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Abstract— The coronavirus disease 2019 (COVID-19) has
continued to spread worldwide since late 2019. To expedite the
process of providing treatment to those who have contracted
the disease and to ensure the accessibility of effective drugs,
numerous strategies have been implemented to find potential
anti-COVID-19 drugs in a short span of time. Motivated by this
critical global challenge, in this review, we detail approaches that
have been used for drug repurposing for COVID-19 and suggest
improvements to the existing deep learning (DL) approach
to identify and repurpose drugs to treat this complex dis-
ease. By optimizing hyperparameter settings, deploying suit-
able activation functions, and designing optimization algorithms,
the improved DL approach will be able to perform feature
extraction from quality big data, turning the traditional DL
approach, referred to as a “black box,” which generalizes and
learns the transmitted data, into a “glass box” that will have the
interpretability of its rationale while maintaining a high level
of prediction accuracy. When adopted for drug repurposing for
COVID-19, this improved approach will create a new generation
of DL approaches that can establish a cause and effect rela-
tionship as to why the repurposed drugs are suitable for treating
COVID-19. Its ability can also be extended to repurpose drugs for
other complex diseases, develop appropriate treatment strategies
for new diseases, and provide precision medical treatment to
patients, thus paving the way to discover new drugs that can
potentially be effective for treating COVID-19.

Index Terms— Coronavirus, coronavirus disease 2019
(COVID-19), deep learning (DL), drug repurposing (DR),
interpretable deep learning for anti-COVID-19 drugs
prediction, severe acute respiratory syndrome coronavirus 2
(SARS-CoVID-2).

I. INTRODUCTION

THE coronavirus disease 2019 (COVID-19) has had an
unprecedented impact globally. According to Reuter,

on July 30, 2020, the U.S. economy experienced its steepest
decline since the 1947 Great Depression. Due to the lack of
effective prevention and treatments, the COVID-19 has caused
ongoing and recurrent deadly outbreaks globally.

The coronavirus genome is a positive-sense, nonsegmented,
single-stranded RNA, with an astoundingly large size ranging
from 27 to 32 kilobases [22]. Four human coronaviruses,
namely, HCov-229E, HCovNL63, HCov-OC43, and HKU1,
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Fig. 1. Schematic of the structure of SARS-CoV-2 and its entry and
replication process within the host cell. It has four structural proteins,
S (spike), E (envelope), M (membrane), and N (nucleocapsid) proteins; the
N protein holds the RNA genome, while the S, E, and M proteins together
create the viral envelope [53]. 1— coronavirus enters the host cells by
cleavage of its spike protein (S glycoprotein). 2—binds to ACE2 receptor
with its spike protein. ACE2 receptor is primed by the TMPRSS2 protease.
3—coronavirus then fuses into the host membranes. 4—viral single-stranded
positive RNA is released for replication of virus RNA. 5—translation of
coronavirus polymerase. 6 and 7—transcriptions and replications of RNA
occur. 8—translation of coronavirus structural protein. 9—nucleocapsid then
combined with S, E, and M proteins. 10—formation of coronavirus is
completed. 11—released to infect other cells.

typically affect the upper respiratory tract and cause rela-
tively minor symptoms. In contrast, severe acute respiratory
syndrome coronavirus (SARS-CoV), Middle East respiratory
syndrome coronavirus (MERSCoV), and SARS-CoV-2 can
infect the lower respiratory tract and cause severe pneumonia
resulting in higher fatality risk.

Through recently improved understanding in molecu-
lar mechanisms of COVID-19 infection, it has provided
great insight into the repurposing of drugs that target the
SARS-CoV-2 proteins or host factors. Generally, the first step
in the coronavirus replication cycle involves attachment and
entry, which includes binding of the spike protein (S glyco-
protein) of the virus to a host cell through the ACE 2 receptor
that is primed by TMPRSS2 protease [18], as shown in Fig. 1.
High level of angiotensin-converting enzyme 2 (ACE2) protein
is found in the lungs and the small intestine, of particular
importance are the lungs’ AT2 alveolar epithelial cells that are
highly prone to viral infection. One of the known regulators of
endocytosis is the AP2-associated protein kinase 1 (AAK1).
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Disruption of AAK1 might, in turn, interrupt the passage of
the virus into cells and also the intracellular assembly of virus
particles. Thus, both the lungs and the small intestine provide
easily accessible routes for SARS-CoV-2 infection [18], [22].
The ACE2 protein is also present in smooth muscle, pericytes,
and endothelial cells of the vasculature, heart, kidneys, and
these have led to the multiorgan dysfunction observed in severe
COVID-19 patients [18], [22]. In addition, by comparison to
SARS-CoV, SARS-COV-2 has 10–20-fold stronger binding
affinity to S protein [18] making it a lot more contagious.
However, despite the higher contagiousness, SARS-CoV-2 and
SARS-CoV share 79% genomic sequence similarity with
a highly conserved receptor-binding domain in their spike
proteins.

II. REPLICATION OF COVID-19

After host cell entry, the viral single-stranded positive
RNA gets replicated and translated into the virus polyproteins
using the following process: 1) translation of genomic RNA
(gRNA); 2) proteolysis of the translated polyprotein with viral
3C-like proteinase; 3) replication of gRNA with the viral
replication complex that consists of RNA-dependent RNA
polymerase (RdRp), helicase, 30-to-50 exonuclease, endoR-
NAse, and 20-O-ribose methyltransferase; and 4) assembly
of viral components [22]. The typical clinical symptoms
of COVID-19 are fever, dry cough, and fatigue 3–7 days
after infection, which is similar to symptoms of severe acute
respiratory syndrome (SARS) caused by SARS-CoV [22].
Focusing on important viral polyproteins, spike protein plays
a crucial role in viral attachment, entry, and fusion into
the target host cell. Two other essential proteins constituting
the viral replication–transcription complex are helicase and
nonstructural protein 12 (nsp12). Nsp12 is an RdRp that
binds with nsp7 and nsp8 to make a multisubunit complex
essential for viral replication. Helicase (nsp13) assists in viral
replication by unwinding the duplex viral RNA. Main protease
(Mpro, also called 3CLpro) is another essential protein that
works in conjunction with papain-like protease(s) to process
the huge polyproteins encoded by the SARS-CoV-2 genome.
These proteins are key targets for effective antiviral ther-
apy [4]. Furthermore, despite having only 79% of genomic
sequence shared between SARS-CoV and SARS-CoV-2, there
is over 95% similarity in their highly conserved proteins
involved in targeting host cell, namely RdRp and 3Clpro (also
termed Mpro). RdRp is an RdRp required for replicating the
viral genome within the host cell, while 3Clpro and Plpro
are both viral proteases responsible for breaking down viral
polyproteins into functional units within the host cells that
are finally assembled into new viruses. The 3Clpro sequences
between the two viruses are 96% similar, the Plpro sequence
identity is 83%, and their active sites show a high degree
of conservation [18]. With so many similarities between the
two viruses, this implies that similar approaches can be
adopted to prevent the spike protein from binding with the
ACE-2 receptor and TMPRSS2-mediated cell entry must be
blocked by appropriate vaccine [18]. On the other hand, virus
replication and assembly must be inhibited by effective drugs
targeting at viral RdRp and main protease (Mpro) [18], [33].

These replication-associated proteins are the primary targets
of postentry treatment drugs for suppressing viral replication.

Even though vaccines have been developed and the rollouts
of vaccinations have begun in many parts of the world,
the slow rolling outs of vaccinations in some countries have
allowed the virus to mutate into new variants that put everyone
at risk. It was reported that the Delta variant, which is
anticipated to be the predominant variant in the months ahead,
is more transmissible than the Alpha variant (CNN health,
June 21, 2021). Continuous spread of the virus could lead to
more numerous and potentially more transmissible and dan-
gerous variants. The only viable alternative to finding effective
drugs, without resorting to the time-consuming and expensive
traditional de novo drug discovery process, is through repur-
posing existing approved drugs. So far, several drugs have
been repurposed based on two rationales: 1) effectiveness of
those drugs in hampering viral entry and replication in the
epithelial cells of the airways by coronaviruses or RNA viruses
in the past and/or 2) the ability of those drugs to modulate
inflammatory reaction [33]. However, only a few have been
completed so far with a less-than-expected level of effective-
ness. Overall, this current devastating situation has spurred our
interest to reexamine the existing deep learning (DL) models
used for COVID-19 drug repurposing (DR) and propose a
new DL model, which leverages technological advancement
to repurpose commercially available drugs, paving a way to
discover new drugs that can potentially be effective for treating
COVID-19.

III. DRUG REPURPOSING

The need for new antiviral drugs or repurposed drugs
in addressing the global challenge of treating COVID-19 is
the motivation for us to explore new mechanisms for the
development of anti-COVID-19 drugs. The DR approach,
which is a process of finding new indications for existing
Food and Drug Administration (FDA)-approved drugs, offers
a relatively low-cost and high-efficiency approach to the rapid
development of efficacious treatments. When applied to viral
infectious diseases, DR integrates both screenings of bioac-
tive small-molecule collections and computational methods
(in silico screenings, mining of database with transcriptomic
profiles, and so on) in order to find a molecule, a pathway,
or a biological activity that could be recycled to fight a
viral pathogen [7]. The DR presents a promising avenue for
identifying and expediting safer treatments without incurring
the full cost or time required for de novo drug development,
as shown in Fig. 2.

In this review, we describe emerging DR strategies deployed
to combat the difficult-to-treat COVID-19 through the use of
preexisting drugs that act on targets or disease pathways and
suggest an innovative as well as promising approach, which
can generalize and learn transmitted data to transform the
“black box” nature of DL approaches into an interpretable
“glass box,” hence improving the interpretability of its ratio-
nales while maintaining a high level of prediction accuracy.
This new approach, when adopted for COVID-19 DR, can
establish a cause-and-effect relationship on the suitability of
repurposed drugs for the treatment of COVID-19.
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Fig. 2. Comparison of de novo drug discovery and DR journeys. DR begins
with compound identification and the acquisition of an existing drug Phase I
clinical studies was not required because the results are already available. This
is directly followed by phases II and III clinical trials.

A. Clinical DR for COVID-19

Both clinical trials and computational methods have been
carried out worldwide for repurposing existing approved
drugs for treating COVID-19. We undertook a systematic
search using search terms and keywords that are associ-
ated with COVID-19, such as “2019 nCoV,” “COVID-19”,
“SARS-2-CoV,” “SARS,” “DR for COVID-19,” “Repurpos-
ing drugs for COVID-19 using DL methods,” “docking for
COVID-19 drugs,” “drugs under clinical trials for COVID-19,”
and “computational or data-driven DR for COVID-19.” Know-
ing that no specific drugs have been designed or repurposed
to be very effective for treating COVID-19, we included
research studies that have not been undergone peer-reviewed
or with no experimental evaluation or are undergoing clin-
ical trial. Eligible studies that are included are those with
repurposed drugs that are either already approved by at least
one of the following authorities: the U.S. FDA, the European
Medicines Agency (EMA), the Japan Pharmaceuticals and
Medical Devices Agency (PMDA), or under clinical trials.
By considering the above criteria, the works in Table I were
selected.

Following the outbreak of the COVID-19 pandemic, broad-
spectrum antiviral agents have been introduced into clinical
trials. Clinically, it was found that umifenovir had a ten-
dency to reduce viral load and mortality rate but sometimes
failed to improve the prognosis and virus clearance [56].
On day 14 after admission, no viral load was detected in the
arbidol group, but the viral load was found in 15 (44.1%)
patients treated with lopinavir/ritonavir, indicating that arbidol
monotherapy may be superior to lopinavir/ritonavir in treating
COVID-19 [61]. In addition to monotherapy, the clinical trials
extended their exploration to synergetic drug combination.
It was reported that when comparing the effect of hydrox-
ychloroquine treatment as a single drug and the effect of
hydroxychloroquine and azithromycin combination, there was
a significant difference in the treatment results between the
two groups at days 3–6 postinclusion [25]. At day 6 postin-
clusion, 100% of patients treated with hydroxychloroquine and
azithromycin combination were virologically cured compared
with 57.1% of patients treated with hydroxychloroquine only
and 12.5% in the control group (p < 0.001). Some of the clini-
cally trialed drugs that were approved for the monotherapeutic

treatment of the COVID-19 disease include antimalarial,
antiviral, and anti-inflammatory drugs, as shown in Table I.

B. DL in Drug Discovery

As technology advances along with the availability of a
variety of drugs-related and disease-related data, the computa-
tional approach, especially DL, has demonstrated its superior
performance over other traditional computational methods in
drug discovery [40]. DL has an edge over other traditional
computational methods, such as molecular docking and con-
ventional similarity-based machine learning methods. This is
because molecular docking is a simulation-based method using
the 3-D structure features of molecules and proteins that are
difficult to obtain [34]. On the other hand, similarity-based
methods using traditional machine learning methods are found
to have limitations because the feature representations of these
methods are limited in the similarity space, and thus, they
cannot capture the rich information embedded in the molecule
sequence [29], [41]. Moreover, they necessitate the calcula-
tion of the similarity matrix, which can limit the maximum
number of molecules in the training process. To overcome the
limitations of needing to perform featuring engineering and
losing rich information when traditional machine learning is
deployed, DL-based models, which can automatically find use-
ful features from raw molecules such as simplified molecular-
input line-entry system (SMILES) and protein sequences made
from amino acid sequences (without the need for feature
engineering), have been utilized for DR. The general DL
framework that has been used to assist drug discovery and
DR so far is shown in Fig. 3.

C. DL-Based DR for COVID-19

Motivated by the successful use of DL in drug discovery,
Beck et al. [8] used molecule transformer-drug target interac-
tion (MT-DTI) to identify commercially available drugs that
could act on viral proteins of SARS-CoV-2. Their results
showed that atazanavir, an antiretroviral medication used to
treat and prevent the human immunodeficiency virus (HIV),
showed an inhibitory potency with Kd of 94.94 nM against
the SARS-CoV-2 3C-like proteinase, followed by remdesivir
(113.13 nM), efavirenz (199.17 nM), ritonavir (204.05 nM),
and dolutegravir (336.91 nM). They also found that lopinavir,
ritonavir, and darunavir were not only designed to target viral
proteases but were also able to bind to the replication complex
components of SARS-CoV-2 with an inhibitory potency of
Kd < 1000 nM. In addition, several antiviral agents, such
as Kaletra (lopinavir/ritonavir), could also be used for the
treatment of SARS-CoV-2, as shown in Table I.

To improve the drug–target interaction DeepDTA
model [40], Anwar et al. [4] employed bidirectional
long short-term memory (BiLSTM) blocks of neural networks
instead of using convolutional neural networks (CNNs) as
deployed by DeepDTA to learn the 1-D SMILE representation
of molecules. A fully connected CNN was engaged to learn
the FASTA representation of proteins, as shown in Table II.
The model was combined with molecular docking experiments
to identify the most promising candidates from a list of FDA
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TABLE I

COMPARISON OF REPURPOSED DRUGS OBTAINED USING DIFFERENT METHODS

approved drugs that can be repurposed to treat COVID-19 [4].
Using the combined method, a list of 49 most promising
FDA approved drugs with best consensus KIBA scores
and AutoDock vina binding affinity values against selected

SARS-CoV-2 viral proteins were generated. Other models
that were deployed included end-to-end DL models using two
CNNs, two LSTM, CNN-LSTM, and graph attention network
GAT-CNN [36], as shown in Table II.
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TABLE II

CHARACTERISTICS OF DEEP LEARNING-BASED DR MODELS FOR COVID-19

IV. ANTI-COVID-19 DR USING DL: ADVANTAGES

AND DISADVANTAGES

Table I gives a snapshot of the existing development in
DR and the prediction of repurposed drugs for COVID-19.
It provides a platform for analyzing diverse findings and
identifying promising drug candidates that can be repurposed
to treat COVID-19. Some drugs, which tested effective using
traditional methods, were also predicted to be repurposed
drugs for COVID-19 by DL. However, some drugs, which
tested effective in vivo and in vitro, were not predicted by DL

methods. The differences in these findings can be attributed to
advantages and disadvantages of the approaches adopted, as
shown in Table III.

A. Requiring No Prior Domain Knowledge

In practice, experimental studies on DR are done using pre-
existing drugs that are already known to have inhibitory effects
on other similar coronaviruses such as SARS-CoV and/or
MERS-CoV, or nucleotide analogs via these criteria such as
similarity in size and structure to natural nucleotides, including
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Fig. 3. General deep learning framework used for DR.

the ability to fit within the active sites of the polymerase [30].
On the contrary, DL approaches have the advantage of having
the capacity to detect drug–target interactions without having
prior domain knowledge. It can successfully identify drugs
that target epidermal growth factor receptor that is used in
clinics [8]. With the establishment of powerful and easy-to-
use DL toolkit such as DeepPurpose, the problem of technical
barrier is further addressed. DeepPurpose allows any user,
including non-DL technical experts to apply a DL approach in
real-life simulation [65]. Because of its unique strength, DL is
a powerful tool for identifying and predicting the right drugs
to be repurposed for new diseases within a short time frame
and in a cost-effective way. However, we cannot deny the fact
that having strong domain knowledge can augment the process
of designing more precise and accurate predictive models.
For DR for COVID-19, if we know more about drug side
effects and the complex biological mechanisms underlying the
disease such as having good insight on how the virus enters
the cell and which tissues are susceptible, in which part of the
virus (spike protein) initiates the merging of the viral envelope
with the host cell cytomembrane, our expert knowledge in
this area can improve the design of DL model and the model
would then be able to generalize real-world situations better
for repurposing drugs with less side effects.

B. Identification of Multitarget Drugs as a Strength

It is evident from ongoing clinical studies of COVID-19 that
treatments with a single drug are unlikely to be sufficient
unless the drug can act via the inhibition of multiple pathways.
Multitarget drugs have two or more pharmacophores that are
structurally overlapping. Table I shows that DL has the ability
to identify multitarget drugs. For example, atazanavir was

TABLE III

ADVANTAGES AND DISADVANTAGES OF USING DEEP LEARNING
FOR REPURPOSING COVID-19 DRUGS

predicted by DL to have a potential binding affinity to bind to
RdRp, helicase, 3’-to-5’ exonuclease, 2’-o-ribose methyltrans-
ferase, and endoRNAse. The DL also predicted interactions
of grazoprevir with RdRp, helicase, 3’-to-5’ exonuclease, and
endoRNAse. In view of the strong ability of DL to identify
multitarget drugs, we strongly believe that it can provide a
new avenue for the therapeutic management of SARS-CoV-2
infection.

C. Reconsidering Reliability of DL in DR

Different studies (Tables I and II) have used different
DL models for repurposing COVID-19 drugs. Table I shows
that some of the COVID-19 repurposed drugs that have
been experimentally tested and could be incorporated into
RdRp of SARS-CoV-2 are abacavir, entecavir, and ganciclovir,
which are also the drugs predicted by DL for COVID-19.
Other repurposed drugs, which are the same, are boceprevir,
lopinavir, nelfinavir, and remdesivir. The same results obtained
provide a molecular basis for further evaluation of these drugs



4776 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 32, NO. 11, NOVEMBER 2021

in SARS-CoV-2 virus inhibition to test their efficacy for
the development of potential COVID-19 therapeutics. It also
serves as strong evidence on the reliability of the DL approach
for repurposing drugs, as proven computationally in many
drug-discovery studies [40], [51], [60]. However, Table I also
shows that some differences are observed between the clinical
findings and results obtained using DL. These intriguing
findings need to be tested experimentally and clinically. The
DL frameworks for repurposing drugs in Table II must also
be reanalyzed to find potential solutions to overcome this
problem. Careful scrutiny of DL algorithm, its architectural
framework, as well as data used to train a model are particu-
larly important for verifying correlations made by a DL model.
The existing DL model that trained on one set of data is unable
to take into consideration many external impacting factors on
a patient. For example, the effects of COVID-19 on a patient
will change over time, so drugs and method used for treating
a patient need to be modified according to the condition of
the illness. The models can certainly help to point us in the
right direction by identifying repurposed drugs that can safely
and effectively treat COVID-19 to avoid having to go through
time-consuming and expensive drug development process;
however, we still have to run experiments in the laboratory to
eventually validate the effectiveness of the repurposed drugs.

D. Room for Drug Combination Synergy

Drug combination therapy has been established clinically
for treating COVID-19. For example, when comparing the
effect of hydroxychloroquine treatment as a single drug and
the effect of hydroxychloroquine and azithromycin in com-
bination, it was found that 100% of patients treated with
hydroxychloroquine and azithromycin combination were cured
compared with only 57.1% of patients treated with hydroxy-
chloroquine alone [25].

GC376, a preclinical inhibitor against the feline infectious
peritonitis (corona) virus (FIPV) that can efficaciously inhibit
SARS-CoV-2 by targeting Mpro, was combined clinically
with remdesivir, a nucleotide analog inhibitor to fight against
viral RdRp [21]. When the two drugs are combined, both
GC376 and remdesivir inhibitors bonded to the active side
of SARS-CoV-2 protease Mpro and became the main mech-
anism of inhibition [21]. Clinical findings show that a drug
combination may provide critical information for the opti-
mization and design of more potent inhibitors against the
SARS-CoV-2 virus. Based on the success of DeepSynergy
(which uses combined information about cancer cell lines and
drug combinations in its hidden layers to form a combined
representation that eventually leads to accurate predictions
of drug synergies [45]), we are convinced that with the
availability of big data and the advancement of technology,
the DL approach can be a valuable tool for selecting and repur-
posing novel synergistic drug combinations for the treatment
of COVID-19 patients.

E. Need for More Insight Into Interpretability

The attention mechanism was adopted to improve
the predictive power of DL and to make the model

Fig. 4. Warmer color in A indicates features using “attention” mech-
anism. The highlighted red line in B indicates the binding site of drug
and protein sequence. Black regions (C and D) indicate binding sites
marked by the attention mechanism [24], [32], [51], [60]. The above shows
that model with attention mechanism can give an insight on biological
interpretation [23].

more interpretable [24], [32], [51], [60]. As shown in
Tables I and II, DL models built with the attention mechanism
give more similar drug predictions for clinical repurposed
drugs. It is also shown in Fig. 4 that DL models with the
attention mechanism are able to provide biological insights
to understand the nature of the predicted interactions in drug
discovery [60]. The black regions in Fig. 4 indicate the
binding sites for the complex of imatinib and Tyrosineprotein
kinase SYK (PDB ID: 1XBB) and the complex of aspirin
and Phospholipase A2 (PDB ID: 1TGM) [60]. Even though
DL with the attention mechanism has shown great promise in
drug discovery by highlighting the features that are important
to the prediction, the model is still unable to explain feature
interaction and why certain features are more important than
others. It is unclear what relationship exists between attention
weights and model outputs [65]. When assessing whether
attention weights could provide meaningful “explanations” for
predictions, it was found that the learned attention weights
were frequently uncorrelated with gradient-based measures of
feature importance and that the standard attention modules
could not provide meaningful explanations to neural network
behavior [65].

V. FUTURE PERSPECTIVE

From the perspective of artificial intelligence, interpretable
and more reliable DL frameworks must be developed to take
advantage of the availability of big data and the advance-
ment of technology. The anticipated new generation of DL
models must possess the interpretability attribute, possess
the capacity to identify multitarget drugs, promote drug
combination synergy, and predict the side effects induced
by single drugs as well as drug combinations. The past
findings suggest that further improvements are needed to
improve the DL methods to support experimental therapeutic
options.
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A. Utilization of Big Network-Based Data

So far, most DR studies focus on using a drug compound
and protein sequence data to predict drug–target binding
affinity scores or binding energy. For viral replication, the
SARS-CoV-2 must attach to a host cell, ACE2, to gain entry
into human cells and release its RNA inside the cell. The
virus will either infect and kill the cell or alter the cell’s
functions or, sometimes, the infected cell loses control over
normal cell division and becomes cancerous. Many antiviral
drugs work by interfering with the replication of viruses, and
if a person has a bacterial infection in addition to a viral
infection, an antibiotic is often necessary. To repurpose drugs,
the inclusions of virus–drug interactions and virus–protein
interactions are important to offer a deep biological perspective
in capturing the relationships between drugs–viral protein
interactions and drugs–host protein interactions [58], [59].
For example, in addition to information on drug-disease
associations, the relationships between drug–drug interactions,
drug–viral protein interactions, and drug side effects can be
included as input data to the DL model to leverage the
capability of DL to capture highly nonlinear, heterogeneous
networks that contain diverse information to better learn the
representations of drugs and proteins.

B. Using Drug Molecular Structure as Input Data

A sequence-based method that focuses on exploiting omics-
scale data of protein sequences and SMILES strings helps
to overcome the limited availability of drug structural data.
Table II shows that all the aforementioned DL methods, except
the GAT-CNN model, adopted the sequence-based method by
deploying 1-D drug molecular structure as input data despite
the fact that SMILES is too simple to deliver topological
information of molecular structures, and when a molecule
is projected into the latent space of a DL autoencoder, the
molecule may end up being projected to very different areas
of the latent space, which can lead to relatively low learning
accuracy [10]. To elucidate the correct molecular structure–
property relationships from the existing data, it is necessary
to use a molecular graph as it can intuitively and concisely
express molecules with 2-D topological information to pro-
duce highly accurate predictions [10], [23], [46], [47].

C. Adverse Drug Reactions

Medications used to treat COVID-19 may induce neuro-
logic and psychiatric symptoms or other side effects [24].
Cytochrome p450 enzymes are affected by protease inhibitors
(lopinavir, ritonavir, and darunavir), which could lead to
neurotoxicity by altering plasma concentrations of multiple
psychotropic drugs [24]. The lopinavir–ritonavir combination
may induce drug–drug interaction as it has been associated
with bilateral sensorineural hearing loss after four weeks of
treatment and depressive symptoms [24]. With the availability
of a massive amount of heterogeneous drug-related data,
the same DL model used for DR can be deployed to predict
the adverse drug reactions (ADRs) of repurposed drugs and
drug–drug interaction caused by a repurposed drug combina-
tion used against COVID-19.

D. BERT-Based Model for Smarter Protein
Sequence Generation

Beck et al. [8] modified the existing BERT [15] to represent
molecules by changing the cost function. Modified BERT was
used to retrain drug molecules by encoding the relationship
among long-distance tokens (atoms) in a sequence. They also
modified the protein feature extraction model introduced by
Öztürk et al. [40] by adding an embedding layer. However, due
to the length of a protein sequence that is ten times longer than
a molecule sequence on average, the pretraining took about
58 h [51], and hence, we recommend leveraging a knowledge
distillation technique during the pretraining phase using Distil-
BERT to reduce the size of a BERT model by 40% while
retaining 97% of its language understanding capabilities and
being 60% faster [49]. The smaller, faster, and lighter Distil-
BERT model is cheaper to pretrain and its capabilities for
on-device computations have been demonstrated.

E. Augmented DL Model

Table II shows that MT-DTI was built with a self-attention
mechanism to capture the relationship among atoms in a
sequence to understand a molecule sequence [8]. The atten-
tion mechanism can differentiate atoms in different chemical
environments by considering the interaction of each atom
with its neighbors [47], [51]. The simultaneous use of both
attention and gated skip connections (graph convolutional
network (GCN) + attention + gate) results in the smallest
mean average error (MAE) compared to the model using
only GCN + attention or GCN + gate or vanilla GCN [47].
The augmented DL with attention and gate mechanisms can
identify important molecular substructures that are directly
related to molecular properties [47], hence presenting a good
opportunity to be adopted for the DR initiative.

F. Transforming From “Black Box” to “Glass Box”

The lack of interpretability or the “black box” issue of
DL has prevented us from gaining more insight into model
behavior. Several approaches have been explored to interpret
the predictions produced by deep neural networks. Attention or
attention with gated skipped connection augmented DL model
can identify features that are important to a model’s prediction
on a given input [47]. However, these standard attention mod-
ules are unable to provide meaningful explanations to neural
network behavior [65]. The state-of-the-art language models
that use multihead self-attention, such as BERT and its vari-
ants, can be used to identify and extract important features that
associate with drugs and protein sequences [51]. Deployment
of multihead self-attention mechanism in studying chemical
molecules can capture relationship among atoms in a sequence
to provide a better molecule relationship [51]. Multihead self-
attention mechanisms, as shown in the following equation, are
introduced to allow us to identify important attributions and
give better interpretability:

Attention(Q, K , V ) = softmax

(
QK T

√
dk

)
V
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Fig. 5. Illustration shows the concept of transfer learning. (a) Source sample
consists of huge volume of drug datasets to predict the drug side effects.
Random weights were trained to achieve learned weights on source sample.
The learned features from (a) were transferred to (b), for example, the weights
of the network were transferred to (b). (b) Target sample that includes drugs
SMILES and FASTA. The learned weights on the source sample are then
trained to achieve fine-tuned weights on source sample.

where the three values are: V is a value, K is a key, and Q is
a query. A scaling factor of 1/

√
dk is added to ensure that the

dot product does not grow too large in magnitude with respect
to dk that is the dimension of the key.

Besides attention mechanisms, in drug discovery, the attri-
bution method is used to extract chemical substructures from
a large toxicity dataset for classifying them into toxic and
nontoxic chemical compounds [62]. It was found that the
fully connected neural network consisting of four rectified
linear unit (RELU) layers with 2048 hidden units each was
able to cluster positive attributions to form substructures
and differentiate indicative parts from irrelevant parts of the
input [62]. Despite having the ability to identify the most
relevant components of a compound, the attribution method
is regarded as “local” interpretability method that is able to
quantify the effect of one nucleotide, but it is unable to read
the effect that all substructures have on model predictions [63].
In short, the attribution method can offer only the first-order
approximation to a complex nonlinear function, but it fails to
capture higher order effects caused by drug–protein interaction
or interactions between atoms and bond features [64]. In order
to understand a model’s behavior, a DL model must be able
to learn, explain not only feature attributions but also generate
intuitive interactions that can explain interactions, and can be
applied to any neural network architecture, paving the way to
transform the “black box” into a “glass box” for DR.

VI. PROPOSED DL FRAMEWORKS FOR COVID-19 DR

Many research studies have been conducted to explore
the possibility of increasing interpretability of DL. Transfer
learning technique was used to help fast track the development
of AI model and reduce the model training computational
costs [67]. It is a technique where a model is trained on
a large dataset and the knowledge learned is then trans-
ferred to perform similar tasks on another smaller dataset,
as shown in Fig. 5. It is widely used to combat with the
limitation of sample size for adapting generalizability [66].

Fig. 6. Illustration of four proposed encoder–decoder frameworks for
predicting repurposed drug candidates for COVID-19. The two inputs are
represented by molecular structures and protein sequences. After training the
task-specific datasets using pretrained BERT-based models, the outputs from
the pretrained encoders are concatenated and directed to a decoder. (a) Two
inputs, drug molecules (SMILES) and protein molecules (FASTA), which are
processed by BERT. The outputs are then concatenated before processed using
multilayer perceptron with an activated softmax to predict repurposed drug
candidates for COVID-19. (b) Two inputs, drug molecules (SMILES) and
protein molecules (FASTA). The two inputs are processed by BERT and the
outputs are concatenated before processed by transformer with activated soft-
max to predict repurposed drugs. (c) Two inputs, drug molecules (SMILES)
and protein molecules (FASTA). The two inputs are processed by BERT and
the outputs are then concatenated before processed using either LSTM or CNN
with activated softmax to predict repurposed drug candidates for COVID-19.

For repurposing drugs for COVID-19, BERT or its variants
can be pretrained on large drug molecule and protein sequence
datasets. The weights and architect of the pretrained models
can then be transferred and applied in the smaller dataset of the
COVID-19 DR case study. The output layer of the pretrained
model can be removed, and the entire model can be retrained
on the smaller dataset by initializing all the weights randomly.
It can then be used to extract features from the smaller dataset
for predicting repurposed drugs.

Pretrained BERT-based models with SMILES and protein
sequences can learn and process billions of chemical prop-
erties and protein features, and these models can be used
to transfer the learning to downstream tasks for identifying
binding sites and molecular structures [51]. We suggest to
pretrain the networks to significantly reduce learning time
and resources for achieving desirable performance. Our pro-
posed frameworks for repurposing COVID-19 drugs model
after the transformer model that consists of encoder–decoder
architecture. The SMILES strings are fed as input to one
pretrained encoder, while protein sequences are fed as input to
another pretrained encoder, as shown in Fig. 6. The fine-tuned
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networks will extract meaningful representations that are then
concatenated and fed as an input to the decoder. The decoder
uses these representations to predict COVID-19 repurposed
drugs. For this type of model, the encoders are pretrained
BERT-based models, but the decoder is randomly initialized.
Since the BERT-based models are pretrained with SMILES
strings and protein sequences independently, they may overfit;
on the other hand, because the decoder is not pretrained,
it may underfit and will cause a discrepancy during fine-
tuning. To overcome this problem, three Adam optimizers
must be used with one optimizer for each encoder and the
other for the decoder. Similarly, different learning rates have
to be set for the encoders and decoder. A lower learning rate
has to be set for the pretrained encoders to smooth decay for
the encoder. A variety of decoders, such as multiperceptron
layers or transformer decoder or LSTM or CNN, can be used
where the second-order derivatives can then be applied to
allow the model to identify and understand the reasons behind
the binding activities. The proposed frameworks can carry out
regression work to repurpose drugs for treating COVID-19.
They can also identify features that contribute to binding
activities, interpret feature interaction at binding sites, as well
as quantify pairwise feature interactions to unveil the “black
box” characteristics of DL.

VII. CONCLUSION

Although significant progress has been made in the field of
repurposing drugs against COVID-19 using the DL approach,
challenges still exist in terms of giving accurate predictions
for effective repurposed drugs. We suggest that DL DR against
COVID-19 could benefit from using big network-based data,
adopting a 2-D graph molecular structure as input data and
pretraining the input data using the BERT-based network
before feeding the data into an augmented DL network to
explore the relationships between drug–target–disease hetero-
geneous networks for prediction. Because the existing DP
models are only able to identify the input features that are
relevant to the prediction but are unable to give a higher
order explanation on the relation between these features,
the development of more advanced DL models is a rewarding
topic for future research to identify combined drugs, which
can act together to fight against a complex disease such as
COVID-19. Interpretable DL constitutes another promising
direction on integrating explanations into the new generation
DL to improve its performance or reduce its flaws, to give
more accurate predictions on repurposing single and combined
drugs against viral infections such as COVID-19.
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