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Correlated Chained Gaussian Processes for Datasets
with Multiple Annotators

J. Gil-Gonzalez, J. Giraldo, A. Alvarez—Meza, A. Orozco-Gutiérrez, and M. A. Alvarez

Abstract—The labeling process within a supervised learning:
task is usually carried out by an expert, which provides thg,
ground truth (gold standard) for each sample. However, in many
real-world applications, we typically have access to annotations
provided by crowds holding different and unknown expertisé®
levels. Learning from crowds intends to configure machin¢
learning paradigms in the presence of multi-labelers, residing ons
two key assumptions: the labeler’s performance does not depend,
on the input space, and independence among the annotators
is imposed. Here, we propose the correlated chained Gaussian
processes from multiple annotators—(CCGPMA) approach, which'
models each annotator’s performance as a function of the input
space and exploits the correlations among experts. Experimentak
results associated with classification and regression tasks show,
that our CCGPMA performs better modeling of the labelers55
behaviour, indicating that it consistently outperforms other state-
of-the-art learning from crowds approaches.

57
Index Terms—Multiple annotators, Correlated Chained Gaus-
sian Processes, Variational inference, Semi-parametric latent

factor model.
60

61
I. INTRODUCTION 62

UPERVISED learning requires that a domain exper%3

labels the instances to built the gold standard (grouna4
truth) (1). Yet, experts are scarce, or their time is expensivésf>
not mentioning that the labeling task is tedious and timé-
consuming (2). As an alternative, the labeling is distributed’
through multiple heterogeneous annotators, who annotate paretii
of the whole dataset by providing their version of the hiddert
ground truth (3). Recently, crowdsourcing platforms, ie)
Amazon Mechanical Turk— (AMT)!, have been introduced oy
capture labels from multiple sources on large datasets efﬁcientl}?
The attractiveness of these platforms lies in that, at a low cos{,3
it is possible to obtain suitable quality labels. Indeed, in somé’
cases, such a labeling process can compete with those provide&5
by experts (4). However, in such multi-labeler scenario, each’
instance is matched with multiple annotations provided b37/7
different sources with unknown and diverse expertise, beiné8
difficult to apply traditional supervised learning algorithms (5§
In this sense, learning from crowds has been introduced as &
general framework from two main perspectives: to fit the label§'
from multiple annotators or to adapt the supervised learmng
algorithms (6).
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The first approach is known in the literature as “label
aggregation” or “truth inference”, comprising the computation
of a single hard label per sample as an estimation of the
ground truth. The hard labels are then used to feed a standard
supervised learning algorithm (7). The straightforward method
is the so-called majority voting—(MV), and it has been used in
different multi-labeler problems due to its simplicity (8). Still,
MYV assumes homogeneity in annotators’ reliability, which is
hardly feasible in real applications, e.g., experts vs. spammers.
Furthermore, the consensus is profoundly impacted by incorrect
labels and outliers (3). Conversely, more elaborated models
have been considered to improve the estimation of the correct
tag through the well-known Expectation-Maximization—(EM)
framework and by facing the imbalanced labeling issue (9; 8).

The second approach jointly trains the supervised learning al-
gorithm and models the annotators’ behavior. It has been shown
that such strategies lead to better performance compared to the
ones belonging to label aggregation. Thus, the features used
to train the learning algorithm provide valuable information
to puzzle out the ground truth (10). The most representative
work in this area is exposed in (11), which offers an EM-based
framework to learn the parameters of a logistic regression
classifier and model the annotators’ behavior by computing
their sensitivities and specificities. In fact, such a technique has
inspired several models in the context of multi-labeler scenarios,
including binary classification (12; 10), multi-class discrimina-
tion (7; 13), regression (14; 15), and sequence labeling (16).
Furthermore, some works have addressed the multi-labeler
problem using deep learning approaches typically including an
extra layer that codes the annotators’ information (17; 18; 19).

Two main issues are still unsolved in the context of
learning from crowds (20): we need to code the relationships
between the input features and the labelers’ performance while
revealing relevant annotators’ interdependencies. In general, the
annotators’ behavior is parametrized through a homogeneous
constraint across the input samples. The latter assumption
is not correct since an expert makes decisions based not
only on his/her expertise but also on the features observed
from raw data (11). Besides, it is widespread to consider
independence in the annotators’ labels, aiming to reduce the
complexity of the model (21), or based on the fact that it is
plausible to guarantee that each labeler performs the annotation
process individually (22). However, this assumption is not true
since there may exist correlations among the annotators (23).
For example, if the sources are humans, the independence
assumption is hardly feasible because knowledge is a social
construction; then, people’s decisions will be correlated because
they share information or belong to a particular school of
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thought (24; 25). Now, if we consider that the sources are
algorithms, where some of them gather the same math principles
there likely exists a correlation in their labels (26). 149
In this work, we propose a probabilistic model, named theo
correlated chained Gaussian Processes for multiple annotatorss+
(CCGPMA), to jointly build a prediction algorithm applicablez
to classification and regression tasks. CCGPMA is based oms
the chained GPs model-(CGP) (27), which is a Multi-GPs:
framework where the parameters of an arbitrary likelihoods
function are modeled with multiple independent GPs (one Gbs
prior per parameter). Unlike CGP, we consider that multiple
correlated GPs model the likelihood’s parameters. For doing sos
we take as a basis the ideas from a Multi-output GP—(MOGP
regression (28), where each output is coded as a weighted summ
of shared latent functions via a semi-parametric latent factos
model-(SLFM) (29). In contrast to the MOGP, we do not havez
multiple outputs but multiple functions chained to the givets
likelihood parameters. From the multiple annotators’ poind
of view, the likelihood parameters are related to the labelerss
behavior; thereby, CCGPMA models the labelers’ behavioss
as a function of the input features while also taking inter
account annotators’ interdependencies. Moreover, our proposads
is based on the so-called inducing variables framework (3039
in combination with stochastic variational inference (31). Tao
the best of our knowledge, this is the first attempt to build
a probabilistic approach to model the labelers’ behavior as i
function of the input features while also considering annotators’
interdependencies. Achieved results, using both simulated ands
real-world data, show how our method can deal with boths
regression and classification problems from multi-labelers datas
The remainder is organized as follows. Section 2 exposes
the related work and the main contributions of the proposats
Section 3 describes the methods. Sections 4 and 5 present thes
experiments and discuss the results. Finally, Section 6 outlineso
the conclusions and future work. 181
182
II. RELATED WORK AND MAIN CONTRIBUTIONS Ej
Most of the learning from crowds-based methods aim tes
model the annotators’ behavior based on the accuracy (32), thes
confusion matrix (13), the error variance (11), and the bias (15);
Concerning this, the expert parameters are modeled as fixeds
points (12), or as random variables, where it is considered thas
such parameters are homogeneous across the input data (7).
The first attempt to analyze the relationship between the:
annotators’ parameters and the input features is the work in (233.
The authors propose an approach for binary classification
with multiple labelers, where the input data is represented,
by a defined cluster using a Gaussian Mixture Model-(GMM).
The approach assumes that the annotators exhibit a particulaf’
performance measured in terms of sensitivity and specificitys
for each group. However, the model does not consider thes
information from multiple experts as an input for the GMMy
yielding variations in the labelers’ parameters. Similarly, ims
(33), the authors propose a binary classification algorithmas
that employs two probability models to code the annotatorso
performance as a function of the input space, namely =
Bernoulli and a Gaussian distribution. The parameters of these-

distributions are computed via Logistic regression. Nonetheless,
a linear dependence between the labeler expertise and the input
space is assumed, which may not be appropriate because of
the data structure’s nonlinearities. For example, if we consider
online annotators assessing some documents, they may have
different labeling accuracy. Such differences may rely on
whether they are more familiar with some specific topics related
to studied documents (34). Authors in (35) offer a GP-based
regression with multiple annotators. An additional GP models
the annotators’ parameters as a nonlinear function of the input
space. Yet, the inference is carried out based on maximum
a posteriori (MAP), without including the uncertainty of the
posterior distribution.

On the other hand, it has been shown that the relaxation
of the annotators’ independence restriction can improve the
ground truth estimation (23; 20). To the best of our knowledge,
only two works address such an issue. First, the authors in (26)
describe an approach to deal with regression problems, where
the labelers’ behavior is modeled using a multivariate Gaussian
distribution. Thus, the annotators’ interdependencies are coded
in the covariance matrix. Further, in (36), the authors propose a
binary classification method based on a weighted combination
of classifiers. In turn, the weights are estimated by using a
kernel alignment-based algorithm considering dependencies
among the labelers.

Here, we propose a GPs-based framework to face classifi-
cation and regression settings with multiple annotators. Our
proposal follows the line of the works in (12; 14; 10; 7; 37)
in the sense that we are modeling the unknown ground truth
trough a GP prior. However, while such approaches code the
annotators’ parameters as fixed points (12; 14); or as random
variables (10; 7; 37); we model them as random processes to
take into account dependencies between the input space and
the labelers’ behavior. Besides, our CCGPMA shares some
similarities with the works in (33; 35), because we aim to
model the dependencies between the input features and the
labelers’ performance. Our method is also similar to the works
in (26; 36), because they assume dependencies in the annotators’
labels. In contrast, CCGPMA is the only one that includes
both assumptions to code the annotators’ behavior. Of note, we
highlight that our proposal codes inconsistent annotations, being
robust against outliers. Namely, CCGPMA can estimate the
annotators’ performance for every region in the input space;
meanwhile, state-of-the-art techniques assess it based on a
conventional averaging (15; 7; 10). Table I summarizes the key
insights of our CCGPMA and state-of-the-art approaches.

III. METHODS
A. Chained Gaussian processes

Let us consider an input-output dataset D ={X € X,y €Y},
where X = {a:n € DCQIRP}T]:[:l and y={y, € ‘j}iv:l. In turn,
let a GP be a collection of random variables f(x) indexed
by the input samples x € X holding a joint multivariate
Gaussian distribution (39). A GP is defined by its mean
m(x) =E[f(x)] (we consider m(x)=0) and covariance func-
tion ks (w,a) =E[(f(z) — m(2))(f(2') — m(a'))], where
kf: X x X—R is a given kernel function and x’ € X, yielding:
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TABLE I
SURVEY OF RELEVANT SUPERVISED LEARNING MODELS DEVOTED TO MULTIPLE ANNOTATORS.

Source Data type

Modeling the
annotator’s

Expertise as a
function of the

Modeling the

Type of model annotators’ inter-

expertise input space dependencies
Raykar et al., 2010 (11) Regression-Binary-Categorical Probabilistic v X X
Zhang and Obradovic, 2011 (23) Binary Probabilistic v v X
Xiao et al., 2013 (35) Regression Probabilistic v v X
Yan et al., 2014 (33) Binary Probabilistic v v X
Wang and Bi, 2016 (34) Binary Deterministic v v X
Rodrigues et al., 2017 (15) Regression-Binary-Categorical Probabilistic v X X
Gil-Gonzalez et al., 2018 (36) Binary Deterministic 4 X v
Hua et al., 2018 (38) Binary-Categorical Deterministic v X X
Ruiz et al., 2019 (10) Binary Probabilistic v X X
Morales- Alvarez et al., 2019 (7) Binary Probabilistic v X X
Zhu et al., 2019 (26) Regression Probabilistic v X v
Proposal-(CCGPMA) Regression-Binary-Categorical Probabilistic v v 4

234
235

f(x) ~ G20, kf(z,x")). (1)

If we consider the finite set of inputs in X, then
f=1f(x1),...,f(xx)]" €RY is drawn for a multivariate
Gaussian distribution f ~ N(f|0, K¢s), where Kz € RV*N
is the covariance matrix formed by the evaluation of r¢(-,3%
over the input set X. 237
Accordingly, using GPs for modeling the input-output datas
collection D consists of constructing a joint distributicse
between a given likelihood function and one or multiple GRo
based priors. To code each likelihood parameter as a random
process, we employ the so-called chained GP-(CGP) that
attaches such parameters to multiple independent GP priors,
as follows (27):

N

p(yaf|X):Hp(yn|91(wn)7’eJ(wn)) X e o4t
n=1 242

J
e X HN(«fj|07Kfjfj)’
j=1

o))

245

where each {0;(x) € M;}7_, represents the likelihood’s pa-
rameters, being J €N the number of parameters to repre-
sent the likelihood. Besides, each §;(x) holds a non-linear
mapping from a GP prior, e.g., 6;(x)=h;(f;(x)), where
h;:R — M is a deterministic function that maps each latent
function—(LF) f;(x), to the appropriate domain M;. Moreover,
fi=[fi(x),..., fj(®x)]" €RY is a LF vector that follovxZ:s7
a GP prior, and f=[f1,...,fs]' €RNY. Ky g, e RNV £4s:
the covariance matrix belonging to the j-th GP prior, which is
computed based on the kernel function x;:X x X —R. The
non-parametric formulation of a GP introduces computational
loads through the inference process. For instance, considering
that the dataset D configures a regression problem, a GP
modeling involves a computational complexity of O(N%p
to invert the matrix Ky ¢, (39). A common approach te
reduce such computational complexity is to augment the:
GP prior with a set of M << N inducing variables (463
w;j=[f;j(z]),..., f;(z};)]" €RM through additional evales
ations of f;(-) at unknown locations Z; =[z{,...,2},] &

RM>P “which decreases the GP’s computational complexity to
O(N M?). Further, the following augmented GP prior arises:

Kyu,

Uju;

p(fj uj) =N [fj} 0, [;((fjfj

U u; f;

], 3)

where Ky ,,, € RN*M js the cross-covariance matrix formed

by the evaluation of the kernel function (-, -) between X and
Z;. Likewise, Ky q; € RM*M g the inducing points-based
covariance matrix. Then, the distribution of f; conditioned to
the inducing points u; can be written as:

p(-fj|uj) =N (flefjqu'l:jlu_juj’Kfjfj - 4)
[ — Kfjqu';jlquujfj) 3
p(’le) =N (’U,j|07 Kujuj) . (5)

In most cases Egs. (4) and (5) are non-conjugate to the
likelihood, finding the posterior distribution p(f,uly) is not
tractable analytically; therefore, we resort to a deterministic
approximation of the posterior distribution using variational
inference. Hence, the actual posterior can be approximated by
a parametrized variational distribution p( f, uly) ~q( f, u), as:

J

q(f,u) = p(flu)g(uw) = [ p(#lu;)a(u,),

Jj=1

(6)

where u = [u]—,...,u}]T € RM7; moreover, p(fjlu;) is

defined in Eq. (4), and ¢(u) is the posterior approximation
over the inducing variables:

J J
«mzﬂwmzﬂwwmnm. (7

The approximation for the posterior distribution comprises the
estimation of the following variational parameters: the mean
vectors m; € RM and the covariance matrices V; € RM>M,
Such an assessment is carried out by maximizing an evidence

lower bound—(ELBO). Thereby, assuming that the instances
x,, are independently sampled, the ELBO can be derived as:
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285

286

L= Z Eq(t1)a£s) 108 PWnlO1ins - o, On] — -+ 27
288

J 289

= D (g(uy)|lp(uy)), (8

j=1 201

where Dg 1, (-||-) is the Kullback-Leibler divergence and ¢( f;)
is defined as follows:

)

292

q(f;) = /P(f7|uj)q(uj)duj-

293

294

B. Correlated chained Gaussian processes 205
From Section III-A, we note that the CGP model assumess
independence between priors, thereby lacking a correlatiow’
structure between GPs. As mentioned before, we consider thage
the annotators are correlated. We will enable this aspect of thee
model by assuming dependencies among the latent parametesso
of the chained GP. In particular, we introduce the correlatedr
chained GPs—(CCGP) to model correlations between the G2
latent functions, which are supposed to be generated from s

semi-parametric latent factor model-(SLFM) (29): 304
Q

(@n) = > wjgttq(@), (10)
g=1

where f; : X — R is an LE, p4(-) ~ GP(0,k,(-,-)) with

kg : XxX — R being a kernel function, and w;,€R is a
combination coefficient () € N). Here, each LF is chained to
the likelihood’s parameters to extend the joint distribution ig,
Eq. (2) as follows:

306

J
p(y, f,ulX) = p(y|6) H (filw)p( (11)

where 8=[01,...,0;]T € RN’ holds the model’s parameters
and 0; =[0;(x1),...,0;(zN)]" €RY relates the j-th parani-

eter w1th the 1nput space. Our CCGP employs the inducin’d’
variables-based method for sparse approximations of GPs (40
For each f1,(+), we introduce a set of M < N “pseudo vafi-
ables” w, =[pq(27), ..., pug(23,)] T € RM through evaluations

of y,(-) at unknown locations Z,=[z{,...,z2],] € RM*¥?
Note that w = [uy ..., ug]T €ROM | yielding: :j
315
p(fjlu) =N (fj|KfjuK’L:'l}fu7 Kypy = e
- KfjuK;iKUfj) ) (123?;

Q
p(u) =N (|0, Kyu) = [ Nug|0, Kuyu,)s (1)

q=1
321

where K, € ROMXQM g 3 block-diagonal matrix withe
blocks Koy v, € RMXM  pased on the kernel functioms
kg(-,-). The covariance matrix Ky 5 € RV*N  holds:

elements Zqul Wj qW;j gkq(Tn, Tns), With @, T, € X,

Likewise, Ky o=[Kfus, -, Kfu,] ERV*CM — where
Ky, € R¥M " gathers  elements W) gkq(Tn, 28,),
me{l,...,M}. Alike CGP, in most cases, the CCGP

posterior distribution p( f ,u|y) has not an analytical solution,
so the actual posterior can be approximated by a parametrized
variational distribution p(f, u|y)~q(f,u), as

J
g(f,u) = p(flu)g(w) = [ p(f;lw) [ a(u (14)
Jj=1 q=1
where p(f;lu) is given by Eq. (12), q(uq) =N(ue|lmg, Vo),

and g(u)=N(u|m, V). Also, m, € RM, and V, € RM*M
are respectively the mean and covariance of variational dis-
tribution q(u,); similarly, m=[m/] ,... ,mg}T €R@M and
V € REMXR@M g 3 block-diagonal matrix with blocks given
by the covariance matrices V;. We remark that the variational
approximation given by Eq. (14) is not uncommon, and it
has been used in several GPs models, including (27; 41).
The approximation for the posterior distribution comprises
the computation of the following variational parameters: the
mean vectors {mq}qQ:1 and the covariance matrices {‘/;1}22:1
Such an estimation is carried out by maximizing an evidence
lower bound—(ELBO), which is given as:

N
L= "Eyts).atts) 1080Wnl01m, -,

n=1

Q
ce— ZDKL(Q(uq)||p(uq))7

0],71] -
(15)

where 0; , = 0;(x,,), with j € {1,...,J}, and Dg(-||-) is the
Kullback-Leibler divergence and ¢(f;) is defined as follows:

q(f5) = N(f| KguKgum, Kgp, + -

“+KfjuKuu(V_Kuu)KuuKufj)' (16)
Yet, in presence of non-Gaussian likelihoods, the computation
of the variational expectations—(VEs) in Eq. (15) cannot be
solved analytically (27; 41). Hence, aiming to model different
data types, i.e., classification and regression tasks, we need
to find a generic alternative to solve the integrals related to
these expectations. In that sense, we use the Gaussian-Hermite
quadratures approach as in (40; 27). We remark such ELBO is
used to infer the model’s hyperparameters such as the inducing
points, the kernel hyperparameters, and the combination factors
wj ¢ Eq. (10). It is worth mentioning that the CCGPs objective
functions exhibit an ELBO that allows Stochastic Variational
Inference—(SVI) (42). Hence, the optimization is solved through
a mini-batch-based approach from noisy estimates of the
global objective gradient, which allows dealing with large scale
datasets (40; 27; 41). Finally, we notice that the computational
complexity for our CCGP is similar to the model in (41).
Accordingly, it is dominated by the inversion of K,, with
O(QM?3) and products like K, with O(JNQM?).
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C. Correlated chained GP for multiple annotators-CCGPMA

Let us consider that a predefined panel of R € N annotators
(with different and unknown levels of expertise) label a given
dataset of IV instances. It is common to find that the each
annotator r only labels |N,.| < N samples, being |N,| the
cardinality of the set N, C {1,...,N} that contains the
indexes of samples labeled by the r-th annotator. Bemdes
we define the set R, C {1,..., R} holding the indexes of
annotators that labeled the n- th instance. The input-output
set is coupled within a multiple annotators scenario as
D={X,Y ={y,}nenNrenr,} where y/ €Y is the output
given by labeler r to the sample n; accordingly, our main
aims are: i) to code each labeler’s performance as a functiomo
of the input space and taking into account inter-annotater:
dependencies, and ii) to predict the true output y, € Y of a new
instance x, € R”. We highlight that to achieve such objectivess
no extra information about the annotators’ behaviour is provided
(e.g., extra labels or information about her/his experience).

1) Classification: To model categorical data from multi-
ple annotators with K classes (J={1,..., K}) using oyr,
CCGPMA, we use the framework proposed in (32), which,
introduces a binary variable Al €{0,1} representing the -
th labeler’s reliability as a function of each sample x,,. If
Al =1, the r-th annotator is supposed to provide the actual
label, yielding to a categorical distribution. Conversely, A, = 0
indicates that the r-th annotator gives an incorrect output, which
is modeled by a uniform distribution. Therefore, the likelihoodr
function is given as: a78

SAVRENCEOTS
(Hcky“’ ) (K> . B,

380

p(Y0) =

1111

n=1reR,

where 0(y, k) =1, if y), =k, otherwise d(y], k) = 0. Besides,
Ckn=p(y,, = kA, = 1) is an estimation of the unknown
ground truth. Accordingly, J = K + R LFs are required within
our CCGPMA approach, aiming to model the likelihood”
parameters 6. In particular, K LFs are used to model Ckssz

based on a softmax function ¢ as:
384

385

386

exp(fr(xn)) (18Y

L(fk(mn)) - Zf(:l exp(fj(mn)).

Ck,n =

Besides, R LFs are utilized to compute each A] from a
step function; therefore, A\’ =1 if f; (x,) > 0, otherwise,
A=0(re{l,...R}). , =K +re{K+1,...J} indexess
the r-th annotator’ LF. Of note, we approximate the steps
function through the well-known sigmoid function ¢ to avoid
discontinuities and favor the CCGPMA implementation. Alike
to CCGP, we use variational inference to approximate the:
posterior distribution of our CCGPMA. In consequence, thes
actual posterior p(f,u|Y’) is approximated following Eq. (143
Besides, we can derive a CCGPMA ELBO, yielding: 395

N
Z Z q(f1 5o ,q(fz) [1ng(yn|91 mny - 79J71’L)] -
n=1reR,

Q
=Y Drrlaug)lp(uy)), (19)
q=1

where for the classification case, we have

AT N
r 5y k) 1)
P01y O5m) = Hg " % . (20)

Finally, given a new sample x,, we are interested in the mean
and variance for predictive distributions related to the ground
truth (. =p(y« = k|, f. u), and the labelers’ reliabilities
AL. Accordingly, for (j . we obtain

E[Ce.] ~ / o(fr(@))a(F.)df-. @

where ¢(f.) = | p(f.|u)g(w)du. Similarly, for the predictive
variance of (., we use the expression Var[(y .| = E[Cz*] -
E[Ck.«]*; hence, we need to compute E[(} ] as

B~ [ dfule)*alt)ds. e2)

On the other hand, regarding the predictive mean and variance
for A\, we have

BN = [ (. )a(f)df. e3)
For the variance of A\, we use the expression Var[\7] =
E[(A\7)?] — E[\7]?; hence, we need to compute

BIO0?) = [ < Pal£)df.. 4
In this case, integrals in Egs. (21) to (24) have not closed
solution; hence, we approximate them using the Gaussian-
Hermite quadrature.

2) Regression: For real-valued outputs, e.g., Y C R, we
follow the multi-annotator model used in (11; 14; 35; 15),
where each output y, is considered to be a corrupted version
of the hidden ground truth y,,. Then:

p(Y]0) =

H H N (Ynlynsvr) 5

n=1reR,

(25)

where v/, € RT is the r-th annotator error-variance for the
instance n. In turn, to model this likelihood function with
CCGPMA, it is necessary to chain each likelihood’s paramater
to a latent function f;. Thus, we require J=R + 1 LFs;
one to model the hidden ground truth, such that y,, = fi(x,),
and R LFs to model each error-variance v], =exp(f, (,)),
with r€{1,... R}, and [, =7+ 1 € {2,... J}. Note that we
use an exponential function to map from f; to v, aiming

ns



396

397

398

399

400

401

402

403

404

406

407

408

409

410

411

412

413

415

416

47

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

437

438

439

JOURNAL OF IKTEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

to guarantee v;, > 0 (f;, € R). Similar to the classification
problem, the ELBO in regression settings is given by Eq. (19),
where p(yp 01,5, - - -+ 0.5.0) =N (Yp|yn, vp).

Now, given a new sample x., we are interested in the
mean and variances for predictive distributions concerning the
ground truth y,, and the labelers’ error-variances v.. First, for
Y.« we have that since y = f, the posterior distribution for y,
corresponds to g( f1.), yielding:

(26)
27)

Ely.] = p1
Varly.] = $1.4,

where (i1 ., and 51 , are respectively the mean and variance of
q(f1+). Then, for v, we note that due to v, = exp(fj, ), tH&
posterior distribution for v% follows a log-normal distributioff
with parameters fi;, . and s;, ., which respectively corresporid®
to the mean and variance of ¢(f;, .). In this sense, the meaff’

and variance of v} are given as: et
445

446

Sl
E[v]] = exp (uzr,*+ 5 ) : 28
Var[vl] = exp (2pu1, «+51,.,) (exp(si, »)—1). (9%
449

450

451

IV. EXPERIMENTAL SET-UP 452

In this section, we describe the experiments’ conﬁg:{uratior‘ltg3
to validate our CCGPMA concerning multiple annotators.

. . . 455
classification and regression tasks.
456

457

A. Classification 458
1) Datasets and simulated/provided annotations: We tes®
our approach using three types of datasets: fully synthetic dates
semi-synthetic data, and fully real datasets. 461
First, we generate fully synthetic data as one-dimensionad
(P =1) multi-class classification problem (K = 3). The inpu®
feature matrix X is built by randomly sampling N =106t
points from an uniform distribution within the interval [0, s
The true label for the n-th sample is generated by takimes
the argmax;{t,; : ¢€{1,2,3}}, where ¢, 1 =sin(2mz, 7
tn2=—sin(27x,), and t, 3= —sin(2m(x, + 0.25)) + 0.5
Besides, the test instances are obtained by extracting 206
equally spaced samples from the interval [0, 1]. 470
Second, to control the label generation, we build sens#:
synthetic data from seven datasets of the UCI repository?
focused on binary and multi class-classification: Wiscors
sin Breast Cancer Database—(breast), BUPA liver disorders=
(bupa), Johns Hopkins University lonosphere databases
(ionosphere), Pima Indians Diabetes Database—(pima), Ties
Tac-Toe Endgame database—(tic-tac-toe), Occupancy Detection
Data Set—(Occupancy), Skin Segmentation Data Set—(Skinys
Wine Data set—(Wine), and Image Segmentation Data Setw
(Segmentation). Also, we test the publicly available bearing datg,
collected by the Case Western Reserve University—(Westerny,
The aim is to build a system to diagnose an electric motor’s

Zhttp://archive.ics.uci.edu/ml

TABLE II
TESTED DATASETS.

Number of
classes

Number of
instances

Number of

Name
features

Sfully synthetic synthetic 1 100 3
Breast 9 683 2

Bupa 6 345 2

Tonosphere 34 351 2

semi-synthetic . Pima 8 768 2
- Tic-tac-toe 9 958 2
Occupancy 7 20560 2

Skin 4 245057 2

Western 7 3413 4

Wine 13 178 3

Segmentation 18 2310 7

fully real Voice 13 218 2

! Music 124 1000 10

status based on two accelerometers. The feature extraction was
performed as in (43).

Third, we evaluate our proposal on two fully real datasets,
where both the input features and the annotations are captured
from real-world problems. Namely, we use a bio-signal
database, where the goal is to build a system to evaluate
the presence/absence of voice pathologies. In particular, a
subset (/N =218) of the Massachusetts Eye and Ear Infirmary
Disordered Voice Database from the Kay Elemetrics company
is utilized, which comprises voice records from healthy and
different voice issues. Each signal is parametrized by the Mel-
frequency cepstral coefficients (MFCC) to obtain an input space
with P =13. A set of physicians assess the voice quality by
following the GRBAS protocol that comprises the evaluation
of five qualitative scales: Grade of dysphonia—(G), Roughness—
(R), Breathiness—(B), Asthenia—(A), and Strain—(S). For each
perceptual scale, the specialist assigns a tag ranging from
0 (healthy voice) to 3 (severe disease) (44). Accordingly, we
face five multi-class classification problems (one per scale). We
follow the procedure in (36) to rewrite five binary classification
tasks preserving the available ground truth (13). Further, we
use the music genre data®, holding a collection of songs
records labeled from one to ten depending on their music genre:
classical, country, disco, hip-hop, jazz, rock, blues, reggae, pop,
and metal. From this set, 700 samples were published randomly
in the AMT platform to obtain labels from multiples sources
(2946 annotations from 44 workers). Yet, we only consider the
annotators who labeled at least 20% of the instances; thus, we
use the information from R =7 labelers. The feature extraction
is performed by following the work by authors in (32), to
obtain an input space with P =124. Table Il summarizes the
tested datasets for the classification case.

Note that the fully synthetic and the semi-synthetic datasets do
not hold real annotations. Therefore, it is necessary to simulate
those labels as corrupted versions of the hidden ground truth.
Here, the simulations are performed by assuming: i) depen-
dencies among annotators, and ii) the labelers’ performance
is modeled as a function of the input features. In turn, an
SLFM-based approach (termed SLFM-C) is used to build the
labels, as follows:

— Define @ deterministic functions ji,: X — R, and their
combination parameters w;, 4 €R, Vr€ R,n € N.

3http://fprodrigues.com/publications/learning-from-multiple-annotators-
distinguishing-good-from-random-labelers/
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TABLE III
A BRIEF OVERVIEW OF THE STATE-OF-THE-ART METHODS TESTED.

TABLE IV
DATASETS FOR REGRESSION.

Algorithm Description
GPC-GOLD A GPC using the real labels (upper bound).
GPC-MV A GPC using the MV of the labels as the ground truth.

MA-LFC-C (11)
MA-DGRL (32)

A LRC with constant parameters across the input space.
A multi-labeler approach that considers as latent variables
the annotator performance.

MA-GPC (12) A multi-labeler GPC, which is as an extension of MA-LFC.

MA-GPCV (7) An extension of MA-GPC that includes variational inference
and priors over the labelers’ parameters.

MA-DL (18) A Crowd Layer for DL, where the annotators’ parameters
are constant across the input space.

KAAR (36) A kernel-based approach that employs a convex combination
of classifiers and codes labelers dependencies.

CGPMA-C A particular case of our CCGPMA for classification,

where Q = J, and we fix wj 4 =1, if j =g, otherwise w; 4 =0.

— Compute ﬁhn = Z(?Zl Wy, qftq(Zr), where &, € R is the
n-th component of & € R, being & the 1—D representa-
tion of the input features in X by using the well-known ¢-
distributed Stochastic Neighbor Embedding approach (45).

— Calculate X/, = ¢(fy, ), where <(-) €[0, 1] is the sigmoid
function.

Yn, it AL >0.5
Un, if AT <05
where ¥, is a flipped version of the actual label y,,.

2) Method comparison and performance metrics: The
classification performance is assessed as the Area Under the
Curve—(AUC). Further, the AUC is extended for multi—clas5§1
settings, as discussed by authors in (46). We use a cross-
validation scheme with 15 repetitions where 70% of the samples
are utilized for training and the remaining 30% for testmé
(except for the music dataset training and testing sets are clearl
defined). Table III displays the employed methods of the state—
of-the-art for comparison purposes. The abreviations are ﬁxe5(217
as: Gaussian Processes classifier (GPC), logistic regressi05121a
classifier (LRC), majority voting (MV), multiple annotators,
(MA), Modelling annotators expertise (MAE), Learning fr01t_)1310
crowds (LFC), Distinguishing good from random labelersg1
(DGRL), kernel alignment-based annotator relevance analysi5§2
(KAAR).

— Finally, find the 7-th label as y;, =

533

534

B. Regression 55
1) Datasets and simulated/provided annotations: We tesds
our approach using three types of datasets: fully synthetic datay
semi-synthetic data, and fully real datasets. First, We generates
fully synthetic data as an one-dimensional regression problemy
where the ground truth for the n-th sample corresponds ta
Yn = sin(2mx,)sin(6mx,), where the input matrix X is,
formed by randomly sampling 100 points within the rangg,
[0,1] from an uniform distribution. The test instances arg,
obtained by extracting equally spaced samples from the interva),
[0,1]. Second, to control the label generation (10), we builg,
semi-synthetic data from six datasets related to regression tasks,
from the well-known UCI repository. We selected the following,
datasets: Auto MPG Data Set—(Auto), Bike Sharing Dataset,
Data Set—(Bike), Concrete Compressive Strength Data Set—
(Concrete), The Boston Housing Dataset—(Housing), 4 Yacht

4See https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.htm] &
housing 552

Number of Number of
Name - .
features instances

Sfully synthetic synthetic 1 100
Auto 8 398

Bike 13 17389

semi-svnthetic Concrete 9 1030
Y Housing 13 506
Yacht 6 308

CT 384 53500

Sully real Music 124 1000

TABLE V

A BRIEF OVERVIEW OF STATE-OF-THE-ART METHODS TESTED FOR
REGRESSION TASKS. GPR: GAUSSIAN PROCESSES REGRESSION, LR:
LOGISTIC REGRESSION, AV: AVERAGE, MA: MULTIPLE ANNOTATORS, DL:
DEEP LEARNING, LFCR: LEARNING FROM CROWDS FOR REGRESSION.

Algorithm Description
GPR-GOLD A GPR using the real labels (upper bound).
GPR-Av A GPR using the average of the labels as the ground truth.

MA-LFCR (11) A LR model for MA where the labelers’ parameters

are supposed to be constant across the input space.

MA-GPR (12) A multi-labeler GPR, which is as an extension of MA-LFCR.

MA-DL (18) A Crowd Layer for DL, where the annotators’ parameters
are constant across the input space.

CGPMA-R A particular case of our CCGPMA for regression,

where Q = J, and wj 4 =1 if j =g, otherwise w; 4 =0.

Hydrodynamics Data Set—(Yacht), and Relative location of
CT slices on axial axis Data Set—(CT). Third, we evaluate
our proposal on one fully real dataset. In particular, we use
the Music dataset introduced in Section IV-Al. Notice that
the music dataset configures a 10-class classification problem;
however, in this experiment, we are using our CCGPMA with
a likelihood function designed for real-valued labels Eq. (25).
Such practice is not uncommon in machine learning, and it is
usually known as “Least-square classification” (39). Table IV
summarizes the tested datasets for the regression case.

As we pointed out previously, fully synthetic and semi-synthetic
datasets do not hold real annotations. Thus, it is necessary to
generate these labels synthetically as a version of the gold
standard corrupted by Gaussian noise, i.e., y;, = y, +€,,, where
el ~ N(0,v!), being v}, the r-th annotator error-variance for
the sample n. Note that we are interested in modeling such an
error-variance for the r-th annotator as a function of the input
features, which is correlated with the other labelers’ variances.
In turn, an SLFM-based approach (termed SLFM-R) is used
to build the labels, as follows:

o Define () functions fi, : X — R, and the combination
parameters w;, , € R, Vr, q.

o Compute flhn = Zqul wWy,..qftq(Zrn), where Z,, is the n-
th component of € R, which is an 1—D representation
of input features X by using the t-distributed Stochastic
Neighbor Embedding approach (45).

« Finally, determine o7, = exp(fi, ).

2) Method comparison and performance metrics: The
quality assessment is carried out by estimating the regression
performance as the coefficient of determination—(R?). A cross-
validation scheme is employed with 15 repetitions where 70%
of the samples are utilized for training and the remaining
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30% for testing (except for fully synthetic dataset, since it
clearly defines the training and testing sets). Table V displays
the employed methods of the state-of-the-art for comparison
purposes. From Table V, we highlight that for the model MA-
DL, the authors provided three different annotators’ codification:
MA-DL-B, where the bias for the annotators is measured; MA-
DL-S, where the labelers’ scale is computed; and me.':lsurecﬁig;9
MA-DL-B+S, which is a version with both (18). .

C. CCGPMA training

Overall, the Radial basis function—(RBF) kernel is preferred
in both classification and regression tasks because of if$'
universal approximating ability and mathematical tractability>
Hence, for all GP-based approaches, the kernel functions afé’

604
fixed as:
605

606

—||Xn — Ty 2 607

K(Tn, Tn/) = @1 €XP (”2¢%H2) ) (30),

609

where || - ||? stands for the L2 norm, n,n’ € {1,2,..., Neo

and ¢1, @2 €RT are the kernel hyper-parameters. For concrete;
testing, we fix ¢1 =1, while ¢ is estimated by optimizing the.
corresponding ELBO (as exposed in Eq. (19)). Moreover, fers
CGPMA, since each LF f;(-) is linked to u(-), we fix Q = Reh
K, and Q) = R+ 1 for classification and regression respectivelys
On the other hand, for CCGPMA, each f;(-) is built as a convexs
combination of y4(-) (see Eq. (10)); therefore, there is ngr
restriction concerning (). However, to make a fair comparisoss
with CGPMA, we also fix Q=R + K (classification), ange
Q=R+ 1 (regression) in CCGPMA. For the fully synthetis,
datasets, we use M =10 inducing points per latent functios;
and for the remaining experiments, we test with M =40, ang.
M =80. For all the experiments, we use the ADADELTés
included in the climin library with a mini-batch size of 104,
samples to perform SVI. However, for small datasets (/N s
500), we employ mini-batches with a size equal to the numbes
of samples in the training set. Finally, for all experiments related;
to our CCGPMA, the variational parameters’ initialization ise
carried out as follows: the variational mean is set M, w
0,Vq € {1,...,Q}, where 0 € RM is an all-zeros vector; thg
variational covariances V, = I,Vq € {1,...,Q} are fixed as
the identity matrix I € RM>**_ The CCGPMA’s Python codge:
is publicly available.’ 633
634

635

V. RESULTS AND DISCUSSION -

637

A. Classification
638

1) Fully synthetic data results.: We first perform a controlleg,
experiment to test the CCGPMA capability when dealing with,
binary and multi-class classification. We use the fully synthetig
dataset described in Section IV-A1. Besides, five labelers (R =
5) are simulated with different levels of expertise. To simulatg,
the error-variances, we define Q =3 ﬂq(-) functions, yielding;

645

Shttps://github.com/juliangilg/CCGPMA 646

fi1(z) = 4.5cos(2mz + 1.5m) — 3sin(4.37x + 0.37), (31)
fia(x) = 4.5 cos(1.5mz + 0.57) + 5sin(3wx + 1.57), (32)
fiz(x) =1, (33)

where € [0, 1]. Besides, the combination weights are gathered
within the following combination matrix W € RO*%:

) 04 07 —05 00 —0.7
W=104 —-1.0 —01 —08 1.0/, (34
31 —-18 —06 —-12 1.0

holding elements @y, 4. For visual inspection purposes, Fig. 1
shows the predictive label’s probability—(PLP), p(y. = k|x.),
and the AUC for all studied approaches regarding the fully
synthetic data. Notice that for methods MA-GPC, MA-GPCYV,
and KAAR, we use the one-vs-all scheme to face this experi-
ment (such methods were defined only for binary classification
settings). Accordingly, for those models, the PLP corresponds
to scores rather than probabilities. Besides, regarding the PLP of
our CGPMA and CCGPMA, we provide the mean and variance
for the predictive distribution (j, . = p(y. = k|, f, u), which
are computed based on Egs. (21) and (22). As seen in Fig. 1,
KAAR, MA-GPC, and MA-GPCV presents a different shape
than the ground truth; moreover, KAAR and MA-GPCV exhibit
the worst AUC, even worse than the intuitive lower bound
GPC-MV. We explain such conduct in the sense that these
approaches are designed to deal with binary labels (36; 12; 10).
To face such a problem, we use the one-vs-all scheme; still,
it can lead to ambiguously classified regions (47). We note
an akin predictive AUC concerning MA-DL methods and the
linear approaches MA-LFC-C and MA-DGRL. Nonetheless,
the linear techniques exhibit a PLP less similar to the Ground
truth, which is due to MA-LFC-C and MA-DGRL only can
deal with linearly separable data. Further, we analyze the results
of our CGPMA-C and its particular enhancement CCGPMA-C.
We remark that our methods’ predictive AUC is pretty close to
deep learning and linear models. Unlike them, our CGPMA-C
and CCGPMA-C show the most accurate PLP compared with
the absolute gold standard. CCGPMA-C behaves quite similarly
to GPC-GOLD, which is the theoretical upper bound. Finally,
from the GPC-MV, we do not identify notable differences with
the rest of the approaches (excluding KAAR and MA-GPCV).

From the above, we recognize that analyzing both the
predictive AUC and the PLP, our CCGPMA-C exhibits the
best performance obtaining similar results compared with the
intuitive upper bound (GPC-GOLD). Accordingly, CCGPMA-C
proffers a more suitable representation of the labelers’ behavior
than its competitors. Indeed, CCGPMA-C codes both the
annotators’ dependencies and the relationship between the
input features and the annotators’ performance. To empirically
support the above statement, Fig. 2 shows the estimated per-
annotator reliability, where we only take into account models
that include such types of parameters (MA-DGRL, CGPMA-
C, and CCGPMA-C). As seen, MA-DGRL (see column 2 in
Fig. 2) does not offer a proper representation of the annotators’
behavior. CGPMA-C and CCGPMA-C (columns 3 and 4 in
Fig. 2) outperforms MA-DGRL, which is a direct repercussion
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Ground Truth GPC-GOLD GPC-MV MA-LFC-C MA-DGRL
T T T T T T T T T T T T T
1 |- |- . ]
0.5 RS b b b .
0 | -
| | | | | | | | | | | | | | | |
0 02 04 06 08 1 MA-GPC MA-GPCV MA-DL-MW MA-DL-VW
T T T T T T T T T T T T
L A /
| | | | | | | | | | | |
MA-DL-VW+B KAAR CGPMA-C CCGPMA-C
T T T T T T T T T T T T

Fig. 1. Fully synthetic dataset results. The PLP is shown, comparing the prediction of our CCGPMA-C(AUC = 1) and CCGPMA-C(AUC = 0.9999)
against: the theoretical upper bound GPC-GOLD(AUC = 1.0), the lower bound GPC-MV(AUC = 0.9809), and the state-of-the-art approaches MA-
LFC-C(AUC = 0.9993), MA-DGRL(AUC = 0.9999), MA-GPC(AUC = 0.9977), MA-GPCV(AUC = 0.9515), MA-DL-MW(AUC = 0.9989),
MA-DL-VW(AUC = 0.9972), MA-DL-VW+B(AUC = 0.9994), KAAR(0.9099). Note that the shaded region in GPC-MV, CGPMA-C, and CCGPMA-C
indicates the area enclosed by the mean £ two standard deviations. There is no shaded region for approaches lacking prediction uncertainty.

TABLE VI
AUC(%) CLASSIFICATION RESULTS FOR THE SEMI SYNTHETIC DATASETS. BOLD: THE HIGHEST AUC EXCLUDING THE UPPER BOUND (GPC-GOLD).

Method Breast Bupa ITonosphere Pima TicTacToe Occupancy Skin Western Wine Segmentation Average
GPC-GOLD(M = 40) 99.07 £ 0.45 69.75 & 4.66 94.90 & 2.35 83.78 4 3.02 84.29 & 3.34 99.56 & 0.06 99.97 4 0.01 91.85 £ 0.61 99.87 £ 0.15 95.96 £ 1.96 91.90
GPC-GOLD(M = 80) 99.03 £ 0.46 69.97 4+ 4.83 95.13 +2.25 83.74 +2.97 84.91 4+ 3.23 99.56 & 0.06 99.97 4+ 0.01 92.50 £ 0.57 99.88 +0.16 97.81 £ 0.41 92.25

GPC-MV(M = 40) 98.97 £ 0.45 53.66 £ 5.16 75.66 £ 5.72 53.99 £ 7.60 66.20 & 3.57 75.85 £ 19.16 84.58 4 0.90 86.58 £ 3.31 81.79 £ 2.12 95.62 £ 2.28 77.29
GPC-MV(M = 80) 98.92 £ 0.48 56.98 £ 5.29 77.79 £ 5.50 53.02 £ 6.74 67.44 & 3.57 63.12 4 19.68 84.20 4+ 0.80 84.46 £+ 0.89 83.23 4+ 4.87 97.49 £ 0.47 76.66
MA-LFC-C 87.89 £5.10 45.93 & 14.44 73.58 £9.01 81.1943.13 60.04 & 2.61 89.42 4+ 0.79 94.40 £ 0.08 84.00 £2.11 96.92 £ 3.57 98.92 £ 0.31 81.23
MA-DGRL 97.57 £ 1.89 57.24 + 3.36 64.53 4 7.21 81.38 4 2.90 61.29 & 2.30 49.71 4+ 1.05 93.79 £ 1.07 81.43 £ 1.50 97.95 £ 2.21 98.97 £ 0.38 78.39
MA-GPC 98.11 £1.16 54.46 £5.78 66.31 4 14.74  53.25 £ 17.80 60.79 & 9.95 92.57 £+ 7.96 80.89 £ 0.60 86.71 £1.14 94.17 £ 2.62 97.34 £0.35 78.46
MA-GPCV 82.70 £ 5.47 55.67 £ 6.83 62.38 4 8.71 62.17 & 5.90 61.04 4 10.03 60.22 & 2.66 76.29 £ 3.74 84.51 £ 1.47 97.35 £ 1.72 99.24 £ 0.27 74.16
MA-DL-MW 94.70 £1.73 52.37 £ 5.68 75.35 £ 5.43 61.78 & 2.67 68.27 & 2.96 64.09 & 2.26 86.36 £ 0.57 90.92 £ 0.56 97.28 £ 1.09 99.50 £0.17 79.06
MA-DL-VW 95.26 £ 2.45 53.27 £6.18 69.87 4 4.97 60.63 & 3.36 67.71 & 2.67 68.40 4 3.45 86.56 & 0.68 91.73 £ 0.67 98.07 £ 1.52 99.72+0.11 79.12
MA-DL-VW+B 94.65 £ 2.42 52.81 £ 6.31 71.96 £ 4.53 61.23 £+ 3.78 67.80 & 3.42 67.82 & 3.86 86.68 £ 0.67 91.64 £ 0.85 98.17 £+ 1.55 99.72 + 0.09 79.25

KAAR 80.58 £2.74 59.20 £ 6.63 70.46 £ 7.39 58.02 £ 4.06 63.81 4 5.45 69.16 & 2.06 51.58 +4.74 85.88 £1.20 99.43 £+ 1.05 92.17 £ 1.90 73.03
CGPMA-C(M = 40) 99.20 £+ 0.38 57.13 + 4.68 83.56 & 10.02 82.01 + 3.14 70.56 £ 3.04 82.20 +2.73 92.62 +1.20 91.78 £+ 0.66 99.82 +0.18 96.79 £ 0.65 85.56
CGPMA-C(M = 80) 99.14 £ 0.38 56.96 £ 4.74 86.15 4 6.96 82.04 +3.18 70.48 £ 3.12 99.08 + 0.26 90.46 £ 1.64 91.85 £ 0.57 99.84 +£0.12 94.06 £ 0.61 87.01
CCGPMA-C(M = 40) 99.38 £ 0.27 60.22 £+ 5.06 87.84 +6.72 78.10 £ 6.22 74.95 £ 5.39 91.98 +2.00 85.70 & 2.66 93.09 £+ 0.51 99.44 + 0.33 97.67 £ 0.53 86.84
CCGPMA-C(M = 80) 99.33 £ 0.30 59.19 £ 5.65 90.55 + 6.29 80.45 4+ 5.10 73.12 £3.23 97.75 4+ 2.00 89.42 4 2.20 93.15 + 0.50 99.43 £+ 0.33 97.58 £0.43 88.00

of modeling the labelers’ parameters as functions of theo
input features. We observe that CCGPMA-C exhibits the bests
performance in terms of accuracy; such an outcome is due tee
this method improves the quality of the annotators’ model bys
considering correlations among their decisions (26; 36)). e

665

2) Semi-synthetic data results.: It is worth mentioning thag
the Semi-synthetic experiments are a common practice ig;
the learning from crowds area (10; 36; 7), where the inpyg,
features comes from real-world datasets whilst the labels,
from multiple annotators are simulated following the fully,
synthetic data set-up (see Eqgs. (31) to (34)). Table VI shows;
the results concerning this second experiment. On average, oy
CCGPMA-C accomplishes the best predictive AUC; moreover,

we note that CGPMA-C reaches the second-best performance.
Furthermore, the GPs-based competitors achieve competitive
results (GPC-MV, MA-GPC, MA-GPCYV, and KAAR). On the
other hand, the GPC-MV method obtains a significantly lower
performance than our CCGPMA-C, which is explained because
GPC-MV is the most naive approach since it considers that the
whole annotators exhibit the same performance. Conversely,
analyzing the results from MA-GPC, MA-GPCYV, and KAAR,
we note that they perform worse than GPC-MV. We explain
such an outcome in two ways. First, these approaches do
not model the relationship between the input features and the
annotators’ performance. Second, as exposed in a previous
experiment MA-GPC, MA-GPCV, and KAAR use a one-
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Fig. 2. Fully synthetic data reliability results. From top to bottom, the first column exposes the true reliabilities (A,-). The subsequent columns present the
estimation of the reliabilities performed by state-of-the-art models, where the correct values are provided in dashed lines. The shaded region in CGPMA-C and
CCGPMA-C indicates the area enclosed by the mean & two standard deviations. Also, the accuracy (Acc) is provided.

vs-all to deal with multi-class problems, which can lead tes
ambiguously classified regions (47). The latter can be confirmeds
in the results for the multi-class dataset “Western” (K = 45
where the predictive AUC for such approaches are the lowestz
Then, analyzing the results from the DL-based strategiess
we note a slightly better performance compared with thes
GPs-based methods (excluding CGPMA-C and CCGPM Aes
C). However, the DL-based performs considerably worse thas
our proposal because the CrowdLayer provides straightforward:
codification of the labelers’ performance to guarantee a low

computational cost (37). Finally, from the linear models, w&
694

first analyze the outstanding performance from MA-DGRL,
which defeats all its non-linear competitors. In particular, the
simulated labels (see Section IV-A1l) follows the MA-DGRL
model, favoring its performance. Though MA-LFC-C achieves
competitive performance compared to the DL-based methods,
it is considerably lower than our proposal. In fact, the MA-
LFC-C formulation assumes that the annotators’ behavior is
homogeneous across the input space, which does not correspond
to the labels simulation procedure.

3) Fully real data results.: We test the fully real datasets,
which configure the most challenging scenario. The input



695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

71

712

713

714

715

716

77

718

719

720

721

722

723

724

725

726

JOURNAL OF IKTEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

features and the labels from multiple experts come from reabrs
world applications. Table VII outlines the achieved AUC. Firsts
we observe that for the voice data, G and R scales exhibit a
similar AUC for all considered approaches; in fact, GPC-MV
obtains a result comparable with the upper bound GPC-GOLD.
The latter can be explained in the sense that the annotators
exhibit a suitable performance for these scales, i.e., the provided
labels are similar to the ground truth. On the other hand, 7as
reduction in the predictive AUC is observed for scale B, whicho
is a consequence of diminishing the labelers’ performance:
compared with scales G and R, as demonstrated in (13). Oug
approaches exhibit the best generalization performances fow
the three scales in the voice dataset. Remarkably, CGPM As+
C and CCGPMA-C do not suffer significant changes in thes
scale B, which is an outstanding outcome because it reflectss
that our method offers a better representation of the labelers?
behavior against low-quality annotations. Finally, we reviews
the AUC for the Music dataset. Achieved results show a lows
performance for the MA-GPC, even lower than their intuitiveo
lower bound (GPC-MV). Notably, our CCGPMA-C reachest
the best predictive AUC, being comparable with the intuitivez
upper bound. 743

744

TABLE VII 745
AUC CLASSIFICATION RESULTS FOR THE FULLY REAL DATASETS. BOLD7'46

THE HIGHEST PERFORMANCE EXCLUDING THE GPC-GOLD BOUND.
747

Method Voice Music Average 748
G R B

749

GPC-GOLD(M =40) ~ 0.9481  0.9481  0.9481  0.9358  0.9450 _
GPC-GOLD(M = 80)  0.9484  0.9484  0.9484  0.9178  0.9407

GPC-MV(M = 40) 0.8942  0.9373  0.8001  0.8871  0.8797 751
GPC-MV(M = 80) 0.9301  0.9377  0.7962  0.8897  0.8884

MA-LEC-C 0.9122  0.9130  0.8406  0.8599  0.8814 752

MA-DGRL 0.9127  0.9164  0.8259  0.8832  0.8845 .,
MA-GPC 0.8660  0.8597  0.4489  0.8253  0.7500

MA-GPCV 0.9283  0.9208  0.8835  0.8677  0.9001 754
MA-DL-MW 0.8957  0.8966  0.8123  0.8567  0.8653

MA-DL-VW 0.8942  0.8929  0.8092  0.9167  0.8782 '*®

MA-DL-VW+B 0.9030  0.8937  0.8218  0.8573  0.8689 754
KAAR 0.9109  0.9351  0.8969  0.8896  0.9081

CGPMA-C(M = 40)  0.9324  0.9406  0.8696  0.9025  0.9113 757

CGPMA-C(M =80) ~ 0.9324  0.9417  0.8708  0.8087  0.9109 __
CCGPMA-C(M = 40)  0.9318 0.9422 0.9002 0.9446 0.9297

CCGPMA-C(M = 80)  0.9243  0.9383  0.8907 0.9456  0.9247 759

760

761

B. Regression 762

1) Fully synthetic data results : We perform a controlle@
experiment aiming to verify the capability of our CGPMA*
and CCGPMA to estimate the performance of inconsisted®
annotators as a function of the input space and taking inf&
account their dependencies. For this first experiment, we use thé’
fully synthetic dataset described in Section IV-B1. We simulafé®
five labelers (R = 5) with different levels of expertise. T&
simulate the error-variances, we define () = 3 functions ﬂq(?ﬂ’

which are given as m
772

773

i1 (z) = 4.5 cos(2mx 4 1.5m) — 3sin(4.37x + 0.37) 4 -- -,
<o+ dcos(Tra + 2.4m7), (35%
fia(x) = 4.5 cos(1.5mx + 0.57) 4+ 5sin(37x + 1.57) — - - 778
— 4.5 cos(8mx + 0.257), (36Y

778

fis(x) =1, G

where z € [0, 1]. Besides, we define the following combination
matrix W € RC*E where

. -0.10 0.01 -0.06 0.01 -—=0.01
W=1010 -0.01 001 =005 0.056 ], (38
-23 =177 0.54 0.9 1.42

holding elements wy, .

Fig. 3 shows the predictive performance of all methods in
this first experiment. The results show two clear groups: those
based on GPs (GPR-Av, MA-GPR, CGPMA-R, and CCGPMA-
R), which expose the best performance in terms of the R>
score, and those based on other types of approaches (MA-
LFCR, and MA-DL), whose performance is not satisfactory.
The behavior of MA-LFCR is low since it only can deal with
linear problems. Besides, concerning MA-DL and its three
variations (S, B, and S+B), we note that this approach can
deal with non-linear dynamics. However, MA-DL reaches a
significantly low performance (even lower than the most naive
approach, GPR-Av). To explain such an outcome, we remark
that MA-DL comprises the introduction of an additional layer,
the “CrowdLayer”, which allows the training of neural networks
directly from the noisy labels of multiple annotators (18). Yet,
such a CrowdLayer provides a very simple codification of the
annotators’ performance to guarantee a low computational cost
(37); therefore, MA-DL does not provide a proper codification
of the annotators’ behavior. On the other hand, among the GP-
based methods, the proposed CCGPMA-R achieves the best
performance in terms of R2, followed closely by CGPMA-R
and MA-GPR.

Besides, concerning the high performance of our CCGPMA-
R (the best in terms of R? score), we hypothesize that such
an outcome is a consequence of our method offers a better
representation of the labelers’ behavior when compared with its
competitors. To empirically support the above hypothesis, Fig. 4
shows the estimated error-variances for this first experiment;
here, we only take into account the models that include these
parameters in their formulations. As seen in Fig. 4, MA-LFCR
and MA-GPR offer the worst representation for the annotator’s
performance, which is due to such methods do not take into
account the relationship between the annotators and the input
space. Conversely, CGPMA-R and CCGPMA-R outperform the
models named previously. This outcome is a consequence that
such two approaches compute the error-variance as a function
of the input features, allowing for a better codification of the
labelers’ behavior. Besides, by making a visual inspection and
analyzing the R? scores, CCGPMA-R performs better than
CGPMA-R because the former codes properly the annotators’
interdependencies (26). Finally, we remark that although our
CCGPMA-R achieves the best representation of the annotators’
performance, Annotator 4 exhibits a lower performance in
terms of R? score compared with the other labelers. Such
an outcome is caused by the quasi-periodic behavior in the
error-variances for those labelers, which cannot be captured
because we are using an RBF-based kernel.

2) Results over semi-synthetic data: Table VIII shows
the results of the semi synthetic datasets. On average, our
CCGPMA-R exhibits the best generalization performance in
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GPR-GOLD

MA-LFCR

MA-DL
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Fig. 3. Fully synthetic dataset results. We compare the prediction of our CCGPMA-R(R? = 0.9438), and CGPMA-R(R? = 0.9280) with the theoretical
upper bound GPR-GOLD(R? = 0.9843) and lower bound GPR-Av(R? = 0.8718), and state-of-the-art approaches, MA-LFCR(R? = —0.0245), MA-
GPR(R? = 0.9208), MA-DL-B(R? = 0.7020), MA-DL-S(R? = 0.6559), MA-DL-B+S(R? = 0.5997). Note that we provided the Gold Standard in dashed
lines. The shaded region in GPR-Av, MA-GPR, CGPMA-R, and CCGPMA-R indicates the area enclosed by the mean plus or minus two standard deviations.
We remark that there is no shaded region for MA-LFCR, and DLMA since they do not provide information about the prediction uncertainty.

terms of the R? score. On the other hand, regarding its GPs»
based competitors (GPR-Av, MA-GPR, and CGPMA-R), wes
first note that the performance of CGPMA-R exhibits a similas
(but lower) performance than CCGPMA-R. The above is s
consequence of that conversely to CGPMA-R, our CCGPM Ao
R models the annotators’ interdependencies. Secondly, the:
intuitive lower bound GPR-Av exhibits a significantly worses
prediction than our approaches. We remark on MA-GPRéss
behavior, which is lowest compared with its GPs-based conms
petitors, even far worse than the supposed lower bound GPRes
Av. The key to this abnormal outcome lies in the formulatiosnr
of this approach; MA-GPR models the annotators’ behavies
by assuming that their performance does not depend on thes
input features and considering that the labelers make theitw
decisions independently, which does fit the process that we:
use to simulate the labels. 812

Next, we analyze the results concerning the linear modef

MA-LFR; attained to the results, we note that this approach’s
prediction capacity is far lower than ours. The above outcome
suggests that there may exist a non-linear structure in most
databases. However, we highlight a particular result for the
dataset CT, where MA-LFCR exhibits the best performance
defeating all its competitors based on non-linear models. From
the above, we intuit that the CT dataset may have a linear
structure. To confirm this supposition, we perform an additional
experiment over CT by training a regression scheme based
on LR with the actual labels (we follow the same scheme
as for GPR-GOLD). We obtain an R? score equal to 0.8541
(on average), which is close to GPR-GOLD results. Thus, we
can elucidate that there exists a linear structure in the dataset
CT. Finally, we analyze the results for the DL-based models.
Similar to the experiments over fully synthetic datasets, we note
a considerable low prediction capacity; in fact, they are even
defeated by the linear model MA-LFR. Again, we attribute

TABLE VIII
REGRESSION RESULTS IN TERMS OF R? SCORE OVER semi synthetic datasets. BOLD: THE HIGHEST R? EXCLUDING THE UPPER BOUND GPR-GOLD.

Method Auto Bike Concrete Housing Yacht CT Average
GPR-GOLD(M = 40) 0.8604 £ 0.0271 0.5529 £ 0.0065 0.8037 4 0.0254 0.8235 £ 0.0419 0.8354 £ 0.0412 0.8569 £ 0.0055 0.7888
GPR-GOLD(M = 80) 0.8612 £ 0.0279 0.5603 £ 0.0063 0.8271 4+ 0.0230 0.8275 4 0.0399 0.8240 + 0.0339 0.8648 + 0.0047 0.7942

GPR-Av(M = 40) 0.8425 £ 0.0286 0.5280 £ 0.0100 0.7589 4 0.0279 0.7834 £ 0.0463 0.7588 £ 0.0498 0.8070 £ 0.0130 0.7464
GPR-Av(M = 80) 0.8406 £ 0.0304 0.5397 £ 0.0085 0.7765 + 0.0274 0.7903 £ 0.0451 0.7676 + 0.0535 0.8167 £+ 0.0089 0.7552
MA-LFCR 0.7973 £ 0.0218 0.3385 £ 0.0051 0.6064 £ 0.0384 0.7122 £ 0.0509 0.6403 £ 0.0186 0.8400 £ 0.0014 0.6558
MA-GPR 0.8456 £ 0.0281 0.4448 £ 0.0187 0.7769 £+ 0.0367 0.7685 £ 0.0632 0.7842 £+ 0.1027 0.0105 £ 0.0045 0.6051
MA-DL-B 0.7766 £ 0.0253 0.5854 + 0.0107 0.2319 £ 0.0328 0.5317 £ 0.1005 0.2089 £ 0.0783 0.6903 £ 0.2689 0.5041
MA-DL-S 0.7761 £ 0.0279 0.5828 £ 0.0149 0.2363 £+ 0.0252 0.5352 4 0.0948 0.1822 £ 0.0985 0.8418 + 0.2288 0.5257
MA-DL-B+S 0.7717 £ 0.0239 0.5816 £ 0.0181 0.2369 £ 0.0322 0.5330 £ 0.0850 0.1974 £ 0.0895 0.5517 £ 0.2316 0.4787
CGPMA-R(M = 40) 0.8476 £ 0.0229 0.5464 £ 0.0069 0.8169 £ 0.0231 0.7244 + 0.2973 0.8049 £ 0.0482 0.8236 + 0.0132 0.7606
CGPMA-R(M = 80) 0.8342 £ 0.0217 0.5560 £ 0.0074 0.8190 £ 0.0254 0.7259 £+ 0.3018 0.7928 £ 0.0884 0.8371 £+ 0.0104 0.7608
CCGPMA-R(M = 40) 0.8558 £ 0.0248 0.5284 £ 0.0117 0.7976 & 0.0270 0.8169 £ 0.0468 0.8409 £ 0.0548 0.8219 £ 0.0062 0.7769
CCGPMA-R(M = 80) 0.8534 £ 0.0243 0.5467 £ 0.0069 0.8220 £ 0.0259 0.8215 1+ 0.0466 0.8691 + 0.0473 0.8252 + 0.0083 0.7897
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Fig. 4. Estimated values of error-variance for the five annotators in the fully synthetic experiment. In the first column, from top to bottom, we expose the
error-variances used to simulate the labels from each annotator. Furthermore, the subsequent columns from top to bottom present the estimation of such
error-variances performed by state-of-the-art models that include these kinds of parameters in their formulation; moreover, the true error-variances are provided
in dashed lines. The shaded region in CGPMA-R and CCGPMA-R indicates the area enclosed by the mean plus or minus two standard deviations. We remark
that there is no shaded region for MA-LFCR, and MA-GPR since these approaches perform a fixed-point estimation for the annotators’ parameters. Finally, we
remark that the R? score between the true and estimated error variances are provided.

this behavior to the fact that the CrowdLayer (used to manages
the data from multiple annotators) does not offer a suitabke;
codification of the labelers’ behavior. Nevertheless, taking thes
above into account, we observe a remarkable result in the Bike
dataset. The DL-based approaches offer the best performance,
even defeating the supposed upper-bound GPR-GOLD. To
explain that, it is necessary to analyze the meaning of the
target variable in such a dataset. Regarding the description of
this dataset,® the target variables indicate the count of total
rental bikes, including both casual and registered in a day. The
above suggests that there may exist a quasi-periodic structuge
in the dataset, which the GPR-GOLD cannot capture since 4%

831

Ohttps://archive.ics.uci.edu/ml/datasets/bike+sharing+dataset 832

uses a non-periodic kernel (RBF). To support our suppositions,
an additional experiment was performed over this dataset by
training the model GPR-GOLD with the following kernel:

. T(Tp,n—T, ) 2
1 P [ sin (7’T 2.n >
K(@n, @) = pexp|—3 l - , (39)
p=1 p

where ¢ € R is the variance parameter, [, € (R™) is the length-
scale parameter for the p-th dimension, and 7, €(R™) is the
period for the p-th dimension. Therefore, we obtain an R2
score equal to 0.5952 (on average), which is greater than
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the obtained by the DL-based approaches, indicating a quasis
periodic structure in the Bike dataset as we had supposed. s7s
3) Fully real data results: Finally, we use the fully real
datasets, which present the most challenging scenario, wheze,
both the input samples and the labels come from real-worlds
applications. Table IX outlines the achieved performances. Wes
880

TABLE IX 881

REGRESSION RESULTS IN TERMS OF R? SCORE OVER fully real a’amset.882

BOLD: THE HIGHEST R2 EXCLUDING THE UPPER BOUND GPR-GOLD.
883

Method Music 884
GPR-GOLD(M = 40)  0.4704 885
GPR-GOLD(M = 80)  0.4889 886

GPR-Av(M = 40) 0.2572 .
GPR-AV(M = 80) 0.2744
MA-LFCR 0.1404 888
MA-GPR 0.0090 a9
MA-DL-B 0.2339
MA-DL-S 0.2934 890
MA-DL-B+S 0.3519 891
CGPMA-R(M = 40)  0.3345
CGPMA-R(M = 80) 0.3531 892
CCGPMA-R(M = 40)  0.3337 893
CCGPMA-R(M = 80) 0.3872

894

remark that our CCGPMA-R with M = 80 obtains the best
generalization performance in terms of the R? score. Furthéf
as theoretically expected, its performance lies between thags
of GPR-GOLD and GP-Av. Moreover, regarding the GPg-
based competitors (MA-GPR and CGPMA-R), we note thag
our CGPMA-R is just a bit lower than CCGPMA-R. On theg
other hand, MA-GPR exhibits the worst prediction capabilityo
with a R? close to zero. We suppose the above is a symptos
of overfitting, which can be confirmed because the training R
score for MA-GPR is 0.4731, comparable with GPR-GOLR;
Conversely, the linear approach MA-LFCR exhibits the secongbs
lowest performance and performs worse than the theoreticals
lower bound GP-Av, which indicates a non-linear structure ks
the Music dataset. Finally, analyzing the results from the deep,
learning approaches, we note that the variation MA-DL-B+&s
exhibits a similar performance compared with our CGPMA-R;
however, it is slightly lower than our CCGPMA-R. We highligl,
that despite deep learning capacities, our approach CCGPMA;
R offers a better representation of annotators’ behavior, unlilke
the deep learning techniques, which measure such performancé
using a single parameter. 2:
Also, we observe that all regression models presented a lowers
generalization performance than previous results (see Table V°
in the paper) over the same dataset. The above is a repercussicgﬁ;
of solving a multi-class classification problem with regressicme
models. Such an outcome is not uncommon, and it can B&
founded in works (18; 15). -
923

VI. CONCLUSION 924
925

This paper introduces a novel Gaussian Process-baseds
approach to deal with Multiple Annotators scenarios, termed’
Correlated Chain Gaussian Process for Multiple Annotatofﬁz
(CCGPMA). Our method is built as an extension of the chainedo
GP (27), introducing a semi-parametric latent factor modeP!
(SLFM) to exploit correlations between the GP latent functiorigi
that model the parameters of a given likelihood function. To thes

best of our knowledge, CCGPMA is the first attempt to build a
probabilistic framework that codes the annotators’ expertise as
a function of the input data and exploits the correlations among
the labelers’ answers. Besides, we highlight that our approach
can be used with different likelihood, which allows us to
deal with both categorical data (classification) and real-valued
(regression). We tested our approach for classification tasks
using different scenarios concerning the provided annotations:
synthetic, semi-synthetic, real-world experts. According to the
results, we remark that our CCGPMA can achieve robust
predictive properties for the studied datasets, outperforming
state-of-the-art methods.

As future work, CCGPMA can be extended by using
convolution processes (48) instead of the SLFM, aiming to
obtain a better representation of the correlations among the
labelers. Also, our approach can be extended for multi-task
learning in the context of multiple annotators (49). Finally, we
note that the performance of our approach heavily depend on
kernel selection (see Section V-B2); accordingly, it would be
interesting to automatically perform such kernel selection (50)
as an input block of our framework.
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