructed as
follows. Given a set of L original images and a set of N
input transformations {gj(x, θj), j = 1, . . . , N}, a robust AE
is generated for each of the L images and for each of the N
input transformations. All images, i.e., both the original and
the adversarial ones, are then added to a dataset. For each
of the images x̃ in such a dataset, the following optimization
procedure is performed for kmax steps:

min
d

[L(f(x̃+d), t̃)+
N∑
j=1

L(f(gj(x̃+d; θj)), t)+k‖d‖22], (5)

where t is the original (non-adversarial) target and t̃ is the
target associated with image x̃. If x̃ is an AE, t̃ is the
adversarial target, whereas if x̃ is a regular image, t̃ is the
original target. This iterative procedure outputs a mask d that,
when added to a robust AE x̃, produces a new image that is
no longer robust to input transformations, and therefore can
be used to detect AEs, just as in the standard case.

This property comes from the fact that the generation
process of the defense perturbation follows the same logic for
generating robust AEs, but reversed. The ROBUST ADV GEN
(Equation (2)) optimizes a perturbation, added to the original
image, that pushes the prediction of the network towards the
same label for both the non-transformed and the transformed
images. Conversely, the DEFENSE GEN (Equation (5)) does
the opposite: it pushes the prediction of the transformed image
towards the original label (as it actually is with standard AEs),
and the non-transformed image towards the corresponding
label. Since the input images are both AEs and non-AEs, the
corresponding label would be the adversarial label for AEs,
and the original label for non-AEs. In this way, the defense
perturbation learns the “opposite average robust perturbation”
that, added to a robust AE, removes its robustness.

If the optimization described in Equation (2) is used to
generate an AE for each network and for each transformation,
then the minimization of Equation (5) is aimed at finding the
perturbation that is able to do the opposite, that is inhibiting
the patterns that make the AEs robust to input transformations.

The downside of this method is that the generation of a
dataset of robust AEs and the training of a defense perturba-
tion are computationally expensive. Another problem of this
method is that it is suited only for robust AEs, while it has been
experimentally found that has the property of making standard
AEs robust. This happens because the role of the defense
perturbation is to counteract the adversarial perturbation that
makes an AE robust to input transformations. When adding
the defense perturbation to a standard AE, it introduces a
perturbation that transforms standard AEs into robust ones,
hence having a negative effect for the detection architecture.

Nevertheless, standard AEs are sensitive to any kind of
perturbation, meaning that just the application of the mask is
sufficient to discriminate AEs. Given these observations, the
detection of both standard and robust AEs can be performed
using the ENHANCED architecture illustrated in Figure 5, where
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Fig. 5. ENHANCED architecture for detecting robust adversarial examples.

the mask is used as a first transformation (to detect standard
AEs and to make robust AEs sensitive to input transforma-
tions), and a second transformation is used to detect robust
AEs. Each of the two KL divergences is computed by Equation
(4), taking the maximum between the two results. With this
counter-measure, robust AEs can be detected with simple input
transformations at run-time and three inference operations with
the same network.

Note that, since the defense perturbation d is a differentiable
transformation, an attacker could generate AEs that are robust
to that specific mask. Being the mask not known in advance,
the attacker might follow the same procedure described in this
section to generate another defense mask, which has the same
defensive properties, and then use it to craft AEs that are robust
to that mask. However, as one may expect, experiments show
that different datasets used in input to the above procedure lead
to different defense perturbation masks. Hence, the attacker
should also know the exact data distribution used to generate
the defense perturbation, which can easily be kept secret.

A further evolution of the detection architecture is finally
proposed by combining the ENHANCED architecture with ma-
jority voting, hence obtaining the architecture illustrated in
Figure 6, which is named VOTING ENHANCED. Under this
latter architecture with voting over M networks, the defense
perturbation is generated as for the ENHANCED architecture but
optimizing

min
d

[

M∑
i=1

L(fi(x̃+d), t̃)+
N∑
j=1

M∑
i=1

L(fi(gj(x̃+d; θj)), t)+k‖d‖22].

(6)
The defense perturbation generated in this way results to be

effective for multi-network robust AEs.

V. EXPERIMENTAL RESULTS

This section presents the results obtained from an extensive
experimental evaluation carried out to test the performance
of the approaches proposed in this paper to detect AEs.
After describing the experimental setting, the input trans-
formations used for the evaluations are introduced, together
with each characteristic parameter and their range. Then, the
effect of each transformation on the accuracy of the net-
works is reported. The performance of the different detection

Fig. 6. The VOTING ENHANCED detection architecture for detecting
robust adversarial examples.

methods is presented by first considering the BASELINE and
VOTING BASELINE architectures, and then the ENHANCED and
VOTING ENHANCED architectures, which include the defense
perturbation.

A. Experimental setting

Three CNNs were selected for the experiments: (i) VGG-
19 [29]; (ii) Resnet-v2-152 [30]; and (iii) Inception-v4 [31].
These networks were chosen as they are among the most used,
top-performing CNNs for visual recognition. They were pre-
trained on the ImageNet dataset and downloaded from the tf-
slim library [32].

All the experiments presented in this paper were performed
on a Nvidia DGX station, composed of 4 Tesla-v100 GPUs,
with 32GB of RAM each. The code for the experiments was
written in Python 3 using Tensorflow 1.15 (configured to use
GPUs). The ImageNet dataset was downloaded from Kaggle.
Under this setting, the generation of a single multi-net robust
AE took 250 seconds.

B. Input Transformations

The image transformations considered in this work are
several and can be divided into three different groups. Each
transformation comes with a parameter that varies in a certain
range.

a) Topological transformations: They include the basic
affine transformations that can be expressed in the form of
a warping matrix T ∈ IR3×3. Each of such transformations
can be defined as ν′ = Tν, where ν = [u, v, 1]T and ν′ =
[u′, v′, 1]T represent the homogeneous coordinates of a pixel
of the original and the transformed images, respectively. The
transformations of this type considered in this work are:
• Translation: horizontal and vertical translation param-

eters are combined into a single diagonal translation to
simplify the parametric search. Range: [−45 px,+45 px];

• Rotation. Range: [−25◦, 25◦];
• Horizontal Shear: it is expressed by the transformation

T =

1 sx 0
0 1 0
0 0 1

, where sx is the shear parameter with

range [−0.175, 0.175];
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• Scale: it is expressed by the transformation T =
diag([s, s, 1]), where s is the scale parameter with range
[0.875, 1.175];

• Mirror (no parameter).

b) Appearance Transformations: They include those
transformations that change the appearance of the image, with
no topological changes. The ones considered in this work are:

• Average Blur. Range: [2× 2 kernel, 6× 6 kernel]);
• Brightness Change: it adds the value of the parameter to

the intensity of the image, pixel-wise. Range: [−35,+35];
• Contrast Change: it scales the pixel-wise intensity of

the image by the parameter value. Range: [0.875, 1.125].

c) Special: They include two uncategorized transforma-
tions:

• Bit Depth Reduction: it changes the number of bits used
to represent intensity of the pixels. Range: [4 bits, 7 bits];

• Gaussian Noise: it adds a Gaussian noise to each pixel
of the input image (no parameters2).

It is worth noting that all the transformations used are
differentiable with respect to the input image. This is crucial,
since this work assumes white-box robust AEs. Other more
complex non-differentiable transformations were used in the
literature, but they are out of the scope of this work, since a
black-box approach should be used to craft AEs that are robust
to those transformations.

C. Performance Metrics

AEs detection is a binary classification problem. A classical
way to evaluate the performance of balanced binary classifiers
with a decision threshold is through the Receiver Operating
Characteristic (ROC), which expresses, for different values of
the threshold, the fraction of true positives (TP), i.e., AEs
detected as AEs, against the fraction of false positives (FP),
i.e., non-AEs detected as AEs.

The baseline performance, i.e., the performance of a random
classifier that detects as many TPs as FPs for any value of the
threshold, is represented in a ROC plot by the linear pattern
with slope 1 (passing through (0, 0) and (1, 1)), while the
best performance is reached when the classifier achieves TP
rate 1 and FP rate 0. A more compact way to represent the
performance is through the Area Under Curve (AUC) of a
ROC graph: perfect classification performance has AUC of 1,
while baseline performance has AUC equal to 0.5.

When using this performance indicator, the information
about exact TP/FP ratio is lost. However, this is not important
when dealing with detection systems with AUC close to 1,
since they will produce very similar-looking ROC graphs,
all passing close to the point (1, 0). Conversely, when the
classification performance is poor, the ROC curve has much
more “freedom”, and could assume several different shapes
with the same AUC result. Since the focus of this work is to
achieve a high-performance AEs detection, there is no interest

2The additive Gaussian noise is with 0 mean and standard deviation set
equal to the adversarial strength ε = 0.05 of the AEs, to obtain a fair
comparison between attacker and defender capabilities.
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Fig. 7. Accuracy of VGG-19 when using input transformations.

in studying the actual ROC curve of poorly performing detec-
tion systems. Solutions with AUC ≥ 0.95 can be considered
satisfying for our purposes.

Results are presented for multiple transformations. In all the
following plots, the performance value (accuracy or AUC of
ROC) is on the y-axis, while the x-axis refers to the normalized
value of the parameter used to control the transformations.
Note that some transformations are controlled by a parameter
that varies in a symmetric range (e.g., see the case of transla-
tion), while others are not. The ranges of the former are of the
form [γ − α, γ + α] and each parameter θ ∈ [γ − α, γ + α] is
reported on the x-axis as (θ−γ)/α, i.e., obtaining a normalized
representation that varies from -1 to +1. Conversely, non-
symmetric ranges are of the form [α, β], with α < β, and each
parameter θ ∈ [α, β] is reported on the x-axis as θ/β, hence
obtaining a normalized value that varies from α/β to 1 only.
Mirror and Gaussian noise are parameter-free transformations
and their performance is represented by a single point with
value 0 on the x-axis.

D. Accuracy Drop

A major drawback of using input image transformations
for AEs detection is that they cause an accuracy drop for
the classifier. The baseline accuracy is evaluated without input
transformation on a validation subset of ImageNet composed
of 10 images for each class, for a total of 10k images. For each
transformation, the accuracy is computed for discretized values
within the ranges of each parameter and reported in Figure 7
for VGG-19. The results obtained with the other networks
show a very similar pattern for all the transformations, hence
they are not reported for space limitations.

E. Adversarial Examples Datasets

Several datasets of AEs have been produced to test the
performance of the proposed approaches and generate the
defense perturbations. Each dataset consists of multi-network
AEs. For standard AEs, two datasets have been generated,
one with the L-BFGS attack and one for the CW attack, each
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containing 1000 samples, one for each class of the ImageNet
dataset. For robust AEs, four different datasets have been
generated, each serving a different purpose:
• Mtest. It is generated to test the performance of the

ENHANCED and VOTING ENHANCED architectures. It in-
cludes adversarial samples generated starting from nine
samples of the first 100 classes and two for the other 900
classes, for a total of 2700 AEs. This dataset is much
larger than the others because it is crucial to evaluate
whether the proposed counter-measure is effective in
general, meaning that it has to generalize both for a wide
distribution of AEs belonging to the same class and for
each class.

• Mdef-gen. It is the one used to generate the defense
perturbation, referred to as Ddef in the following, used
in the ENHANCED and VOTING ENHANCED architectures,
as detailed in Section IV-B.

• Matt-gen. This dataset is used to simulate the case in
which an attacker tries to attack the ENHANCED and
VOTING ENHANCED architectures. In this case, since the
attacker is assumed not to know Ddef, he/she has to first
generate its own defense perturbation (referred to as Datt)
before attempting at generating AEs that are robust to
the enhanced detection architectures. The Matt-gen dataset
serves the purpose of generating Datt with the approach
detailed in Section IV-B.

• Matt. It is the dataset generated to be robust to both
input transformations and defense perturbation Datt. It is
used to experimentally confirm that it is not possible to
generate AEs that are robust to the ENHANCED and VOT-
ING ENHANCED architectures, provided that the attacker
does not know the exact AEs used to generate the defense
perturbation Ddef.

All the multi-network robust AEs are generated by con-
sidering (i) one transformation for each class discussed in
Section V-B, namely translation, blur, and Gaussian noise; and
(ii) the cross-entropy loss function (as for the L-BFGS attack).

These three transformations proved to be sufficient to make
the AE robust to the entire set of considered transformations,
hence making possible to generate robust AEs with a limited
computational effort.

All the generated datasets are summarized in Table I. The
actual size of the dataset is twice the one showed in the table,
since it also includes the original images.

Except for the L-BFGS dataset, which was optimized over
250 epochs, all the other datasets were optimized over 500
epochs. For every dataset the Adam optimizer was used, with
learning rate of 0.1, and a fixed adversarial strength ε = 0.05
was chosen.

F. Detection of adversarial examples with only input transfor-
mations

This subsection discusses the performance of the VOT-
ING BASELINE architecture (Figure 3). When dealing with stan-
dard AEs, this architecture exhibits a very good performance,
as it can be seen from Figures 8 (L-BFGS attack) and 9 (CW
attack). The AEs generated with the CW attack resulted to be

TABLE I
ADVERSARIAL EXAMPLES DATASETS GENERATED. DP1 REFERS TO THE
DEFENSE PERTURBATION USED FOR DETECTION, WHEREAS DP2 REFERS

TO THE DEFENSE PERTURBATION GENERATED TO CRAFT
DEFENSE-ROBUST ADVERSARIAL EXAMPLES.

Dataset Robust to... Samples Notes

Standard
(L-BFGS)

- 1000 1 per class

Standard CW
(CW)

- 1000 1 per class

Multi-robust
(Mtest)

Translation
Blur

Gaussian Noise
2700

9 for the first 100 classes
2 for the others
Used for tests

Multi-robust
(Mdef-gen)

Translation
Blur

Gaussian Noise
1000

1 per class
Used for Ddef generation

Multi-robust
(Matt-gen)

Translation
Blur

Gaussian Noise
1000

1 per class
Used for Datt generation

(to craft dataset Matt)

Defense-robust
(Matt)

Translation
Blur

Gaussian Noise
Datt

1000 1 per class

harder to detect and, for some transformation, the performance
degrades quicker for higher parameter values. Clearly, some of
the transformations are less suitable than others for this kind
of detection. Contrast and brightness change, color reduction,
and rotation show poorer performance with respect to other
transformations (e.g., other topological transformations, blur
and Gaussian noise).

Very different results are obtained when presenting robust
AEs to the VOTING BASELINE architecture. These results are
summarized in Figure 10. As expected, the detection perfor-
mance is much worse. What is interesting is that, even if
the AEs were chosen to be robust to three transformations,
the performance of all the other transformations drops, espe-
cially when dealing with small parametric values. This can
be explained with the fact that transformations with small
parameter values are similar to each other, especially when
dealing with transformations of the same category (e.g., scale
and shear have comparable detection performance with respect
to translation).

Some transformations resulted to be even worse than a
random detection algorithm, meaning that even a coin toss
shows better AEs detection performance. The experiment
shows that, when dealing with robust AEs, differentiable input
transformations cannot be used in this naive detection system.
Not even noise (Gaussian in this case) is a safe choice: even
though it showed better performance with respect to other
transformations, its AUC drops to about 0.82, with a ROC
curve that saturates (i.e., 100% of TP) for about 50% of FP.

Further tests were conducted to explore the effect of cas-
caded transformations: the usage of a series of randomly-
selected transformations can help when dealing with this
kind of robust AEs, but it is also still possible to craft
AEs that are robust to any possible combination of cascaded
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transformations. In our experiment, this has been verified via
cascades of four randomly-selected transformations (picked
from the three transformations used before, i.e., translation,
blur and Gaussian noise). These results were omitted for space
limitations.
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Fig. 8. Performance of the VOTING BASELINE architecture in detecting
standard adversarial examples (L-BFGS) for each input transformation.

-1 -0.5 0 0.5 1

Normalized parameter of the transformation

0.7

0.75

0.8

0.85

0.9

0.95

1

A
U

C
 o

f 
R

O
C

Translation

Rotation

Shear

Scale

Mirror

Blur

Contrast

Brightness

Color Reduction

Gaussian Noise

Fig. 9. Performance of the VOTING BASELINE architecture in detecting
standard adversarial examples (CW) for each input transformation.

G. Detection of adversarial examples using the defense per-
turbation

The results of the previous subsection showed that an
attacker unaware of the specific input transformation used for
detection can still craft robust AEs that jeopardize the de-
tection system. This subsection reports the results achieved by
applying the defense perturbation with the VOTING ENHANCED
architecture illustrated in Figure 6.

As explained in Section IV, the defense perturbation is
effective not only for detecting standard AEs, but also for
making robust AEs sensitive to input transformations again.
The AEs used to craft the defense perturbation are generated
from images different than those used to test the performance
of the detection system). The same three transformations were
chosen (translation, blur, and Gaussian noise).
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Fig. 10. Performance of the VOTING BASELINE architecture in detecting
robust adversarial examples (translation, blur, Gaussian noise) for each input
transformation.
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Fig. 11. Performance of the VOTING ENHANCED architecture in detecting
standard adversarial examples (L-BFGS) for each input transformation.
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Fig. 12. Performance of the VOTING ENHANCED architecture in detecting
standard adversarial examples (CW) for each input transformation.

The performance of the VOTING ENHANCED architecture in
detecting standard AEs with a defense perturbation is shown
in Figure 11 for the L-BFGS attack, and in Figure 12 for
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Fig. 13. Performance of the VOTING ENHANCED architecture in detecting
robust adversarial examples (set Mtest) for each input transformation.
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Fig. 14. Performance of the VOTING ENHANCED architecture in detecting
robust adversarial examples (set Matt) for each input transformation.

the CW attack, while the results for robust AEs are shown
in Figure 13. Interestingly, as observed for the results shown
in Figure 10, although only three transformations were used
to craft the defense perturbation, all the other transformations
exhibited a performance boost from the use of the defense
perturbation.

Another set of experiments has been performed to assess
the robustness of the defense perturbation. As mentioned in
Section IV-B, the attacker does not have access to the defense
perturbation Ddef nor to the specific dataset Mdef-gen used to
generate it. Anyway, he/she can still try to generate another
defense perturbation Datt from a different (but presumably
similar) dataset Matt-gen with the purpose of generating a set
Matt of AEs that are robust to Ddef.

The results of the detection of Matt are reported in Figure
14, which shows that the AEs prepared by the attacker can still
be detected with Ddef in the VOTING ENHANCED architecture.
This makes the VOTING ENHANCED architecture an effective
counter-measure for robust AEs, making them sensitive to
input perturbations, while maintaining good detection perfor-
mance on standard AEs.

H. Effect of Voting

This subsection evaluates the effect of voting used in
the VOTING ENHANCED architecture and shows how, in most
cases, it increases the detection accuracy with respect to the
ENHANCED architecture, which considers a single network.

To present the results in a compact way, the effect of
voting is reported as the minimum improvement of the AUC
computed over the parametric range, for each transformation
and for each network. The change is reported as a percentage
of the total area (i.e., 1) for an easier reading. Positive values
of the AUC change are to be considered as improvements of
the VOTING ENHANCED architecture with respect to the EN-
HANCED architecture (i.e., with a single network). Conversely,
negative values represent worse AUC. The minimum change
in performance over the parametric range is chosen because it
indicates the worst-case improvement due to voting.

The results of this test are summarized in Table II. It is
worth observing that voting helps in most of the cases, except
for rotation, where the performance of the resulting voting
system is heavily affected by the difference in performance
between the networks.

I. Comparison with state-of-the-art defenses

To the best of our records, the detection method presented
in this paper is the first attempt to defend CNNs against
attacks from robust AEs in a white-box setting with input
transformations. Previous work that used input transformations
to detect white-box AEs did not consider robust AEs. This is
the case of two works: Xie et al. [22] and Prakash et al. [21],
which used randomization and pixel deflection, respectively.
Randomization3 consists in concatenating two input transfor-
mations, namely rescaling and padding; pixel deflection is
an image transformation that swaps nearby pixel values. We
compared two versions: the white-box version (naive), and the
full defense with Wavelet Denoiser4.

Furthermore, our comparison also considered VisionGuard
[11], which uses an architecture similar to BASELINE, with
JPEG compression as input transformation (which is not
differentiable).

For a fair comparison, the evaluation was carried out on a
single network (Inception-v4), as the existing methods did not
consider multi-network architectures. The transformation used
in our method is Gaussian noise, as it proved to be the best-
performing among the evaluated ones. The evaluation metric
is a tuple representing the true positive and false positive rates.
This choice is motivated by the fact that pixel deflection and
randomization are not merely detection methods but defenses
(i.e., they modify the input image to correctly classify it). The
true and false positive rates for the two detection methods
(ours and VisionGuard), are computed by just selecting the
threshold that provides the best rate (instead of computing the
AUC of the ROC graph).

32017 NIPS adversarial defense competition runner-up — code
available at https://github.com/anishathalye/obfuscated-gradients/tree/master/
randomization

4The code for this part was taken from https://github.com/anishathalye/
pixel-deflection

https://github.com/anishathalye/obfuscated-gradients/tree/master/randomization
https://github.com/anishathalye/obfuscated-gradients/tree/master/randomization
https://github.com/anishathalye/pixel-deflection
https://github.com/anishathalye/pixel-deflection
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TABLE II
MINIMUM CHANGE OF AUC OF ROC (PERCENTUAL OF TOTAL AUC = 1)

INTRODUCED BY THE VOTING ENHANCED ARCHITECTURE WITH
RESPECT THE ENHANCED ARCHITECTURE. RESULTS ARE SHOWN FOR

EACH TRANSFORMATION AND FOR EACH DATASET OF ADVERSARIAL
EXAMPLES; THE ROWS IN EACH CELL REPRESENT THE MINIMUM CHANGE
IN AUC WITH RESPECT TO EACH NETWORK (VGG-19, RESNET-V2-152,

AND INCEPTION-V4 RESPECTIVELY).

L-BFGS CW Mtest Matt

Translation
+0.71
+0.96
+0.18

+4.90
+2.74
+0.50

+2.36
+2.13
+0.47

+2.05
+2.37
-0.01

Rotation
+0.78
+1.07
-3.53

+4.94
-2.15
-6.28

+3.41
+2.23
-2.92

+2.46
+2.52
-4.88

Shear
+0.80
+0.83
+0.20

+5.13
+2.59
+0.78

+3.65
+2.71
+1.05

+2.94
+2.37
-0.04

Scale
+0.76
+0.95
+0.22

+4.95
+2.90
+0.41

+2.27
+2.08
+0.48

+2.37
+2.25
+0.12

Mirror
+0.75
+1.07
+0.19

+4.81
+3.23
+0.82

+2.28
+1.74
+2.03

+2.10
+1.85
+0.38

Blur
+0.85
+0.88
+0.26

+5.74
+2.56
+1.54

+3.23
+5.03
+0.18

+4.43
+2.97
-0.20

Contrast
+0.85
+0.78
+0.19

+5.78
+2.23
+1.30

+0.24
+5.88
+1.59

+3.98
+3.10
-0.50

Brightness
+0.85
+0.78
+0.19

+5.73
+2.23
+1.28

+0.25
+5.02
+1.76

+2.81
+3.10
-0.41

Color Reduction
+0.84
+0.78
+0.20

+5.72
+2.23
+1.36

+0.26
+5.78
+1.63

+3.97
+3.10
-0.41

Gaussian Noise
+0.84
+0.84
+0.22

+5.68
+2.37
+1.74

+4.79
+3.48
-0.47

+4.14
+2.8
-0.49

The results are summarized in Table III. As it can be noted
from the table, our method exhibits comparable performance
with repspect the other methods for the detection of standard
AEs (L-BFGS and CW columns). On the contrary, none of
the other methods is capable of properly detecting robust AEs
(Mtest column), while our method provides a high detection
performance. Please note that the AEs in Mtest have not
been generated to be robust to pixel deflection (with Wavelet
denoiser) and VisionGuard (i.e., they have been generated to
be robust to translation, blur, and Gaussian noise), which are
even based on non-differentiable functions. This suggests that
there exists a sort of transferability effect for robust AEs:
future work will investigate in this direction.

J. Discussion and future work

In the light of the above experimental results, some aspects
are worth to be discussed.

TABLE III
COMPARISON WITH STATE-OF-THE-ART METHODS USING INPUT

TRANSFORMATIONS AGAINST THE SAME THREAT MODEL. THE TWO
VALUES IN EACH CELL DENOTE THE TRUE POSITIVE AND FALSE POSITIVE

RATES, RESPECTIVELY.

Method L-BFGS CW Mtest

Randomization [22] 0.983
0.085

0.986
0.088

0.010
0.070

Pixel Deflection [21]
(naive)

0.948
0.083

0.982
0.082

0.004
0.071

Pixel Deflection [21]
(w/ Wavelet denoiser)

0.985
0.125

0.986
0.123

0.048
0.111

VisionGuard [11]
(JPEG92)

0.997
0.060

0.992
0.078

0.043
0.149

Ours
(Gaussian noise)

0.978
0.088

0.954
0.119

0.944
0.080

a) Best transformation: among the transformations that
were tested, some performed better than others. For example,
rotation shows poor performance for all kinds of adversarial
datasets. Others, such as contrast and brightness changes, and
bit depth color reduction, show poor performance in detect-
ing robust AEs, even though the AEs were not specifically
robust to those transformations. Blur is not among the best-
performing either, while scale, translation, shear, mirror and
Gaussian noise consistently show good performance.

In general, by the results of Section V-I it emerges that to
use our method with the ENHANCED architecture one has to
accept slightly lower performance in detecting standard AEs
to be effective against all types of AEs. This happens because
it has been experimentally found that the defense perturba-
tion makes standard AEs robust to the input transformations
considered in this work.

b) Results cannot be generalized to any CNN: it is not
possible to state that translation will perform well as an AEs
detector for any CNN, trained on any dataset. Performance
will likely depend not only on the architecture and the dataset
used, but also on the data augmentation techniques used during
training. Further experimental evaluations should be performed
in this direction.

Nevertheless, the analysis presented in this paper showed
that networks with different architecture, but trained on the
same dataset5, present similar results for this kind of AEs
detection system: the best and the worst performing trans-
formations are the same, and in general the patterns of the
detection performance of the transformations as functions of
their parameters are similar.

c) Robust AEs are robust to non-differentiable transfor-
mations too: The reason why robust AEs are not detected with
Randomization or naive Pixel Deflection is evident: all those
kinds of differentiable transformations are fooled by robust
AEs because of the similarity of the transformations with re-
spect to the ones used to craft them. However, the reasons why
VisionGuard and Pixel Deflection with Wavelet Denoiser are
not able to detect robust AEs is still unclear and it will surely
worth investigations. The input transformations used by these
works are JPEG compression and Wavelet denoiser, which are

5ImageNet was chosen to provide real-world images; synthetic datasets as
MNIST will surely show different results.
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non-differentiable input transformations and, therefore, cannot
be used to generate robust AEs, at least as defined in this
work. Our hypothesis (to be validated by future experiments)
is that there exists some kind of transferability of AEs not only
between different architectures of neural networks, but also in
robustness between transformations.

d) Open issues: The following aspects require further
investigation to be generalized.
• Due to space limits, not all the most common kinds

of AEs were considered in the evaluation. Although
the results of this experimental evaluation cannot be
generalized to the entire spectrum of AEs, this work
can be considered as a starting point to exhaustively
test the detection potentiality of input transformations.
The loss function used to optimize the robust AEs is
the cross-entropy loss. Other losses would certainly lead
to different results. However, the process for generating
the defense perturbation is general enough to account for
robust AEs crafted with different loss functions, which
will be explored in a future work.

• This paper considered a detection system using threshold-
based binary classification. By varying the threshold it is
possible to plot ROC graphs that help understand which
transformations are best suited for this kind of detection.
However, at run-time a certain threshold must be chosen
(one for each network). The thresholds should take into
account all the possible kinds of AEs that one wants to
detect, in order to average the performance over the entire
possible range of different AEs.

• The reason why non-differentiable input transformations
are not able to detect robust AEs is still not clear and
should be investigated in details.

VI. CONCLUSIONS

This paper introduced a methodology to detect adversarial
examples for CNNs. The method exploits the detection power
of input image transformations for standard adversarial ex-
amples, which have been extensively tested to discover those
transformations that are more suitable for this kind of detection
problem.

Although robust adversarial examples can significantly
degrade the performance of simple detection architectures
(BASELINE and VOTING BASELINE), this paper presented a
counter-measure against robust adversarial examples based on
the generation of a defense perturbation. This perturbation
allows making robust adversarial examples sensitive again to
input transformations and it can be used to achieve very good
detection performance for both standard and robust adversarial
examples. Majority voting for multi-CNN systems has also
been introduced to further improve the detection performance.

Future work will investigate extensions of the approaches
presented in this paper to understand whether different kinds
of attacks can fool the proposed detection systems. Also,
further tests will be conducted to clarify the role of the data
distribution used to generate the defense perturbation, to better
comprehend whether it is possible for an attacker to fool the
proposed detection systems without knowing the exact data
distribution used to craft the defense.
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