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Cluster Synchronization Control for Discrete-Time
Complex Dynamical Networks: When Data
Transmission Meets Constrained Bit Rate

Jun-Yi Li, Zidong Wang, Renquan Lu and Yong Xu

Abstract—In this paper, the cluster synchronization control
problem is studied for discrete-time complex dynamical networks
when the data transmission is subject to constrained bit rate.
A bit rate model is presented to quantify the limited network
bandwidth, and the effects from the constrained bit rate onto the
control performance of the cluster synchronization are evaluated.
A sufficient condition is first proposed to guarantee the ultimate
boundedness of the error dynamics of the cluster synchroniza-
tion, and then a bit rate condition is established to reveal
the fundamental relationship between the bit rate and certain
performance index of the cluster synchronization. Subsequently,
two optimization problems are formulated to design the desired
synchronization controllers with aim to achieve two distinct
synchronization performance indices. The co-design issue for the
bit rate allocation protocol and the controller gains is further
discussed to reduce the conservatism by locally minimizing a
certain asymptotic upper bound of the synchronization error
dynamics. Finally, three illustrative simulation examples are uti-
lized to validate the feasibility and effectiveness of the developed
synchronization control scheme.

Index Terms—Cluster synchronization control, constrained bit
rate, coding-decoding, ultimate boundedness, co-design problem.

I. I NTRODUCTION

Complex dynamical networks (CDNs), which are composed
of a large number of highly interconnected dynamical units,
can be used to describe many real-world dynamical systems
including, but are not limited to, neural networks, social
relationship networks, coupled biological/chemical systems,
and World Wide Webs [2]. With the ever-increasing demands
of understanding the dynamical characteristics of a large
number of real-world networks, the CDNs have received much
research attention from many disciplines such as physics,
nonlinear science, mathematics, and computer and information
science [8], [9], [11], [16], [22], [33], [34], [52].
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As a collective feature in CDNs, the synchronization of
CDNs has found a wide range of applications in a variety of
research areas such as robotics system [25], communication
engineering [32] and biological sciences [13], and a great
many excellent results have been reported in the literature.
So far, the most investigated synchronization mechanisms
include phase synchronization, lag synchronization, complete
synchronization, and cluster synchronization schemes, see,
e.g., [3], [5], [6], [31], [36], [41], [47]–[51]. In particular,
the cluster synchronization stands out as an interesting phe-
nomenon with promising application potentials. For example,
when a group of unmanned autonomous vehicles (connected
by a local communication network) performs a complex task,
the vehicles are divided into subgroups/clusters based on
different subtasks, and vehicles within individual clusters are
then required to achieve synchronization. Generally speaking,
in cluster synchronization, the CDNs evolve into subgroups of
nodes (called clusters) in which the nodes in the same cluster
are synchronized with each other, but the nodes in different
clusters might not.

In reality, it is quite common that an autonomous network
is unable to achieve synchronization through its local connec-
tions or, in a larger scale, a CDN cannot achieve the desired
self-synchronization status without exogenous interferences. In
this case, it is natural to design certain control strategies, either
open-loop or closed-loop, to help the underlying networks to
accomplish the synchronization tasks. In fact, various control
strategies have been designed in the literature for the syn-
chronization purposes, see, for instance, feedback control [12],
observer-based control [28], [44], pinning control [38], [43],
adaptive control [35], and intermittent control protocols [21],
[29].

It is noticeable that most existing synchronization control
protocols have been developed for continuous-time system-
s/networks in the framework of analog communication. Nev-
ertheless, with the burgeoning digital network technology, con-
trol systems have been undergoing continuous upgradation and
the traditional analog communication is no longer sufficient
to meet the communication needs of modern control systems.
Instead, the digital communication strategies have proven to
be particularly suitable for their distinct merits such as strong
disturbance rejection capacity, high reliability, and low power
consumption. In fact, digital communication mechanisms have
been widely implemented in many areas including signal
processing and control engineering [14], [20]. However, the
synchronization control problem for CDNs subject to digital
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communication mechanism has not received much attention
yet.

In engineering applications, almost all control or measure-
ment signals are analog in nature. To be transmitted over a
digital channel, such analog signals would need to go through
the analog-to-digital conversion process which consists of
sampling, quantization and coding steps. Generally speaking,
sampling and quantization discretize the time and amplitude of
the analog signal, respectively, and the coding process converts
the quantized value into codewords composed of0 and 1
following specific rules to adapt to digital communication.
Despite its critically important role in digital communication,
the coding process has attracted relatively little research at-
tention as compared to the sampling/quantization counterparts
[7], [15], [19], [39], [40]. It is worth pointing out that a typical
design of coder-decoder pair in existing literature does not take
into account the specific network bandwidth, which is actually
an essential factor in designing the coder parameters.

For CDNs subject to digital communication mechanism,
each node is usually allocated with only a small portion of
the total bit rate according to the overall networks bandwidth
available to the nodes. The bit rate, defined as the number of
bits conveyed through a digital communication network per
second, is the measure of network bandwidth in digital com-
munication networks. Clearly, the bit rate constraints would
have a major impact on analysis/synthesis of communication-
based systems/networks. To date, the stability analysis of
feedback control loops under constrained bit rate has gain
some initial attention [27], [37], [42], [45]. In existing results,
the so-calleddata rate theoremhas played an important role,
which characterizes theminimumbit rate required to ensure
various types of stability. For example, the minimum bit-rate
conditions have been derived in [37] for asymptotic stability
and in [45] for mean-square stabilizability of linear systems
with Markovian packet losses [45].

In the past decade, an increasing research interest has been
devoted to the investigation on the effect of constrained bit
rate on the consensusability of multiagent systems [4], [17],
[18], [46]. In the case offinite bit-rate communication, the
average consensus control problem has been investigated in
[17] for undirected networks with fixed and time-varying
topologies of discrete-time agents. The joint effect of agent
dynamics, network topology, and constrained bit rate on the
consensusability of multiagent systems has been examined in
[46]. For the quantized multiagent systems with the event-
triggering scheme, bit rate conditions for maintaining thede-
sired asymptotic consensus have been derived in [4]. However,
up to now, the cluster synchronization issue under constrained
bit rate has not been adequately studied yet, which motivates
us to fill in this gap in the current study.

In view of the above discussion, it is of both practical
significance and theoretical importance to address the cluster
synchronization control issue for CDNs subject to constrained
bit rate. In this context, we foresee the following three sub-
stantial challenges:1) how to develop a mathematical model
that considers the total bandwidth limit of a CDN as well
as the bandwidth allocation (of clusters and nodes)? 2) how
to characterize the inherent relationship between the bit rate

and the cluster synchronization control performance? and 3)
how to design the controller gains according to some specific
cluster synchronization performance requirements?To tackle
the three identified challenges, this paper aims to investigate
the cluster synchronization control problem for CDNs under
constrained bit rate.

The main contributions of this paper are summarized in
three aspects.

1) We have made a first attempt to deal with the problem
of cluster synchronization in the framework of digital
communication networks, which is more widely used
in engineering application fields in comparison with the
traditional cluster synchronization control strategies in
the framework of analog communication networks [3],
[21], [43]. And for the first time, a bit rate constraint
model is introduced to characterize the network band-
width of CDNs.

2) A sufficient condition pertaining to the bit rate is pro-
posed to guarantee the ultimate boundedness of the
cluster synchronization error dynamics, and a bit rate
condition is subsequently proposed to guarantee the
specific synchronization performance.

3) Two optimization problems (OPs) are proposed to obtain
the desired gains of the cluster synchronization con-
trollers to meet different synchronization performance
metrics. Furthermore, the co-design problem with con-
troller gains and bit rate allocation protocol as design
parameters is considered for the first time.

Notation: In this paper,N, andN+ denote the sets of non-
negative integers, and positive integers, respectively.Rn and
Rn×m stand forn dimensional Euclidean space and the set of
n × m real matrices, respectively. diagN{Ai} and colN (ei)
denote diagonal block matrix diagN{A1, A2, · · · , AN} and
column vector

[

eT1 , e
T
2 , · · · , eTN

]T
, respectively. The notation

X > Y (X ≥ Y ) denotes thatX−Y is positive definite (semi-
positive definite), whereX and Y are symmetric matrices.
λmin{P} (λmax{P}) stands for the minimum (maximum)
eigenvalue ofP . For any z ∈ R

n, zT and ‖ z ‖2 are its
transpose and its Euclidean norm. For positive integersk and
h, mod(k, h) denote the remainder on division ofk by h.

II. PROBLEM FORMULATION AND PRELIMINARIES

A. The system formulation

A CDN with N nonidentical nodes is described by the
following form:























xi(k + 1) =fi(xi(k)) +

N
∑

j=1

ωijΓxj(k) + ui(k)

yi(k) =Cixi(k)

xi(0) =xi0 ∈ I0, i ∈ V , {1, 2, · · · , N}

(1)

wherexi(k) ∈ Rnx , yi(k) ∈ Rny , andui(k) ∈ Rnx represent
the system state, the measurement output and the control input,
respectively.xi0 is the initial value of the system belonging
to a known setI0. Ci ∈ Rny×nx is a known matrix. The
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nonlinear functionfi(·) describes the local dynamics of node
i which satisfiesfi(0) = 0 and the following condition:

(fi(x1)− fi(x2)− ūi(x1 − x2))
T

× (fi(x1)− fi(x2)− ui(x1 − x2)) ≤ 0 (2)

for all x1, x2 ∈ Rnx , whereūi andui are known real-valued
matrices.

Let the CDN (1) be divided intom clusters withV1 =
{1, 2, · · · , n1}, V2 = {n1 + 1, · · · , n1 + n2}, · · · , Vm =
{

∑m−1
l=1 nl + 1, · · · ,∑m

l=1 nl

}

where, for l ∈ Φm ,

{1, 2, · · · ,m}, 1 ≤ nl < N and
∑m

l=1 nl = N . In other
words, we haveVl 6= ∅ and

⋃m

l=1 Vl = V . Furthermore, the
symbol̄i is used to indicate which cluster theith node belongs
to, i.e.,i ∈ Vī. Obviously, for nodesi andj in the same cluster,
ī = j̄. Next, we make the following assumption that nodes in
the same cluster have the same local dynamics, i.e., forī = j̄,
fī(·) = fj̄(·).

The coupled configuration matrixW = [ωij ]N×N , which
denotes the topology of the CDN withm clusters, is assumed
to be symmetric and irreducible with the following form:

W =













W11 W12 · · · W1m

W21 W22 · · · W2m

...
...

. . .
...

Wd1 Wd2 · · · Wmm













(3)

where each matrix blockWst = [ωij ]ns×nt
∈ Rns×nt is a

zero-row-sum matrix, i.e.,
∑nt

j=1 ωij = 0, and each diagonal
matrix block Wss = [ωij ]ns×ns

∈ Rns×ns satisfiesωii =

−∑N

j=1,j 6=i ωij . Moreover,ωij = ωji > 0 if there exists a
connection between the nodei and nodej. In particular, the
inter-cluster couplingsωij with i ∈ Vs and j ∈ Vt can be
negative here, which provides a mechanism to desynchronize
two nodes belonging to two different clusters. The inner-
coupling matrix Γ = diag{γ1, γ2, · · · , γnx

} represents the
connections between the different elements of the subsystem,
whereγl 6= 0 means that thelth component ofxj(k) has an
impact on thexi(k).

It should be noted that, when designing the cluster synchro-
nization controller, it may be possible that the complete state
information of the CDN (1) is not fully accessible, but only
the measured output of the system is available. As such, the
following state estimator is constructed to estimate the system
state based on the measured output:























x̂i(k + 1) =fi(x̂i(k)) +

N
∑

j=1

ωijΓx̂j(k)

+ Li(yi(k)− Cix̂i(k)) + ui(k)

x̂i(0) =x̂i0 ∈ I0

(4)

where x̂i(k) ∈ Rnx and x̂i(0) are the state estimate and
the initial condition, respectively, andLi ∈ R

nx×ny is the
estimator gain to be designed.

For thelth cluster, the target trajectory is denoted astl(k) ∈
Rnx , which is the solution to the following dynamics of the

unforced isolated node:
{

tl(k + 1) =fl(tl(k))

tl(0) =tl0 ∈ I0
(5)

wheretl0 is the initial condition, andfl(tl(k)) characterizes
the local dynamics of the nodes in thelth cluster. Therefore,
for i ∈ Vl, fi(xi(k)) = fl(tl(k)). In particular, forl, j ∈ Φm

and l 6= j, fl(tl(k)) 6= fj(tj(k)).

B. Description of the bit rate

In this paper, the transmission of coded information is
implemented by applying a wireless digital communication
network under bit rate constraint.

In real CDNs, the available bandwidth of a network is usu-
ally limited due to the hardware and network communication
capabilities. So far, a variety of channel allocation protocols
have been applied to allocate specific bit rates to different
clusters and nodes in order to reduce data collisions. A typical
model of bit rate constraint is expressed as follows:

m
∑

l=1

Rl ≤Rs (6)

∑

i∈Vl

Rl,i ≤Rl (7)

whereRs ∈ N+ represents the total available bit rate deter-
mined by the physical devices,Rl ∈ N denotes the allocated
bit rate of clusterl, andRl,i indicates the allocated bit rate of
node i in cluster l. To facilitate the presentation, we denote
the allocated bit rate of nodei by Rīi.

Remark 1: In order to reduce data collisions under limited
bandwidth, the allocation-based media access control (MAC)
protocols are widely used in large-scale networks such as
CDNs and sensor networks [1], [30]. According to the cluster
network characteristics, the allocation-based MAC protocols
are used to allocate the available bit rate of each cluster
(and each node in the cluster) through the relevant protocol.
Therefore, as presented in (6) and (7), a bit rate model
would include two constraints, which represent the bandwidth
allocation rules for the clusters within the CDN and for the
nodes within a cluster.

C. Cluster synchronization under coding-decoding procedure

In this paper, the transmission of information occurs atdh
moments, and the transmitted information is a string of binary
codes selected from an alphabetARīi

of size 2Rīi , where
h is a given coding interval,d = 1, 2, · · · , andARīi

is the
alphabet in the terms of bit rateRīi. Obviously, the bit rate
has an important impact on the alphabet’s size, and thus the
bit rate constraints (6) and (7) will be taken into account inthe
subsequent design of the coding-decoding strategy. A general
form of the coding-decoding procedure is given as follows.

Coder of node i under bit rate Rīi.

XRīi

i (dh) = CRīi,d

i (x̂i(h), x̂i(2h) · · · , x̂i(dh)) (8)

Decoder of nodei.

X̆i(dh) = Dd
i

(

XRīi

i (h),XRīi

i (2h), · · · ,XRīi

i (dh)
)

(9)
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for d = 1, 2, · · · , where CRīi,d

i (·) and Dd
i (·) are the coder

and decoder functions,XRīi

i (dh) is the codeword generated
by nodei at the coding constantdh, and X̆i(dh) is denoted
as

X̆i(dh) = {x̆i(dh), x̆i(dh+ 1) · · · , x̆i((d + 1)h− 1)}
with x̆i(k) being the decoded output ofx̂i(k) for k ∈ [dh, (d+
1)h).

Due to the coding-decoding procedure described previously,
the network-based controller obtainsx̆i(k) (instead of the orig-
inal estimatêxi(k)). In this case, the decoder-based controller
for nodei is designed as

ui(k) = Ki(x̆i(k)− t̄i(k)). (10)

Note that, when it comes to the estimator design, it is
impractical (also impossible) to feed the decoded signalx̆i(k)
or the control signalui(k) back to the state estimator due to the
network bandwidth limitation. To overcome this problem, the
auxiliary control signaľui(k) = Ki(x̌i(k)− t̄i(k)) defined in
III-A [see (23)] is used to design the following state estimator:























x̂i(k + 1) =fi(x̂i(k)) +

N
∑

j=1

ωijΓx̂j(k)

+ Li(y(k)− Cix̂i(k)) + ǔi(k)

x̂i(0) =x̂i0 ∈ I0

(11)

whereǔi(k) is the same asui(k) according to (23) and (24)
defined in III-A.

The synchronization error of theith node is defined as
ei(k) = xi(k) − t̄i(k). By considering the properties of the
coupling matrix, we obtain

N
∑

j=1

ωijΓxj(k) =

m
∑

l=1

∑

j∈Vl

ωijΓxj(k)

=

m
∑

l=1

∑

j∈Vl

ωijΓ [xj(k)− tl(k) + tl(k)]

=

m
∑

l=1

∑

j∈Vl

ωijΓ [ej(k) + tl(k)]

=
m
∑

l=1

∑

j∈Vl

ωijΓej(k) +
m
∑

l=1

∑

j∈Vl

ωijΓtl(k)

=

N
∑

j=1

ωijΓej(k).

Then, the corresponding cluster synchronization error dynam-
ics of nodei is obtained as:















ei(k + 1) =fi(ei(k)) +

N
∑

j=1

ωijΓej(k) + ui(k)

ei(0) =ei0 ∈ I0
(12)

wherefi(ei(k)) = fi(xi(k)) − fi(t̄i(k)), andei0 = xi0 − t̄i0
is the initial value of the cluster synchronization error.

To simplify the symbolic representation, we set

x(k) = colN (xi(k)), y(k) = colN (yi(k))

x̆(k) = colN (x̆i(k)), e(k) = colN (ei(k))

x̂(k) = colN (x̂i(k)), x̌(k) = colN (x̌i(k))

x̂0 = colN (x̂i0), x0 = colN (xi0), e0 = colN (ei0)

F (x(k)) = colN (fi(xi(k))), F (e(k)) = colN (fi(ei(k)))

C = diagN{Ci}, L = diagN{Li}
K = diagN{Ki}, t̂(k) = colN (t̄i(k)). (13)

By resorting to the Kronecker product, the CDN (1) is
rearranged as follows:










x(k + 1) =F (x(k)) + (W ⊗ Γ)x(k) +K(x̆(k)− t̂(k))

y(k) =Cx(k)

x(0) =x0

(14)
and the corresponding estimator of the augmented CDN (14)
is reformulated as follows:










x̂(k + 1) =F (x̂(k)) + (W ⊗ Γ)x̂(k)

+ LC(x(k)− x̂(k)) +K(x̌(k)− t̂(k))

x̂(0) =x̂0.

(15)

Correspondingly, the cluster synchronization error dynamics
can be rearranged as the following form:
{

e(k + 1) =F (e(k)) + (W ⊗ Γ)e(k) +K(x̆(k)− t̂(k))

e(0) =e0.
(16)

We are now ready to state the main problem addressed
in this paper. We are interested in dealing with the cluster
synchronization control problem with constrained bit rate
whose schematic structure is depicted in Fig. 1. The main
objective is to design controllers for a CDN withN coupled
nonidentical nodes (which can be divided intom clusters) such
that the dynamics of the cluster synchronization error system
is ultimately bounded subject to the decoding errorde(k).

Fig. 1. Cluster synchronization problem over limited digital communication
network

Before proceeding further, the following definitions are
presented to assist in the derivation of our main results.
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Definition 1: [55] The dynamics of the cluster synchro-
nization errore(k) [i.e., the solution of system (16)] is said
to be exponentially ultimately bounded if there exist constants
σ > 0, ρ > 0, andφ > 0, such that

‖e(k)‖22 ≤ σkρ+ φ

whereσ ∈ [0, 1) is the decay rate andφ is the asymptotic
upper bound (AUB) of‖e(k)‖22.

Definition 2: Under the bit rate constraints (6) and (7), the
discrete-time CDN (1) withN nonidentical nodes is said to
achieve exponentially ultimately bounded cluster synchroniza-
tion if the N nodes are split intom clustersV1,V2, · · · ,Vm,
and the cluster synchronization error dynamics (16) is expo-
nentially ultimately bounded.

III. M AIN RESULTS

In this section, we plan to first discuss the design problem
of the coding-decoding procedure for CDN (1), and then based
on the established coding-decoding procedure, we address the
analysis and design problem of cluster synchronization control
under the bit rate constraints (6) and (7).

A. Coding-decoding procedure under constrained bit rate

In this subsection, we are going to take bit rate constraints
(6) and (7) into account for the design of the coding-decoding
process.

1. The coding procedure of nodei under bit rate Rīi.
The following uniform quantizer is adopted in this paper to

improve the coding-decoding procedure. For nodei, given a
scaling parameterbi > 0, the quantization region is determined
subsequently as

Bbi , {exi ∈ R
nx : |e(j)xi | ≤ bi, j = 1, 2, · · · , nx},

wheree(j)xi is thejth element of the vectorexi.
By choosing an integerqi as the number of quantization

levels, the hyperrectanglesBbi will be partitioned intoqnx

i

sub-hyperrectanglesIi1
si
1

(bi) × Ii2
si
2

(bi) × · · · × Iinx

sinx

(bi), with

si1, s
i
2, · · · , sinx

∈ {1, 2, · · · , qi} and

Iij1 (bi) ,

{

e
(j)
xi | −bi ≤ e

(j)
xi < −bi +

2bi
qi

}

Iij2 (bi) ,

{

e
(j)
xi | −bi +

2bi
qi

≤ e
(j)
xi < −bi +

4bi
qi

}

...

Iijqi (bi) ,

{

e
(j)
xi | bi −

2bi
qi

≤ e
(j)
xi ≤ bi

}

. (17)

To ensure that the information corresponding to each sub-
hyperrectangle is encoded uniquely, the number of quantiza-
tion levels needs to be designed according to the network’s bit
rate. Thus, when the available bit rate of nodei is allocated as
Rīi subject to the bit rate constraints (6) and (7), the maximum
number of quantization levels is defined as

qim =
⌊

nx
√
2Rīi

⌋

(18)

where⌊nx
√
2Rīi⌋ describes the maximum integer less than or

equal to
nx
√
2Rīi .

For eachBbi , the center of the hyperrectangleIi1
si
1

(bi) ×
Ii2
si
2

(bi)× · · · × Iinx

sinx

(bi) is denoted by

~
i
bi

(

si1, s
i
2, · · · , sinx

)

,
[

ci1 ci2 · · · cinx

]T
(19)

with
cij = −bi +

[

((

2sij − 1
)

bi
)

/
⌊

nx
√
2Rīi

⌋]

for j = 1, 2, · · · , nx. Hence, for anyexi ∈ Bbi , there exists
a certain set of integerssi1, s

i
2, · · · , sinx

∈ {1, 2, · · · , qi} such
thatexi ∈ Ii1

si
1

× Ii2
si
2

× · · ·× Iinx

sinx

, which satisfies the following
inequality:

∥

∥exi − ~
i
bi

(

si1, s
i
2, · · · , sinx

)∥

∥

2
≤

√
nxbi

⌊

nx
√
2Rīi

⌋ . (20)

Here, the integerssi1, s
i
2, · · · , sinx

∈ {1, 2, · · · , qim} are the
components of the codeword in the coding procedure.

With the preparation made so far, the coder is now designed
as follows.

For exi(dh) = x̂i(dh)− x̄i(dh) ∈ Ii1
si
1

(bi)× Ii2
si
2

(bi)× · · · ×
Iinx

sinx

(bi) ⊂ Bbi , d = 1, 2, · · · , the following codeword is
generated

XRīi

i (k) =
[

si1, · · · , sinx

]

(21)

wherex̂i(dh) is the state estimate of nodei at coding instant
dh, x̄i(dh) is determined by










































x̄i(0) =0

x̄i(k) =x̌i(k), k 6= dh

x̄i(dh) =fi(x̌i(dh− 1)) +

N
∑

j=1

ωijΓx̌j(dh− 1)

+ ǔi(dh− 1)

ǔi(dh− 1) =Ki(x̌i(dh− 1)− t̄i(dh− 1))

(22)

and the dynamics of̌xi(k) is governed by










































x̌i(0) =0

x̌i(k + 1) =fi(x̌i(k)) +
N
∑

j=1

ωijΓx̌j(k) + ǔi(k),

for k 6= dh− 1

x̌i(dh) =x̄i(dh) + ~
i
bi

(

si1, s
i
2, · · · , sinx

)

ǔi(k) =Ki(x̌i(k)− t̄i(k))

(23)

wherex̌i(k) denote the state of the auxiliary system (23).
2. Decoding procedure of nodei.
The decoder is designed as follows:










































x̆i(0) =0

x̆i(k + 1) =fi(x̆i(k)) +

N
∑

j=1

ωijΓx̆j(k) + ui(k),

for k 6= dh− 1

x̆i(dh) =x̄i(dh) + ~
i
bi

(

si1, s
i
2, · · · , sinx

)

ui(k) =Ki(x̆i(k)− t̄i(k))

(24)
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wherex̆i(k) is the state of decoded output.
Remark 2: In this paper,̂xi(dh)− x̄i(dh) is coded at each

coding instantdh rather thanx̂i(dh). x̄i(dh) is designed to
predict the decoder statĕxi(k), which overcomes the practical
difficulty that the coder is incapable of obtaining the decoder
state. The auxiliary system (23) is designed asx̌i(k) ≡ x̆i(k)
for ∀k ≥ 0. This design method is reasonable as it removes
the unrealistic requirement of returning the decoded stateto
the coder.

Denoting

ex(k) = colN (exi(k)), F (x̂(k)) = colN (fi(x̂i(k))),

F (x̌(k)) = colN (fi(x̌i(k))), F (x̆(k)) = colN (fi(x̆i(k))),

the coder-decoder pair of the CDN is reformulated in the
following compact form.

Coder under constrained bit rate Rs: For ex(dh) =
x̂(dh) − x̄(dh) ∈ I11

s1
1

(b1)× · · · × I1nx

s1nx

(b1)× I21
s2
1

(b2)× · · · ×
I2nx

s2nx

(b2)×· · ·×IN1
sN
1

(bN)×· · ·×INnx

sNnx

(bN ) ⊂ Bb̄, d = 1, 2, · · · ,
the following codeword is generated:

XRs(k) =
[

s11, · · · , s1nx
, s21, · · · , s2nx

, · · · , sN1 , · · · , sNnx

]

(25)
where Bb = {ex(dh) ∈ RNny : |e(j)x (dh)| ≤ b̄, j =
1, 2, · · · , Nnx} with b̄ = max1≤i≤N{bi} and x̄(dh) =
colN (x̄i(dh)) is determined by






























x̄(0) =0

x̄(k) =x̌(k), k 6= dh

x̄(dh) =F (x̌(dh− 1)) + (W ⊗ Γ)x̌(dh− 1)

+ ǔ(dh− 1)

ǔ(dh− 1) =K(x̌(dh− 1)− t(dh− 1))

(26)

and the dynamics of̌xi(k) evolves as follows:


















x̌(0) =0

x̌(k + 1) =F (x̌(k)) + (W ⊗ Γ)x̌(k) + ǔ(k), k 6= dh− 1

x̌(dh) =x̄(dh) + ~b

(

s11, · · · , sNnx

)

ǔ(k) =K(x̌(k)− t(k)).
(27)

Decoder:The compact form of decoder is given as follow:


















x̆(0) =0

x̆(k + 1) =F (x̆(k)) + (W ⊗ Γ)x̆(k) + u(k), k 6= dh− 1

x̆(dh) =x̄(dh) + ~b

(

s11, · · · , sNnx

)

u(k) =K(x̆(k)− t(k))
(28)

where

~b

(

s11, · · · , sNnx

)

= colN
(

~
i
bi

(

si1, · · · , sinx

))

. (29)

Furthermore, one derives from (20) that

∥

∥ex − ~b

(

s11, · · · , sNnx

)∥

∥

2
≤

√

√

√

√

√

N
∑

i=1

nxb2i
⌊

nx
√
2Rīi

⌋2 . (30)

To facilitate the analysis of the cluster synchronization
control afterwards, we give the following two lemmas.

Lemma 1:Let the scalarη1 > 0 be given. If there exists a
positive definite matrixQ1 and scalarε1 satisfying

Π1 =







Π11 ε1Û2 (W ⊗ Γ)TQ1

∗ −ε1I Q1

∗ ∗ −Q1






< 0 (31)

with Π11 = −(1+η1)Q1−ε1Û1, then, the following inequality

‖̟1(k + 1)−̟2(k + 1)‖2 ≤ p1‖̟1(k)−̟2(k)‖2 (32)

is satisfied, wherep1 =
√
ρ1, ρ1 , (1 + η1)λ̄Q1

λ−1
Q1

,
λ̄Q1

, λmax{Q1}, λQ1
, λmin{Q1}; ̟1(k) and̟2(k) are

two solutions of (14).
Proof: Letting υ(k) , ̟1(k) − ̟2(k) andF (υ(k)) ,

F (̟1(k)) − F (̟2(k)), it can be deduced from (14) that
υ(k + 1) = F (υ(k)) + (W ⊗ Γ)υ(k). By constructing a
Lyapunov functionV1(k) = υT (k)Q1υ(k), the difference of
V1(k) is defined as∆V1(k) , V1(k + 1)− V1(k). Then, the
term∆V1(k)− η1V1(k) can be calculated as follows:

∆V1(k)− η1V1(k)

=υT (k + 1)Q1υ(k + 1)− (1 + η1)υ
T (k)Q1υ(k)

=υT (k)[(W ⊗ Γ)TQ1(W ⊗ Γ)− (1 + η1)Q1]υ(k)

+ FT (υ(k))Q1F (υ(k)) + 2FT (υ(k))Q1(W ⊗ Γ)υ(k).
(33)

It follows from (2) that

ε1

[

υ(k)

F (υ(k))

]T [

Û1 −Û2

∗ I

][

υ(k)

F (υ(k))

]

≤ 0 (34)

where Û1 = diagN{Ūi}, Û2 = diagN{Ũi}, Ūi = (ūT
i ui +

ūiu
T
i )/2, andŨi = (ūi + ui)/2. Then, for any positive scalar

ε1, one has

∆V1(k)− η1V1(k) ≤ ξT (k)Π̄1ξ(k) (35)

where

Π̄1 =

[

Π̄11 (W ⊗ Γ)TQ1 + ε1Û2

∗ Q1 − ε1I

]

Π̄11 =(W ⊗ Γ)TQ1(W ⊗ Γ)− (1 + η1)Q1 − ε1Û1

ξ(k) =
[

υT (k) FT (υ(k))
]T

.

(36)

Applying Schur Complement Lemma to (31), it is readily
seen thatΠ̄1 < 0. Recalling the definition ofV1(k), we
arrive at λmin{Q1}‖υ(k + 1)‖22 ≤ V1(k + 1) ≤ (1 +
η1)λmax{Q1}‖υ(k)‖22. It is easily seen that‖υ(k + 1)‖2 ≤√
ρ1‖υ(k)‖2, which indicates‖̟1(k + 1) −̟2(k + 1)‖2 ≤

p1‖(̟1(k)−̟2(k))‖2. The proof is complete.
Based on the results of Lemma 1, a sufficient condition to

guarantee the convergence of the estimation error dynamicsfor
the state estimator design problem is given in the following
Lemma.

Lemma 2:Let the positive scalar0 < η2 < 1 be given. For
the CDN (14) with state estimator (15), assume that there exist
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a positive definite matrixQ2 = diag{Q2, Q3, · · · , QN+1}, a
matrix L̄ = diagN{L̄i}, and a positive scalarε2 satisfying

Π2 =







Π21 ε2Û2 Π22

∗ −ε2I Q2

∗ ∗ −Q2






< 0 (37)

with Π21 = −(1− η2)Q2 − ε2Û1 andΠ22 = (Q2(W ⊗ Γ)−
L̄C)T . Then, there always exist an integerh ∈ N+ and a
scalarp2 (0 < p2 < 1) such that

‖x(k + h)− x̂(k + h)‖2 ≤ p2‖x(k)− x̂(k)‖2. (38)

In addition, the gain of state estimator for each node can be
obtained by

Li = Q−1
i+1L̄i. (39)

Proof: Denoteee(k) , x(k) − x̂(k) and F (ee(k)) ,

F (x(k)) − F (x̂(k)). Then, in light of (14) and (15), the
dynamics of estimation error is deduced as

ee(k + 1) = F (ee(k)) + ((W ⊗ Γ)− LC)ee(k). (40)

By choosing the quadratic functionV2(k) =
ee(k)

TQ2ee(k) and defining its difference as
∆V2(k) = V2(k + 1) − V2(k), we calculate the term
∆V2(k) + η2V2(k) as

∆V2(k) + η2V2(k)

=eTe (k + 1)Q2ee(k + 1)− (1− η2)e
T
e (k)Q2ee(k)

=eTe (k)[((W ⊗ Γ)− LC)TQ2((W ⊗ Γ)− LC)

− (1− η2)Q2]ee(k) + FT (ee(k))Q2F (ee(k))

+ 2FT (ee(k))Q2((W ⊗ Γ)− LC)ee(k).

(41)

Similar to (34), it is easy to see from (2) that

ε2

[

ee(k)

F (ee(k))

]T [

Û1 −Û2

∗ I

][

ee(k)

F (ee(k))

]

≤ 0. (42)

Subsequently, it can be obtained from (41) and (42) that

∆V2(k) + η2V2(k) ≤ ξT (k)Π̄2ξ(k) (43)

where

Π̄2 =

[

Π̄21 Π̄22

∗ Q2 − ε2I

]

with Π̄21 = ((W ⊗ Γ) − LC)TQ2((W ⊗ Γ) − LC) − (1 −
η2)Q2 − ε2Û1 and Π̄22 = ((W ⊗ Γ)− LC)TQ2 + ε2Û2.

By applying Schur Complement Lemma, we can acquire
that∆V2(k) + η2V2(k) ≤ 0 in terms of (37) and (39), which
implies that

V2(k + h) ≤(1− η2)V2(k + h− 1)

≤(1− η2)
2V2(k + h− 2) ≤ · · · ≤ (1− η2)

hV2(k)

Furthermore, we obtain

λQ2
‖ee(k + h)‖22 ≤ (1− η2)V2(k + h)

≤ (1 − η2)
hV2(k) ≤ (1− η2)

hλ̄Q2
‖ee(k)‖22

(44)

where λQ2
, λmin{Q2} and λ̄Q2

, λmax{Q2}. To this
end, we have‖x(k + h) − x̂(k + h)‖2 < p2‖x(k) − x̂(k)‖2,
where p2 =

√
ρ2 and ρ2 = (1 − η2)

hλ̄Q2
λ−1
Q2

. Thus, for
0 < η2 < 1, there always exists an appropriate coding interval
h to guarantee0 < p2 < 1, and the proof is now complete.

B. The analysis of cluster synchronization control

The ultimate boundedness of the cluster synchronization
error dynamics (16) is discussed in the following theorem.

Theorem 1:Under the bit rate constraints (6) and (7), let
the positive integersRs, Rīi (i ∈ V), and the matrixK with
appropriate dimensions be given. Then, the cluster synchro-
nization error is ultimately bounded if there exist positive
scalarsε3, ε4, θ, and positive definite matricesPi ∈ R

nx×nx

(i ∈ V) such that

Π3 =











Π1
3 ε3Û2 0 Π2

3

∗ −ε3I 0 P
∗ ∗ −ε4I KTP
∗ ∗ ∗ −P











< 0 (45)

with Π1
3 = −(1 − θ)P − ε3Û1, Π2

3 = (K +W ⊗ Γ)TP , and
P = diagN{Pi}.

Proof: Define the Lyapunov-like function asV (k) =
eT (k)Pe(k). Then, the difference ofV (k) is calculated as:

∆V (k) =V (k + 1)− V (k)

=eT (k + 1)Pe(k + 1)− eT (k)Pe(k)

= [F (e(k)) + (K +W ⊗ Γ)e(k) +Kde(k)]
T P

× [F (e(k)) + (K +W ⊗ Γ)e(k) +Kde(k)]

− eT (k)Pe(k)

≤ [F (e(k)) + (K +W ⊗ Γ)e(k) +Kde(k)]
T P

× [F (e(k)) + (K +W ⊗ Γ)e(k) +Kde(k)]

− eT (k)Pe(k)

+ ε3

[

e(k)

F (e(k))

]T [

−Û1 Û2

∗ −I

] [

e(k)

F (e(k))

]

=ζT (k)Π̄3ζ(k)− θV (k) + ε4d
T
e (k)de(k) (46)

where

ζ(k) =
[

eT (k) FT (e(k)) dTe (k)
]T

,

Π̄3 =







Π̄1
3 Π̄2

3 (K +W ⊗ Γ)TPK

∗ P − ε3I PK

∗ ∗ KTPK − ε4I






,

Π̄1
3 =(K +W ⊗ Γ)TP(K +W ⊗ Γ)− (1− θ)P − ε3Û1,

Π̄2
3 =(K +W ⊗ Γ)TP + ε3Û2.

By applying the Schur Complement Lemma, inequality (45)
implies Π̄3 < 0. Then, it follows from (46) that

∆V (k) ≤ −θV (k) + ε4d
T
e (k)de(k). (47)

In addition, it follows immediately from Lemma 2 and the
dynamics ofx̆(dh) that

‖x(dh)− x̆(dh)‖22
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≤‖x(dh)− x̄(dh)− ~b(dh)

(

s11, · · · , sNnx

)

‖22
≤‖x(dh)− x̂(dh)‖22
+ ‖x̂(dh)− x̄(dh)− ~b(dh)

(

s11, · · · , sNnx

)

‖22

≤2ρd2Ns0 +
N
∑

i=1

nxb
2
i

(⌊

nx
√
2Rīi

⌋)2 (48)

wheres0 , supxi0∈I0
‖xi0‖22, andρ2 is defined in Lemma 2.

Notice that x̆(k) and x(k) can be seen as two solutions
of (14). Then, for0 < k < h, we have‖x(k) − x̆(k)‖22 ≤
pk1‖x(0)− x̆(0)‖22 ≤ 2pk1Ns0 and, fordh < k < (d+1)h, we
have‖x(k)− x̆(k)‖22 ≤ pk−dh

1 ‖x(dh)− x̆(dh)‖22.
Denoted̄ , ⌊ k

h
⌋ and h̄ , mod(k, h). Then, it follows from

de(k) = x̆(k)− x(k), p1 ≥ 1, and0 ≤ p2 ≤ 1 that

dTe (k)de(k) ≤ 2ph̄1ρ
d̄
2Ns0 + ph̄1

N
∑

i=1

nxb
2
i

(⌊

nx
√
2Rīi

⌋)2

≤ 2ph1ρ
d̄
2Ns0 + ph1

N
∑

i=1

nxb
2
i

(⌊

nx
√
2Rīi

⌋)2 (49)

≤ 2ph1Ns0 + ph1

N
∑

i=1

nxb
2
i

(⌊

nx
√
2Rīi

⌋)2 . (50)

Denoting φ , 2ε4p
h
1Ns0 + ε4p

h
1

∑N

i=1
nxb

2

i
(⌊

nx
√

2Rīi

⌋)

2 , it

follows from (47) that

∆V (k) ≤− θV (k) + φ. (51)

Then, for any scalarη3, we have

ηt+1
3 V (t+ 1)− ηt3V (t)

=ηt+1
3 (V (t+ 1)− V (t)) + ηt3(η3 − 1)V (t)

≤ηt3(η3 − 1− η3θ)V (t) + ηt+1
3 φ. (52)

Letting η3 = η̄3 = 1
1−θ

and summing both sides of
inequality (52) from0 to k − 1 in relation to t, we arrive
at

η̄k3V (k)− V (0) ≤ η̄3(1− η̄k3 )

(1− η̄3)
φ (53)

which can be further represented as the following form:

V (k) ≤V (0)

η̄k3
+

η̄3(1− η̄k3 )

η̄k3 (1− η̄3)
φ

=(1− θ)k
(

V (0)− φ

θ

)

+
φ

θ
. (54)

Then, it follows from the definition ofV (k) and (54) that

‖e(k)‖22 ≤ 1

λmin{P}e
T (k)Pe(k)

≤ (1− θ)k

λmin{P}

(

V (0)− φ

θ

)

+
φ

θλmin{P} . (55)

Consequently, it can be concluded from Definition 1 that the
dynamics of the cluster synchronization error system (16) is

exponentially ultimately bounded. The AUB of the cluster
synchronization error can be computed as

2ε4p
h
1Ns0 + ε4p

h
1

∑N

i=1
nxb

2

i
(⌊

nx
√

2Rīi

⌋)

2

θλmin{P} . (56)

The proof of this theorem is now complete.
Next, the following bit rate condition, which can be readily

established from (56), guarantees the desired cluster synchro-
nization performance.

Corollary 1: Under the condition in Theorem 1, the cluster
synchronization error system (16) is ultimately bounded with
a given AUB ǫ if there exist a set of bit ratesRīi (i ∈ V)
satisfying

N
∑

i=1

nxb
2
i

(⌊

nx
√
2Rīi

⌋)2 ≤ θλmin{P}ǫ− 2ε4p
h
1Ns0

ε4ph1
. (57)

Specifically, when the allocated bit rate are all the same for
each node, i.e.,R11 = R12 = · · · = RmN , R̂, the cluster
synchronization error system (16) is ultimately bounded with
a given AUB ǫ if

R̂ ≥ nx

2
log2

(

ε4p
h
1nx

∑N

i=1 b
2
i

θλmin{P}ǫ− 2ε4ph1Ns0

)

. (58)

Remark 3: In Theorem 1, a sufficient condition is proposed
under which the dynamics of the cluster synchronization error
system (16) is ensured to be exponentially ultimately bounded.
It is apparent that the AUB of the cluster synchronization
error system (16) is dependent on the bound of the disturbance
noise on the plant (1), the number of the nodes in the CDN,
the coding period, and the coding-decoding procedure. In
particular, when the bound of the noise, the number of nodes in
the CDN, the coding period and the parameters of the coding-
decoding procedure are all fixed, the AUB (56) of the cluster
synchronization error system would be only dependent on the
bit rate, thereby meriting the establishment of the bit rate
condition under which the required cluster synchronization
control performance is achieved.

C. The design of cluster synchronization controller

Based on the analysis of the cluster synchronization error
system, we will now focus on the controller design issue
by solving some optimization problems to be formulated by
means of certain performance indices of interest.

OP A: This optimization problem is to minimize the ulti-
mate bound of the cluster synchronization error dynamics so
as to achieve the best possible synchronization performance
under bit rate constraints (6) and (7) with given total available
bit rateRs and allocated bit rateRīi.

Theorem 2:For cluster synchronization error system (16),
let a scalarθ̄ (0 < θ̄ < 1) and positive integersRs, Rīi

(i ∈ V) be given. Suppose that there exist positive scalars
ε3, ε4, positive definite matricesPi ∈ Rnx×nx (i ∈ V), and
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real-valued matricesKi ∈ Rnx×nx (i ∈ V) satisfying

Π4 =











Π1
4 ε3Û2 0 Π2

4

∗ −ε3I 0 P
∗ ∗ −ε4I KT

∗ ∗ ∗ −P











< 0 (59)

P ≥ I (60)

with Π1
4 = −θ̄P − ε3Û1, Π2

4 = KT + (W ⊗ Γ)TP ,
K = diagN{Ki}, andP = diagN{Pi}. Then, the dynamics
of the cluster synchronization error system (16) is ultimately
bounded, where the decay rate isθ̄ and the minimum of the
asymptotic bound of‖e(k)‖22 can be obtained by solving the
following minimization problem:

min











2ε4p
h
1Ns0 + ε4p

h
1

N
∑

i=1

nxb
2
i

(⌊

nx
√
2Rīi

⌋)2











(61)

subject to the matrix inequality constraints (59)-(60). More-
over, the gainsKi (i ∈ V) of the controller can be obtained
from the following relationship:

diagN{Ki} = P−1K. (62)

Proof: Choosingθ = 1− θ̄, we conclude that

Π1
4 = Π1

3, Π2
4 = Π2

3. (63)

Then, it follows from (59) thatΠ3 < 0, which guarantees
the ultimate boundedness of the cluster synchronization error
system (16).

Along the similar line of the proof of Theorem 1, we obtain

V (k) ≤ θ̄k
(

V (0)− φ

1− θ̄

)

+
φ

1− θ̄
(64)

where

φ = 2ε4p
h
1Ns0 + ε4p

h
1

N
∑

i=1

nxb
2
i

(⌊

nx
√
2Rīi

⌋)2 .

Then, based on (55) and (60), it is readily seen that

‖e(k)‖22 ≤ V (k) ≤ θ̄k
(

V (0)− φ

1− θ̄

)

+
φ

1− θ̄
.

By considering (55), the AUB of‖e(k)‖22 can be calculated by
minimizingφ, which turns out to be equivalent to the condition
(61). Then, the proof is complete.

OP B: This optimization problem aims to maximize the
decay rate of the cluster synchronization error dynamics for
the fastest convergence under bit rate constraints (6)-(7)with
given total available bit rateRs and allocated bit rateRīi.

Theorem 3:For cluster synchronization error system (16),
let positive integersRs, Rīi (i ∈ V) be given. Suppose that
there exist positive scalarsε3, ε4, positive definite matrices
Pi ∈ R

nx×nx (i ∈ V), R ∈ R
Nnx×Nnx , and real-valued

matricesKi ∈ Rnx×nx (i ∈ V) satisfying

Π5 =











Π1
5 ε3Û2 0 Π2

5

∗ −ε3I 0 P
∗ ∗ −ε4I KT

∗ ∗ ∗ −P











< 0 (65)

P ≥ I (66)
[

−R θI

∗ P − 2I

]

< 0 (67)

with Π1
5 = −P + R − ε3Û1, Π2

5 = KT + (W ⊗ Γ)TP ,
K = diagN{Ki}, andP = diagN{Pi}. Then, the dynamics
of the cluster synchronization error system (16) is ultimately
bounded, and the maximum decay rate of cluster synchroniza-
tion error‖e(k)‖22 can be computed by solving the following
maximization problem:

max{θ} (68)

subject to the constraints (65)-(67). Moreover, the gainsKi

(i ∈ V) of the controller can be obtained from the following
relationship:

diagN{Ki} = P−1K. (69)

Proof: It can be concluded from the inequality

(P − I)P−1(P − I) ≥ 0

that
−P−1 ≤ P − 2I.

Then, it follows from (67) that

Π3
5 ,

[

−R θI

∗ −P−1

]

≤
[

−R θI

∗ P − 2I

]

< 0. (70)

By applying Schur Complement Lemma toΠ3
5, it can be

obtained that−R+ θ2P < 0. Then, it follows from (65) that










Π̄1
5 ε3Û2 0 Π2

5

∗ −ε3I 0 P
∗ ∗ −ε4I KT

∗ ∗ ∗ −P











< Π5 < 0 (71)

with Π̄1
5 = −P+θ2P−ε3Û1. Then, it follows from Theorem

1 that the dynamics of the cluster synchronization errore(k)
is ultimately bounded.

Similar to the proof of Theorem 1, we obtain the following
inequality:

V (k) ≤ (1− θ2)k
(

V (0)− φ

θ2

)

+
φ

θ2
(72)

where

φ = 2ε4p
h
1Ns0 + ε4p

h
1

N
∑

i=1

nxb
2
i

(⌊

nx
√
2Rīi

⌋)2 ,

and the decay rate of‖e(k)‖22 is thus determined by1−θ2. In
this way, the maximum decay rate of cluster synchronization
error is obtained by addressing the optimization problem (68),
which completes the proof.

Remark 4:For cluster synchronization error systems, the
ultimate bound and the decay rate are two essential per-
formance indices. In order to achieve the improvements in
different performance indices,OP A andOP B are proposed
separately. The effect of each optimization problem will be
shown numerically in IV section.
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D. Co-design of controllers and bit rate allocation protocol

With given bit rateRs and Rīi, we have considered the
design problem of cluster synchronization controllers in The-
orem 2 with the aim of minimizing the AUB of the cluster
synchronization error system (16). In fact, the available bit rate
of each node plays an important role in the AUB, and it can
be allocated by MAC protocol in the digital communication
network. As such, we will now discuss the co-design problem
in which both bit rate allocation protocol and controller gain
serve as design parameters.

Based on the above discussions, we propose the following
new minimization problem according to the bit-rate constraints
(6) and (7).

Corollary 2: Based on Theorem 2, when the positive inte-
gersRīi (i ∈ V) are variables to be determined, the minimum
of the AUB of‖e(k)‖22 can be derived by solving the following
minimization problem:

min 2ε4p
h
1Ns0 + ε4p

h
1

∑N

i=1
nxb

2

i
(⌊

nx
√

2Rīi

⌋)

2

s.t. (6), (7), (59), (60)

0 ≤ Rīi ≤ Rs

Rīi ∈ N, i ∈ V .

(73)

Moreover, the gainsKi (i ∈ V) of controllers can be obtained
from the relationship:

diagN{Ki} = P−1K. (74)

Proof: The proof is similar to Theorem 2, and is therefore
omitted for the sake of brevity.

It is easily observed that the objective function and con-
straints of OP A in Theorem 2 are linear and can thus
be resolved efficiently by the linear matrix inequality (LMI)
technique. The co-design problem presented in this subsection
is actually a mixed-integer nonlinear programming (MINP)
problem, which is difficult to solve due to the integer con-
straints ofRīi, the matrix inequality constraints (59) and (60),
in addition to the presence of the nonlinear term

ε4p
h
1

N
∑

i=1

nxb
2
i

(⌊

nx
√
2Rīi

⌋)2

in the objective function.
To deal with the emerging MINP problem, the particle

swarm optimization (PSO) algorithm and the LMI technique
are employed together in this paper. In order to take full
advantage of the PSO algorithm, a suitable objective function
should be given for the proposed optimization problem. As
such, the optimization problem (73) is transformed into the
following form by introducing a penalty function:

min 2ε4p
h
1Ns0 + ε4p

h
1

∑N

i=1
nxb

2

i
(⌊

nx
√

2Rīi

⌋)

2

+fpc(R) + fpn(R̄)

s.t. (59), (60)

Rīi ∈ N, i ∈ V .

(75)

where

fpc(R) = max

{

0,

m
∑

l=1

Rl −Rs

}

is the penalty function withR = [R1, R2, · · · , Rm], and

fpn(R̄) =

m
∑

ī=1



max







0,
∑

i∈Vī

Rīi −Rī











is the penalty function withR̄ = [R1̄1, R2̄2, · · · , RN̄N ]. The
fitness function of the PSO algorithm is defined as

F(R, R̄) ,2ε4p
h
1Ns0 + ε4p

h
1

N
∑

i=1

nxb
2
i

(⌊

nx
√
2Rīi

⌋)2

+ fpc(R) + fpn(R̄).

Algorithm 1 PSO-Assisted the Co-design Algorithm
◮ Step 1. Initialize the parameters of PSO:Initialize

parametersNS , NI , c1, c2, w, and the initial velocity
Vi and positionRi of each particle.

◮ Step 2. Evaluate the fitness and set initialpi: Evaluate
each particle’s fitness functionF(Ri) by solving the
LMIs (59) and (60). If the LMIs (59) and (60) are
infeasible, then the value of fitness will be artificially
assigned a sufficiently large value (104 in this paper)
to reduce the effect of the corresponding particle on
the particle swarm. Set all initial positions aspi,
i = 1, 2, · · · ,Ns.

◮ Step 3. Selectgb in the swarm: Select thegb in the
swarm, which has the minimum fitness value.

◮ Step 4. Update the particle’s velocity and position:
Update the velocity and the position of the each particle
by given updating equations (76) and (77).

◮ Step 5. Evaluate the fitness and updatepi: Evaluate
each updated particle’s fitness function by the same
method in Step 2. IfF(Ri) < F(pi), then, set the
current position aspi.

◮ Step 6. Updategb in the swarm: Select thegb in the
swarm, which has the minimum fitness value.

◮ Step 7. Design of the bit rate allocation protocol:Each
iteration repeats the process of steps 4 and 6 until the
maximum number of iterations is reached. Then, select
the gb as the parameters of bit rate allocation protocol.

◮ Step 8. Design of the cluster synchronization con-
trollers: Produce the synchronization controllers (10)
by using the gain matricesKi obtained according to
the selected bit rate protocol.

The PSO algorithm is outlined in Algorithm 1, whereNS

denotes the population size,NI stands for the maximum
number of iterations, andvi = [vi,1,vi,2, · · · ,vi,m+N ] and
Ri = [Ri,1,Ri,2, · · · ,Ri,m+N ] represent the velocity and
position of particlei, respectively. The velocity and position
updating equations of particlei are given as follows:

vi(t+ 1) =wvi(t) + c1r1 (pi(t)−Ri(t))

+ c2r2 (gb(t)−Ri(t)) (76)
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Ri(t+ 1) =Ri(t) + vi(t+ 1) (77)

wherepi denotes the historical individual best position for
particlei, gb bespeaks the historical global best position for the
entire swarm,w is the inertia weight,c1 andc2 indicate the
cognitive acceleration coefficient and the social acceleration
coefficient, separately, andt refers to the iteration number.
In terms of the characteristic of integer variables, the initial
position and velocity of the particle, as well as the parameters
c1, c2, and w are selected as integers in the algorithm.
Moreover,r1 andr2 are selected randomly from two integers
1 or 2.

Remark 5: In practical networks, the bit rate allocation
protocol is a parameter that can be designed according to
different performance specifications. On the other hand, each
node’s bit rate plays a significant role in improving the
cluster synchronization performance. Therefore, the co-design
problem of integrating the bit rate protocol and the controller
parameters is considered in this paper. Furthermore, such aco-
design problem is formulated as a MINP problem represented
by (75), which can be well solved by Algorithm 1. One of
our further research topics is to solve the MINP problem by
using some effective optimization methods [23], [24].

Remark 6: In this paper, the cluster synchronization control
problem is investigated for CDNs. A bit rate model with
two constraints is first introduced to reflect the bandwidth
limitation of CDNs with m clusters. A sufficient condition
is proposed in Theorem 1 to guarantee the ultimate bound-
edness of the cluster synchronization error dynamics. Two
essential performance indices for the dynamics of the cluster
synchronization error (i.e., the ultimate bound and the decay
rate) are reflected in Theorem 2 and Theorem 3 by designing
appropriate controller gains, respectively. To further reduce
the ultimate bound, a co-design problem is proposed that
comprehensively considers the bit rate allocation protocol
and controller parameters, and such a problem is solved in
Corollary 2.

Remark 7:The synchronization control problem for
discrete-time complex dynamical networks has received
considerable research interest from various communities and
a rich body of literature has been available. In comparison
with the existing studies, the main results of this paper
exhibit the following distinctive contributions: 1) the bit rate
model established in this paper is new that quantifies the
communication bandwidth constraints and the corresponding
bandwidth allocation protocols; rules for the clusters within
the CDN and for the nodes within a cluster; 2) the proposed bit
rate condition is new that discovers the relationship between
the bit rate and the specific synchronization performance;
and 3) the two formulated optimization problems and
the associated co-design problem are new that reflect the
synchronization performance indices.

IV. N UMERICAL EXAMPLE

This section presents three simulation scenarios to demon-
strate the effectiveness of the decoder-based cluster synchro-
nization controller proposed in this paper for the CDN (1).

The CDN (1) with five nodes is divided into two clusters
V1 = {1, 2} andV2 = {3, 4, 5}. The coupling configuration
matrix is of the following form:

W =

















−0.2 0.2 0.1 −0.1 0

0.2 −0.2 −0.1 0.1 0

0.1 −0.1 −0.5 0.3 0.2

−0.1 0.1 0.3 −0.4 0.1

0 0 0.2 0.1 −0.3

















(78)

and the inner-coupling matrix is an identity diagonal matrix.
The nonlinear functions of nodes in the two clusters respec-

tively satisfy the following forms:

f1(xi(k)) =

[

0.6 tanh(0.1xi1(k)) + 1.05xi1(k)

0.6 tanh(0.1xi2(k)) + 1.05xi2(k)

]

f2(xi(k)) =

[

0.8 tanh(0.1xi1(k)) + 1.05xi1(k)

0.8 tanh(0.1xi2(k)) + 1.05xi2(k)

]

.

Then, it can be seen that the nonlinear functions satisfy the
sector bounded condition (2) with

ū1 =

[

1.11 0

0 1.11

]

, u1 =

[

1.05 0

0 1.05

]

ū2 =

[

1.13 0

0 1.13

]

, u2 =

[

1.05 0

0 1.05

]

.

The measurements of the CDN (1) are modeled by the
following parameters:

C1 =
[

1 1
]

, C2 =
[

1 −0.90
]

, C3 =
[

0.80 0.60
]

C4 =
[

0.70 1
]

, C5 =
[

1 1
]

.

The bound of the initial values0 is set to be4. Then, the
initial values of the target trajectoriest1(k) andt2(k) are set to
[

0.9 −0.9
]T

and
[

0.8 −0.8
]T

, the initial states ofx1, x2,

x3, x4 and x5 are chosen as
[

0.1 −0.1
]T

,
[

0.2 −0.2
]T

,
[

0.1 −0.1
]T

,
[

0.2 −0.2
]T

, and
[

0.3 −0.3
]T

, and the
initial state of each estimator is set to zero. Next, we will
verify the results of this paper through the following three
cases.

Case 1:Cluster synchronization effects ofOP A andOP B.
In this case, the effects ofOP A and OP B on different

performances of cluster synchronization control are discussed.
The total available bit rate of the digital communication
network is assumed to be16 bps, the available bit rate of each
cluster is allocated by an average allocation protocol (AAP)
asR1 = R2 = 8 bps, and the available bit rate of each node is
allocated asR11 = R12 = 4, R23 = R24 = 3, R25 = 2. The
scaling parameters of each quantizer are chosen asb1 = 1,
b2 = 0.8, b3 = 0.5, b4 = 1.2, b5 = 2. The θ̄ is set to be 0.92
for OP A. Then, by applying Theorem 2 and Theorem 3, the
controller gains of each node can be obtained, respectively.

The corresponding simulation results are depicted in Figs.2-
4 and Table I, where Fig. 2 describes the trajectories of the
uncontrolled dynamical nodes, Fig. 3 depicts the trajectories
of the controlled dynamical nodes where the controllers are
derived by solvingOP A, and Fig. 4 plots the evolutions of
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TABLE I
THE COMPARISON BETWEENOP A AND OP B

Total bit rateRs(bps) OP A (θ̄ = 0.92) OP B

Settling-like time 3 2

Upper bound of the trajectory 1.2847 2.0381

the cluster synchronization error dynamics in the case ofOP
A andOP B. The AUB and the “settling-like times” (the time
required for the cluster synchronization dynamics to reach
and remain within the “steady-state region”) of the cluster
synchronization error dynamics with respect toOP A andOP
B are shown in Table I. From Figs. 2-3, it can be readily
observed that the controllers obtained by solvingOP A are
able to drive the CDN to the selected cluster synchronization
pattern. Table I shows thatOP A result in a small AUB and
the OP B make for a low decay rate.
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Fig. 2. The trajectoriesxij(k) of uncontrolled nodesi (i ∈ {1, 2, 3, 4, 5},
j ∈ {1, 2})
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Fig. 3. The trajectoriesxij(k) of controlled nodesi (i ∈ {1, 2, 3, 4, 5},
j ∈ {1, 2})

Case 2:Effects of different allocation protocols on AUB.
In Case 1, the bit rate allocation protocol is assumed to

be AAP, which allocates the total bit rate evenly to each
node regardless of each node’s characteristics. In comparison,
the bit rate allocation protocol in Corollary 2 is calculated
by the PSO-assisted the co-design algorithm. The bit rate
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||e(k)||2: Theorem 2 (θ̄=0.92)
||e(k)||2: Theorem 3

Fig. 4. The trajectories of cluster synchronization error‖e(k)‖2 subject to
OP A andOP B

allocation protocol obtained in Corollary 2 can be referred to
as PSO-based optimal allocation protocol (PSO-OAP), which
allocates a specific bit rate to each node with the objective of
minimizing AUB. This case aims to show the superiority of
PSO-OAP over AAP in reducing AUB.

The scaling parameters are selected asb1 = 1, b2 = 0.8,
b3 = 0.5, b4 = 1.2, andb5 = 2. Two sets of simulations are
conducted for Theorem 2 and Corollary 2, respectively, with
the same total available bit rate of32 bps. The decay ratēθ in
Theorem 2 is set to be0.92. Then, the first set of simulations
is conducted without considering the bit rate constraint on
the cluster. While the second set of simulations is carried
out in case the two clusters are equally allocated a certain
bit rate, i.e.,R1 = R2 = 16 bps. Then, the AUB’s values
can be obtained by solvingOP A and MINP problem (73),
respectively. The corresponding results are shown in Table II,
where the first two rows outline the results of the first set
simulations, and the last two rows present the results of the
second set simulations. From Table II, it can be easily seen
that PSO-OAP is capable of reducing the AUB of the cluster
synchronization error system.

TABLE II
THE AUBS SUBJECT TO DIFFERENT BIT RATE ALLOCATION PROTOCOLS

Quantizer Parameters Protocol Allocation of Bit Rate AUB

b1 = 1, b2 = 0.8

b3 = 0.5,b4 = 1.2

b5 = 2

AAP

R11 = R12 = 6

R23 = R24 = 6

R25 = 6

9.4906

PSO-OAP

R11 = 7, R12 = 6

R23 = 5, R24 = 6

R25 = 8

9.4454

b1 = 1, b2 = 0.8

b3 = 0.5,b4 = 1.2

b5 = 2

AAP

R11 = R12 = 8

R23 = R24 = 5

R25 = 6

9.5112

PSO-OAP

R11 = 8, R12 = 8

R23 = 4, R24 = 6

R25 = 6

9.4836

Case 3:Effects of total available bit rate on AUB and decay
rate.

Intuitively, the bit rate has a significant impact on the cluster
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TABLE III
THE AUBS AND DECAY RATES SUBJECT TO DIFFERENT TOTAL AVAILABLE

BIT RATES

Total bit rateRs(bps) 16 32 64 128

OP A
AUB ψ

(θ̄=0.7)
16.115 15.2678 15.1683 15.1671

OP B
AUB ψ 25.1405 23.8187 23.6635 23.6616

Decay rateθ 0.7618 0.7618 0.7618 0.7618

synchronization performance. This case seeks to examine
numerically the effects of different total available bit rate on
the AUB and decay rate. The total bit rate is assumed to be
16 bps, 32 bps, 64 bps, and 128 bps, respectively. The scaling
parameters of quantizers are set to beb1 = 8, b2 = 9, b3 = 8,
b4 = 7. The θ̄ is set to be 0.7 forOP A. Then, under the AAP,
we can derive the AUB and the decay rate by solvingOP A
andOP B. The results are displayed in Table III.

It can be observed from Table III that the AUB decreases
as the total bit rate increases, whether forOP A or OP B.
The advantage ofOP A over OP B in reducing the AUB can
also be easily verified. On the other hand, the decay rate is
not affected by the total bit rate inOP B.

V. CONCLUSIONS

In this paper, the cluster synchronization control problem
has been investigated for discrete-time CDNs with constrained
bit rate. A bit rate constraint model has been proposed to
describe the bandwidth limit of a CDN withm clusters. A
sufficient condition has been proposed under which the cluster
synchronization error system is ultimately bounded, and a bit
rate condition that guarantees a certain cluster synchronization
performance has been proposed subsequently. Two OPs have
been presented and solved to calculate the required cluster
synchronization controllers so as to achieve two different
synchronization performance indices. The co-design issueof
the bit rate allocation protocol and controller gains has been
discussed as well. Three illustrative numerical cases havebeen
presented to demonstrate the feasibility and the effectiveness
of the proposed synchronization control strategies. Finally, the
research idea of analyzing the impact of constrained bit rate
on system performance can be extended to the filtering and
control of networked systems [10], [26], [53], [54], [56].
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