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Abstract—In the unsupervised open set domain adaptation
(UOSDA), the target domain contains unknown classes that are
not observed in the source domain. Researchers in this area aim
to train a classifier to accurately: 1) recognize unknown target
data (data with unknown classes) and, 2) classify other target
data. To achieve this aim, previous study has proven an upper
bound of the target-domain risk, and the open set difference, as
an important term in the upper bound, is used to measure the
risk on unknown target data. By minimizing the upper bound, a
shallow classifier can be trained to achieve the aim. However, if
the classifier is very flexible (e.g., deep neural networks (DNNs)),
the open set difference will converge to a negative value when
minimizing the upper bound, which causes an issue where most
target data are recognized as unknown data. To address this
issue, we propose a new upper bound of target-domain risk for
UOSDA, which includes four terms: source-domain risk, ε-open
set difference (∆ε), distributional discrepancy between domains,
and a constant. Compared to the open set difference, ∆ε is more
robust against the issue when it is being minimized, and thus
we are able to use very flexible classifiers (i.e., DNNs). Then,
we propose a new principle-guided deep UOSDA method that
trains DNNs via minimizing the new upper bound. Specifically,
source-domain risk and ∆ε are minimized by gradient descent,
and the distributional discrepancy is minimized via a novel open-
set conditional adversarial training strategy. Finally, compared
to existing shallow and deep UOSDA methods, our method
shows the state-of-the-art performance on several benchmark
datasets, including digit recognition (MNIST, SVHN, USPS),
object recognition (Office-31, Office-Home), and face recognition
(PIE).

Index Terms—Transfer Learning, Machine Learning, Domain
Adaptation, Open Set Recognition.

I. INTRODUCTION

Domain Adaptation (DA) methods aim to train a target-
domain classifier with data in source and target domains
[1]. Based on the variety of data in the target domain (i.e.,
fully-labeled, partially-labeled, and unlabeled), DA consists
of three categories: supervised DA [2]–[4], semi-supervised
DA [5]–[7], and unsupervised DA (UDA) [8], [9]. In practice,
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Fig. 1. Unsupervised open set domain adaptation (UOSDA). When the target
domain does not contain unknown classes, UOSDA will degenerate into the
unsupervised closed set domain adaptation (UCSDA).

UDA methods have been deployed to solve diverse real-world
problems, such as object recognition [10], [11], cross-domain
recommendation [12], and sentiment analysis [13].

There are two common settings in UDA: unsupervised
closed set domain adaptation (UCSDA) and unsupervised
open set domain adaptation (UOSDA). UCSDA is a classical
scenario in which source and target domains share the same
label sets. By contrast, in UOSDA, the target domain contains
some unknown classes that are not observed in the source
domain, and the data with unknown classes are called unknown
target data. In Fig. 1, the source domain contains four known
classes (i.e., monitor, mug, staple, and calculator), but the
target domain contains some unknown classes in addition to
the classes in the source domain.

UOSDA is more general than UCSDA, since the label sets
are usually not consistent between source and target domains
in a real-world scenario. Namely, the target domain may
contain classes that are not observed in the source domain.
For example, a classifier trained with images of various kinds
of cats is likely to encounter the image of a dog or another
animal in reality. In this case, the UCSDA methods are unable
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to distinguish the unseen animals (i.e., unknown classes).
UOSDA methods, however, can establish a boundary between
known classes and unknown classes.

Panareda et al. [14] are the first to propose the setting
of UOSDA, but the source domain also contains some un-
known classes in Panareda’s paper. Since it is expensive and
prohibitive to obtain data labeled by unknown classes in the
source domain, Saito et al. [15] propose a new UOSDA setting
where the source domain only contains known classes. In this
paper, we focus on the same setting as Saito’s paper, which is
more realistic [15], [16].

In UOSDA, we aim to train a target-domain classifier
with labeled data in the source domain and unlabeled data
in the target domain. The trained classifier is expected to
accurately 1) recognize unknown target data, and 2) classify
other target data. Existing UOSDA methods can be divided
into two groups: shallow methods and deep methods. For
shallow methods, a recent work [16] proved an upper bound
of target-domain risk, which can provide a theoretical guar-
antee for the design of a shallow UOSDA method. For deep
methods, since [17]–[19] have shown that DNNs can learn
more transferable features, researchers presented DNNs-based
methods to address the UOSDA problem [15], [20], [21].
Nevertheless, these deep UOSDA methods lack theoretical
guarantees. Thus, how to bridge theoretical bound and deep
algorithms is both necessary and important for addressing the
UOSDA problem.

In order to train an effective target-domain classifier, Zhen et
al. [16] have proven an upper bound of target-domain risk (Eq.
(14)) for the UOSDA problem and propose a shallow UOSDA
method. Specifically, the bound consists of four terms: source-
domain risk, distributional discrepancy between domains, open
set difference (∆), and a constant. Open set difference, as
an important term in upper bound, is leveraged to measure
the risk of a classifier on unknown target data. The shallow
method in [16] trains a target-domain classifier by minimizing
the empirical estimation of the upper bound.

However, the theoretical bound presented in [16] is not
adaptable to flexible classifiers (i.e., deep neural networks
(DNNs)). In Fig. 2, we show that if the classifier is a DNN,
the accuracy (OS in Fig. 2 (b)) in the target domain will drop
significantly (yellow line in Fig. 2 (b)) when minimizing the
empirical estimates of the upper bound. This phenomenon con-
firms that we cannot simply combine the existing theoretical
bound and deep algorithms to address the UOSDA problem.

To reveal the nature of this phenomenon, we investigate
that the lower bound of the distributional discrepancy is the
negative value of open set difference. Since DNNs are very
flexible and the empirical open set difference can be a negative
value, empirical open set difference will be quickly minimized
to a very negative value (yellow line in Fig. 2 (a)). Based on the
lower bound of the distributional discrepancy, if the empirical
open set difference is a very small negative number, the
distributional discrepancy is greater than a very large positive
number. Consequently, we fail to align the distributions of the
two domains, resulting in a very low accuracy on the target
domain (yellow line in Fig. 2 (b)).

In this paper, we propose a new upper bound of target-
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Fig. 2. The accuracy of OS and loss w.r.t. the task Ar → Cl. “c” denotes
the conditional adversarial training strategy. ∆ε is the ε-open set difference
proposed in this paper and ∆ is the open set difference proposed in [16]. The
loss in (a) is the value of ∆ or ∆ε. It is worth noting that the green line and
the red line in (a) are partially coincident. Here, ε is set as 0.

domain risk for UOSDA (Eq. (20)), which includes four terms:
source-domain risk, ε-open set difference (∆ε), conditional
distributional discrepancy between domains, and a constant.
ε is the lower bound of open set difference and we construct
a new risk estimator ∆ε that limits the descent of the open
set difference by ε. ∆ε can ensure the promptly prevention
of the lower bound of the distributional discrepancy between
two domains from significantly increasing. Fig. 2 shows that
minimizing the empirical estimates of the new upper bound
achieves higher accuracy (green line in Fig. 2(b)).

Then, we propose a new principle-guided deep UOSDA
method that trains DNNs via minimizing empirical estimates
of the new upper bound. The network structure is shown in
Fig. 3. We employ a generator (G) to extract the feature of
input data, a classifier (C) to classify input data, and a domain
discriminator (D) to assist distribution alignment. The overall
object function consists of source classification loss, binary
adversarial loss, domain adversarial loss, and empirical ∆ε.
Specifically, the source classification loss and empirical ∆ε are
minimized by gradient descent, and a gradient reverse layer is
adopted for adversarial losses.

To effectively align distributions between data with known
classes, we propose a novel open-set conditional adversarial
training strategy based on the tensor product between the
feature representation and the label prediction to capture
the multimodal structure of distribution. According to [22],
[23], it is significant to capture the multimodal structures of
distributions using cross-covariance dependency between the
features and classes. However, existing deep UOSDA methods
align distributions by either the binary adversarial net [15],
[20] or the multi-binary classifier [21], which is not adequate
for distributions with multimodal structure. Furthermore, this
novel training strategy also pushes unknown target data away
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from data with known classes via D. As shown in Fig. 2 (b),
the novel distribution alignment strategy can further boost the
performance of the classifier.

To validate the efficacy of the proposed method, we conduct
extensive experiments on several standard benchmark datasets
containing 41 transfer tasks. Compared to existing shallow
and deep UOSDA methods, our method shows state-of-the-art
performance on digit recognition (MNIST, SVHN, USPS), ob-
ject recognition (Office-31, Office-Home) and face recognition
(PIE). The main contributions of this paper are:

1) A new theoretical bound of target-domain risk for
UOSDA is proposed. It is essential since the existing
bound does not apply to flexible classifiers (i.e., DNNs).
Thus this work can bridge the gap between the existing
theoretical bound and deep algorithms for the UOSDA
problem.

2) A UOSDA method based on DNNs is proposed under the
guidance of the proposed theoretical bound. The method
can better estimate the risk of the classifier on unknown
data than existing deep methods with the theoretical
guarantee.

3) A novel open-set conditional adversarial training strategy
is proposed to ensure that our method can align the
distributions of two domains better than existing UOSDA
methods.

4) Experiments on Digits, Office-31, Office-Home, and PIE
show that the accuracy of the OS of our method signif-
icantly outperforms all baselines, which shows that our
method achieves state-of-the-art performance.

This paper is organized as follows. Section II reviews the
works related to UCSDA, open set recognition, and UOSDA.
Section III introduces the definitions of notations and our
problem. Section IV demonstrates the motivation of this paper.
Theoretical results and the proposed method are shown in
Section V. Experimental results and analyses are provided in
Section VI. Finally, Section VII concludes this paper.

II. RELATED WORK

Unsupervised open set domain adaptation is a combination
of unsupervised closed set domain adaptation and open set
recognition. In this section, we present a systematic review of
related studies.

A. Closed Set Domain Adaption

In [24], a theoretical bound for UCSDA is given, which
indicates that minimizing the source risk and distributional
discrepancy is the key to the UCSDA problem. Based on this
point, there are two kinds of methods for UCSDA: one is to
employ a distributional discrepancy measurer to measure the
domain gap [25]; the other is the adversarial training strategy
[23].

Transfer Component Analysis (TCA) [25] utilizes MMD
[26] learning a domain invariant feature by aligning marginal
distribution. Meanwhile, Joint Distribution Adaptation (JDA)
[17] align marginal distribution and conditional distribution
simultaneously. In order to simplify the training of a clas-
sifier, Easy Transfer Learning (EasyTL) [27] exploits the

intra-domain information to get a non-parametric feature and
the classifier. CORrelation Alignment (CORAL) [28] aligns
second-order statistics of source and target domain to min-
imize domain divergence. Manifold Embedded Distribution
Alignment (MEDA) [29] performs a dynamic distribution
alignment in a Grassmann manifold subspace.

Meanwhile, deep neural networks have also been introduced
into domain adaptation and achieved competitive performance
in UCSDA. Deep Adaptation Networks (DAN) [30] employs
the multi-kernel MMD (MK-MMD) to align the feature of 6-8
layers in Alexnet. Deep CORAL Correlation is the extension
of shallow method CORAL in deep neural networks. Wasser-
stein Distance Guided Representation Learning (WDGRL)
[31] employs the Wasserstein distance to learn an invariant
representation in deep neural networks.

Representative adversarial-training-based method are
Domain-Adversarial Training of Neural Networks (DANN)
[32] and conditional adversarial domain adaptation (CDAN)
[23]. DANN employs a domain discriminator to recognize
which domain data comes from and deceives the domain
discriminator by changing features so that an invariant
representation can be learned during the adversarial
procession. Furthermore, CDAN utilizes the tensor product
between feature and classifier prediction to grasp the
multimodal information and an entropy condition to control
the uncertainty of the classifier. However, these methods
can only cope with the UCSDA problem and are unable to
address the UOSDA problem.

B. Open Set Recognition

This setting allows some unknown classes to be shown in
the target domain, but there is no distributional discrepancy
between domains. Open Set SVM [33] rejects the unknown
classes via a fixed threshold. Open Set Nearest Neighbor
(OSNN) [34] extends the Nearest Neighbor to recognize
unknown classes. Bendale et al. [35] introduces a layer named
OpenMAX to estimate the probability that an input data is
recognized as unknown classes in DNNs. However, these
methods do not consider distributional discrepancy. They are
also unable to address the UOSDA problem.

C. Open Set Domain Adaptation

Busto et al. [14] were the first to propose the setting
of UOSDA. They employed a method named Assign-and-
Transform-Iterately (ATI) to assign labels to target data using
a distance matrix between target data and source class centers
and aligned distributions through a mapping matrix. In the set-
ting of this paper, however, the source domain contains some
unknown classes to assist the classifier to recognize unknown
data. Since obtaining unknown samples of the source domain
is expensive and time-consuming, Open Set Backpropagation
(OSBP) [15] assumes a more realistic scenario that the source
domain has no unknown classes, which is more challenging.
An adversarial network is used to recognize unknown samples
and align distribution during backpropagation.

Based on OSBP, Feng et al. [20] proposed a method named
SCI SCM, which utilizes semantic structure among data to
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align the distribution of known classes and push unknown
classes away from known classes. Separate to Adapt (STA)
[21] utilizes a coarse-to-fine weight mechanism to separate
unknown samples from the target domain. In Distribution
Alignment with Open Difference (DAOD) [16], a theoretical
bound is proposed for UOSDA and a risk estimator is used to
recognize unknown target data.

However, existing deep UOSDA methods lack the theoreti-
cal guidance and the upper bound in [16] is not applicable to
DNNs, which causes a large distributional discrepancy (details
are shown in Section IV). Obviously, for UOSDA, there is a
gap between existing theoretical bound and deep algorithms.
In this paper, we aim to fill this gap.

III. PRELIMINARY AND NOTATIONS

The definitions of the UOSDA problem and some important
concepts are introduced in this section. The notations used in
this paper are summarized in Table I.

A. Definitions and Problem Setting

Important definitions are presented as follows.

Definition 1 (Domain [16]). Given a feature space X ⊂ Rd
and a label space Y , a domain is a joint distribution P (X,Y ),
where the random variables X ∈ X , Y ∈ Y .

In Definition 1, X ∈ X and Y ∈ Y mean that the spaces
X and Y contain the image sets of X and Y respectively. In
the paper, we name the random variable X as feature vector
and the random variable Y as label. Based on this definition,
we have:

Definition 2 (Domains for Open Set Domain Adaptation
[16]). Given a feature space X ⊂ Rd and the label spaces
Ys,Yt, the source and target domains have different joint
distributions P (Xs, Y s) and P (Xt, Y t), where the random
variables Xs, Xt ∈ X , Y s ∈ Ys, Y t ∈ Yt, and the label
space Ys ⊂ Yt.

From the definitions above, we can notice that: 1) This
paper focuses on homogeneous situations. Thus Xs and Xt

are belong to the same space, and 2) Yt contains Ys. It is
unknown target classes that are the classes from Yt\Ys. It is
are the known classes that are the classes from Ys. Thus, the
UOSDA problem is:

Problem 1 (Unsupervised Open Set Domain Adaptation
(UOSDA) [16]). Given labeled samples S drawn from the
joint distribution of the source domain P (Xs, Y s) i.i.d and
unlabeled samples TX drawn from the marginal distribution
of the target domain P (Xt) i.i.d. The aim of UOSDA is to
find a target classifier ct : X → Yt such that
1) ct classifies the known target samples into the correct
known classes;
2) ct recognizes the unknown target samples as unknown.

According to the definition of the problem, the target-
domain classifier only needs to recognize unknown target data
as unknown and classify other target data. It is not necessary
to classify unknown target data, and all unknown target data

are recognized as the “unknown class”. In general, we assume
that Ys = {yk}Kk=1, Yt = {yk}K+1

k=1 , where the label yK+1

denotes the unknown class and the label yk ∈ R(K+1)×1 is a
one-hot vector. The label yk denotes the k-th class.

B. Concepts and Notations
It is necessary to introduce some important concepts and

notations before demonstrating our main results. Unless other-
wise specified, all the following notations are used consistently
throughout this paper without further explanations.

1) Notations for distributions: For simplicity, we denote the
joint distributions P (Xs, Y s) and P (Xt, Y t) by the notations
PXsY s and PXtY t respectively. Similarly, we use PXs and
PXt denote the marginal distributions P (Xs) and P (Xt)
respectively.
PXt|Ys denotes the target conditional distribution for the

known classes, while PXt|yK+1
denotes the target conditional

distribution for the unknown classes. πtK+1 = P (Y t = yK+1)
denotes the class-prior probability for the unknown target
classes.

Given a feature transformation:

G : X → XG := G(X )

x→ xG := G(x),
(1)

the induced distributions related to PXs and PXt|Yt are

G#PXs := P (G(Xs));

G#PXt|Ys := P (G(Xt)|Y t ∈ Ys).
(2)

Lastly, the notation P̂ denotes the corresponding empirical dis-
tribution to any distribution P . For example, P̂XsY s represents
the empirical distribution corresponding to PXsY s .

2) Risks and Partial Risks: In learning theory, risks and
partial risks are two important concepts, which are briefly
explained below.

Following the notations in [36], consider a multi-class clas-
sification task with a hypothesis space HG of the classifiers

C : XG → Yt

x→ [C1(x), ..., CK+1(x)]T .
(3)

Let

` : RK+1 × RK+1 → R≥0

(y, ỹ)→ `(y, ỹ),
(4)

be the loss function. For convenience, we also require ` to
satisfy the following conditions in Theorem 1:
1. ` is symmetric and satisfies triangle inequality;
2. `(y, ỹ) = 0 iff y = ỹ;
3. `(y, ỹ) ≡ 1 if y 6= ỹ and y, ỹ are one-hot vectors.

We can check many losses satisfying the above conditions
such as 0-1 loss 1y 6=ỹ and `2 loss 1

2‖y − ỹ‖22.
Then the risks of C ∈ HG w.r.t. ` under G#PXsY s and

G#PXtY t are given by

Ls(C ◦G) : = E
(x,y)∼PXsY s

`(C ◦G(x),y),

Lt(C ◦G) : = E
(x,y)∼PXtY t

`(C ◦G(x),y).
(5)
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TABLE I
NOTATIONS AND THEIR DESCRIPTIONS.

Notation Description Notation Description
X feature space PXsY s , PXtY t source, target joint distributions
Ys,Yt source, target label sets {yc}Kc=1, {yc}K+1

c=1 PXs , PXt source, target marginal distributions
Xs, Xt random variables on the feature space ∆ open set difference
Y s, Y t random variables on the label spaces PXt|Ys P (Xt|Y t ∈ Ys)
Ls(·), Lt(·) source, target risks Lt∗(·) partial risk on known target classes
yc one-hot vector (class c) LtK+1(·) partial risk on unknown target classes
G,C feature transformation , classifier over G(X ) Lsu,K+1, L

t
u,K+1 risks that samples regarded as unknown

HG hypothesis space, set of classifiers C πtK+1 class-prior probability for unknown class
XG,xG G(X ), sample from G(X ) P̂ , L̂(·) empirical distribution, empirical risk
d`HG

(·, ·) H∆H distance d`∆C,G
(·, ·) tensor discrepancy distance

The partial risk of C ∈ HG for the known target classes is

Lt∗(C ◦G) : =
1

1− πtK+1

∫
X×Ys

`(C ◦G(x),y)dPXtY t

(6)

and the partial risk of C ∈ HG for the unknown target classes
is

LtK+1(C ◦G) : = E
x∼PXt|yK+1

`(C ◦G(x),yK+1). (7)

Lastly, we denote

Lsu,K+1(C ◦G) := E
x∼PXs

`(C ◦G(x),yK+1),

Ltu,K+1(C ◦G) := E
x∼PXt

`(C ◦G(x),yK+1)
(8)

as the risks that the samples are regarded as the unknown
classes.

Given a risk L(C ◦ G), it is convenient to use notation
L̂(C ◦G) as the empirical risk that corresponds to L(C ◦G).

3) Discrepancy Distance: How to measure the difference
between domains plays a critical role in domain adaptation. To
achieve this, a famous distribution distance has been proposed
as the measures of the distribution difference.

Definition 3 (Distributional Discrepancy [37]). Given a hy-
pothesis space HG containing a set of functions defined in
a feature space XG. Let ` be a loss function, and P1, P2 be
distributions on space XG. The H∆H distance d`HG

(P1, P2)
between distributions P1 and P2 over XG is

sup
C,C∗∈HG

∣∣∣ E
x∼P1

`(C(x),C∗(x))− E
x∼P2

`(C(x),C∗(x))
∣∣∣.

In this paper, we have used a tighter distance named tensor
discrepancy distance, which is firstly proposed by [23]. The
tensor discrepancy distance can future extract the multimodal
structure of distributions to make sure the knowledge related
to learned classifier and pseudo labels can be utilized during
the distribution aligning process.

We consider the following tensor mapping:

⊗C : XG → XG ⊗ Yt

xG → xG ⊗C(xG).
(9)

Then we induce two importance distributions:

⊗C#PXs := P (⊗C(G(Xs)));

⊗C#PXt|Ys := P (⊗C(G(Xt))|Y t ∈ Ys).
(10)

Using HG ⊂ {C : XG → Yt}, we reconstruct a new
hypothetical set:

∆C,G := {δC : XG ⊗ Yt → R : C ∈ HG}, (11)

where δC(xG⊗y) = |⊗C (xG)−⊗C(xG)|. Then the distance
between ⊗C#PXs and ⊗C#PXt|Ys is:

d`∆C,G
(⊗C#PXs ,⊗C#PXt|Ys)

= sup
δ∈∆C,G

∣∣∣ E
z∼⊗C#PXs

sgn ◦ δ(z)− E
z∼⊗C#PXt|Ys

sgn ◦ δ(z)
∣∣∣,

(12)

where sgn is the sign function.
It is easy to prove that under the conditions (1)-(3) for loss

` and for any C ∈ HG, we have

d`∆C,G
(⊗C#PXs ,⊗C#PXt|Ys) ≤ d`HG

(G#PXs ,G#PXt|Ys).

(13)

4) Existing Theoretical Bound: Zhen et al. [16] firstly
proposed a theoretical bound for UOSDA:

Lt(C ◦G)

1− πtK+1

≤
Source Risk︷ ︸︸ ︷
Ls(C ◦G) +

distributional discrepancy︷ ︸︸ ︷
2d`HG

(G#PXs ,G#PXt|Ys) + Λ

+
Ltu,K+1(C ◦G)

1− πtK+1

− Lsu,K+1(C ◦G)︸ ︷︷ ︸
Open Set Difference ∆

.

(14)

There are four main terms: source risk, distributional discrep-
ancy, a constant Λ and open set difference. The fourth term,
open set difference, is designed to estimate the risk of classifier
on unknown data.

IV. MOTIVATION

In UOSDA, the target-domain classifier aims to accurately
recognize unknown target data and classify the other target
data. Since the knowledge about unknown classes is missing,
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the classifier is likely to be confused about the boundary
between known and unknown target data. Thus, recognizing
unknown target data plays a critical role in addressing the
UOSDA problem.

In order to obtain an effective target-domain classifier, Zhen
et al. [16] have proven an upper (Eq. (14)) bound for UOSDA
and proposed a shallow method based on the bound. It consists
of four terms: source-domain risk, distributional discrepancy,
open set difference (∆), and a constant. Particularly, open set
difference, as an important term, is leveraged to estimate the
risk of the classifier on unknown target data.

In order to verify whether open set difference works in
DNNs, we introduced open set difference into DNNs and
conducted a group of experiments on the task Ar → Cl in
Office-Home. The classifier consists of backbone (ResNet50),
generator (two linear layers), and classifier (one linear layer). It
is evident that the classifier is very flexible. As shown in Fig.
2, the empirical open set difference converges to a negative
value (refer to the yellow line in Fig. 2(a)) and the accuracy of
OS, average accuracy among all classes that include unknown
classes (Eq. (29)), significantly decreases when empirical open
set difference converges to a negative value.

To reveal the nature of this phenomenon, first we inves-
tigate the distributional discrepancy and discover that the
distributional discrepancy has a lower bound. Specifically, the
distributional discrepancy is greater than the negative value
of open set difference (Eq. (18)). Based on the lower bound,
if the value of the open set difference is a large negative
number, then the distributional discrepancy is greater than
a large positive number. Hence, we may fail to align the
distributional discrepancy. In fact, experiments have shown
that the empirical open set difference may converge to a large
negative value if we introduce the open set difference into
DNNs.

Clearly, there is a gap between existing theoretical bound
and DNNs. In order to bridge theoretical bound and deep
algorithms, in this paper, we propose a new practical upper
bound (Eq. (20)) for UOSDA that applies to DNNs. The
term, ε-open set difference, in the new bound can effectively
overcome the defect of open set difference. As shown in
Fig. 2, ε-open set difference guarantees that the risk of the
classifier on unknown data is always greater than the lower
bound of open set difference by ε (refer to the green line in
Fig. 2(a)). Furthermore, the ε-open set difference significantly
outperforms the open set difference (refer to the green line in
Fig. 2(b)).

To sum up, existing upper bound is not compatible with
DNNs. That is why we propose a new upper bound that
contains an amended risk estimator, ε-open set difference (∆ε).
Details of the new upper bound and ∆ε are shown in Section
V.

V. THE PROPOSED METHOD

In this section, we firstly propose a theoretical bound that
applies to DNNs for UOSDA. Under the guidance of the
bound, we then propose a UOSDA method based on DNNs.

TABLE II
NOTATIONS AND THEIR DESCRIPTIONS.

Notation Description
`ce, `mse cross entropy, mean square error loss function

T ∗u
set of predicted unknown target data with high
confidence

T ∗K
set of predicted known target data with high
confidence

ns number of source data
nt number of target data
n∗K number of T ∗K
n∗u number of Tu
xsi source data
xti target data

A. Theoretical Results

1) An Analysis for Open Set Difference: Eq. (15) is the
open set difference:

∆ =
Ltu,K+1(C ◦G)

1− πtK+1

− Lsu,K+1(C ◦G) (15)

where Ltu,K+1(C ◦ G) and Lsu,K+1(C ◦ G) are defined
in Eq. (8). The positive term Ltu,K+1(C ◦ G) is used to
recognize unknown data and the negative term Lsu,K+1(C◦G)
is designed to prevent known data from being classified as
unknown classes. By combining these two terms, the classifier
can recognize unknown target samples. According to [16], the
open set difference ∆ satisfies the following inequality:

∆ =
Ltu,K+1(C ◦G)

(1− πtK+1)
− Lsu,K+1(C ◦G)

≥
πtK+1

(1− πtK+1)
LtK+1(C ◦G)− d`HG

(G#PXs ,G#PXt|Ys).

(16)

The proof of Eq. (16) can be found in Appendix A. proposition
1. Note that

πtK+1

(1− πtK+1)
LtK+1(C ◦G) ≥ 0, (17)

hence, the distributional discrepancy is greater than the nega-
tive open set difference:

d`HG
(G#PXs ,G#PXt|Ys) ≥ −∆. (18)

Theoretically, we hope that the optimized open set difference
should not be a large negative value. Otherwise, it is impos-
sible to eliminate the distributional discrepancy. However, in
fact, the empirical open set difference ∆̂ may converge to
a large negative value (see Fig. 2). This results in that the
distributional discrepancy may still be large.

2) ε-Open Set Difference: Based on the analyses above,
we try to correct the open set difference to avoid the problem
mentioned above. According to Eq. (18), the open set differ-
ence is lower bounded. We denoted the lower bound of the
open set difference by ε. An potentiality is to limit the lower
bound of the open set difference by a small negative constant
−ε. Hence, we propose an amended risk estimator, ε-open set
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difference (∆ε), to overcome the existing defect in the open
set difference:

∆ε = max{−ε,
Ltu,K+1(C ◦G)

1− πtK+1

− Lsu,K+1(C ◦G)}. (19)

If we optimize the empirical ε-open set difference, we can
guarantee that the empirical ε-open set difference is always
larger than −ε. Lastly, combining Eqs. (12), (13) with Eq.
(19), we develop a new theoretical bound for UOSDA.

Theorem 1. Given a feature transformation G : X → XG, a
loss function ` satisfying conditions 1-3 introduced in Section
III-B-2), a nonegative constant ε and a hypothesis HG ⊂ {C :
XG → Yt} with a mild condition that the constant vector
value function C̃ := yC+1 ∈ HG, then for any C ∈ HG, we
have

Lt(C ◦G)

1− πtK+1

≤
Source Risk︷ ︸︸ ︷
Ls(C ◦G) +

Tensor distributional discrepancy︷ ︸︸ ︷
2d`∆C,G

(⊗C#PXs ,⊗C#PXt|Ys)

+ max{−ε,
Ltu,K+1(C ◦G)

1− πtK+1

− Lsu,K+1(C ◦G)}︸ ︷︷ ︸
ε-Open Set Difference ∆ε

+Λ,

(20)

where Ls(C ◦G) and Lt(C ◦G) are the risks defined in (5),
Lsu,K+1(C ◦ G) and Ltu,K+1(C ◦ G) are the risks defined
in (8), Lt∗(C ◦G) is the partial risk defined in (6) and Λ =
min

C∈HG

Ls(C ◦G) + Lt∗(C ◦G) .

Proof. The proof is given in Appendix A.

It is notable that the theoretical bound introduced in The-
orem 1 has two main differences from the learning bound
introduced by [16]. The first one is the ε-open set difference.
As mentioned before, ε-open set difference is designed to elim-
inate distributional discrepancy caused by open set difference
when the module is based on DNNs. The other difference is
that we use the tensor distributional discrepancy to estimate
the domain difference. There are two advantages for the tensor
distributional discrepancy compared with the distributional
discrepancy (Definition 3): 1) the tensor distributional dis-
crepancy is tighter than the distributional discrepancy (see
Eq. (13)); 2) the tensor distributional discrepancy can extract
the multimodal structure of distributions to make sure the
knowledge related to the learned classifier and pseudo labels
can be utilized during the process of distribution alignment
[23].

B. Method Description

According to Theorem 1, we formally present our method
(see Fig. 3), which consists of three parts. Part 1) Binary
adversarial domain adaptation. Following [15], we employ a
binary adversarial module to find a rough boundary between
the class-known data (known data) and the class-unknown
data (unknown data), and thus this module can provide target
samples with high confidence for other modules. Part 2) ε-
open set difference (∆ε). The ∆ε is leveraged to estimate the

risk of the classifier on unknown data such that the classi-
fier can accurately recognize the unknown target data. Part
3) Conditional adversarial domain adaptation. Existing deep
UOSDA methods ignore the importance of the multimodal
structure of distribution while aligning distributions for known
classes. According to the tensor distributional discrepancy, we
design a novel open set conditional adversarial strategy to align
distributions for known classes. Notations used in this section
are summarized in Table II.

1) Binary adversarial domain adaptation (BADA): Accord-
ing to our theoretical bound, the first term is source risk. For
the source domain, the label is available. We utilize a cross-
entropy for the classification of source samples:

L̂scls =
1

ns

ns∑
i=1

`ce(C ◦G(xsi ),y
s
i ) (21)

For the target domain, it is imperative to recognize the un-
known target data before aligning distribution. Following [15],
we employ a binary cross-entropy and a gradient reverse layer
between generator and classifier to find a boundary between
the known data and the unknown data:

L̂badv

=− 1

2nt

nt∑
i=1

log
(
(CK+1 ◦G(xti))

)(
1− (CK+1 ◦G(xti))

)
,

(22)

where CK+1 is the K + 1-th value of hypothesis function C.
The minimax game is shown in Section V-C. During the

process of adversarial training, the classifier attempts to min-
imize L̂badv , but the generator attempts to maximize L̂badv .
Therefore, recognizing unknown data is achieved during the
process of adversarial training.

However, this module can only find a coarse boundary
between the known data and the unknown data, which can-
not accurately recognize the unknown target data. Table VI
verifies that only binary adversarial domain adaptation cannot
achieve satisfactory performance. Therefore, we employ the ε-
open set difference for recognizing unknown target data more
appropriately and the open-set conditional adversarial strategy
to further align distribution.

2) ε-open set difference: The principle of the ε-open set
difference (∆ε) is adequately demonstrated in Sections IV and
V-A. Then we introduce ∆ε to recognize unknown target data.
According to Eqs. (19), (23), we can calculate the empirical
ε-open set difference ∆̂ε by:

max{−ε, α
nt

nt∑
i=1

`mse(C ◦G(xti),yK+1)

− 1

ns

ns∑
i=1

`mse(C ◦G(xsi ),yK+1)}.

(23)

Without more label information, πtK+1 in Eq.(19) is impossi-
ble to be evaluated accurately, thus, we introduce a parameter,
α, to replace it. The analysis of α is discussed in Section VI.
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binary adversarial loss

domain 
discriminator 
loss

source classification  loss

unknown

source input

target input

G C

𝒇𝒔

𝒈𝒕
𝒇𝒕

𝒈𝒔

HCSS

𝒈𝒕𝟐
∆

G: generator   C: classifier   D: discriminator

high confidence samples selection

tensor product

HCSSsource flow target flow

concatenation𝒇: feature 𝒈: output of softmax

D

known class unknown class

feature extraction

C

label prediction

label prediction

Fig. 3. Framework of the proposed method. The generator (G) aims to extract the feature (f ) of input data and feed it to the classifier (C) to predict its label
(ŷ). This whole framework consists of three parts. 1) Binary adversarial domain adaptation, which is made of source classification loss and binary adversarial
loss. Classifier can find a rough boundary between known data and unknown data. 2) ε-open set difference (∆ε). We proposed the amended risk estimator to
more properly estimate the risk of the classifier on unknown data. 3) Conditional adversarial domain adaptation, which aims to capture multimodal structure
of distribution for distribution alignment. In summary, our method can achieve better performance by accurately estimating risk on unknown target data and
aligning distribution more adequately.

3) Conditional adversarial domain adaptation: Here we
utilize the tensor distributional discrepancy to align the dis-
tribution between the known classes. Firstly, the empirical
representations of ⊗C#P̂Xs and ⊗C#P̂Xt|Ys can be written
as follows:

⊗C#P̂Xs =
1

ns

ns∑
i=1

1G(xsi )⊗C◦G(xsi )
,

⊗C#P̂Xt|Ys =
1

|TK |
∑
x∈TX

1G(x)⊗C◦G(x),

(24)

where TK is the set of target data from the known classes and
1G(x)⊗C◦G(x) is the Dirac measure.

Then, motivated by DANN [32] and CDAN [23] , we can
reformulate the tensor distributional discrepancy between the
known classes as follows:

− 1

ns

ns∑
i=1

log
(
D(G(xsi )⊗C ◦G(xsi ))

)
− 1

|TK |
∑
x∈TK

(
1−D(log(G(x)⊗C ◦G(x)))

)
,

(25)

where D is the domain discriminator designed to classify
domains.

Since the target data is unlabeled, Eq. (25) cannot be directly
calculated. Thanks to the pseudo labels provided by BADA, we
leverage it to replace the true label. Since these pseudo labels
are not completely accurate, we only select the samples with

a confidence of 0.9. We then formulate the domain adversarial
loss function below.

L̂dadv = − 1

ns

ns∑
i=1

log
(
D(G(xsi )⊗C ◦G(xsi ))

)
− 1

n∗K

∑
x∈T ∗K

(
1−D(log(G(x)⊗C ◦G(x)))

)
,

(26)

where T ∗K denotes the set of samples from known classes with
high confidence in the target domain, and n∗K = |T ∗K |.

Domain adversary loss aims to minimize over D and
maximize over G. The gradient reverse layer between G and
D results in D becoming confused about the source data and
the target data. The minimax game is shown in Section V-C.
The classifier aims to identify what input data belongs to which
domain, but the generator aims to deceive the classifier by
changing the features of the input data. Distribution alignment
can be achieved during this process.

Furthermore, the unknown data may distract distribution
alignment of the known data. Thus the unknown data should be
pushed away from known data to prevent them from affecting
distribution alignment. We construct the loss function below.
It is worth noting that there is no gradient reverse between D
and G during the process of backpropagation.

L̂d =− 1

ns

ns∑
i=1

log
(
D(G(xsi )⊗C ◦G(xsi ))

)
− 1

n∗u

∑
x∈T ∗u

(
1−D(log(G(x)⊗C ◦G(x)))

)
,

(27)
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where T ∗u is the unknown target samples with high confidence
and n∗u = |T ∗u |.

In this subsection, we construct a domain discriminator (D)
to align the distributions for the known data by a tensor prod-
uct, which can capture the multimodal structure of distribution.
Furthermore, we construct a loss function to push the unknown
data away from the known data to prevent the unknown data
affecting distribution alignment.

C. Training Procedure

Combining Eqs. (21), (22), (23), (26) and (27), We solve
UOSDA problem by the following minimax game:

min
G

L̂scls − L̂badv + ∆̂ε − L̂dadv + L̂d,

min
C

L̂scls + L̂badv + ∆̂ε,

min
D

L̂dadv + L̂d.

(28)

We introduce the gradient reverse layer for adversary learning.
The whole training procedure is shown in Algorithm 1. Firstly,
we initialize the parameters of the generator (G), the classifier
(C) and the domain discriminator (D) (line 1). In each epoch,
we divide data into multi minibatches (line 4-5). Then we
calculate source risk (L̂scls), binary adversarial loss (L̂badv)
and ∆ε according to Eqs. (21), (22), (23) (line 6-7). After
selecting target samples with high confidence (≥ 0.9) (line
8), we calculate L̂dadv and L̂d according to Eqs. (26) and
(27) (line 9). Finally, parameters are updated Via the SGD
optimizer (line 10).

With the proposed method, in binary adversarial domain
adaptation (L̂scls, L̂badv), a coarse boundary between known
data and unknown data can be found. Furthermore, ε-open
set difference (∆̂ε) can adequately estimate the risk of the
classifier on unknown data, which is effective for the classifier
to accurately recognize unknown target data. Then, we further
align distributions of known data (L̂dadv) and push unknown
data away from known data (L̂d) using a domain discriminator.
Finally, combining these three modules, we can adequately
solve the UOSDA problem.

VI. EXPERIMENTS AND EVALUATIONS

In this section, we conducted extensive experiments on 6
standard benchmark datasets (including 41 transfer tasks) to
demonstrate the effectiveness of our method. Several state-
of-the-art UOSDA methods such ATI-λ [14], OSBP [15],
SCI SCM [20], STA [21] and DAOD [16] are employed as
our baselines.

A. Datasets

Digits contains three digit datasets: MNIST (M) [38], SVHN
(S) [39], USPS (U) [40]. We construct three open set domain
adaptation tasks as previous works [15]: S → M, M → U and
U → M. Following the protocol of [15], we select classes 0-4
as the known classes and classes 5-9 as the unknown classes
of the target domain.

Algorithm 1: Training procedure of our method

Input: source samples {xsi ,ysi }n
s

i=1, target samples {xti}n
t

i=1.
Parameter: learning rate γ, batch size m, the number of

iteration T , network parameters θG, θC , θD .
Output: predicted target label ŷt.

1: Initialize θG, θC , θD
2: t=0
3: while t < T do
4: sample source minibatch {(xsi1 ,y

s
i1), . . . , (xsim ,y

s
im)}.

5: sample target minibatch {xti1 , . . . ,x
t
im}.

6: calculate L̂s, L̂badv according to Eqs. (21) and (22).
7: calculate ∆̂ε according to Eq. (23).
8: select high confidence target samples according to the

output of softmax gt.
9: calculate Ldadv, Ld according to Eqs. (26) and (27) by

leveraging high confidence target samples.
10: update parameter:

θG = θG − γ 5θG (L̂scls − L̂adv + ∆̂ε − L̂dadv + L̂d)
θC = θC − γ 5θC (L̂scls + L̂adv + ∆̂ε)
θD = θD − γ 5θD (L̂dadv + L̂d).

11: t = t+ 1
12: end while

Office-31 [41] is an object recognition dataset with 4, 110
imges, which consists of three domains with slight discrep-
ancy: amazon (A), dslr (D) and webcam (W). Each domain
contains 31 kinds of object. So there are 6 open set domain
adaptation tasks on Office-31: A → D, A → W, D → A, D
→ W, W → A, W → D. We follow the open set protocol of
[15], selecting the first 10 classes in alphabetical order as the
known classes and classes 21-31 as the unknown classes of
the target domain.

Office-Home [42] is an object recognition dataset with
15, 500 image, which contains four domains with more ob-
vious domain discrepancy than Office-31. These domains are
Artistic (Ar), Clipart (Cl), Product (Pr), Real-World (Rw).
Each domain contains 65 kinds of objects. So there are 12
open set domain adaptation tasks on Office-Home: Ar → Cl,
Ar → Pr, Ar → Rw, ..., Rw → Pr. Following the standard
protocol, we chose the first 25 classes as the known classes
and 26-65 classes as the unknown classes of the target domain.

PIE [43] is a face recognition dataset, containing 41, 368
images of 68 people with multifarious pose, illumination and
expression. following the protocol of [16], We performed open
set domain adaptation among 5 out of 13 poses and selected
classes 1-20 as the known classes and classes 21-68 as the
unknown classes of the target domain:x PIE1 (left pose),
PIE2 (upward pose), PIE3 (downward pose), PIE4 (frontal
pose) and PIE5 (right pose). We construct 20 open set domain
adaptation tasks, i.e., PIE1 → PIE2, PIE1 → PIE3, ..., PIE5
→ PIE4.

B. Implementation

Network structure. For the Digit, we employ the similar
convolution neural network as [15], [44] for S → M and
other tasks, respectively, and train the DNNs from scratch. For
Office-31, we leverage VGGNet [45] as backbone to extract
features of images. We employ two fully-connected layers as
the generator and one fully-connected layer as the classifier.
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For Office-Home, We leverage ResNet-50 [46] as backbone
to extract features of images. The network structure of the
generator and the classifier are the same as Office-31. PIE has
provided valid features of all images. Therefore CNN is not
necessary, and we adopted a similar generator and classifier as
Office-31. Details about the network can be found in Appendix
B. In the same manner as [15], [20], we do not update the
parameters of the backbone during the training process.

Parameter setting. In the proposed method, there are two
important parameters: α and ε. We set ε as 0 in all experi-
ments, which is because distributional discrepancy is gradually
approaching to 0 during the process of domain adaptation and
∆ε should be greater than or equal to 0 when distributional
discrepancy is 0. Besides, we set α as 1.25 for Office-31,
1.1 for Digit and Office-Home, and 1.0 for PIE. When the
distributional discrepancy is relatively large, we advise that α
should be smaller for steady training. All experiment results
are the accuracy averaged over three independent runs.

C. Baselines

We compare our method with five UOSDA methods: ATI-λ,
OSBP [15], SCA SCM [20], STA [21], and DAOD [16]. We
briefly introduce these baselines in the following.
• ATI-λ [14] employs an integer programming to assign the
label for the target domain and a mapping matrix to align
distribution.
• OSBP [15] employs a classifier to align distributions
between data (with known classes) in both source and target
domains and an adversarial net to reject unknown samples
through the probability of samples in the target domain.
• SCA SCM [20] aligns the centroids between source and
target and pushes unknown samples away from known classes
to achieve a good performance.
• STA [21] utilizes a coarse-to-fine weight mechanism to sep-
arate unknown samples from the target domain and achieves
distribution alignment simultaneously.
• DAOD [16] trains a target-domain classifier via minimizing
Eq. (14). The term, open set difference, is used to estimate the
risk of the classifier on unknown classes.

D. Evaluation Metrics

Following previous works [14]–[16], we employ the two
metrics below to evaluate our method. OS: average accuracy
among all classes that include unknown classes. OS*: average
accuracy among known classes.

Acc(OS∗) =
1

K

K∑
c=1

|x ∈ Tc
∧
gt(x) = yc|
|Tc|

Acc(OS) =
1

K + 1

K+1∑
c=1

|x ∈ Tc
∧
gt(x) = yc|
|Tc|

(29)

where gt is the target classifier, and Tk is the set of target
samples with label yc.

E. Results

Results on three tasks of Digit datasets are shown in
Table III, Obviously, our method achieves the best perfor-
mance (89.0% on OS and 90.0% on OS*) within three tasks.
Moreover, compared to U → M and M → U, M → U is
more challenging. There is a bigger distribution between S
and M. Whereas on the most difficult task, our method still
outperforms the best baseline STA by 6% and 7.2% on OS and
OS* respectively. It is worth noting that DAOD is a shallow
method, which cannot extract feature by convolutional neural
network. Therefore there is no comparison on Digits. The
results of ATI-λ are from [21].

Results on standard benchmark object datasets (Office-31
and Office-Home) are recorded in Table IV. For Office-31, our
method significantly outperforms baselines among 4 out of 6
transfer tasks. Especially on A→ D, our method surpasses the
most competitive baseline SCA SCM by 5.9% and 5.5% on
OS and OS* respectively. For Office-Home, our method also
achieves better performance than baselines among 9 out of 12
transfer tasks.

Results on PIE datasets are shown in Table V. Although
PIE is a dataset with significant distributional discrepancy, our
method still outperforms baselines among 17 out of 20 transfer
tasks. Specifically, our method surpasses the best baseline
SCA SCM by 7.5% and 7.9% on OS, OS* respectively.

Moreover, we observe that: 1) the performance of ATI-λ is
lower than that of other methods. That is because ATI-λ cannot
accurately separate unknown data, and it needs numerous
unknown data in the source domain to train a classifier to
recognize unknown data. 2) OSBP and SCA SCM leverage
an adversarial net to separate unknown data, which can find a
rough boundary between known classes and unknown classes.
However, the classifier is easily affected by hyper-parameter
t, which means that the classifier cannot recognize the target
data well. For example, for OSBP, in Digits, the accuracy of
classifying unknown data is significantly higher than known
classes, but the opposite situation is apparent in Office-31,
which proves that this method is not robust. For SCA SCM,
it cannot recognize unknown data well. Especially on the task
D → A of Office-31, SCA SCM fails to recognize unknown
data. That is because OS* is greater than OS by 8.6%. 4)
STA separates known data and unknown data by a multi binary
classifier. It can achieve a good performance in known classes,
but it cannot cope with unknown classes well, especially for
the tasks with a large domain gap.

Compared to baselines, the proposed risk estimator, ε-open
set difference, can help us effectively estimate the risk of
the classifier on unknown data. As a result, a clear boundary
between known classes and unknown classes can be found.
Moreover, our method leverages a novel open-set conditional
adversarial strategy to capture the multimodal structure of dis-
tributions, which can be used to align distribution adequately.
Better recognizing unknown data and better aligning distri-
bution make our method achieve an excellent performance,
which is the reason why we can outperform all baselines on
4 benchmark datasets.
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TABLE III
ACC(OS*) AND ACC(OS) (%) ON Digits

Dataset ATI-λ OSBP SCA SCM STA DAOD OURS
OS OS* OS OS* OS OS* OS OS* OS OS* OS OS*

S → M 67.6 66.5 63.1 59.1 68.6 65.5 76.9 75.4 - - 82.9 82.6
M → U 86.8 89.6 92.1 94.9 91.3 92.0 93.0 94.9 - - 93.4 94.6
U → M 82.4 81.5 92.3 91.2 93.1 95.2 92.2 91.3 - - 90.7 92.7
Average 78.9 79.2 82.4 81.7 84.3 84.2 87.3 87.2 - - 89.0 90.0

TABLE IV
ACC(OS*) AND ACC(OS) (%) ON Office-31 (VGG-19) AND Office-Home (RESNET-50).

Dataset ATI-λ OSBP SCA SCM STA DAOD OURS
OS OS* OS OS* OS OS* OS OS* OS OS* OS OS*

A → D 79.8 86.8 85.8 85.8 90.1 92.0 88.6 92.8 89.2 91.1 96.0 97.5
A → W 86.4 93.0 76.9 76.6 86.4 87.7 91.9 94.3 90.5 91.9 92.5 93.7
D → A 75.0 81.5 89.4 91.5 81.6 88.4 73.4 74.3 75.4 73.6 85.3 86.0
D → W 91.7 98.6 96.0 96.6 97.9 99.8 96.5 99.5 98.6 100.0 98.4 100.0
W → A 75.8 82.0 83.4 83.1 80.3 82.6 71.3 71.3 75.6 74.7 83.2 83.9
W → D 91.5 99.3 97.1 97.3 98.2 99.3 95.4 100.0 98.6 99.3 98.6 100.0
Average 83.4 90.2 88.0 88.5 89.1 91.6 86.2 88.7 88.0 88.4 92.3 93.5
Ar → Cl 53.1 54.2 53.1 53.3 58.9 59.9 57.0 59.3 55.4 55.3 61.6 62.8
Ar → Pr 68.6 70.4 68.4 69.2 73.4 74.4 67.2 69.5 71.8 72.6 76.6 78.3
Ar → Rw 77.3 78.1 78.0 79.1 79.2 80.2 79.1 81.9 77.6 78.2 83.2 85.0
Cl → Ar 57.8 59.1 57.9 58.2 60.6 61.5 59.1 61.3 59.2 59.1 62.2 62.8
Cl → Pr 66.7 68.3 71.6 72.4 67.5 68.4 63.4 65.9 70.1 70.8 71.0 72.2
Cl → Rw 74.3 75.3 71.4 72.3 74.8 75.8 72.7 75.5 77.0 77.8 77.7 79.0
Pr → Ar 61.2 62.6 59.6 61.0 63.8 64.7 63.8 65.2 65.8 66.7 64.6 65.4
Pr → Cl 53.9 54.1 55.7 56.9 58.1 59.0 56.5 58.6 59.1 60.0 60.0 60.8
Pr → Rw 79.9 81.1 82.1 83.9 77.7 78.7 80.1 82.4 82.2 84.1 81.5 82.9
Rw → Ar 70.0 70.8 66.5 68.2 67.3 68.2 69.3 71.3 70.5 71.3 70.6 71.6
Rw → Cl 55.2 55.4 57.8 59.2 55.8 56.7 57.5 59.2 57.8 58.4 58.8 59.6
Rw → Pr 78.3 79.4 78.6 80.8 77.7 78.6 79.4 82.2 80.6 81.8 81.3 82.8
Average 66.4 67.4 66.7 67.9 67.9 68.8 67.1 69.4 68.9 69.6 70.8 71.9

TABLE V
ACC(OS*) AND ACC(OS) (%) ON PIE.

Dataset ATI-λ OSBP SCA SCM STA DAOD OURS
OS OS* OS OS* OS OS* OS OS* OS OS* OS OS*

P1 → P2 41.9 44.0 64.2 66.6 60.7 60.9 54.2 55.0 56.5 57.3 76.4 78.1
P1 → P3 53.6 56.3 66.4 69.1 65.7 66.0 67.7 68.8 52.2 53.1 75.7 77.4
P1 → P4 64.6 67.9 76.2 80.0 79.5 80.3 81.6 83.6 82.4 85.2 89.6 91.6
P1 → P5 43.3 45.4 49.1 50.2 45.7 45.3 42.4 41.7 46.1 47.3 57.2 58.0
P2 → P1 56.7 59.5 52.9 54.2 63.6 65.2 51.0 51.6 68.1 69.7 81.6 83.9
P2 → P3 53.6 56.3 61.5 63.5 66.9 68.5 58.3 59.0 69.9 71.7 76.5 78.3
P2 → P4 73.5 77.1 90.4 92.9 91.2 93.6 78.6 80.6 88.2 91.2 94.0 96.4
P2 → P5 34.9 36.7 45.1 45.9 45.3 46.0 39.6 39.6 49.4 49.8 51.8 52.6
P3 → P1 66.9 68.4 61.3 61.0 75.2 77.3 69.2 70.7 66.6 68.3 82.7 85.0
P3 → P2 52.4 55.0 64.1 64.6 68.9 70.7 59.5 61.0 68.5 70.4 76.0 78.0
P3 → P4 70.5 74.0 74.7 76.9 86.6 89.1 77.6 79.8 83.9 87.1 84.9 87.2
P3 → P5 44.8 47.1 46.3 46.7 59.7 61.0 46.3 46.7 52.3 53.3 62.8 64.2
P4 → P1 63.7 66.8 67.2 68.7 85.7 86.9 84.4 86.6 84.4 87.1 93.1 95.4
P4 → P2 74.4 78.1 82.2 85.0 90.0 91.3 89.7 92.5 82.4 84.8 93.9 96.2
P4 → P3 58.7 61.7 66.9 67.6 86.0 87.1 81.6 84.4 77.6 80.0 85.1 86.9
P4 → P5 46.2 48.5 61.7 63.8 63.2 63.6 68.8 71.0 59.9 61.3 71.3 72.7
P5 → P1 30.2 23.5 64.2 66.6 54.3 55.7 61.2 62.6 59.2 60.6 62.8 64.3
P5 → P2 34.9 36.7 35.4 35.8 48.8 49.7 49.8 50.0 35.0 34.8 50.2 51.1
P5 → P3 39.9 41.9 45.1 46.3 58.7 60.0 46.5 46.3 44.6 44.4 69.2 70.8
P5 → P4 55.8 58.6 52.2 53.5 71.1 73.0 70.2 71.7 68.6 70.3 80.2 82.4
Average 53.0 55.2 61.4 62.9 68.3 69.6 63.9 65.2 64.8 66.4 75.8 77.5

TABLE VI
ABLATION STUDY ON Office-31

Dataset A → D A → W D → A D → W W → A W → D Avg
OS OS* OS OS* OS OS* OS OS* OS OS* OS OS* OS OS*

BADA 85.8 85.8 76.9 76.6 89.4 91.5 96.0 96.6 83.4 83.1 97.1 97.3 88.0 88.5
BADA+∆ 92.7 93.3 89.8 90.6 81.6 81.7 98.0 99.5 83.6 78.9 98.5 100.0 89.9 90.7
BADA+c 92.2 94.1 87.6 89.0 81.5 84.1 97.7 100.0 80.3 83.4 97.3 100.0 89.5 91.8
BADA+∆+c 94.1 94.6 89.2 89.7 83.2 83.4 98.5 100.0 83.3 81.9 98.6 100.0 90.9 91.7
BADA+∆ε 95.5 97.0 92.6 94.0 82.3 82.6 98.0 99.5 83.4 79.5 98.4 100.0 91.0 92.2
OURS 96.0 97.5 92.5 93.7 85.3 86.0 98.4 100.0 83.2 83.9 98.6 100.0 92.3 93.5
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Fig. 4. Feature visualization on A → D. First row: visualization of target and source features. Blue points indicate source samples. Green points indicate
target known samples. Purple points indicate target unknown samples. Second row: visualization of target samples only.

F. Analysis

1) Ablation Study: It is necessary to conduct the ablation
experiments to demonstrate the effect of each part of our
method. Since our method is based on binary adversarial
domain adaptation (BADA) [15], we introduce open set
difference (∆), ε-open set difference (∆ε), and conditional
adversarial domain adaptation (c) into BADA and construct
ablation experiments as follows: (1) BADA, (2) BADA+∆,
(3) BADA+c, (4) BADA+∆+c, (5) BADA+∆ε and (6) OURS
(i.e., BADA+∆ε+c). Results of ablation experiments are
shown in table VI.

From Table VI, the following facts can be verified: 1) by
comparing BADA, BADA+c, and BADA+∆ε, the accuracy of
BADA is the lowest, which proves that ∆ε and conditional
adversarial domain adaptation are all useful for UOSDA; 2)
the results of BADA+∆ε and OURS is higher than BADA+∆
and BADA+∆+c respectively, which adequately indicates that
∆ε can overcome the issue caused by ∆. The method with
∆ε can establish a boundary between known and unknown
classes, preventing the negative transfer caused by unknown
classes during the process of distribution alignment; 3) the
accuracies of BADA+∆+c and OURS are higher than those
of BADA+∆ and BADA+∆ε respectively, which proves that
the novel conditional adversarial domain adaptation effectively
elevates the performance of our method.

2) Visualization: In order to intuitively demonstrate the
effect of our method, we visualize the 2D features of source
and target by t-SNE [47], which is an effective dimensionality
reduction method. Fig. 4 shows the effect of domain adaptation
of baselines and our method. Clearly, our method outperforms

baselines in separating unknown data and aligning distribu-
tions of two domains.

From the first row of Fig. 4, OSBP, SCA SCM and STA
cannot adequately align distributions of source and target
domains, which is because they cannot distinguish unknown
data from known data. As a result, the distribution of unknown
classes gets closer to the distribution of known classes. How-
ever, our method, in Fig. 4(d), can effectively recognize un-
known data and make the distribution of unknown classes far
from the distribution of known classes. The second row shows
the feature distribution of the target data only. Compared to
baselines, it is clear that our method can effectively recognize
unknown data and align distributions.

3) Analysis on ε-open Set Difference: In this paper, there
are two critical parameters in ε-open set difference: ε and
α. Theoretically, ε is a variable related to distributional dis-
crepancy. According to Eq. (18), distributional discrepancy
is greater than the negative open set difference. We hope
that distributional discrepancy is close to 0. Thus an intuitive
thought is to set ε as 0. Moreover, α is equal to 1 − πtK+1,
but πtK+1 is an unknown value and is hard to estimate in
a batch for a deep method. Therefore, we conduct related
experiments to demonstrate the effect of these two parameters
for our method. Fig. 5 shows the effect of parameters on A
→ W of Office-31 (first column), Ar → Cl of Office-Home
(second column) and P4 → P2 (third column).

The influence of ε is shown in the first and second rows.
On the task A → W, the accuracy of OS is decreasing with
the increase of ε, which is because ε is related to distribution
alignment. The bigger ε means the smaller value of the lower
bound of distributional discrepancy. However, it is worth
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Fig. 5. Parameter analyses w.r.t. ε and α. Experiments are conducted on A → W of Office-31 (first column), Ar → Pr of Office-Home (second column) and
P4 → P2 (third column). First row: the value of ∆ε or ∆ (“no ε” indicates ∆). Second row: The accuracy of OS w.r.t. ∆ε and ∆ when ε changes. Third
row: The accuracy of OS, OS*, and UNK w.r.t. α. The losses in (a), (b) and (c) are the values of ∆ or ∆ε. It is worth noting that: The line of “ε=0.2”
coincides with the line of “no ε” in (a) and (d); The line of “ε=0.4” coincides with the line of “no ε” in (b) and (e); The lines of “ε=0.75” and “ε=1” coincide
with the line of “no ε” in (c) and (f).

noting that the value of OS does not change, which is because
the domain gap between A and W is small. Therefore the effect
of ∆ε is same as ∆ when ε greater than a constant. In Figs.
5(a) and 5(d), the line of ε equal to 0.2 coincides with the line
of “no ε” (i.e. ∆).

On task Ar → Cl, there is a large domain gap. In the same
way as task A→ W, The bigger ε, the smaller OS. The line of
“ε=0.4” coincides with the line of ∆, which also indicates that
the distributional discrepancy of Office-Home is larger than
Office-31. On task P4 → P2, the domain gap is also large.
These line “ε=0.75” and “ε=1.0” coincide with the line of ∆.
It is worth noting that the increasing tendency of the yellow
line and the green line after the turning point in Fig. 5(e),
owes to the effect of ∆ε and it prevents the problem caused
by open set difference.

The effect of parameter α is shown in the third row. The
dash line denotes the accuracy of the OSBP. From Figs. 5(c),
5(f) and 5(i), we can conclude that: When we choose a large
α, the classifier tends to recognize data as unknown, which
leads to the increase of accuracy on unknown classes (UNK1)
and the decrease of accuracy on known classes (OS*). When
we choose a small α, the classifier tends to distinguish data
as known data. That is why the classifier achieves a good
performance on OS* and a bad performance on UNK. On Fig.
5(g), it is easy to observe that our method can outperform

1UNK is a metric to evaluate the accuracy on unknown target data [15].

the best baselines when α ∈ [1.0, 1.6]. So we recommend
to set α in range of [1.0, 1.6] on Office-31. Similarly, the
recommendation parameter range is [1.0, 1.4] and [1.0, 1.6] on
Office-Home and PIE respectively. Thus we recommend to set
α in range of [1.0, 1.4].

VII. CONCLUSION AND FUTURE WORK

In this paper, we tackled a challenging problem called unsu-
pervised open set domain adaptation (UOSDA). We proposed
a practical theoretical bound for UOSDA, which contains
an effective risk estimator (∆ε) to evaluate the risk on data
with unknown classes. Furthermore, we proposed a DNN-
based UOSDA method under the guidance of the proposed
theoretical bound. The method can accurately estimate the risk
of the classifier on data with unknown classes via ∆ε and
adequately align the distributions of data with known classes
via a novel open-set conditional adversarial training strategy.
Experiments on several benchmark datasets demonstrated that
our method significantly outperforms state-of-the-art UOSDA
methods.

In the future, we aim to investigate a more challenging
problem called universal domain adaptation [48], which con-
tains unknown classes in both source and target domains. This
setting is a more general one and includes UCSDA, UOSDA,
and partial domain adaptation [49] as its special cases.
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