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Efficient Sparse Representation for Learning with
High-Dimensional Data

Jie Chen, Shengxiang Yang, Senior Member, IEEE, Zhu Wang, Hua Mao

Abstract—Due to the capability of effectively learning intrinsic
structures from high-dimensional data, techniques based on
sparse representation have begun to display an impressive impact
in several fields, such as image processing, computer vision and
pattern recognition. Learning sparse representations is often
computationally expensive due to the iterative computations
needed to solve convex optimization problems in which the
number of iterations is unknown before convergence. Moreover,
most sparse representation algorithms focus only on determining
the final sparse representation results and ignore the changes in
the sparsity ratio during iterative computations. In this paper,
two algorithms are proposed to learn sparse representations
based on locality-constrained linear representation learning with
probabilistic simplex constraints. Specifically, the first algorithm,
called approximated local linear representation (ALLR), obtains
a closed-form solution from individual locality-constrained sparse
representations. The second algorithm, called approximated local
linear representation with symmetric constraints (ALLRSC),
further obtains all symmetric sparse representation results with
a limited number of computations; notably, the sparsity and
convergence of sparse representations can be guaranteed based
on theoretical analysis. The steady decline in the sparsity ratio
during iterative computations is a critical factor in practical ap-
plications. Experimental results based on public datasets demon-
strate that the proposed algorithms perform better than several
state-of-the-art algorithms for learning with high-dimensional
data.

Index Terms—Sparse representation, linear representation,
low-dimensional structures, probabilistic simplex.

I. INTRODUCTION

H IGH-DIMENSIONAL data are ubiquitous in many real
problems involving machine learning. In practice, the

high dimensionality of data inevitably increases the memory
and computational time requirements of algorithms. In fact,
high-dimensional data are often characterized by intrinsically
low-dimensional structures [7], [14], [35]. Consequently, ex-
ploiting the low-dimensional structures in high-dimensional
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data has received considerable attention in recent years [5],
[8], [18], [33], [39], [52].

Sparse representation is an extremely effective method for
exploiting the intrinsic structure of high-dimensional data [21],
[25], [37], [43], [45]. The goal of sparse representation is
to find a compact representation of high-dimensional data
by selecting a small subset of a given dictionary to identify
low-dimensional structures in high-dimensional data. Inspired
by recent advances in l0-norm and l1-norm techniques, many
effective algorithms based on convex optimization or greedy
pursuit have been proposed for seeking such representations
[46], [48], [56]. For example, a typical representative of sparse
representation algorithms is LASSO [41], which uses an l1-
regularizer to penalize the coefficients of the linear combi-
nation of several elements from an overcomplete dictionary.
To improve the computational efficiency of sparse represen-
tation, a feature-sign search algorithm was presented to solve
the l1-regularized least squares problem [23]. This approach
significantly accelerates the sparse representation process. In
addition, Axiotis et al. presented an adaptively regularized
hard thresholding (ARHT) algorithm that provides a strong
tradeoff between the restricted isometry property condition
and solution sparsity [2]. The bound of the ARHT algorithm
is a strict constant for a general class of algorithms, e.g.,
LASSO. To address the issue of biased estimation for large
coefficients in l1-norm-based models, Boob et al. presented
a level-constrained proximal point method that translates a
nonconvex constrained problem into a sequence of convex
subproblems with a gradually relaxed constraint level; each
subproblem can be efficiently solved based on a fast routine for
projection considering the surrogate constraint [3]. However,
these methods require iterative computations and at least
dozens of iterations before convergence. Considering specific
data samples often leads to a high computational cost associ-
ated with finding the corresponding sparse representation by
utilizing the above l1-norm-based optimization techniques.

A variety of sparse representation techniques and their
variants have been proposed to find the intrinsic structures of
high-dimensional data [4], [40], [49]. For instance, an algo-
rithm based on sparse representation, called sparse subspace
clustering (SSC), takes advantage of the self-expressiveness
property of data, and each data point can be efficiently
represented as a sparse linear combination of other points from
the same subspace [14]. A low-rank sparse subspace clustering
algorithm that imposes low-rank and sparseness constraints on
the data representation matrix is presented to capture the global
and local structures of high-dimensional data [4], [6]. Conse-
quently, the computational cost is low when finding sparse



IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2

Fig. 1. Flowchart of an efficient sparse representation based on the approximated local linear representation models.

representations for all data samples. However, the majority
of sparse representation algorithms aim to determine the final
overall sparsity level of a sparse representation without con-
sidering individual sparsity. Therefore, each individual sparsity
level for each data point cannot be theoretically guaranteed in
determining the final overall sparsity of sparse representation
results. Moreover, these methods often overlook the changes
in the sparsity ratio during iterative computations, which is
a critical factor in practical applications such as compression
and image denoising [17], [31], [54].

Sparse representation coefficients can be adopted to char-
acterize relationships among data samples [20], [22], [27].
There are three important characteristics of sparse represen-
tation coefficients: adaptive neighborhoods, sparsity and high
discrimination power [47]. Specifically, sparse representation
coefficients can be employed to obtain the weights for the
pairwise relationship graph, which measures the similarity
among high-dimensional samples [19], [42]. To capture the
linear relationships among data samples, an adaptively sized
neighborhood for all the data samples is essential to guarantee
sparsity and effectively improve the discrimination power.
Locality preservation is of considerable importance for char-
acterizing the intrinsic structures of high-dimensional data
through sparse representation and dictionary learning methods
[32]. In particular, locality is more fundamental than sparsity
from the perspective of data representation, as locality leads
to sparsity [50]. A locality-constrained linear coding (LLC)
is adopted to pursue the linear relationships among data
samples instead of using the l1-norm [44]. LLC is an efficient
data representation algorithm with an analytical solution. A
discriminative dictionary learning algorithm is proposed for
image classification [28]; it employs the locality information
and label information to ensure that similar profiles based on
the corresponding components of the learned dictionary are
similar. An adaptive locality-constrained latent representation
method is proposed to recover multisubspace structures by
encoding the adaptive locality and obtaining robust and strict
block-diagonal representations [53]. These methods yield im-
pressive results in practical applications such as face recog-
nition and object recognition. However, the sparsity of data
representations cannot be theoretically guaranteed if only on
a locality constraint is considered. In addition, an efficient
projection algorithm has been proposed to perform online
learning in sparse feature spaces [12]. However, this algorithm
cannot effectively capture the low-dimensional structures in
high-dimensional data since its goal is to project a vector onto

an l1-ball.
In this paper, we propose two efficient sparse representation

algorithms for learning with high-dimensional data, and they
are based on local linear representation learning with a prob-
abilistic simplex constraint. The flow chart of the proposed
method is given in Fig. 1. The goal of the two algorithms ex-
tends beyond obtaining a compact high-fidelity representation
of data samples. We present an iterative computational scheme
for locality-constrained sparse linear representations. Based on
the critical steps in this scheme, we consider the characteristics
of locality-constrained linear representations and approximate
projections and propose two efficient sparse representation
algorithms for learning with high-dimensional data. First, we
propose the approximated local linear representation (ALLR)
method; the individual sparse representation results of this
method can be obtained as a closed-form solution. Therefore,
the ALLR approach can avoid iterative computations and
achieve a low computational cost. Then, we propose the ap-
proximated local linear representation with simplex constraints
(ALLRSC) method; with this approach, all symmetric sparse
representation results can be obtained in a limited number
of computations, i.e., a strictly positive integer determined
by users. The decline in the sparsity ratio during iterative
computations and the convergence of a sparse representation
are investigated in the experiments. As demonstrated by our
experiments, the proposed methods perform better than several
state-of-the-art algorithms for learning with high-dimensional
data.

The main contributions of the paper can be summarized as
follows:

1) The ALLR approach has a closed-form solution, and
the sparsity of a final overall sparse representation of
the ALLR approach can be theoretically guaranteed by
considering each individual sparsity level.

2) The changes in the sparsity ratio during iterative com-
putations indicate that the desired sparsity ratio for a
final sparse representation can be obtained based on
the parameter tmax. Additionally, tmax in the ALLRSC

method can limit the overall computational cost.
3) The convergence of a sparse representation obtained by

the ALLRSC method can be theoretically guaranteed.
4) Experimental results based on various real-world

datasets show that the proposed algorithms significantly
outperform competing algorithms in terms of perfor-
mance and efficiency.

The remainder of this paper is organized as follows. Related
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work on sparse representation techniques is briefly reviewed
in Section II. The proposed model is presented in Section III.
Section IV presents the proposed algorithms used to learn
sparse representations based on locality-constrained linear
representation learning with probabilistic simplex constraints.
The experimental results for a variety of real datasets are
presented in Section V. Finally, Section VI concludes the
paper.

II. RELATED WORK

In this section, we briefly review several sparse representa-
tion techniques that are closely related to our work.

A. Sparse Representation Methods

Let D = [d1, ...,dn] ∈ Rd×n be a matrix of d-dimensional
data vectors. Obtaining the sparse representation of a vector
x ∈ Rd involves finding a sparse vector z in dictionary D;
most components of z are zero. Specifically, z can be obtained
by solving the following l0-norm minimization optimization
problem:

z̃ = argmin
z
‖x−Dz‖22 + λ‖z‖0, (1)

where λ > 0 is a regularization parameter and ‖z‖0 is a count
of the number of nonzero entries in the vector z.

Problem (1) is usually relaxed to a sparsity-inducing l1-
norm minimization problem because it is a nonconvex and
NP-hard problem [11]; i.e.,

z̃ = argmin
z
‖x−Dz‖22 + λ‖z‖1, (2)

where ‖z‖1 =
n∑
i=1

|zi|. The above optimization problem can

be efficiently solved by convex optimization, such as through
sparse coding algorithms [23], [41].

Let Y ∈ Rm×n be a matrix with n vectors. SSC is a
classical sparse subspace learning method that considers the
original data matrix Y as a dictionary in a sparse repre-
sentation [14]. Specifically, the objective of SSC is to find
the sparse representation for matrix Y by considering the
following optimization problem:

min
Z,E,R

‖Z‖1 + δ‖E‖1 + η ‖R‖2F

s.t. Y = YZ+E+R, ZT1 = 1, diag(Z) = 0,
(3)

where δ and η are regularization parameters.
To improve the discrimination ability of a sparse representa-

tion, LRRSC integrates S0 pseudonorm regularization into the
sparse representation result [4]. The following minimization
problem is solved to obtain a sparse representation for the
matrix Y:

min
Z

1

2
‖Y −YZ‖2F + δ‖Z‖0 + η‖E‖S0

s.t. diag(Z) = 0,

(4)

where the proximity operator of ‖·‖S0
is a hard thresholding

function.
Problems (3) and (4) can be solved with a convex opti-

mization approach, e.g., the alternating direction method of
multipliers (ADMM). The critical step in SSC and LRRSC

Algorithm 1 Algorithm for projection onto the simplex
1: Input: A vector v ∈ Rn and a scalar α > 0
2: Sort v into µ: µ1 ≥ µ2 ≥ ... ≥ µn,

3: Find ρ = max

{
j : µj − 1

j

(
j∑
r=1

µr − α
)
> 0, j ∈ [n]

}
,

4: Let δ = 1
ρ

(
ρ∑
i=1

µi − α
)

,

5: Output: z where zi = max (vi − δ, 0) , i ∈ [n].

is to compute the sparse coefficient matrix Z by solving
the respective optimization problems. Consequently, SSC and
LRRSC explore the overall sparsity of a sparse representation
for matrix Y.

B. Euclidean Projection to the Positive Simplex

Let v = [v1,v2...,vn] ∈ Rn be an ordered vector; that
is, v1 ≥ v2 ≥ ... ≥ vn. The work of [12] proposed a
novel scheme to find the minimum of L(z) with an l1-norm
constraint on z; i.e.,

min
z
L(z) s.t. ‖z‖1 ≤ α, (5)

where α > 0 is a scalar. In particular, L(z) is defined as a
convex function; i.e.,

L(z) =
1

2
‖z− v‖22 . (6)

This scheme first includes a Euclidean projection to the
positive simplex to solve the following optimization problem:

min
z

1

2
‖z− v‖22 s.t.

n∑
i=1

zi = α, zi ≥ 0. (7)

The procedure for solving Problem (7) is given in Algorithm
1, and the temporal complexity of this process is O(n log(n)).
By obtaining the appropriate ρ, Algorithm 1 generally yields
sparse results. By modifying Problem (6), a general l1-norm
constraint can be considered in the following optimization
problem:

min
z

1

2
‖z− v‖22 s.t. ‖z‖1 ≤ α. (8)

Although finding the solution to Problem (8) requires it-
erative computations, the proposed approach provides faster
convergence than previous methods, with a temporal complex-
ity of O(n) The computational procedure for solving Problem
(8) is similar to Algorithm 1 but does not require an accurate
estimate of ρ, thus promoting the sparsity of the final results.

III. A LOCALITY-CONSTRAINED LINEAR
REPRESENTATION MODEL

A. Locality-Constrained Linear Representation

Let X = [x1,x2, ...,xn] ∈ Rd×n be a set of data sam-
ples. To evaluate the membership among data samples, we
use the self-representation property of data samples for a
sparse representation. We formulate locality-constrained linear
representation learning as a sparse representation problem in
which all data samples are considered a dictionary of sparse
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representation D. Specifically, a general optimization problem
for a sparse representation of a given data sample xi can be
defined as follows:

min
zi

L(zi) + λ‖zi‖1. (9)

Note that the values of the nonzero elements in a sparse
vector, zi ∈ Rn, can be adopted to evaluate the membership
between each pair of data samples, i.e., xi and the corre-
sponding data sample. To precisely measure the similarities
among data samples, we employ a probability distribution
to characterize each entry of zi. Specifically, a probabilistic
simplex constraint on zi is introduced into Problem (9); i.e.,
n∑
j=1

zij = 1, zij ≥ 0, where zij represents the probability of

transition from xi to xj .
Locality suggests that certain relationships only exist be-

tween a point and its neighbors. In practice, most elements
of zi are zeroes since there is no relationship between a
data point and data points far from it. Consequently, locality
leads to the sparsity of zi. Based on this relation, we present
a locality-constrained linear representation (LLR) model to
approximately characterize such locality. Specifically, we con-
sider locality-constrained linear coding L(z) to obtain a sparse
representation of high-dimensional data; i.e.,

L(z) = ‖xi −Xzi‖22 + λzTi Sizi, (10)

where Si ∈ Rn×n is a locality regularization term defined
as part of the Gaussian kernel to characterize an LLR. The
matrix Si is a locality adaptor that gives different degrees
of freedom for each basis vector, such as zi, in proportional
relation to the corresponding similarity to data point xi. All
elements of the matrix Si are set to zeros except the diagonal
elements. The diagonal elements of Si are defined as follows:
Si(j, j) = exp(

‖xi−xj‖2
δ ), where ‖·‖2 denotes the l2-norm

and δ denotes the standard deviation. For example, we set δ
as the average Euclidean distance for all pairs of data samples.

Through linear algebra, a new optimization problem for
sparse representations can be formally described as follows:

min
zi

‖xi −Xzi‖22 + λzTi Sizi

s.t.

d∑
j=1

zij = 1, zij ≥ 0.
(11)

In Problem (11), the l2-norm is adopted to characterize the
error term.

B. Optimization

We present an optimization procedure to solve Problem
(11) using an inexact augmented Lagrange multiplier (ALM)
framework [29]. By introducing an auxiliary variable ki,
Problem (11) can be converted into the following equivalent
problem:

min
zi,ki

‖xi −Xzi‖22 + λzTi Sizi

s.t.

n∑
j=1

kij = 1,kij ≥ 0, zi = ki.
(12)

Algorithm 2 Solving Problem (11) by an inexact ALM
framework

1: Input: X = [x1,x2, ...,xn] ∈ Rd×n, λ > 0
2: Initialize: µ = 10−3, µmax = 1, ρ = 1.1, ε = 10−4;
3: for i = 1 : n do
4: while not converged do
5: Update the variables zi and ki as in Equation (14);
6: Update the multiplier: yi = yi + µ (zi − ki);
7: Update the parameter: µ = min(ρµ, µmax);
8: Check the convergence condition:
9: ‖zi − ki‖∞ < ε;

10: end while
11: end for
12: Output: Z = [z1, z2, ..., zn]

The augmented Lagrangian function in Problem (12) is

min
zi,ki,yi,γi

‖xi −Xzi‖22 + λzTi Sizi + tr
(
yTi (zi − ki)

)
+
µi
2
‖zi − ki‖22 + θi

 n∑
j=1

kij − 1

− γi · ki, (13)

where yi ∈ Rn and γi ∈ Rn are two vectors of the Lagrange
multiplier and θi ∈ R and µi ∈ R are penalty parameters.

The above optimization problem can be effectively solved
with an inexact ALM framework. The variables zi and ki can
be alternately updated at each step, and the other variable is
fixed. The updating schemes for the (t+ 1)-th iteration are:

zt+1
i =

(
XTX+ λSi + µi ·E

)−1 (
XTxi + µiki − yi

)
,

kt+1
i = argmin

∥∥∥∥ki − (zi + yi
µi

)∥∥∥∥2
2

+ θi

 n∑
j=1

kij − 1

− γi · ki,
(14)

where E ∈ Rn×n is a matrix with elements equal to one. The
second equation in Problem (14) is solved by Algorithm 1.
The complete procedure for solving Problem (11) is given in
Algorithm 2.

IV. APPROXIMATED LOCAL LINEAR REPRESENTATION
MODELS

The goal of this work is to efficiently find sparse represen-
tations of high-dimensional data to evaluate the membership
among data samples. Most sparse representation algorithms
focus on the final overall sparsity of a sparse representation
without considering individual sparsity. The final results are
compact and high-fidelity representations but may not be
truly sparse. Consequently, we focus on the content of sparse
representations for high-dimensional data rather than compact
and high-fidelity representations based on undetermined linear
systems. The steps in obtaining a sparse representation include
determining individual sparse representations, which naturally
promote overall sparsity, and evaluating the changes in the
sparsity ratio during iterative computations. Based on an
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analysis of the advantages of locality-constrained linear rep-
resentation and approximate projection methods, we propose
two efficient sparse representation algorithms for learning with
high-dimensional data.

A. Approximated Local Linear Representation

A potential disadvantage of Algorithm 2 is that it re-
quires iterative computations for locality-constrained linear
representation learning, which may lead to a high computa-
tional cost in practice. However, it is clear that solving two
equations is a critical step during the iterative computations
of Algorithm 2. In the first equation, a locality-constrained
linear representation for high-dimensional data is obtained
as a closed-form solution. Then, with the second equation,
the final sparse representation results can be obtained by
projecting the locality-constrained linear representation to the
probabilistic simplex. Consequently, this approach yields two-
stage approximated locality-constrained linear representations
that can be used as sparse representations instead of those
obtained by solving Problem (11).

We first consider locality-constrained linear representation
learning for high-dimension data without a probabilistic sim-
plex constraint. The first optimization problem is defined as
follows:

min
zi

‖xi −Xzi‖22 + λzTi Sizi. (15)

The solution to Problem (15) can be analytically obtained by

z∗i =
(
XTX+ λSi

)−1 (
XTxi

)
. (16)

In theory, locality must lead to sparsity, but not necessarily
vice versa. Additionally, the results of locality-constrained
linear coding are not necessarily sparse in practice because
defining an appropriate Si in Problem (11) is difficult. Conse-
quently, we further focus on obtaining a sparse representation
from locality-constrained linear coding with a probabilistic
simplex constraint. The results of the locality-constrained
linear coding method should be normalized before obtaining
sparse results because of the probabilistic simplex constraint;
i.e., z

′

i =
z∗i

sum(z∗i )
.

The projection to the simplex algorithm involves Euclidean
projection onto an l1-ball [12]. There are two critical advan-
tages of the simplex model that are conducive to the LLR
model for characterizing locality. First, the simplex model
theoretically guarantees that locality leads to the sparsity of
individual linear representations in the LLR model. Second,
the computational complexity of the projection to the simplex
algorithm is O(n log(n)); thus, this approach can be consid-
ered an efficient simplex model with a high degree of sparsity.
It is beneficial to efficiently pursue sparsity for individual data
samples. Consequently, we introduce the probabilistic simplex
constraint in the LLR model.

The new representation should be as close to z
′

i as possible
when the sparsity constraint is satisfied. In particular, each
pair of representation vectors should be similar in terms of the
intrinsic geometry of the data distribution, and the difference

Algorithm 3 The ALLR Algorithm
1: Input: X = [x1,x2, ...,xn] ∈ Rd×n, λ > 0, τ > 0
2: Initialize: α = 1
3: for i = 1 : n do
4: Obtain solution (16) by solving Problem (15).
5: z∗i is normalized as follows: z

′

i =
z∗i

sum(z∗i )
.

6: Obtain the optimal solution wi by solving Problem (18)
using Algorithm 1.

7: end for
8: Output: W = [w1,w2, ...,wn].

in angular information should be small. Consequently, the
following optimization problem can be formed:

min
wi

∥∥∥wi − z
′

i

∥∥∥2
2
− 1

τ

〈
wi, z

′

i

〉
s.t.

n∑
j=1

wij = 1,wij ≥ 0,

(17)

where τ > 0 is a parameter and 〈·〉 represents the inner product
of two vectors.

Problem (17) is equivalent to the following problem

min
wi

∥∥∥∥wi −
(
1 +

1

τ

)
z
′

i

∥∥∥∥2
2

s.t.

n∑
j=1

wij = 1,wij ≥ 0. (18)

Problem (18) can be solved by Algorithm 1. Finally, the
complete procedure for the two-stage approximate sparse
representation is outlined in Algorithm 3.

For given data samples, we first employ a locality-
constrained linear representation to characterize locality for
each individual data sample in Problem (15). Then, we use
the probabilistic simplex constraint strategy to promote the
sparsity of individual linear representations. Specifically, indi-
vidual sparsity for each data sample is exploited in Problem
(18) by combining Euclidean projections in the simplex algo-
rithm with locality-constrained conditions. Consequently, the
overall sparsity of a linear representation of samples can be
guaranteed by obtaining individual sparse representations.

B. Approximated Local Linear Representation with a Symmet-
ric Constraint

After obtaining the sparse representation Z in Algorithm 3,
we usually perform a postprocessing step to define an affinity

matrix Z
′
; i.e., Z

′
=

(Z+ZT )
2 . However, each element Z

′

ij

cannot accurately characterize the relationship between xi and
xj in the coefficient matrix Z

′
.

To improve the symmetry of postprocessing, we consider
a new sparse representation with a symmetric constraint for
all data samples. Problem (17) can be reformulated as the
following optimization problem:

min
W
‖W − Z‖2F −

1

τ
〈W,Z〉

s.t.

n∑
j=1

wij = 1,wij ≥ 0,W = WT .
(19)
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Algorithm 4 The ALLRSC Algorithm
1: Input: X = [x1,x2, ...,xn] ∈ Rd×n, λ > 0, tmax ∈ [n]
2: Initialize: α = 1; t = 0; ε = 10−2

3: for i = 1 : n do
4: Obtain the optimal solution z∗i using Algorithm 3.
5: end for
6: W0 = Z

′
;

7: while t ≤ tmax do
8: t = t+ 1;
9: Zt = Wt−1;

10: for i = 1 : n do
11: Obtain the optimal solution wt

i by solving Problem
(18) using Algorithm 1.

12: end for
13: Wt =

(Wt+WT
t )

2 ;
14: end while
15: Output: Wt.

The above problem can be rewritten as

min
W

∥∥∥∥W −
(
1 +

1

τ

)
Z

∥∥∥∥2
F

s.t.

n∑
j=1

wij = 1,wij ≥ 0,W = WT .

(20)

Problem (20) can be decomposed into n independent problems
for each data sample xi in each iteration. Each problem can
be individually solved by Algorithm 1. The complete details
are shown in Algorithm 4.

To analyze the sparsity and convergence of the sparse
representation results in Algorithm 4, we further consider the
following problem:

min
wt

∥∥∥∥wt −
(
1 +

1

t

)
zt
∥∥∥∥2
2

s.t.

n∑
i=1

wt
i = 1,wt

i ≥ 0, (21)

where z0 is given in descending order, zt = wt−1 and
t ≥ 1. Theorems 1 and 2 detail the sparsity and convergence
conditions in Algorithm 4, respectively.

Theorem 1 Let wt and wt+1 be two optimal solutions to
Problem (21) at t and t+1, respectively, when t ≥ 1. The spar-

sity ratio (SR) of a vector w is defined as SR(wt) =
|wt|

0

len(wt) ,
where len(wt) is the number of elements in wt. The SR of
w will decrease as t increases, i.e., SR(wt+1) ≤ SR(wt).
Suppose ∀i ∈ [1, n], and the above inequality holds if

zti <
1

ρt (t+ 1)
,

where t > 1 and ρt is the number of strictly positive elements
in wt.

Proof According to Algorithm 1, we have

wt
i = max

{(
1 +

1

t

)
zti − δt, 0

}
and

δt =
1

ρt

(
ρt∑
i=1

(
1 +

1

t

)
zti − 1

)
.

Then,
n∑
i=1

zti =

n∑
i=1

wt−1
i = 1,

where t > 1.
Assume that the claim δt ≤ 0 holds. Thus,

n∑
i=1

wt
i =

n∑
i=1

max

{(
1 +

1

t

)
zti − δt, 0

}
> 1.

However, this does not hold, contradicting
n∑
i=1

wt
i = 1.

Hence, δt > 0.
Let ρt = |wt|0 and ρt+1 =

∣∣wt+1
∣∣
0
, and we have

wt+1
i = max

{(
1 +

1

t+ 1

)
wt
i − δt+1, 0

}
.

This implies ρt ≥ ρt+1 such that SR(wt+1) ≤ SR(wt).
Suppose the following inequality holds,(

1 +
1

t

)
zti − δt < 0,

which means that the number of strictly positive elements in
wt is less than that in zt. Since zt = wt−1, this implies
‖wt‖0 <

∥∥wt+1
∥∥
0
.

Furthermore, suppose ∀i ∈ [1, n] and t > 1, and we get(
1 +

1

t

)
zti − δt

=

(
1 +

1

t

)
zti −

1

ρt

(
ρt∑
i=1

(
1 +

1

t

)
zti − 1

)

=

(
1 +

1

t

)
zti −

1

ρt
· 1
t
< 0,

where ρt is the number of strictly positive elements in zt. This
means a condition satisfies zti <

1
ρt(t+1) such that the above

inequality holds.

Theorem 2 In Algorithm 4, the objective value of Problem
(21) will decrease until convergence as t increases if wt

i

satisfies the following condition, i.e., ∀i ∈ [1, n],

wt
i ≤

(t+ 1)
2

t (t+ 2)
zti,

where t > 1 and ρt is the number of strictly positive elements
in wt.

Proof Suppose wt and wt+1 are two optimal solutions of
Problem (21) at t and t+1 respectively when t ≥ 1. Let ρt and
ρ(t+1) be the number of strictly positive elements in wt and
wt+1, respectively. Sort zt into vt: v1 ≥ v2 ≥ ... ≥ vρt ≥ 0.
According to Theorem 1, we have ρt ≥ ρt+1.

We first consider that ρt = ρt+1. This means that the
sparsity ratio (SR) of vt remains unchanged. According to
Algorithm 1, we have

δt =
1

ρt

(
ρt∑
i=1

(
1 +

1

t

)
vti − 1

)
=

1

ρtt
,
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and

δ(t+1) =
1

ρ(t+1)

(
ρt+1∑
i=1

(
1 +

1

t+ 1

)
vt+1
i − 1

)
=

1

ρ(t+1)(t+ 1)
.

Hence, δt > δ(t+1).
Let rt =

∥∥Wt −
(
1 + 1

t

)
Vt

∥∥2
F

be the objective value of
Problem (21) at t, where Vt = [v1,v2, ...,vn]. Thus,

rt − rt+1

=

∥∥∥∥wt −
(
1 +

1

t

)
vt
∥∥∥∥2
2

−
∥∥∥∥wt+1 −

(
1 +

1

t+ 1

)
vt+1

∥∥∥∥2
2

= ρt (δt)
2 − ρ(t+1)

(
δ(t+1)

)2
> 0.

Hence, rt will decrease until convergence as t increases.
Then we consider ρt > ρt+1, which indicates that the SR

of vt decreases as t increases. According to Algorithm 1, we
have

rt =

∥∥∥∥wt −
(
1 +

1

t

)
vt
∥∥∥∥2
2

= ρt (δt)
2
+

ρ(t−1)∑
i=ρt

((
1 +

1

t

)
vti

)2

and

rt+1 =

∥∥∥∥wt+1 −
(
1 +

1

t+ 1

)
vt+1

∥∥∥∥2
2

=

ρ(t+1)

(
δ(t+1)

)2
+

ρt∑
i=ρ(t+1)

((
1 +

1

t+ 1

)
vt+1
i

)2
 .

Let ∀i ∈ [ρt+1, ρt], and there exists δ(t+1) > vt+1
i . Suppose

δt − δt+1 > 0, and we have

rt − rt+1 > ρt(δt)
2 −

ρ(t+1)

(
δ(t+1)

)2
+

ρt∑
i=ρ(t+1)

(
vt+1
i

)2
> ρt+1 (δt)

2 − ρ(t+1)

(
δ(t+1)

)2
> 0.

Clearly, rt will decrease until convergence as t increases if

δt − δt+1 > 0.

Thus,

δt − δt+1 =
1

ρt

(
ρt∑
i=1

(
1 +

1

t

)
vti − 1

)

− 1

ρ(t+1)

(
ρt+1∑
i=1

(
1 +

1

t+ 1

)
vt+1
i − 1

)

>
1

ρ(t+1)

(ρ(t+1)∑
i=1

(
1 +

1

t

)
vti − 1

)

− 1

ρ(t+1)

(ρ(t+1)∑
i=1

(
1 +

1

t+ 1

)
vt+1
i − 1

)

=
1

ρ(t+1)

(ρ(t+1)∑
i=1

(
1 +

1

t

)
vti −

(
1 +

1

t+ 1

)
wt
i

)
≥ 0.

This means a condition satisfies

wt
i ≤

(t+ 1)
2

t (t+ 2)
vti

such that the above inequality holds.

In addition, we also consider a special case: t→ +∞. Then,

we have lim
t→+∞

(
1 + 1

t

)
zti = zti, which implies

n∑
i=1

zti = 1 and

zti ≥ 0 . Thus, the optimal solution to Problem (21) wt can
be written as wt

i = zti. Hence, the objective value of Problem
(21) remains zero when t → +∞. This result verifies that
in theory, the objective value of Problem (21) decreases until
convergence when t→ +∞.

According to Theorem 1, the sparsity of a sparse representa-
tion steadily declines as t gradually increases in Problem (21)
if zti satisfies a certain condition. Hence, t becomes larger as
the objective value of Problem (21) decreases. Consequently,
wt is approximate to zt as t increases. Note that we focus on
sparse representations for high-dimensional data rather than
finding the sparest solution in Problem (18). Consequently,
we adopt t as a parameter in Problem (21) instead of τ in
Problem (18) to alleviate the rate of change in sparsity.

Compared with the solution procedure for Problem (21),

Algorithm 4 includes an additional step: Wt =
(Wt+WT

t )
2 . If

the initial coefficients in z are closely related to neighboring
samples for each sample x, the sparsity of a sparse representa-
tion will continue to decline. This result explicitly implies the
importance of z in the initial phase and further explains why
locality-constrained linear representation is one of the most
appropriate choices for initializing z, which is a critical step
in Algorithm 4.

C. Theoretical Analysis

1) Computational Complexity Analysis: Determining the
computational complexity of Algorithm 3 mainly consists
of two steps. Specifically, the first step is to find the so-
lution to Problem (15), which requires solving the sys-
tem of standard linear equations. It is easy to prove that(
XTX+ λSi

)−1
is a symmetric positive definite matrix.

Hence, the computational complexity of the first part is
O
(
dn2 + 1

3n
3
)

based on Cholesky factorization. Moreover,
this computational complexity reduces to O

(
dn2 + n2.38

)
when applying the Coppersmith–Winograd algorithm [10],
[1]. In addition, the computational complexity of the other
part, Algorithm 1, is O (n log (n)). The overall computational
complexity of Algorithm 3 is O

(
dn2 + n3.38 + n2 log (n)

)
,

and the overall computational complexity of Algorithm 4
is O

(
dn2 + n3.38 + tn2 log (n)

)
, where t is the number of

iterations. The number of samples n is usually large, whereas
the dimension d is relatively small in practice. Hence, we
usually have d � n. As a result, the overall computa-
tional complexities of Algorithms 3 and 4 are O

(
n3.38

)
and

O
(
n3.38 + tn2 log (n)

)
, respectively.

2) Comparison with Sparse Representation-Based Tech-
niques: Considering a data sample and a group of basic
vectors, a sparse representation can be obtained by solving
the l1-norm-based optimization problem or its variants using
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various l1-norm optimization techniques, e.g., the least angle
regression (LARS) algorithm [13]. The computational com-
plexity of LARS is O

(
td2n2

)
for an individual data sample,

where t is the number of data splits used in cross-validation.
For given data samples, this method is often associated with
a high overall computational cost because the solution of
the l1-norm-based optimization problem is found for each
individual data sample. To reduce the computational cost, a
number of sparse representation techniques for the respective
optimization problems, e.g., SSC and LRRSC, are presented to
obtain a sparse representation for the whole data set, X . SSC
and LRRSC employ different shrinkage-thresholding operators
to purse the final overall sparsity of X through iterative com-
putations. The computational complexities of SSC and LRRSC
are O

(
t
(
dn2 + n3

))
and O

(
dn2 + tn3

)
, respectively. As a

result, SSC and LRRSC effectively have lower computational
costs than the above methods, although they require iterative
computations that may have a negative impact on individual
sparse representations, i.e., real sparsity.

Algorithm 2 aims to find sparse representations for indi-
vidual data samples and is one of the most representative
sparse representation algorithms in terms of real sparsity.
Different from -norm-based sparse representation techniques,
the LLR model is presented in Algorithm 2. Unfortunately,
the computational complexity of Algorithm 2 is O

(
tn3.38

)
.

To avoid the high computational complexity of Algorithm 2,
the ALLR and ALLRSC methods are presented to learn sparse
representations based on the LLR model with probabilistic
simplex constraints. First, the ALLR method has a closed-
form solution, and the overall computational complexity is
O
(
n3.38

)
. In addition, we consider the computational com-

plexity of the ALLRSC approach: O
(
n3.38 + tn2 log (n)

)
.

Thus, the iterative computational cost of the ALLRSC method
is a secondary factor under the condition t � n, although
the ALLRSC approach involves iterative computations. The
two proposed methods effectively reduce the computational
cost compared with that of Algorithm 2. Moreover, the com-
putational complexities of the ALLR and ALLRSC methods
are comparable to those of SSC and LRRSC. Consequently,
the ALLR and ALLRSC methods display advantages over the
representative sparse representation methods discussed above.

V. EXPERIMENTAL STUDY

In this section, we evaluate the performance of the proposed
algorithms1 in two different types of experiments: clustering
and semisupervised classification. All algorithms are imple-
mented in MATLAB 2015b. The experiments are conducted
on a Windows platform with an Intel i7-9700k CPU and 32
GB RAM.

A. Experimental Setting

1) Datasets: We consider four publicly available datasets
in our experiments, which are summarized below.
• Extended Yale B Dataset [24]. This dataset contains

2414 facial images captured from 38 individuals. There

1https://codeocean.com/capsule/6062760/tree/v1

are approximately 59-64 images available for each indi-
vidual. All images are resized to 48× 42 pixels.

• USPS Dataset [16]. This dataset consists of 7,291 images
of ten handwritten digits (0-9), and the image size is 16×
16 pixels.

• COIL-20 Dataset [36]. This dataset includes 1,440
grayscale images of 20 objects. There are 72 images of
each object, and each image is manually cropped to a
size of 32× 32 pixels.

• ISOLET Dataset [15]. This dataset contains 1560 data
samples from 26 subjects, and each data sample includes
617 features. Each subject spoke the name of each letter
of the alphabet twice. The features are composed of
spectral coefficients, contour features, sonorant features,
presonorant features, and postsonorant features.

2) Compared Methods: Six related graph-based algorithms
were considered baselines: LRR [30], SSC [14], finding good
neighbors in the subspace clustering (FGNSC) [49], LRSSC
[4], stochastic sparse subspace clustering via orthogonal
matching pursuit with consensus (S3COMP-C) [9] and learn-
able subspace clustering (LeaSC) [26]. For LeaSC, we chose
the l1-F 2 version for comparison. In addition, a discriminative
dictionary learning algorithm called the locality constrained
and label embedding dictionary learning (LCLE-DL) algo-
rithm is employed for semisupervised classification[28]. The
source codes of the algorithms are provided by their authors.
A spectral clustering method, NCuts [38], was employed as a
final step in clustering. Moreover, a label propagation method
was selected as the last step in semisupervised classification
[55]. Hence, the results of the competing algorithms are used
to construct graphs for the above methods, except the LCLE-
DL algorithm.

3) Parameter Settings: Algorithm 1 is a critical process in
Algorithms 3 and 4. The probabilistic simplex constraint on zi
is adopted in Problem (9); i.e.,

n∑
j=1

zij = 1, zij ≥ 0. Hence, we

set α = 1 in Algorithm 1. The ALLR and ALLRSC methods
share the same parameter λ in Problem (15). The parameters λ,
τ and t were first selected from

{
1, 5, 10, 50, 100, 500, 1e3

}
,{

1e−3, 5e−3, 0.01, 0.05, 0.1, 0.5
}

and {5, 10, 50, 100, 300} in
the ALLR and ALLRSC methods. Then, we slightly adjusted
these parameters to obtain the best results for the ALLR and
ALLRSC methods in each experiment. For a fair comparison,
the best results for the competing algorithms were obtained
by manually adjusting their respective parameters.

4) Evaluation Metrics: We employed five standard metrics
to evaluate the clustering performance of different methods:
clustering accuracy (ACC) [34], normalized mutual informa-
tion (NMI) [34], the adjusted rand index (Adj-RI) [51], purity
[34], and the F-measure [34]. For the semisupervised classifi-
cation experiments, we used classification accuracy to evaluate
the performance of all the methods. A higher value of the
evaluation metric indicates better clustering or classification
performance. The best and second-best experimental results
are shown in bold and underlined, respectively.
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TABLE I
CLUSTERING RESULTS OF THE COMPETING METHODS (%) FOR THE SUBSETS OF THE EYB AND USPS DATASETS.

Datasets Metrics ALLR ALLRSC LRR SSC FGNSC LRSSC S3COMP-C LeaSC

EYB

ACC 99.38 98.59 79.38 86.88 96.88 97.66 97.19 83.75
NMI 98.6 96.94 84.01 82.27 93.61 95.17 94.11 80.65

Purity 99.38 98.59 83.13 86.88 96.97 96.88 97.19 83.75
F-measure 99.37 98.6 84.87 88.43 96.88 96.95 97.21 85.76

Adj-RI 98.61 96.87 66.69 68.91 93.1 94.82 93.72 63.72

USPS

ACC 90.2 92.5 76.1 75.6 65.6 77.6 75.4 77.9
NMI 85.74 87.14 77.02 78.58 61.96 77.75 77.41 78.69

Purity 90.3 92.5 85.2 85.4 76 86.3 84.7 86.3
F-measure 90.53 92.5 79.5 80.04 69.75 79.81 79.15 79.72

Adj-RI 87.44 97.7 69.03 68.36 52.79 70.8 69.17 70.49

TABLE II
COMPUTATIONAL COSTS OF THE COMPETING METHODS (IN SECONDS) FOR THE SUBSETS OF THE EYB AND USPS DATASETS.

Datasets ALLR ALLRSC LRR SSC FGNSC LRSSC S3COMP-C LeaSC
EYB 0.02 0.07 15.24 1.48 0.39 1.27 8.72 1.21
USPS 0.03 0.71 30.44 3.48 0.91 1.16 4.02 3.28

TABLE III
CLUSTERING RESULTS OF THE COMPETING METHODS (%) FOR THE FOUR DATASETS.

Datasets Metrics ALLR ALLRSC LRR SSC FGNSC LRSSC S3COMP-C LeaSC

EYB

ACC 98.3 94.33 87.37 86.08 89.4 91.88 89.56 87.41
NMI 97.74 95.68 89.51 88.53 94.15 93.37 89.05 89.83

Purity 98.3 94.41 87.45 86.41 89.52 91.88 89.56 87.57
F-measure 98.33 95.85 92.64 91.59 91.65 94.95 91.65 92.25

Adj-RI 96.44 92.02 69.76 67.9 83.86 84.97 70.56 71.85

USPS

ACC 93.17 93.47 76.09 77.92 83.48 86.01 88.07 79.45
NMI 87.92 89.27 76.84 78.57 78.35 78.64 88.94 84.4

Purity 93.17 93.47 82.94 84.57 83.31 86.01 89.67 87.19
F-measure 93.15 93.35 80.01 82 84.64 86.06 90.74 84.66

Adj-RI 88.58 89.31 69.12 70.19 72.06 75.38 86.63 77.16

COIL-20

ACC 88.26 94.03 75.42 82.22 81.18 79.38 83.13 77.85
NMI 92 97.84 88.83 90.61 88.67 88.38 90.88 91.28

Purity 88.33 94.31 82.29 84.58 83.33 82.43 83.26 83.96
F-measure 88.32 95.83 80.77 84.44 83.2 81.33 83.98 84.12

Adj-RI 83.74 93.28 71.93 75.04 77.05 74.56 76.84 76.82

ISOLET

ACC 72.24 75.06 68.4 64.36 61.35 67.95 69.68 66.41
NMI 80.34 80.83 78.33 77.71 66.38 79.05 79.74 78.85

Purity 74.04 76.54 70.06 66.73 63.58 71.28 71.54 68.53
F-measure 73.92 75.58 70.7 67 62.31 70.77 71.08 69.08

Adj-RI 63.1 64.66 60.51 57.37 60.78 62.01 61.95 60

B. Performance Evaluation

1) Clustering Experiments: We performed clustering exper-
iments based on four publicly available datasets. First, subsets
of the data samples were chosen from the Extended Yale B
(EYB) and USPS datasets. Specifically, the first 10 subjects,
which included 640 frontal face images of 10 individuals from
the EYB dataset, were considered in the first experiment. In
addition, the first 1,000 digit images from the USPS dataset
were used in the second experiment. In particular, there were
different numbers of images for each digit in the second
experiment, ranging from 47-213 images per digit. Hence, the
numbers of clusters are 10 and 10 and the numbers of images
are 640 and 1,000 for the two experiments, respectively. The
two ALRR parameters are (1) λ = 1 and τ = 0.2 and (2)
λ = 1200 and τ = 1e−3 for experiments 1 and 2, respectively.
In addition, the two ALLRSC parameters are (1) λ = 0.8 and

t = 3 and (2) λ = 25 and t = 3 and for experiments 1 and 2,
respectively. The clustering results are reported in Table I.

We observed that the ALLR and ALLRSC methods perform
better than the competing methods in terms of the five standard
metrics: ACC, NMI, purity, the F-measure and Adj-RI. Specif-
ically, the ALLR and ALLRSC methods achieve the best and
the second-best clustering results for the subset of the EYB
dataset, respectively. For example, in terms of ACC, NMI, pu-
rity, the F-measure and Adj-RI, the ALLR approach achieves
at least 1.72%, 3.43%, 2.19%, 2.16% and 3.79% improvements
over the other competing methods, except ALLRSC. Similarly,
the ALLRSC and ALLR methods yield the best and second-
best clustering results for the subset of the USPS dataset,
respectively. In addition, the computational cost is shown in
Table II. Notably, the ALLR and ALLRSC methods yield
the lowest and the second-lowest computational costs in the
experiments, respectively.
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TABLE IV
COMPUTATIONAL COSTS OF THE COMPETING METHODS (IN SECONDS) FOR THE FOUR DATASETS.

Datasets ALLR ALLRSC LRR SSC FGNSC LRSSC S3COMP-C LeaSC
EYB 0.15 0.41 25.3 31.26 58.54 49.52 50.1 10.48
USPS 5 87.87 143.72 533.91 1531.79 878.74 108.39 616.44

COIL-20 0.06 0.45 93.08 6.48 10.33 4.84 7.25 7.73
ISOLET 0.07 0.77 87.92 9.98 18.6 5.2 5.61 10.05

TABLE V
SEMISUPERVISED CLASSIFICATION PERFORMANCE (MEAN ACCURACY AND STANDARD DEVIATION) OF THE COMPETING METHODS FOR THE FOUR

DATASETS.

Datasets Ratio ALLR ALLRSC LRR SSC FGNSC LRSSC S3COMP-C LeaSC LCLE-DL

EYB

5% 97.25 (0.48) 97.33 (0.5) 96.56 (0.43) 75.1 (4.81) 69.96 (1.91) 91.77 (1.4) 81.52 (1.49) 92.46 (1.33) 94.83 (1.59)
10% 97.46 (0.85) 97.94 (0.19) 96.72 (0.81) 84.66 (1.82) 78.06 (1.19) 94.03 (0.78) 86.08 (1.04) 94.61 (0.6) 95.8 (1.14)
20% 98.5 (0.2) 98.28 (0.18) 97.58 (1.06) 88.97 (1.5) 84.23 (1.7) 95.3 (0.5) 89.75 (0.71) 95.84 (0.39) 96.5 (0.78)
50% 99.01 (0.29) 98.7 (0.25) 98.28 (1.27) 95.64 (0.75) 90.86 (0.96) 96.97 (0.68) 92.03 (0.64) 96.62 (0.32) 97.48 (0.44)

USPS

5% 95.21 (0.44) 93.14 (0.33) 92.22 (0.76) 83.24 (0.59) 41.33 (0.73) 87.29 (0.51) 91.38 (0.72) 78.23 (1.43) 85.94 (1.73)
10% 96.31 (0.17) 95.16 (0.36) 94.41 (0.37) 88.59 (0.72) 53.69 (5.69) 90.1 (0.35) 92.8 (0.39) 83.88 (1.02) 90.01 (1.13)
20% 97.15 (0.17) 96.16 (0.27) 95.47 (0.38) 92.56 (0.44) 68.21 (0.78) 91.95 (0.29) 93.94 (0.22) 87.34 (1.21) 94.43 (0.89)
50% 97.8 (0.13) 97.02 (0.22) 96.37 (0.17) 96.13 (0.44) 86.94 (0.73) 93.35 (0.32) 95.12 (0.24) 93.12 (1.02) 96.35 (0.63)

COIL-20

5% 90.15 (2.74) 89.4 (1.98) 89.23 (1.13) 87.97 (3.5) 48.44 (3.7) 86.17 (3.95) 87.62 (7.12) 78.38 (2.4) 78.53 (2.67)
10% 94.44 (1.5) 94.13 (0.9) 92.22 (1.52) 93.52 (1.98) 60.61 (4.62) 89.99 (3.21) 93.14 (2.67) 88.01 (2.57) 88.11 (1.93)
20% 97.03 (0.62) 96.24 (0.71) 94.71 (15.3) 96.18 (1.06) 73..47 (2.49) 95.72 (1.27) 95.6 (4.06) 93.14 (2.25) 95.86 (1.56)
50% 98.89 (0.31) 98.5 (0.55) 97.04 (0.74) 97.29 (1.54) 91.34 (2.71) 97.56 (0.95) 98.07 (0.94) 98.06 (0.8) 97.59 (1.29)

ISOLET

5% 82.46 (1.97) 84.51 (1.59) 79.84 (1.45) 81.28 (1.9) 30.51 (2.62) 76.65 (1.71) 78.23 (1.43) 81.48 (1.61) 77.12 (1.35)
10% 87.88 (0.86) 88.12 (1.82) 85.8 (1.32) 85.4 (1.59) 42.44 (2.88) 82.48 (1.15) 83.88 (1.02) 86.2 (1.34) 85.19 (1.3)
20% 91.48 (0.68) 91.16 (1.04) 90.18 (0.33) 90.07 (0.73) 56.49 (4.2) 86.88 (0.92) 87.34 (1.21) 90.93 (0.67) 90.58 (1.13)
50% 94.91 (1.26) 94.4 (0.79) 93.74 (0.9) 93.72 (0.79) 79.63 (4.23) 91.32 (0.73) 93.12 (1.02) 94.21 (0.83) 93.37 (0.89)

Then, we further evaluated the clustering performance of
the proposed methods as the number of data samples or
clusters increased. Hence, we considered all data samples
from each dataset employed in the experimental evaluation.
The parameters of the ALLR and ALLRSC methods are set
as (1) λ = 2, τ = 0.05; (2) λ = 200, τ = 1e−3; (3)
λ = 30, τ = 5e−3; (4) λ = 20, τ = 0.3; (5) λ = 2,
t = 25; (6)λ = 1400, t = 150; (7) λ = 50, t = 300;
and (8) λ = 70, t = 14 for the EYB, USPS, COIL-20 and
ISOLET datasets, respectively. Table III shows the clustering
results of the experiments. We can see that the ALLR approach
outperforms the other methods for the EYB dataset. For ex-
ample, in terms of ACC, NMI, purity, the F-measure and Adj-
RI, the ALLR approach achieves significant improvements of
at least 6.42%, 3.59%, 6.42%, 3.38% and 11.47% over the
competing methods, except ALLRSC. In addition, the ALLR
method achieves the second-best results for the other three
datasets based on the five metrics. The ALLRSC method
achieves the best clustering results for the USPS, COIL and
ISOLET datasets. Notably, the ALLRSC approach achieves at
least 5.4%, 10.9%, and 5.38% improvements in ACC when
compared with the state-of-the-art methods, except ALLR, for
the USPS, COIL and ISOLET datasets, respectively. More-
over, the ALLRSC method consistently outperforms the other
methods based on the other four metrics. In addition, LRRSC
and S3COMP-C yield satisfactory clustering results. Table IV
shows the computational costs of different methods for all
four datasets. The ALLR and ALLRSC methods exhibit higher
computational efficiency than the competing algorithms.

The number of clusters or samples dramatically increases

when we consider all data samples from the EYB and USPS
datasets in clustering experiments. The ALLR and ALLRSC

methods yield impressive experimental results compared to
those of the competing algorithms for the subsets of the two
datasets. As the number of clusters or samples increases,
the ALLRSC and ALLR methods consistently display distinct
advantages in clustering ability. This result validates the im-
portance of considering both the low-dimensional structure of
high-dimensional data and the sparsity of data representations.
Compared with the ALLR approach, the ALLRSC method
benefits from sparse representation learning during iterative
computations. In addition, the computational cost of the ALLR
method is much lower than that of the other algorithms in
the clustering experiments. Moreover, the ALLRSC method
achieves relatively low computational costs for sparse repre-
sentations. Consequently, the ALLR and ALLRSC methods
exhibit excellent efficiency in obtaining sparse representations.

2) Semisupervised Classification Experiments: We per-
formed semisupervised classification experiments with varying
percentages of samples to evaluate the performance of the
proposed methods. Specifically, 5%, 10%, 20% and 50% of
data samples in each class were randomly selected and labeled
in the experiments. We performed the experiments 10 times
for all methods based on each dataset. The parameters of the
ALLR and ALLRSC methods were set as (1) λ = 1, τ = 0.1;
(2) λ = 1, 000, τ = 0.01; (3) λ = 1, τ = 0.1; (4) λ = 2,
τ = 0.6; (5) λ = 2e6, t = 3; (6) λ = 700, t = 20; (7) λ = 15,
t = 2; and (8) λ = 50, t = 30 for the EYB, USPS, COIL-20
and ISOLET datasets, respectively.

The classification accuracies and deviations of all the meth-
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Fig. 2. ACC of the ALLR method (%) with variations in λ and τ for different datasets.
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Fig. 3. NMI of the ALLR method (%) with variations in λ and τ for different datasets.
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Fig. 4. ACC of the ALLRSC method (%) with variations in λ and t for different datasets.
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Fig. 5. NMI of the ALLRSC method (%) with variations in λ and t for different datasets.
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Fig. 6. Changes in the sparsity ratio in the ALLR method for the four datasets.
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Fig. 7. Changes in the sparsity ratio in the ALLRSC method for the four datasets.
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Fig. 8. Convergence results for the ALLRSC method based on the four datasets.

ods for the four different real-world datasets are given in Table
V. As expected, the classification accuracy steadily increases
as the percentage of selected data samples gradually increases.
We can see that the ALLR and ALLRSC methods significantly
outperform the other methods in Table V. For example, the
mean classification accuracy of the ALLR approach is at
least 0.69%, 2.99%, 0.92% and 0.98% better than that of
the competing methods, except ALLRSC, for 5% of data
samples from the EYB, USPS, COIL and ISOLET datasets,
respectively. We can observe the same advantages for the
ALLR method as the percentage of data samples increases
from 5% to 50%. In addition, the ALLRSC method obtained
higher mean classification accuracy than the other algorithms
for 5% and 10% of the EYB and ISOLET datasets. LRRSC
does not yield stable competitive results compared with LRR
and SSC. These classification results confirm that the affinity
matrix calculated from the symmetric sparse representation

effectively improves the classification accuracy.

C. Parameter Sensitivity Analysis

There are two parameters, λ and τ or t, in the ALLR and
ALLRSC methods. The parameter λ usually depends on the
prior data distribution. Parameter τ is chosen in the range
of
(
1e−3, 1

)
to effectively control the sparsity of the ALLR

result. The parameter t is a strictly positive integer, and the
number of iterations can be controlled in the experiments.
In this experiment, we investigate the sensitivities of the
two parameters in the ALLR and ALLRSC methods and the
corresponding effects on model performance.

The effects of different combinations of the parameters are
reported in terms of ACC and NMI in Figs. 2 to 5. Figs. 2
and 3 show the effects of the parameters λ and τ in the
ALLR method with respect to ACC and NMI, respectively.
The ALLR approach performs well for a wide range of values
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of λ with a fixed range of τ according to Figs. 2 and 3.
In addition, from Figs. 4 and 5, we can observe that the
ALLRSC method usually performs stably with different values
of t and a relatively large λ. This finding illustrates that t can
be slightly controlled without much effort for parameter tuning
in practical applications. Consequently, the computational cost
of the ALLRSC method can be reduced in a given period of
time. These experimental results demonstrate that the ALLR
and ALLRSC methods achieve stable performance for the four
datasets and that λ should be carefully chosen with a fixed
range of τ or t.

According to the analysis of parameter sensitivity, the
performance of ALLR and ALLRSC has a high correlation
with the value of the sparsity ratio. The performance of ALLR
and ALLRSC will degrade dramatically when the estimation
of the sparsity ratio is too high or too low. From Figs. 6 and
7, we suggest that the sparsity ratio varies from 0.05 to 0.2.
Moreover, we usually set τ = 0.1 and t = 50 for ALLR
and ALLRSC, respectively. Once the sparsity ratio and τ or
t have been assigned, it becomes easy to determine the other
parameter λ for ALLR and ALLRSC. Empirically speaking,
the estimation of the sparsity ratio is an effective way to
determine the combinations of λ and τ or t for ALLR and
ALLRSC in practical applications.

D. Sparsity and Convergence

Sparsity is a critical issue for sparse representations of high-
dimensional data. Here, we investigate the sparsity of the
results produced by the ALLR and ALLRSC methods. Figs. 6
and 7 show the effects of the parameters on the sparsity ratios
of the ALLR and ALLRSC methods for the four datasets.
We first observe that the sparsity ratio usually remains low
when τ is relatively small and λ widely varies in the ALLR
approach, as shown in Fig. 6. This finding suggests that τ is
a key parameter for controlling the sparsity ratio. Notably, the
sparsity of the results of the ALLR method is demonstrated
under wide ranges of λ and τ in the experiments. In addition,
the sparsity ratio remains low when t is relatively large in
the ALLRSC approach, as shown in Fig. 7. Moreover, we
can see that the sparsity ratio slowly declines as t gradually
increases with a fixed λ. This finding confirms that the changes
in the sparsity ratio in the experiments are consistent with
the theoretical results for the ALLRSC approach. Combined
with Figs. 2 - 5, a relatively low value of the sparsity ratio
often leads to high performance for the ALLR and ALLRSC

methods, and vice versa. In practice, choosing the optimal
parameters is difficult without prior knowledge of the data
distribution, and the results demonstrate the importance of
sparse representations for learning with high-dimensional data.

We further examine the convergence of the ALLRSC method
in the experiments. The F -norm was adopted to compute
the iterative error between Wt and W(t−1); i.e., e =∥∥Wt+1 −Wt

∥∥2
F

. We have already verified the convergence
property of the ALLRSC approach. In addition, Fig. 8 shows
the plots of the iterative errors versus the iteration number t
for the four datasets. We find that the ALLRSC method usually
gradually converges as t increases for all datasets. These

results indicate that the ALLRSC method can converge quickly
for different values of the parameter λ. Additionally, the
convergence condition of the ALLRSC approach can generally
be satisfied when learning sparse representations for the four
datasets.

E. Discussion

We discuss several critical differences among the proposed
methods and the sparse representation-based methods in terms
of the experimental results. First, the ALLR method provides
a closed-form solution, and the parameter t in ALLRSC can
limit the overall computational cost. However, the number
of iterations in the other sparse representation methods is
unknown before convergence. Iterative computations without a
reasonable run time constraint may lead to a high computation
cost. Hence, the ALLR and ALLRSC methods are efficient
for obtaining sparse representations. The experimental results
demonstrate the computational efficiency of the ALLR and
ALLRSC methods.

Second, a number of sparse representation techniques focus
on overall sparsity after iterative computations, and the sparsity
of each data sample cannot be theoretically guaranteed in
pursuing the final overall sparsity of a sparse representation.
In contrast, learning based on individual sparse representations
promotes overall sparsity. Hence, the final results of the ALLR
and ALLRSC methods provide actual sparse representations.
The experimental results verify that maximizing individual
sparsity for each data sample is an effective way to achieve
sparse representations.

Finally, sparsity plays an important role in sparse repre-
sentations. The sparsity ratio is an effective way to measure
sparsity. However, sparse representation-based methods do not
consider representation matrix data when calculating sparsity,
and changes in the sparsity ratio during iterative computations
are ignored. We investigated the sparsity ratio of ALLRSC in
theory and based on experiments. The decline in the sparsity
ratio in ALLRSC can be theoretically guaranteed under certain
conditions. The experimental results illustrate steady changes
in the sparsity ratio for different combinations of ALLRSC

parameters. By comparing the clustering results in Figs. 2 -
5 and the sparsity ratio results in Figs. 6 and 7, a relatively
low sparsity ratio often leads to satisfactory clustering results.
Hence, the experimental results demonstrate that theoretical
analyses of the sparsity ratio are important.

VI. CONCLUSIONS

In this paper, we proposed two efficient sparse represen-
tation algorithms for learning with high-dimensional data;
the algorithms are based on locality-constrained linear rep-
resentation learning with a probabilistic simplex constraint
and fully use a locality-constrained linear representation to
adaptively choose appropriate neighbors in learning sparse
representations. For the ALLR approach, we showed that the
optimization problem has a closed-form solution, thus dra-
matically reducing the computational cost of learning sparse
representations. For the ALLRSC method, a sparse solution
can be obtained with a limited number of computations. The
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sparse representation results of the ALLRSC approach can be
obtained at a relatively low computational cost. In addition,
we provided rigorous proofs of the sparsity and convergence
of the ALLRSC method, and the critical characteristics of
this approach can be effectively guaranteed under specific
conditions. Moreover, the effects of the two key parameters
in the two algorithms on the sparsity ratio results were
investigated for different combinations of the parameters in the
experiments. Consequently, the ALLR and ALLRSC methods
have three advantages over other methods in obtaining sparse
representations: they efficiently yield sparse representations,
they provide real sparse representation, and they consider
steady changes in the sparsity ratio. The experimental results
for four publicly available datasets indicate that the ALLR
and ALLRSC methods are competitive sparse representation
methods for learning with high-dimensional data.

The approximated local linear representation models effec-
tively capture the local structures in high-dimensional data.
However, there may be inadequate high-quality neighbors for
some data samples in a local linear representation if the
corresponding high-dimensional data are corrupted. Therefore,
the global structure of high-dimensional data should be further
explored to alleviate these problems. In future work, we will
further investigate these problems by capturing the inherent
structures of high-dimensional data, i.e., the local and global
structures of data.
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