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Abstract. We establish a family of subspace-based learning method for multi-

view learning using the least squares as the fundamental basis. Specifically,
we investigate orthonormalized partial least squares (OPLS) and study its im-

portant properties for both multivariate regression and classification. Building

on the least squares reformulation of OPLS, we propose a unified multi-view
learning framework to learn a classifier over a common latent space shared

by all views. The regularization technique is further leveraged to unleash the
power of the proposed framework by providing three generic types of regular-

izers on its inherent ingredients including model parameters, decision values

and latent projected points. We instantiate a set of regularizers in terms of
various priors. The proposed framework with proper choices of regularizers

not only can recast existing methods, but also inspire new models. To further

improve the performance of the proposed framework on complex real prob-
lems, we propose to learn nonlinear transformations parameterized by deep

networks. Extensive experiments are conducted to compare various methods

on nine data sets with different numbers of views in terms of both feature
extraction and cross-modal retrieval.

1. Introduction

Data sets are increasingly collected from different views of one object in many real
world applications [1]. This results in depicting, more comprehensively, the object
from multiple views than solely relying on a single view. Each view is composed
of its own set of features. As each sub-data set for one view within the multi-view
data contains complementary information of the same object, it is expected that
learning algorithms should make good use of these views for the best outcome [2].

Multi-view learning [3, 1] is such a learning mechanism seeking to leverage the
complementary information of multiple views to boost learning performance. Many
multi-view learning algorithms have been proposed in the literature. Among them,
subspace-based learning approaches have attracted much attention. They aim to
obtain a common latent subspace shared by all views under the assumption that
these views are generated from the common subspace. The subspace-based learning
algorithms have demonstrated a great deal of success in many tasks such as cross-
modal retrieval [4, 5] and feature extraction [6, 7].
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In this paper, we concentrate on the study of a family of the subspace-based
multi-view learning algorithms in terms of the least squares formulation from three
different perspectives: (i) two/more views, (ii) linear/nonlinear representation, and
(iii) unsupervised/supervised learning.

The most representative model in multi-view learning is canonical correlation
analysis (CCA), which was originally proposed to learn two linear projection ma-
trices by maximizing the correlation between two views in a common space [8]. It
has since been extended for more than two views [9, 10], nonlinear projections via
either kernel representation [11] or deep representation [12], and supervised learn-
ing [5]. Moreover, the least squares reformulations of CCA have been proposed for
supervised multi-label classification [6] and unsupervised learning of more than two
views [13]. They have demonstrated great advantages in yielding effective models
and efficient learning algorithms. However, the reformulation in [6] is essentially
a single-view classification method since it treats data point as one view and class
label as another. In addition to CCA, other forms of least squares have been stud-
ied for two views such as coupled spectral regression [14] and partial least squares
(PLS) [15, 16].

Least squares formulation has been previously studied for single-view supervised
learning, but it is seldom explored for subspace-based multi-view learning. As
to single-view learning, linear discriminant analysis (LDA) can be formulated as
least squares for both binary classification [17] and multi-class classification [18].
CCA for supervised classification is proved to be equivalent to LDA for multiclass
classification [19], so CCA shares the same least squares reformulation as that of
LDA. Although CCA and LDA have their own least squares formulations for two
views, it is not straightforward to derive the least squares models for multiple views.
For example, LDA has been generalized to learning projection matrices for binary
classification of two views [20]. Multi-view discriminant analysis (MvDA) further
extends LDA for multi-class classification of more than two views [4]. Various
combinations of CCA and LDA are also proposed in [5, 21, 7]. Instead of least
squares, these methods are originally modeled as a trace ratio problem, but it is the
relaxed ratio trace problem that gets finally solved for the convenience of numerical
treatment and, as a result, their solutions are not optimal to their original models
[22].

In order to characterize various existing supervised subspace-based learning meth-
ods, we investigate orthonormalized partial least squares (OPLS) [23], which was
proposed to perform dimensionality reduction only in the input space, and that
makes it different from and also less popular than CCA and PLS. Precisely this
property of reduction in the input space becomes its advantage for multivariate
analysis in the setting of supervised learning because the prediction primarily relies
on reliable extraction of good features in the input space. The equivalence between
supervised CCA and OPLS was established in [24]. Kernel OPLS was proposed in
[25] for learning nonlinear transformations. As another advantage, OPLS admits a
least squares formulation that leads to an optimal regression classifier in a latent
space [25, 26]. These methods generally assume the data consists of one input and
one output. Hence, they do not appear suitable for supervised multi-view learning.

Building on the least squares formulation of OPLS, we propose a unified multi-
view learning framework for subspace-based learning. The framework aims to learn
a classifier over the latent space shared by all multiple views. Various regularizations
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are presented to enrich the proposed framework, which not only can recast many
existing methods, but also inspire new models. The proposed framework provides
a natural way to deal with arbitrary number of views with or without class labels
by learning either linear or nonlinear projections. The main contributions of this
paper are summarized as follows:

1) We revisit OPLS for multivariate regression analysis and study its properties
especially for multi-class classification. We show that LDA is a special case of OPLS
for multi-class classification, and regularized LDA is equivalent to the shrinkage
estimator of the covariance matrix for LDA.

2) A novel multi-view learning framework, namely regularized multi-view OPLS
(MvOPLS), is proposed, and three general purposed regularizations are studied
with some examples built on the inherent ingredients of the framework, including
model parameters, decision values and latent projected points. A unified optimiza-
tion algorithm is also presented via the generalized eigenvalue decomposition.

3) We recast several existing methods with the set of provided regularizers un-
der the proposed framework. New models are also motivated by integrating proper
regularizers into MvOPLS. To deepen the understanding of existing methods, we
compare them and highlight their differences in terms of the choices of regulariza-
tions.

4) We explore the proposed regularized MvOPLS to learn nonlinear transforma-
tions parameterized by deep networks. All instantiated methods under the frame-
work can take advantage of the proposed nonlinear extension with little additional
effort. This will provide a large set of deep supervised subspace-based multi-view
learning methods.

5) Extensive experiments are conducted to compare twenty-seven methods in-
stantiated from the proposed framework on nine data sets with various numbers of
views. These methods are evaluated and compared on two different tasks: feature
extraction and cross-modal retrieval. Results show that subspace-based learning
for a common latent space is effective and its nonlinear extension can further boost
the performance.

In the rest of this paper, we first briefly review existing methods related to
this work in Section 2. In Section 3, we study the properties of OPLS for both
regression and classification in single-view learning. In Section 4, the proposed
multi-view learning framework is detailed. Under the framework, we recast seven
existing methods and present two new ones in Section 5, and further explore their
deep variants to learn nonlinear transformations parameterized by deep networks
in Section 6. Extensive experiments are conducted in Section 7. Finally, we draw
our conclusion in Section 8.

2. Related Work

We briefly review existing methods relevant to this work from the three perspec-
tives mentioned in Section 1. Specially, we discuss methods in two broad categories,
i.e., unsupervised and supervised, and then their extensions to more than two views
and nonlinear transformations.

In the setting of unsupervised learning, CCA has been the workhorse for learning
a common latent space of two views [8]. To deal with more than two views, multiset
CCA (MCCA) [9, 10] based on pairwise correlations and generalized CCA (GCCA)
[27] by aligning all views via a common representation are proposed. Among them,
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MCCA with a least squares formulation [13] is widely used due to its simplicity.
Kernel CCA (KCCA) [11] and deep CCA (DCCA) [12] are two representative ap-
proaches to explore nonlinear projections to model complex real world data sets
via the kernel trick and deep learning, respectively. dMCCA [28] extends MCCA
to nonlinear transformations via deep networks, but it can only deal with the very
special case where all views must reside in the same input space. Deep GCCA
(DGCCA) [29] extends GCCA to nonlinear transformations but it does not reduce
to CCA for two views. Other linear models closely related to CCA [30] have also
been explored especially for two views, including PLS [15] and OPLS [24, 25], but
they are less popular for subspace-based learning. In addition, spectral regression
is used to learn the common space between two views in two separate steps [14].
These methods do not explicitly take into account supervised information such as
the class labels for multi-class classification.

Various supervised subspace-based learning approaches have recently been pro-
posed in order to integrate supervised information to improve multi-view learning.
LDA [31] is the main tool for subspace learning with supervised information. The
combination of LDA and CCA has been successfully used to find a discriminant
subspace. Generalized multi-view analysis (GMA) [5] obtains a discriminant com-
mon space by incorporating intra-view discrimination information and cross-view
correlation, and is directly applicable to learn nonlinear transformations via the
kernel trick for more than two views. Different from GMA, MLDA [7] replaces the
within-class scatter matrix with the covariance matrix. Multi-view discriminant
analysis (MvDA) [4] considers both inter-view and intra-view variations leading
to a more discriminative common space. Its nonlinear extension through deep
networks has been studied in [32], resulting in a discriminant and view-invariant
representation shared among all multiple views. Multi-view modular discriminant
analysis (MvMDA) [21] is proposed to maximize the distances between different
class centers across different views and minimize the within-class scatter of each
view. Most of these methods are originally formulated as trace ratio problems, but
solved as relaxed ratio trace problems. Since two types of optimization problems
are not equivalent [22], their solutions are not optimal to their original models.

In the following, we will propose a unified multi-view learning framework, which
can recast most of the above-mentioned subspace-based learning approaches. It
provides a natural and accurate interpretation to the relaxed problems of exist-
ing models under a unified framework. The proposed framework combined with
powerful regularizations can inspire novel models for different learning tasks, and,
without much additional effort, their nonlinear extensions.

3. OPLS

In this section, we will first briefly introduce OPLS for multivariate regression
analysis, and then apply it to subspace learning for multi-class classification, and
finally build its connections to LDA and CCA.

3.1. Multivariate regression analysis. OPLS [23] is proposed as a multivariate
analysis method for feature extraction. Let {(xi,yi)}ni=1 be a set of n data pairs
with input xi ∈ Rd and output yi ∈ Ro. Denote the matrix representations of the
n data pairs as X = [x1, . . . ,xn] ∈ Rd×n and Y = [y1, . . . ,yn] ∈ Ro×n. Let

X̂ = XHn,(1)
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be the centered matrix of X, where the centering matrix Hn = In − 1
n1n1n, In is

the identity matrix of size n and 1n is the n-dimensional column vector of all ones.
OPLS [23] aims to learn a projection matrix P ∈ Rd×k to transform input data

from a d-dimensional space Rd to a k-dimensional space Rk by solving

max
P

tr(PTX̂Ŷ TŶ X̂TP ) : s. t. PTX̂X̂TP = Ik,(2)

with the generalized eigenvalue decomposition [33], where Ŷ = Y Hn. Later, we

will use (2) with a different Ŷ .
In [26, 25], problem (2) is reformulated as a multivariate regression problem in

the mean square error sense:

min
P,W
‖Ŷ −WTPTX̂‖2F ,(3)

where coefficient matrix W ∈ Rk×o, and ‖ · ‖F is the Frobenius norm.
Problems (2) and (3) are closely related. To see this, we eliminate W from (3)

as follows. The first order optimality condition of (3) for W is

−2PTX̂(Ŷ −WTPTX̂)T = 0.(4)

Assuming that matrix X̂X̂T is positive definite (this will be resolved later by in-
troducing regularization), we have

W = (PTX̂X̂TP )−1PTX̂Ŷ T.(5)

Substituting (5) into (3), we get a reformulated problem of (3)

min
P
‖Ŷ ‖2F − tr((PTX̂X̂TP )−1PTX̂Ŷ TŶ X̂TP ).(6)

Define P̂ = P (PTX̂X̂TP )−1/2. Problem (6) is equivalent to

max
P̂

tr(P̂TX̂Ŷ TŶ X̂TP̂ ) : s. t. P̂TX̂X̂TP̂ = Ik,(7)

which is the same as (2). The two formulations (2) and (7) imply that an optimal
solution P∗ of (3) can always be transformed to an optimal solution P of (2) via

P = P∗(P
T
∗ X̂X̂

TP∗)
−1/2. On the other hand, it is obvious that an optimal solution

of (2) is also an optimal solution of (6). Hence, problems (2) and (7) are equivalent.
The least squares formulation (3) of OPLS possesses many appealing properties.
1) Regularization is naturally made possible to prevent singularity issue in (3).

Regularized OPLS is formulated as

min
P,W
‖Ŷ −WTPTX̂‖2F + λ‖PW‖2F ,(8)

where λ > 0 is a regularization parameter. Correspondingly, the regularized OPLS
(8) is equivalent to

min
P
‖Ŷ ‖2F − tr((PT(X̂X̂T+λId)P )−1PTX̂Ŷ TŶ X̂TP ),(9)

or, equivalently,

max
P

tr(PTX̂Ŷ TŶ X̂TP ) : s. t. PT(X̂X̂T + λId)P =Ik.(10)

The singularity issue is resolved since X̂X̂T + λId is positive definite for any given
X.
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2) OPLS also provides a built-in multivariate regression model for predicting an
output of any given input x by

f(x) = WTPT(x− µ),(11)

where µ = 1
n

∑n
i=1 xi is the mean of the input training data.

3) CCA and OPLS are equivalent, as proved in [24].

3.2. Multi-class classification. OPLS can be applied to multi-class classifica-
tion. Suppose that there are c classes in data {(xi, yi)}ni=1, where each class la-
bel yi ∈ {1, . . . , c}. Define Y = [y1, . . . ,yn] ∈ {0, 1}c×n by one-hot representa-
tion of class labels that transforms categorical class labels to multivariate outputs:
Yr,i = (yi)r = 1 if the ith label yi = r, and otherwise 0s. Y is the indicator matrix
of data and possesses the following properties:

(1) the sum of each column of Y is one:

Y T1c = 1n,(12)

which means every data point belongs to one and only one class;
(2) the counting matrix Σ of class labels

Σ =


n1

n2
. . .

nc

 = Y Y T ∈ Rc×c,(13)

where nr =
∑n
i=1 Yr,i is the number of data points in class r;

(3) the similarity matrix Q = Y TΣ−1Y is both row and column normalized to
1. In fact, Q is symmetric and

Q1n = Y TΣ−1


n1
n2
...
nc

 = Y T1c = 1n;(14)

(4) the centered matrix of Q, denoted by Q̂, is given by

Q̂ =HnQHn

=(In −
1

n
1n1T

n )Q(In −
1

n
1n1T

n )

=Q− 1

n
1n1T

nQ−Q
1

n
1n1T

n +
1

n2
1n1T

n1n1T
n

=Q− 1

n
1n1T

n .(15)

Below, we will show that LDA for supervised classification is a special case of
OPLS (2) with X̂ in (1) and

Ŷ = Σ−1/2Y.(16)
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We have the following equalities:

X̂X̂T = XHnHnX
T = XHnX

T =: Ĉ,(17)

X̂Ŷ TŶ X̂T = XHnY
T[Σ−

1
2 ]TΣ−

1
2Y HnX

T

= XHnY
TΣ−1Y HnX

T

= XHnQHnX
T

= X(Q− 1

n
1n1T

n )XT

=: Sb.(18)

It is clear that Ĉ is the covariance matrix of X and Sb is the between-class scatter
matrix [31]. Accordingly, the within-class scatter matrix Sw ≡ Ĉ − Sb = X(In −
Q)XT. Hence, OPLS (2) with (16) reduces to LDA [31], that is,

max
P

tr(PTSbP ) : s. t. PTĈP = Ik.(19)

Hence, LDA has a close relationship with the least squares formulation (3) of OPLS.
For multi-class classification, the least squares formulation (3) of OPLS can be a

useful tool to reveal the relationships among different models. It has been explored
in the past. LDA has previously been formulated as a least squares problem for
binary classification [17] and multi-class classification [18]. In addition, CCA as a
supervised method has been shown to be equivalent to LDA for multi-class classifi-
cation [19], where the class labels are treated as from one view and the input data
points as from another.

The properties of OPLS for multivariate regression in Subsection 3.1 are natu-
rally inherited by OPLS for multi-class classification. The special indicator output
matrix contributes to additional useful properties. For example, the regularized
OPLS (8) can recast the shrinkage estimator of the covariance matrix for LDA [34].
According to (3), the multi-class decision function can be formulated as

y = min
r=1,...,c

wT
r P

T(x− µ),(20)

where W = [w1, . . . ,wc] ∈ Rk×c is the coefficient matrix of the multi-class classifier.

4. Regularized Multi-view OPLS

We propose to extend OPLS to multi-view classification whose input data con-
sists of multi-views. For the ease of reference, we name our proposed method as
multi-view OPLS (MvOPLS). Next, we will first present the formulation of our
MvOPLS and then explore its regularization power.

4.1. Multi-view formulation. Let {(x(1)
i , . . . ,x

(v)
i , yi)}ni=1 be the labeled data

consisting of v views, where the ith inputs x
(s)
i ∈ Rds of all views have class la-

bel yi ∈ {1, . . . , c} of c classes. Represent the n data points of the sth view by

matrix Xs = [x
(s)
1 , . . . ,x

(s)
n ] ∈ Rds×n. Let Ps ∈ Rds×k be the projection matrix

to transform x
(s)
i from Rds to z(s) = PT

s x
(s)
i in the common space Rk, and let

Zs = [z
(s)
1 , . . . , z

(s)
n ] = PT

s Xs ∈ Rk×n. The label matrix Y is as defined in Subsec-
tion 3.2 by one-hot representation.
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Assume that all view classifiers share the same coefficient matrix W . MvOPLS
is formulated as minimizing the sum of OPLS objectives for all v views, given by

min
{Ps},W

v∑
s=1

‖Ỹ −WTPT
s X̃s‖2F ,(21)

where Ỹ ∈ Rc×n and X̃s ∈ Rds×n are matrices transformed from Y and Xs, respec-
tively, dependent of particular MvOPLS models. For example, the most natural

choice is X̃s = X̂s := XsHn for all s and Ỹ = Y Hn. Later in Section 5, we

will introduce various other choices of Ỹ and X̃s and their connections to existing
methods.

For convenience of analysis, denote by d =
∑v
s=1 ds the total number of features

from all v views, and by

P =


P1

P2

...
Pv

∈Rd×k, X̃=


X̃1

X̃2

...

X̃v

∈Rd×n, X=


X1

X2

...
Xv

∈Rd×n,(22)

the concatenations of {Ps}, {X̃s}, and {Xs}. Define

C̃ = X̃X̃T =


C̃1,1 C̃1,2 . . . C̃1,v

C̃2,1 C̃2,2 . . . C̃2,v

...
...

. . .
...

C̃v,1 C̃v,2 . . . C̃v,v

 ∈ Rd×d,(23)

and its block diagonal part

C̃diag =


C̃1,1

C̃2,2

. . .

C̃v,v

 ∈ Rd×d,(24)

where C̃s,t = X̃sX̃
T
t ,∀s, t = 1, . . . , v. Similarly define C and Cdiag in terms of X.

Following the same derivation procedure presented in Subsection 3.1, we obtain
the first order optimality condition of (21) with respect to W , given by

v∑
s=1

−2PT
s X̃s(Ỹ −WTPT

s X̃s)
T = 0,(25)

and then the analytic solution of W is

W =

(
v∑
s=1

PT
s C̃s,sPs

)−1 v∑
s=1

PT
s X̃sỸ

T

= (PTC̃diagP )−1PTX̃Ỹ T.(26)

Substituting the optimal W in (26) back into (21), we obtain a reformulated prob-
lem of (21) as

min
P
‖Ỹ ‖2F − tr((PTC̃diagP )−1PTX̃Ỹ TỸ X̃TP ).(27)
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Or, equivalently,

max
P

tr(PTX̃Ỹ TỸ X̃TP ) : s. t. PTC̃diagP = Ik.(28)

It is worth noting that the objective

tr(PTX̃Ỹ TỸ X̃TP ) =

v∑
s=1

v∑
t=1

tr(PT
s X̃sỸ

TỸ X̃T
t Pt)(29)

indicates that the optimal projections are the ones that maximizes the sum of
v2 cross-view OPLS objectives. This differs from the v OPLS models on each

individual view. Comparing with OPLS over a single concatenated X̃, MvOPLS

imposes its constraint on C̃diag instead of C̃.

For the natural choice, X̃s = X̂s := XsHn, X̃ = X̂ := XHn. Accordingly,

C̃s,s = Ĉs,s := X̂sX̂
T
s is the covariance matrix of data points of the sth view.

Moreover, C̃ = Ĉ := X̂X̂T is the covariance matrix of the concatenated data of all

views and C̃diag = Ĉdiag is its block diagonal part.

4.2. Regularization. As MvOPLS (21) is formulated as the least squares, regular-
ization technique can be incorporated in order to regulate the model and integrate
certain prior knowledge for multi-view learning. Due to the special structure, three
types of regularizations can be added to MvOPLS with respect to different con-
siderations of priors, including (i) model parameters, (ii) decision values, and (iii)
latent projected points. Some examples of the three types are shown below.

4.2.1. Model parameters. In (21), model parameters include W and {Ps}vs=1. One
can consider each product PsW as one single variable. The Tikhonov regularization
is formulated to mitigate the problem of multicollinearity in linear regression in (8)
for single-view learning. For multi-view learning, the weighted Tikhonov regularizer
can be defined as

Rtikh(W, {Ps}) =

v∑
s=1

γs‖PsW‖2F = tr(WTPTΓPW ),(30)

where γs ≥ 0 is the weight for view s and the block diagonal matrix

Γ =


γ1Id1

γ2Id2
. . .

γvIdv

 ∈ Rd×d.(31)

4.2.2. Decision values of multi-class classifiers. According to (21), the decision
function of the multi-class classifier for the sth view can be written as

gs(x
(s)) = WTPT

s x(s),(32)

where x(s) is an input data point of the sth view. Since each view classifier generates
decision values for the same set of instances, it is proper to constrain these decision
values.

One might require the decision values of the mean vectors of views are close to
each other across all views. The decision value of the mean vector of the sth view
is

gs =
1

n
WTPT

s Xs1n,∀s = 1, . . . , v.(33)
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To impose their closeness, it is natural to minimize the following quantity

Rmean(W, {Ps}; {Xs}) =
n

2v

v∑
s=1

v∑
t=1

‖gs − gt‖2

=
1

n

v∑
s=1

tr(WTPT
s Xs1n1T

nX
T
s PsW )

− 1

nv
tr(WTPTX1n1T

nX
TPW ).(34)

In addition to imposing consistency among the decision values of view centers,
the decision values can be parameterized by the representer theorem [35] for least
squares, that is, for view s, the decision values can be represented by a weighted
combination of the input data points, given by

PsW = Xsβs,(35)

gs(Xs) = WTPT
s Xs = βT

s X
T
s Xs,(36)

where βs ∈ Rn×c is the weight vector for the sth view. Note that XT
s Xs is the

linear kernel of the sth view. According to (35), we can obtain βs = X†sPsW where
X†s = (XT

s Xs)
−1XT

s is the pseudo-inverse of Xs. If all views have similar kernels,
it is reasonable to assume that the weight vectors {βs}vs=1 are close to each other,
i.e., to minimize

Rβ(W, {Ps}; {Xs}) =
1

2

v∑
s=1

v∑
t=1

‖βs − βt‖2F

= tr(WTPTMPW ),(37)

where M is a block matrix with the (s, t)th block

Ms,t =

{
(v − 1)(X†s )TX†s , s = t,

−(X†s )TX†t , s 6= t.
(38)

Alignment between the similarity matrix of class labels and the predicted values
can be useful criterion for learning projections, too. Denote by gs(Xs) = WTPT

s Xs

the predicted soft labels. The HSIC criterion [36] for multi-view data can be used
as a regularizer

Rhsic(W, {Ps}; {Xs}, Y )

=−
v∑
s=1

tr(gs(Xs)
Tgs(Xs)HnY

TΣ−1Y Hn)

=−
v∑
s=1

tr(WTPT
s XsHnY

TΣ−1Y HnX
T
s PsW ).(39)

It is clear that (34) captures the first order statistics of the decision values, while
(37) and (39) characterize the second order statistics.

4.2.3. Projected points onto the common space. The projected data in the common
space is given by

Z̃s = PT
s X̃s,∀s = 1, . . . , v.(40)
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It is reasonable to expect that the projected points of the same instance from
different views are close. In this case, the view-specific classifiers should perform
similarly over all views. This hypothesis can be formulated by minimizing the
following regularizer

Rcca({Ps}; {X̃s}) =
1

2

v∑
s=1

v∑
t=1

‖Z̃s − Z̃t‖2F

= v tr(PTC̃diagP )− tr(PTC̃P ).(41)

Note that (41) has been explored to generalize CCA, based on pairwise distances
between projected points of different views [13].

LDA can also be used to regulate the projection of each view. It can be written
as

Rlda({Ps}; {Xs}) =
v∑
s=1

tr(PT
s XsRX

T
s Ps),(42)

where R = Hn − λ(Q − 1
n1n1T

n ),∀s = 1, . . . , v since XsRX
T
s is the difference be-

tween covariance matrix Ĉs,s and the scaled between-class scatter matrix λXs(Q−
1
n1n1T

n )XT
s , and the scaling parameter λ is the tradeoff parameter between the two

scatter matrices, so (42) has the functionality analogous to the fractional formula-
tion of LDA for each view.

For regularizations over projected points, it is proper to add certain weighting
constraints for the ease of optimization. Instead of (41) and (42), more generally
we use

Rcca({Ps}; {X̃s},Ω) = tr(Ω−1PT(vC̃diag − C̃)P ),(43)

Rlda({Ps}; {Xs}, Y,Ω) =

v∑
s=1

tr(Ω−1PT
s XsRX

T
s Ps),(44)

where Ω ∈ Rk×k is symmetric positive definite. It is clear that Ω = Ik yields the
ones in (41) and (42).

4.3. A unified framework. Abstracting regularizations (30), (34), (37), (39),
(41), (42), (43) and (44), we formulate a unified regularized MvOPLS framework
given by

min
{Ps},W

v∑
s=1

‖Ỹ −WTPT
s X̃s‖2F + tr(WTPTAPW ) + tr(Ω−1PTBP ),(45)

where A and B are some specific matrices derived from regularizations such as ones
in Subsection 4.2.

Special choices of Ω may simplify (45) for ease of its numerical treatment. For

example, for Ω = PT(C̃diag +A)P , (45) is equivalent to

max
P

tr(PT(X̃Ỹ TỸ X̃T −B)P )(46)

s. t. PT(C̃diag +A)P = Ik,

in such a way that an optimizer P of (46) yields an optimizer (P,W ) of (45) with

W = (PT(C̃diag +A)P )−1PTX̃Ỹ T = PTX̃Ỹ T.(47)
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It is worth noting that the unified framework (46) can be solved by the generalized
eigenvalue solver [33].

5. Examples of regularized MvOPLS

We will show various instantiations of the proposed regularized OPLS framework
(45) by reformulating existing methods in the literature, including MCCA [10, 13],
MvLDA [32], MvDA [4], MvDA-VC [4], MvMDA [21], MLDA [7] and GMA [5],
and then, we discuss the differences among these methods and further propose
some novel formulations.

5.1. Reformulations of existing methods.

5.1.1. MCCA. MCCA [10, 13] is an unsupervised subspace learning method. As
the data label is unknown, the simplest approach is to assume that each instance is
in its own class, so c = n. By simply assigning a unique class label to each instance,
the unlabeled data is transformed to labeled data with Y = In. MvOPLS (21) with

X̃ = X̂ = XHn, Ỹ = In, and regularizer Rtikh with all γs = γ is instantiated as

min
{Ps},W

v∑
s=1

‖Ỹ −WTPT
s X̃s‖2F +Rtikh(W, {Ps}).(48)

It is equivalent to the regularized MCCA formulation

max
P

tr(PTXHnX
TP ) :=

v∑
s=1

v∑
t=1

tr(PTĈs,tP )(49)

s. t.

v∑
s=1

PT
s (Ĉs,s + γIds)Ps = Ik,

where Ĉs,t = XsHnX
T
t ,∀s, t = 1, . . . , v.

5.1.2. MvLDA. MvLDA [32] is equivalent to LDA on X of (22). In other words,

it degrades to OPLS. MvOPLS (21) with X̃ = X̂ = XHn, Ỹ = Σ−1/2Y and
regularizer Rtikh with all γs = γ is formulated as

min
{Ps},W

‖Ỹ −WTPTX̃‖2F +Rtikh(W, {Ps}),(50)

which leads to the following optimization problem

max
P

tr(PTSbP )(51)

s. t. PT(XHnX
T + γId)P = Ik,

where Sb = X(Q − 1
n1n1T

n )XT is the between-class scatter matrix as discussed in
Subsection 3.2.

5.1.3. MvDA. MvDA [32] was originally motivated in terms of some specific defini-
tions of within-class scatter and between-class scatter matrices for multi-view data.
It can be simply realized as MvOPLS (21) with X̃ = X̂ = XHn, Ỹ = Σ−1/2Y and
regularizer Rmean, that is,

min
{Ps},W

v∑
s=1

‖Ỹ −WTPT
s X̃s‖2F +Rmean(W, {Ps}; {Xs}).(52)
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Accordingly, we have

tr(PTC̃diagP ) +
1

n

v∑
s=1

tr(PT
s Xs1n1T

nX
T
s Ps)

=

v∑
s=1

tr(PT
s Xs(Hn +

1

n
1n1T

n )XT
s Ps)

=

v∑
s=1

tr(PT
s XsX

T
s Ps)

=PTCdiagP,

and, by using (15),

tr(PTX̃Ỹ TỸ X̃TP ) = tr(PTXHnY
TΣ−1Y HnXP )

= tr(PTXHnQHnXP )

= tr(PTX(Q− 1

n
1n1T

n )XP ).

Problem (52) is equivalent to

max
P

tr(PTX(Q− 1

n
1n1T

n )XP )(53)

s.t. PT(Cdiag −
1

nv
X1n1T

nX
T)P = Ik.

Problem (53), although not the same as MvDA, recovers the projection matrices
obtained by MvDA. In addition, regularizer Rtikh can also be applied to prevent
possible ill-posedness in (53), i.e., Cdiag − 1

nvX1n1T
nX

T being singular.

5.1.4. MvDA-VC. MvDA with view consistency (MvDA-VC) can be formulated as
regularized MvOPLS (52) also imposed with regularizer Rβ

min
{Ps},W

v∑
s=1

‖Ỹ −WTPT
s X̃s‖2F

+Rmean(W, {Ps}; {Xs}) + λRβ(W, {Ps}; {Xs}).(54)

It is equivalent to

max
P

tr(PTX(Q− 1

n
1n1T

n )XP )(55)

s.t. PT(Cdiag −
1

nv
X1n1T

nX
T + λM)P = Ik,

where M is defined in (38). Similarly, It can be verified that problem (55) can
recover the projections obtained by MvDA-VC [32].

5.1.5. MvMDA. MvMDA [21] is proposed to maximize the distances between dif-
ferent class centers across different views and minimize the within-class scatter.
It can be reformulated as MvOPLS (21) with X̃ = X̂ = X, Ỹ = HcΣ

−1Y and
regularizer Rhsic, given by

min
{Ps},W

v∑
s=1

‖Ỹ −WTPT
s X̃s‖2F +Rhsic(W,{Ps};{Xs},Y).(56)
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Accordingly, we have

tr(PTX̃Ỹ TỸ X̃TP ) = tr(PTXY TΣ−1HT
c HcΣ

−1Y XTP )

=

v∑
s=1

v∑
t=1

tr(PT
s XsLbX

T
s Ps),

where

Lb = Y TΣ−1HcΣ
−1Y

=

c∑
p=1

1

n2p
upu

T
p −

1

c

c∑
p=1

c∑
q=1

1

npnq
upu

T
q

=
1

c

c∑
p=1

c∑
q=1

[
1

n2p
upu

T
p −

1

npnq
upu

T
q

]
,

and uT
p is the pth row of Y , i.e., Y = [u1, . . . ,uc]

T. Moreover, we have

tr(PTCdiagP )−
v∑
s=1

tr(PT
s XsY

TΣ−1Y XT
s P

T
s )

=

v∑
s=1

tr(PT
s Xs(In −Q)XT

s Ps)

which is the sum of within-class scatter matrices of all views. By combining the
above two terms, (56) reduces equivalently to MvMDA formulation

max
P

v∑
s=1

v∑
t=1

tr(PT
s XsLbX

T
s Ps)(57)

s. t.

v∑
s=1

tr(PT
s Xs(In −Q)XT

s Ps) = Ik.

Hence, MvMDA takes the centered label matrix as the output label of the least
squares. The HSIC regularization replaces the covariance matrix of each view with
within-class scatter matrix.

5.1.6. MLDA. MLDA [7] is proposed to learn a common space such that the cor-
relation between two views and the discrimination of each view can be maximized
simultaneously. As shown in Subsubsection 5.1.1, MCCA is a special case of MvO-

PLS (21). Combined with regularizerR, MvOPLS (21) with X̃ = XHn and Ỹ = In
gives

min
{Ps},W

v∑
s=1

‖Ỹ −WTPT
s X̃s‖2F +Rlda({Ps};{Xs},Y,Ω),(58)

where Ω = PTĈdiagP . It is the same as

max
P

tr(PTSP ) : s. t. PTĈdiagP = Ik,(59)

where the matrix S is a block matrix with the (s, t)th block given by

Ss,t =

{
λXs(Q− 1

n1n1T
n )XT

s s = t,

Ĉs,t otherwise,
(60)
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Ĉs,s − XsRsX
T
s = Ĉs,s − Xs(Hn − λ(Q − 1

n1n1T
n ))XT

s = λXs(Q − 1
n1n1T

n )XT
s is

the between-class scatter matrix with scaling λ. Problem (59) is the same as the
formulation of MLDA [7].

5.1.7. GMA. GMA [5] is different from MLDA only on constraints. The within-
class scatter is used in GMA instead of the total scatter used in MLDA. MLDA
can be transformed into GMA by adding regularization Rhsic, that is,

min
{Ps},W

v∑
s=1

‖Ỹ −WTPT
s X̃s‖2F

+Rlda({Ps}; {Xs}, Y,Ω) +Rhsic(W, {Ps}; {Xs}, Y ),(61)

with X̃ = XHn, Ỹ = In and Ω =
∑v
s=1 tr(PT

s Xs(In −Q)XT
s Ps). Accordingly, the

reformulated problem is

max
P

tr(PTSP )(62)

s. t.

v∑
s=1

tr(PT
s Xs(In −Q)XT

s Ps) = Ik.

Hence, the proposed model (61) reduces to GMA.

5.2. Discussions and new variants. The seven existing methods discussed in
Subsection 5.1 can be partitioned into two categories based on whether MvOPLS
takes class labels into account or not. The first category includes MCCA, MLDA
and GMA, which assume that the unlabeled data is used to construct the least
squares, i.e., unsupervised MvOPLS, while MLDA and GMA regulate MCCA by
incorporating labeled data into the regularization terms, such as Rlda and Rhsic. In
contrast, the second category consists of MvLDA, MvDA, MvDA-VC and MvMDA,
which take supervised MvOPLS with labeled data into account together with un-
supervised/supervised regularization terms. Among the methods in each category,
the choices of both the input/output transformations and regularization terms be-
come the key factors to distinguish one from another. For example, GMA differs
from MLDA in that GMA takes additional regularizerRhsic to minimize the within-
class scatter of each view. MvMDA takes the centered normalized label matrix and
supervised MvOPLS with Rhsic, while MvDA takes the normalized label matrix
and unsupervised MvOPLS with Rmean.

With the guidance of the proposed unified framework (45) of the regularized
MvOPLS, it is simple to design a new model by incorporating different inputs/outputs
and regularizations. To demonstrate this point, we combine MvDA with Rcca so
that the projected points of each instance are forced to be close among all views
for MvDA. This new variant can be formulated as

min
{Ps},W

v∑
s=1

‖Ỹ −WTPT
s X̃s‖2F

+Rmean(W, {Ps}; {Xs}) + λRcca({Ps}; {Xs},Ω),(63)
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where Ω = PT(Cdiag − 1
nvX1n1T

nX
T)P . Or, equivalently,

max
P

tr

(
PT

[
X(Q− 1

n
1n1T

n )X + λ(Ĉ − vĈdiag)

]
P

)
(64)

s.t. PT(Cdiag −
1

nv
X1n1T

nX
T)P = Ik.

Due to the numerous ways of combinations, we in this paper will not enumerate all
possible variants. For the task of interest, we recommend to use or design proper
regularization terms to integrate into the proposed regularized MvOPLS framework
(45), and by equivalence, (46).

6. Deep Regularized MvOPLS

Regularized MvOPLS and its variants aim to learn a set of linear projections.
Lately, extending a linear projection method to a nonlinear one via the kernel
trick becomes almost mechanical and immediate because it is often very much
straightforward. The case for MvOPLS methods so far is no different. However, as
pointed out in [12], kernel-based nonlinear extensions encounter several drawbacks:

(1) nonlinear representations are limited by the fixed kernel function;
(2) inner products between two of input data points are required, and so the

training set has to be stored during the entire testing phrase;
(3) the time required to train a subspace learning model or compute the rep-

resentations of new data points scales poorly with the size of the training
set.

To overcome these drawbacks, the deep learning technique has been introduced
to learn a set of nonlinear parametric functions for subspace-based multi-view learn-
ing [12, 32, 21]. For example, MvLDA and MvMDA use deep networks to learn
nonlinear projections. MvLDA [32] takes a ratio trace formulation of LDA as the
objective function by concatenating all views, while MvMDA [21] takes a trace ratio
as the original objective function but minimizes it approximately by the general-
ized eigenvalue decomposition because of the availablity of numerical linear algebra
packages. As discussed in [22], ratio trace and trace ratio actually yield two different
projections.

Since regularized MvOPLS is clearly formulated as the ratio trace, or the gener-
alized eigenvalue problem, we propose a nonlinear extension as the general problem

max
P

tr(PTAP ) s. t. PTBP = Ik,(65)

where A = f({hs(Xs)}vs=1, Y ) and B = g({hs(Xs)}vs=1, Y ) are some matrix-valued
functions of {hs(Xs)}vs=1 parameterized by v independent deep networks and the
label matrix Y . For example, corresponding to each of the methods in Section 5,
A and B are as given there.

Following [12], we will use multiple stacked layers with nonlinear activation func-
tions as the deep network architecture. The ith layer in the network for the sth
view has mi

s units, and the output layer has k units. The output of the first layer

for input x(s) from the sth view is h1s = σ(V 1
s x(s) + b1s) ∈ Rm1

s , where V 1
s ∈ Rm1

s×ds

is the weight matrix, b1s ∈ Rm1
s is the vector of biases, and σ : R→ R is a nonlinear

activation function. The output h1s can then be used as the input to the next layer

whose output h2s = σ(V 2
s h

1
s + b2s) ∈ Rm2

s , and the construction repeats ` times
until the final output hs(xs) ≡ h`s = σ(V `s h

`−1
s + b`s) ∈ Rk is reached. The same
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construction process can be used for each of the v views. As a result, we have a
set of nonlinear functions {hs}vs=1 with ` layers and their associated parameters
{V is , bis},∀s = 1, . . . , v, i = 1, . . . , `. To simplify the notation, we assume the non-
linear transformed matrix hs(Xs) ∈ Rk×n implicitly associates with its network
parameters for the input Xs.

We further rewrite (65) as a standard eigenvalue problem, so that the gradient
of the transformed objective with respect to network parameters can be computed
by automatic differentiation tools. Specifically, let the Cholesky decomposition of
B be

B = ΨTΨ.(66)

To ensure that B is positive definite, the regularizer Rtikh is applied to all the
methods studied in this paper. Denote

U = ΨP ⇒ P = Ψ−1U.(67)

Problem (65) is rewritten as

max
U

tr(UTΨ−TAΨ−1U) : s. t. UTU = Ik,(68)

which is equivalent to solving the eigen-decomposition

Ψ−TAΨ−1U = UΛ,(69)

where U and Λ = diag (λ1, . . . , λd) are the eigenvector and eigenvalue matrices of
Ψ−TAΨ−1 with λ1 ≥ λ2 ≥ . . . ≥ λd. The optimal U of (68) consists of the eigen-
vectors corresponding to the top k eigenvalues. After the optimal U is obtained,
we recover P using (67). The optimal objective function value is

tr(PTAP ) = tr(UTΨ−TAΨ−1U) =

k∑
m=1

λm.(70)

Treating the negative of (70) as loss, we actually optimize the loss over network
parameters {V is , bis},∀s = 1, . . . , v, i = 1, . . . , ` and the projection matrix {Ps}vs=1

simultaneously via the gradient descent method.

7. Experiments

7.1. Data sets. The statistics of the nine data sets with their corresponding de-
scriptions are shown in Table 1.



18 LI WANG, REN-CANG LI, AND WEN-WEI LIN

T
a
b
l
e
1
.

M
u

lt
i-

v
ie

w
d

at
a

se
ts

u
se

d
in

th
e

ex
p

er
im

en
ts

,
w

h
er

e
th

e
n
u

m
b

er
o
f

fe
a
tu

re
s

fo
r

ea
ch

v
ie

w
is

sh
ow

n
in

si
d

e
th

e
b

ra
ck

et
.

D
a
ta

se
t

n
c

v
ie
w

1
v
ie
w

2
v
ie
w

3
v
ie
w

4
v
ie
w

5
v
ie
w

6

M
fe
a
t

2
0
0
0

1
0

fa
c
(2
1
6
)

fo
u
(7
6
)

ka
r
(6
4
)

m
o
r
(6
)

p
ix

(2
4
0
)

ze
r
(4
7
)

A
d
s

3
2
7
9

2
u
rl
+
a
lt
+
ca
p
ti
o
n
(5
8
8
)

o
ri
g
u
rl

(4
9
5
)

a
n
cu

rl
(4
7
2
)

-
-

-
C
a
lt
ec
h
1
0
1
-7

1
4
7
4

7
C
E
N
T
R
IS
T

(2
5
4
)

G
IS
T

(5
1
2
)

L
B
P

(1
1
8
0
)

H
O
G

(1
0
0
8
)

C
H

(6
4
)

S
IF

T
-S
P
M

(1
0
0
0
)

C
a
lt
ec
h
1
0
1
-2
0

2
3
8
6

2
0

C
E
N
T
R
IS
T

(2
5
4
)

G
IS
T

(5
1
2
)

L
B
P

(1
1
8
0
)

H
O
G

(1
0
0
8
)

C
H

(6
4
)

S
IF

T
-S
P
M

(1
0
0
0
)

S
ce
n
e1
5

4
3
1
0

1
5

C
E
N
T
R
IS
T

(2
5
4
)

G
IS
T

(5
1
2
)

L
B
P

(5
3
1
)

H
O
G

(3
6
0
)

S
IF

T
-S
P
M

(1
0
0
0
)

-
N
U
S
-w

id
e-
o
b
je
ct

2
3
9
5
3

3
1

B
O
W

(5
0
0
)

C
H

(6
4
)

C
M
5
5
(2
5
5
)

C
O
R
R

(1
4
4
)

E
D
H

(7
3
)

W
T

(1
2
8
)

P
a
sc
a
l

1
0
0
0

2
0

T
ex
t
(1
0
0
)

Im
a
g
e
(1
0
2
4
)

-
-

-
-

T
V
G
ra
z

2
0
5
8

1
0

T
ex
t
(1
0
0
)

Im
a
g
e
(1
0
2
4
)

-
-

-
-

W
ik
ip
ed

ia
2
8
6
6

1
0

T
ex
t
(1
0
0
)

Im
a
g
e
(1
0
2
4
)

-
-

-
-



MVOPLS 19

T
a
b
l
e
2
.

M
ea

n
ac

cu
ra

cy
an

d
st

an
d

a
rd

d
ev

ia
ti

o
n

o
f

2
7

m
et

h
o
d

s
o
n

si
x

m
u

lt
i-

v
ie

w
d

a
ta

se
ts

ov
er

1
0

ra
n

d
o
m

sp
li

ts
o
f

10
%

tr
ai

n
in

g
an

d
90

%
te

st
in

g.

M
et
h
o
d

M
fe
a
t

A
d
s

C
a
lt
ec
h
1
0
1
-7

C
a
lt
ec
h
1
0
1
-2
0

S
ce
n
e1
5

N
U
S
-w

id
e-
o
b
je
ct

ra
n
k

M
C
C
A

7
9
.1
1
±

1
.3
6
(2
1
)

9
1
.0
5
±

1
.5
1
(2
6
)

8
8
.5
3
±

2
.0
3
(2
5
)

6
3
.5
4
±

2
.5
8
(2
5
)

4
3
.4
1
±

1
.9
3
(2
7
)

3
4
.5
3
±

0
.7
9
(2
4
)

2
4
.7

M
v
O
P
L
S

7
4
.2
9
±

1
.9
4
(2
3
)

9
2
.0
4
±

1
.4
2
(2
3
)

9
3
.8
0
±

1
.0
4
(2
0
)

8
4
.7
5
±

1
.2
1
(2
1
)

5
5
.8
7
±

1
.2
6
(2
3
)

3
4
.9
7
±

0
.3
7
(2
0
)

2
1
.7

M
v
D
A

7
4
.0
5
±

2
.2
3
(2
5
)

9
1
.6
2
±

1
.6
5
(2
5
)

9
2
.7
7
±

3
.6
3
(2
3
)

8
4
.0
9
±

1
.2
9
(2
3
)

5
5
.7
8
±

1
.5
2
(2
4
)

3
4
.9
6
±

0
.3
7
(2
2
)

2
3
.7

M
v
D
A
-V

C
8
9
.0
6
±

1
.7
4
(1
8
)

9
3
.0
4
±

2
.3
5
(1
9
)

9
4
.2
1
±

0
.8
2
(1
9
)

8
8
.7
6
±

1
.0
4
(1
8
)

7
5
.7
5
±

2
.1
8
(1
9
)

3
4
.8
1
±

0
.5
2
(2
3
)

1
9
.3

M
v
L
D
A

9
5
.4
6
±

0
.8
0
(
8
)

9
2
.9
0
±

1
.6
2
(2
0
)

9
3
.1
3
±

1
.1
5
(2
1
)

9
0
.5
3
±

0
.6
9
(1
0
)

9
2
.2
4
±

0
.6
0
(1
2
)

2
7
.2
2
±

0
.7
0
(2
7
)

1
6
.3

M
v
M
D
A

4
1
.1
3
±

9
.3
1
(2
7
)

9
1
.6
7
±

1
.6
6
(2
4
)

7
7
.4
7
±

3
.5
1
(2
6
)

5
2
.6
0
±

1
.4
0
(2
6
)

7
7
.1
5
±

1
.1
9
(1
8
)

3
1
.2
8
±

0
.3
7
(2
6
)

2
4
.5

M
L
D
A

7
8
.9
6
±

1
.3
2
(2
2
)

9
0
.9
2
±

1
.5
2
(2
7
)

8
8
.5
6
±

2
.1
2
(2
4
)

6
3
.8
1
±

2
.5
5
(2
4
)

4
4
.9
6
±

1
.6
2
(2
6
)

3
4
.4
8
±

0
.7
8
(2
5
)

2
4
.7

G
M
A

4
1
.1
4
±

9
.3
0
(2
6
)

9
3
.0
7
±

1
.8
1
(1
7
)

7
6
.2
1
±

3
.6
3
(2
7
)

5
2
.1
8
±

1
.3
8
(2
7
)

7
7
.1
6
±

1
.1
9
(1
7
)

3
5
.6
6
±

0
.5
7
(1
8
)

2
2
.0

M
v
D
A
-C

C
A

7
4
.0
6
±

2
.2
3
(2
4
)

9
3
.2
8
±

1
.7
4
(1
6
)

9
2
.9
2
±

2
.9
5
(2
2
)

8
4
.3
5
±

1
.2
8
(2
2
)

5
6
.4
0
±

1
.1
9
(2
2
)

3
4
.9
7
±

0
.3
7
(2
1
)

2
1
.2

M
C
C
A
p

8
8
.4
1
±

1
.7
0
(1
9
)

9
2
.5
3
±

1
.0
1
(2
1
)

9
5
.2
5
±

0
.4
5
(1
6
)

8
8
.8
2
±

0
.7
7
(1
6
)

7
2
.2
4
±

1
.0
8
(2
0
)

3
7
.5
4
±

0
.4
1
(1
6
)

1
8
.0

M
v
O
P
L
S
p

9
5
.2
3
±

0
.8
6
(1
1
)

9
5
.2
1
±

0
.7
6
(1
3
)

9
5
.8
7
±

0
.3
2
(1
4
)

9
1
.5
4
±

0
.6
1
(
9
)

9
2
.9
2
±

0
.5
2
(
7
)

3
7
.6
3
±

0
.5
4
(1
2
)

1
1
.0

M
v
D
A
p

9
5
.2
3
±

0
.8
6
(1
2
)

9
5
.2
9
±

0
.7
1
(1
2
)

9
5
.9
9
±

0
.4
9
(1
2
)

9
1
.5
8
±

0
.6
7
(
7
)

9
2
.9
5
±

0
.4
9
(
6
)

3
7
.6
2
±

0
.5
3
(1
4
)

1
0
.5

M
v
D
A
-V

C
p

9
5
.2
1
±

0
.8
8
(1
4
)

9
5
.3
2
±

0
.7
7
(1
1
)

9
5
.9
5
±

0
.4
8
(1
3
)

9
1
.5
5
±

0
.6
5
(
8
)

9
2
.8
4
±

0
.5
4
(
8
)

3
7
.6
3
±

0
.5
5
(1
3
)

1
1
.2

M
v
L
D
A
p

9
3
.5
3
±

1
.1
7
(1
7
)

9
3
.0
5
±

0
.9
4
(1
8
)

9
5
.1
7
±

0
.9
7
(1
8
)

9
0
.0
1
±

0
.7
6
(1
2
)

4
5
.8
3
±

5
.1
6
(2
5
)

3
5
.5
3
±

0
.6
7
(1
9
)

1
8
.2

M
v
M
D
A
p

9
5
.3
2
±

0
.6
9
(1
0
)

9
5
.3
4
±

0
.6
1
(1
0
)

9
6
.3
1
±

1
.0
4
(1
0
)

8
7
.4
1
±

1
.2
9
(1
9
)

9
2
.5
4
±

0
.5
4
(1
0
)

3
6
.2
8
±

0
.3
1
(1
7
)

1
2
.7

M
L
D
A
p

8
8
.4
1
±

1
.6
9
(2
0
)

9
2
.4
9
±

1
.0
2
(2
2
)

9
5
.2
5
±

0
.4
5
(1
7
)

8
8
.8
2
±

0
.7
8
(1
7
)

7
2
.2
4
±

1
.0
9
(2
1
)

3
7
.5
5
±

0
.4
1
(1
5
)

1
8
.7

G
M
A
p

9
5
.4
4
±

0
.7
5
(
9
)

9
5
.4
4
±

0
.5
9
(
8
)

9
6
.7
3
±

0
.7
7
(
7
)

8
7
.0
2
±

1
.2
0
(2
0
)

9
2
.3
8
±

0
.5
7
(1
1
)

3
8
.6
0
±

0
.3
8
(1
0
)

1
0
.8

M
v
D
A
-C

C
A
p

9
5
.2
2
±

0
.8
7
(1
3
)

9
5
.4
2
±

0
.7
3
(
9
)

9
5
.8
6
±

0
.3
6
(1
5
)

9
1
.6
0
±

0
.7
2
(
6
)

9
2
.7
8
±

0
.4
9
(
9
)

3
7
.6
5
±

0
.5
2
(1
1
)

1
0
.5

D
M
C
C
A

9
5
.1
7
±

0
.6
4
(1
5
)

9
3
.9
5
±

0
.4
9
(1
5
)

9
6
.6
1
±

0
.3
3
(
8
)

9
0
.2
8
±

0
.6
6
(1
1
)

8
1
.6
8
±

1
.3
1
(1
5
)

4
0
.1
1
±

0
.3
5
(
7
)

1
1
.8

D
M
v
O
P
L
S

9
5
.8
5
±

0
.4
2
(
2
)

9
5
.7
6
±

0
.4
2
(
6
)

9
6
.8
3
±

0
.3
7
(
6
)

9
2
.5
8
±

0
.3
5
(
2
)

9
3
.3
1
±

0
.5
6
(
4
)

4
1
.1
2
±

0
.2
9
(
1
)

3
.5

D
M
v
D
A

9
5
.6
1
±

0
.5
0
(
6
)

9
5
.7
8
±

0
.4
7
(
4
)

9
6
.8
4
±

0
.3
9
(
4
)

9
2
.5
7
±

0
.4
2
(
3
)

9
3
.3
6
±

0
.5
0
(
2
)

4
1
.0
1
±

0
.3
8
(
3
)

3
.7

D
M
v
D
A
-V

C
9
5
.6
1
±

0
.5
0
(
7
)

9
5
.7
8
±

0
.4
7
(
5
)

9
6
.8
4
±

0
.3
9
(
5
)

9
2
.5
7
±

0
.4
2
(
4
)

9
3
.3
6
±

0
.5
0
(
3
)

4
1
.0
1
±

0
.3
8
(
4
)

4
.7

D
M
v
L
D
A

9
6
.3
5
±

0
.7
3
(
1
)

9
5
.8
2
±

0
.3
6
(
3
)

9
7
.6
0
±

0
.5
6
(
1
)

9
2
.7
2
±

0
.6
3
(
1
)

9
4
.2
5
±

0
.2
4
(
1
)

4
0
.8
1
±

0
.3
6
(
5
)

2
.0

D
M
v
M
D
A

9
5
.7
6
±

0
.5
9
(
3
)

9
5
.9
1
±

0
.3
5
(
1
)

9
7
.2
5
±

0
.5
4
(
2
)

8
9
.7
1
±

1
.1
2
(1
4
)

9
2
.2
4
±

0
.3
5
(1
3
)

3
9
.2
7
±

0
.3
6
(
9
)

7
.0

D
M
L
D
A

9
5
.0
9
±

0
.7
2
(1
6
)

9
4
.4
5
±

0
.3
4
(1
4
)

9
6
.4
5
±

0
.3
3
(
9
)

8
9
.8
9
±

0
.7
3
(1
3
)

8
0
.6
4
±

0
.8
1
(1
6
)

3
9
.8
3
±

0
.4
2
(
8
)

1
2
.7

D
G
M
A

9
5
.7
4
±

0
.7
8
(
4
)

9
5
.8
4
±

0
.4
3
(
2
)

9
6
.1
8
±

0
.5
6
(1
1
)

8
8
.9
0
±

0
.9
4
(1
5
)

9
0
.7
0
±

0
.4
5
(1
4
)

4
0
.5
5
±

0
.4
8
(
6
)

8
.7

D
M
v
D
A
-C

C
A

9
5
.6
2
±

0
.4
8
(
5
)

9
5
.5
7
±

0
.3
9
(
7
)

9
6
.9
5
±

0
.5
0
(
3
)

9
2
.5
0
±

0
.4
2
(
5
)

9
3
.3
0
±

0
.5
3
(
5
)

4
1
.0
5
±

0
.3
3
(
2
)

4
.5



20 LI WANG, REN-CANG LI, AND WEN-WEI LIN

The first six multi-view data sets are used for multi-view feature extraction eval-
uated through multi-class classification. Multiple Features (Mfeat)1 and Internet
Advertisements (Ads) 2 are downloaded from UCI machine learning repository,
where the descriptions of each view can be found in their documentations. Image
datasets Caltech1013[37] and Scene154 [38] are created by applying the following
descriptors to each image: CENTRIST [39], GIST [40], LBP [41], histogram of
oriented gradient (HOG), color histogram (CH), and SIFT-SPM [38]. Note that we
drop CH from Scene15 due to the gray-level images, and Caltech101 with two data
sets consisting of 7 and 20 categories are used by following [42]. NUS-wide-object
is a web image data set consisting of six pre-computed low-level features 5.

The last three data sets, TVGraz [43], Wikipedia [44] and Pascal [45] are em-
ployed for cross-modal retrieval, where the image query is used to retrieve text
articles and vice-versa. As pointed out in [46], the three data sets demonstrate
different properties. Both image and text classifications are low in accuracy for
Pascal. On Wikipedia, image classification has low accuracy, but its text classifica-
tion accuracy is high. TVGraz has good accuracies for both text and images. These
data sets are also used in [46], where the training/testing data sets are provided:
1558/500 for TVGraz, 2173/693 for Wikipedia, and 700/300 for Pascal.

7.2. Compared methods. We compare the performances of all methods in Sec-
tion 5 and their nonlinear extensions via deep networks proposed in Section 6 on the
multi-view data sets. All methods for learning linear projections will be evaluated
on either the original input data sets or the reduced ones obtained by applying PCA
to each view so as to reduce the dimension of each view while retaining 95% energy.
Since deep networks can automatically learn the low-dimensional representation,
they take in the input data sets without any PCA reduction. Specifically, the com-
pared methods consist of seven existing methods including MCCA [13], MvLDA
[32], MvDA [4], MvDA-VC [4], MvMDA [21], MLDA [7], GMA [5], and two new
variants including the simplest MvOPLS denoted by MvOPLS, as the combination
with the Tikhonov regularization and MvDA+CCA of (64). For the ease of refer-
ence, we add suffix “p” to the name of each method for the same method applied to
the reduced data via PCA, and add prefix “D” for its nonlinear extensions via deep
networks. For example associated to MvDA, MvDAp stands for MvDA applied to
the PCA reduced data, and DMvDA is the nonlinear extension of MvDA via deep

networks. To prevent C̃diag + A from being singular in the unified from (46), the
Tikhonov regularization (30) is applied to all methods.

7.3. Experimental settings. We evaluate the baseline methods on the multi-view
data sets in terms of classification. All methods aim to learn a set of linear/nonlinear
projections, which transform the data points of each view to points in the common
space. The classification is then conducted in the common space. As presented in
[2], the concatenation of the projected points from all views as the new represen-
tation of the input instance is proper for use by a regression algorithm, and the
main finding about CCA is that there is little loss of predictive power by using

1https://archive.ics.uci.edu/ml/datasets/Multiple+Features
2https://archive.ics.uci.edu/ml/datasets/internet+advertisements
3http://www.vision.caltech.edu/Image Datasets/Caltech101/
4https://figshare.com/articles/15-Scene Image Dataset/7007177
5https://lms.comp.nus.edu.sg/wp-content/uploads/2019/research

/nuswide/NUS-WIDE.html
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the reduced data in a lower dimensional space while the regression problem gains a
lower sample complexity due to that the reduced multi-view data resides in Rvk×n.
It is worth noting that the new representation of multi-view data is consistent with
our proposed framework based on least squares.

The proposed regularized MvOPLS has its built-in classifier, but it is improper
for some variants such as MCCA, MLDA and GMA because their least squares
losses are independent of the class labels. To make fair comparisons of all baseline
methods in terms of classification performance, we seek an independent classifier
for performance evaluation. Among them, linear support vector machines (SVMs)
and 1-nearest neighbor classifier have been popularly used in the literature [12, 47,
5, 4]. We will evaluate baselines in terms of SVMs since it is consistent with the
classifier of the proposed framework. Specifically, the data is split into training
and testing sets. Each baseline method takes in a training set, and outputs the
learned projections and the new representation of the training set. The classifier
is trained on the new representation of the training set. In the testing step, the
testing set is first transformed to the common space via the given projections, and
then the classifier is applied to make predictions of the testing data. We repeat the
experiment for each baseline method over 10 randomly drawn training and testing
sets, and the mean accuracy with standard deviation on testing sets is reported.

Regularized MvOPLS and its variants share some common parameters including
the regularization parameters for Rtikh and the dimension k of the common space.
In addition, methods including MvDA-VC, MLDA, GMA, MvDA-CCA and their
nonlinear versions have another regulating parameter λ for an additional regular-
ization term. For simplicity, we set γs = γ = 10−4,∀s in (30), and the second
regularization parameter is set to λ = 10−2 in all experiments. The dimension k
is an important parameter for all subspace learning methods. Following the con-
vention, we will evaluate all baseline methods over a set of ks. For Mfeat data,
k ∈ {2, 3, 4, 5, 6} is used since only 6 morphological features are available. For
other data sets, k ∈ {2, 3, 5:5:50} is used. The architecture of deep networks used
for all nonlinear methods follows [12], where the widths of the hidden layers are
500 and 500, and there are three layers including the output layer. During the
training process, we take the full-batch optimization approach, as suggested in [12].
All nonlinear extensions are implemented in Pytorch [48] for tensor operations and
eigenvalue decompositions. The Adam optimizer is used with the learning rate set
to 10−3, and others are set by default. It is worth noting that this work mainly fo-
cuses on the generalized framework and its power to recast existing methods as well
as inspire new models, and so the best performance achieved by each method via
fine-tuning their corresponding parameters is not the main concern of this paper.

Cross-modal retrieval is different from multi-view feature extraction. After the
common space is learned on the training data, the testing data is used to query
each other through the common space. We take the retrieval method proposed in
[44] with L2 metric to evaluate the performance of each method. Following [5], we
set the latent dimension to 20 for the last three data sets in Table 1 for cross-modal
multimedia retrieval.

7.4. Performance evaluation via classification. The classification performances
of all methods on the first six data sets in Table 1 are compared from three different
perspectives: the overall best accuracy of each method, the accuracy by varying
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Caltech101-20 Scene15
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Figure 1. Accuracies of 27 methods on Caltech101-20 and
Scene15 by varying k with 10% training and 90% testing data split.

the dimension of the common space, and the best accuracy by varying the training
ratios.

7.4.1. Overall classification performance. We first evaluate nine methods and their
three different variants by comparing their best accuracies over all ks with 10%
training and 90% testing split of data, and the results are shown in Table 2. We
have the following observations: 1) supervised methods significantly outperform
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Caltech101-7 Mfeat
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Figure 2. Accuracies of 27 methods on Caltech101-7 and Mfeat
by varying training data ratio from 10% to 70%.

unsupervised MCCA; 2) methods (with suffix “p”) trained on data of reduced di-
mensions have better accuracies than the same methods on original features (with-
out suffix “p” and prefix “D”), and nonlinear transformations via deep networks
(with suffix “D”) perform better than the same linear methods (with or without
suffix “p”); 3) among the supervised MvOPLS variants, GMA and MLDA demon-
strate relatively worse results than others, and that is possibly caused by the model
assumption that their least squares in MvOPLS are built on the unlabeled data.

To compare all methods over the six data sets, we rank all methods in terms
of their accuracies on each data set, from 1 to 27 with 1 being the best and 27
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Caltech101-20 Ads
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Figure 3. Accuracies of 9 deep network methods on Caltech101-7
and Ads as the number of layers varies from 2 to 8.

being the worst. The average ranking over the six data sets is reported to measure
the overall performance of each method. The top four methods are DMvLDA,
DMvOPLS, DMvDA, and DMvDA-CCA, where the two newly proposed models,
DMvOPLS and DMvDA-CCA are in the top 2 and 4.

7.4.2. Impact of common subspace. The impact of common subspace on the per-
formance of classification is evaluated by varying dimension k of the subspace in a
given range. Results of the 27 methods on Caltech101-20 and Scene15 are shown in
Fig. 1. It can be observed that deep variants consistently achieve better accuracy
as k increases. However, those models on original data can behave somehow unpre-
dictable. Among them, MvLDAp behaves very different from other counterparts.
In any case, the deep variants produce consistently better results than their two
other variants.

7.4.3. Impact of the size of training data. We further evaluate the impact of training
ratio on the performance of classification. The results are shown in Fig. 2 where
the training ratio is varied from 10% to 70% for the 27 methods on Mfeat and
Caltech101-7. We observe that deep variants perform consistently better as training
ratio increases. Methods of other two variants show the similar trends, but with
lower accuracy compared to deep variants.
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Figure 4. Parameter sensitivity analysis of four methods on
Caltech101-20 by varying parameter λ in a wide range.

7.4.4. Impact of the layers of deep networks. We also evaluate the sensitivity of
MvOPLS variants with respect to the depth of networks from 2 to 8 layers. Each
layer consists of a linear layer with a nonlinear activation function. Here, two
functions: Sigmoid and Tanh are used. The widths of all layers are set to 500. The
results on two data sets Caltech101-7 and Ads are shown in Fig. 3. With both
activation functions, DGMA and DMLDA show a bit worse accuracy, while the
proposed DMvDA-CCA performs well in general. For Sigmoid, it is shown that the
best performance occurs near 3-4 layers, but the accuracy drops significantly when
the number of layers becomes large. This has been observed in literature. However,
Tanh generally requires more layers to reach similar performance and continues to
improve as the number of layers increases.

7.4.5. Parameter sensitivity analysis. In Section 5, we show that methods MvDA-
VC, MLDA, GMA, MvDA-CCA and their nonlinear versions have another parame-
ter λ. To investigate the impact of λ on the four models, we repeat the experiments
in Section 7.4.1 on Caltech101-20 by fixing k = 50 and varying λ ∈ [10−4, 104]. Ex-
perimental results are shown in Fig. 4. The four methods show large variations on
the original input data, but they behave less sensitive to λ for reduced data using
either PCA or deep networks.
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Table 3. mAP scores of 27 methods on three data sets, where the
best results are highlighted in bold font.

Method
Pascal TVGraz Wikipedia

Image Text Ave Image Text Ave Image Text Ave
MCCA 0.102 0.085 0.093 0.191 0.282 0.237 0.144 0.174 0.159
MvOPLS 0.132 0.069 0.101 0.201 0.354 0.278 0.142 0.219 0.181
MvDA 0.131 0.070 0.101 0.203 0.351 0.277 0.146 0.219 0.183
MvDA-VC 0.134 0.069 0.102 0.141 0.348 0.244 0.131 0.196 0.163
MvLDA 0.070 0.068 0.069 0.148 0.225 0.186 0.130 0.138 0.134
MvMDA 0.159 0.067 0.113 0.163 0.359 0.261 0.140 0.224 0.182
MLDA 0.101 0.085 0.093 0.231 0.270 0.250 0.163 0.164 0.164
GMA 0.159 0.067 0.113 0.163 0.346 0.255 0.135 0.183 0.159
MvDA-CCA 0.131 0.068 0.099 0.271 0.451 0.361 0.153 0.235 0.194
MCCAp 0.115 0.108 0.111 0.191 0.287 0.239 0.144 0.175 0.159
MvOPLSp 0.136 0.154 0.145 0.171 0.309 0.240 0.130 0.167 0.149
MvDAp 0.136 0.153 0.145 0.178 0.327 0.253 0.132 0.180 0.156
MvDA-VCp 0.137 0.154 0.145 0.138 0.340 0.239 0.125 0.193 0.159
MvLDAp 0.073 0.079 0.076 0.121 0.154 0.138 0.121 0.118 0.120
MvMDAp 0.129 0.173 0.151 0.159 0.355 0.257 0.131 0.220 0.175
MLDAp 0.115 0.108 0.111 0.234 0.276 0.255 0.163 0.164 0.163
GMAp 0.130 0.168 0.149 0.168 0.337 0.253 0.134 0.180 0.157
MvDA-CCAp 0.136 0.149 0.143 0.269 0.400 0.335 0.151 0.217 0.184
DMCCA 0.132 0.118 0.125 0.115 0.220 0.168 0.121 0.156 0.138
DMvOPLS 0.153 0.161 0.157 0.406 0.411 0.409 0.198 0.236 0.217
DMvDA 0.155 0.162 0.158 0.420 0.399 0.410 0.210 0.223 0.217
DMvDA-VC 0.155 0.162 0.158 0.420 0.399 0.410 0.210 0.223 0.217
DMvLDA 0.133 0.120 0.126 0.296 0.290 0.293 0.129 0.161 0.145
DMvMDA 0.112 0.173 0.142 0.376 0.340 0.358 0.141 0.226 0.184
DMLDA 0.131 0.117 0.124 0.229 0.259 0.244 0.175 0.179 0.177
DGMA 0.122 0.179 0.151 0.261 0.276 0.268 0.146 0.179 0.162
DMvDA-CCA 0.153 0.163 0.158 0.427 0.409 0.418 0.213 0.239 0.226

7.5. Performance evaluation via text-image retrieval. Text-image retrieval
is used to evaluate MvOPLS and its variants on data sets whose two views are texts
and images, respectively. This task aims to retrieve image (text) from a database for
a given text (image) query. A correct retrieval is the one with the same class as the
query. The mean average precision (mAP) score is the performance measurement
for text-image retrieval, and it has been popularly used in [46, 5]. The parameters
of all methods are the same as these used in Subsection 7.4.

Table 3 shows the mAP scores of all compared methods on three data sets. We
observe that 1) PCA is helpful on Pascal, but not for TVGraz and Wikipedia; 2)
Deep variants outperform their counterparts. DMvDA-CCA shows the best per-
formance in terms of mAP score over all three data sets. 3) DMvLDA does not
show good performance for cross-modal retrieval as in classification (Subsection
7.4). These results demonstrate that MvOPLS with deep networks for learning
nonlinear transformations is effective for certain models, but may not for all vari-
ants.
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8. Conclusion

In this paper, we propose a unified multi-view learning framework, which not
only provides a deep understanding of many existing methods from the viewpoint
of regularized least squares, but also motivates the development of new methods as
well as their nonlinear counterparts with little additional effort. Extensive experi-
ments in terms of two multi-view learning tasks validate the proposed framework,
the two newly instantiated models, and the new deep variants.

The proposed framework provides appealing flexibility for designing effective
models in a wide range of learning tasks. For example, the sparse CCA [49, 50] can
be reformulated under the proposed framework with sparsity regularization over
projection matrices. With the proposed framework, it becomes feasible to extend
them for more than two views and nonlinear representations. Our framework can
also be easily extended for other learning paradigm such as semi-supervised multi-
view learning.
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W. Lindberg, and M. Sjöström, “Multivariate data analysis in chemistry,” in Chemometrics.

Springer, 1984, pp. 17–95.

http://arxiv.org/abs/1304.5634


28 LI WANG, REN-CANG LI, AND WEN-WEI LIN

[17] C. M. Bishop, Pattern Recognition and Machine Learning. Springer, 2006.

[18] J. Ye, “Least squares linear discriminant analysis,” in Proceedings of the 24th International

Conference on Machine Learning, 2007, pp. 1087–1093.
[19] T. Hastie, A. Buja, and R. Tibshirani, “Penalized discriminant analysis,” The Annals of

Statistics, pp. 73–102, 1995.

[20] T. Diethe, D. R. Hardoon, and J. Shawe-Taylor, “Multiview fisher discriminant analysis,” in
NIPS Workshop on Learning from Multiple Sources, 2008.

[21] G. Cao, A. Iosifidis, K. Chen, and M. Gabbouj, “Generalized multi-view embedding for visual

recognition and cross-modal retrieval,” IEEE Transactions on Cybernetics, vol. 48, no. 9, pp.
2542–2555, 2017.

[22] H. Wang, S. Yan, D. Xu, X. Tang, and T. Huang, “Trace ratio vs. ratio trace for dimen-

sionality reduction,” in 2007 IEEE Conference on Computer Vision and Pattern Recognition.
IEEE, 2007, pp. 1–8.

[23] K. J. Worsley, J.-B. Poline, K. J. Friston, and A. Evans, “Characterizing the response of PET
and fMRI data using multivariate linear models,” Neuroimage, vol. 6, no. 4, pp. 305–319, 1997.

[24] L. Sun, S. Ji, S. Yu, and J. Ye, “On the equivalence between canonical correlation analysis

and orthonormalized partial least squares,” in Twenty-First International Joint Conference
on Artificial Intelligence, 2009.
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