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Abstract
In this paper, we present a memory-augmented al-
gorithm for anomaly detection. Classical anomaly
detection algorithms focus on learning to model
and generate normal data, but typically guarantees
for detecting anomalous data are weak. The pro-
posed Memory Augmented Generative Adversar-
ial Networks (MEMGAN) interacts with a mem-
ory module for both the encoding and generation
processes. Our algorithm is such that most of
the encoded normal data are inside the convex
hull of the memory units, while the abnormal data
are isolated outside. Such a remarkable property
leads to good (resp. poor) reconstruction for nor-
mal (resp. abnormal) data and therefore provides
a strong guarantee for anomaly detection. De-
coded memory units in MEMGAN are more inter-
pretable and disentangled than previous methods,
which further demonstrates the effectiveness of
the memory mechanism. Experimental results on
twenty anomaly detection datasets of CIFAR-10
and MNIST show that MEMGAN demonstrates
significant improvements over previous anomaly
detection methods.

1. Introduction
Anomaly detection is the identification of abnormal events,
items or data. It has been widely used in many fields,
e.g., fraud detection (Phua et al., 2010), medical diagno-
sis (Schlegl et al., 2017) and network intrusion detection
(Garcia-Teodoro et al., 2009). Anomaly detection usually
is formulated as an unsupervised learning problem where
only normal data are available for training while anomalous
data are not known a priori (in this paper, “normal” does
not refer to Gaussian distributions unless specified). Deep
learning (Goodfellow et al., 2016; LeCun et al., 2015) has
achieved great success in fields like computer vision (He
et al., 2016) and natural language processing (Devlin et al.,
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2018). Efforts have been made to apply deep learning to
anomaly detection (Erfani et al., 2016; Schlegl et al., 2017;
Chen et al., 2017; Ruff et al., 2018) and have shown en-
couraging results. However, most of existing methods that
rely on deep generative models (Goodfellow et al., 2014)
focus on modeling the normal data distribution using recon-
struction heuristics or adversarial training. The proposed
optimization objectives are not specifically designed for
anomaly detection or the reasons why the proposed models
can detect anomalies are ambiguous. Memory-augmented
neural network (MANN) is an emerging and powerful class
of deep learning algorithms in which the capabilities of net-
works are extended by external memory resources with an
attention mechanism (Graves et al., 2014; Santoro et al.,
2016a; Kim et al., 2018). Only recently has MANN been
applied to anomaly detection; for example, MEMAE (Gong
et al., 2019) presents a memory augmented autoencoder. Al-
though MANN has shown encouraging results in anomaly
detection, theoretical reasons why memory augmentation
helps anomaly detection are still unclear.

In this paper, we propose a memory augmented generative
adversarial networks (MEMGAN) for anomaly detection.
MEMGAN is built upon a bidirectional GAN that includes
a generator G, encoder E, and discriminator Dxz . MEM-
GAN also explicitly maintains an external memory module
to store the features of normal data. The key contribution is
our definition of the loss function which includes a memory
projection loss and mutual information loss. As a result,
the memory units form a special geometric structure. After
training, the encoder maps the normal data to a convex set
in the encoded space, and our loss functions ensure that
memory modules lie on the boundary of the convex hull of
the encoded normal data. This results in high quality mem-
ory modules, that tend to be disentangled and interpretable
compared to previous algorithms. In our benchmarks, this
leads to higher quality memory modules and much lower
detection error.

We conduct detailed experimental and theoretical analysis
on how and why MEMGAN can detect anomalies. Theo-
retical analysis shows that the support of encoded normal
data is a convex polytope and the optimal memory units
are the vertices of the polytope (assuming hyperparameters
for the network are chosen appropriately). This conclusion
agrees with a remarkable observation that the encoded nor-
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mal data reside inside the convex hull of the memory units.
The boundary also ensures that encoded abnormal data lie
outside the convex polytope. Visualization of decoded mem-
ory units demonstrates that MEMGAN successfully capture
key features of the normal data. Decoded memory units of
MEMGAN display significantly higher quality than previ-
ous memory augmented methods.

We evaluate MEMGAN on twenty real-world datasets. The
experiments on MNIST show that MEMGAN achieves sig-
nificant and consistent improvements as compared to base-
lines (including DSVDD). On CIFAR-10 datasets, MEM-
GAN shows performance on par with DSVDD and superior
to the other models we tested. Ablation study further con-
firms the effectiveness of MEMGAN.

2. Related Work
One major type of anomaly detection algorithms is genera-
tive models (autoencoders, variational autoencoders, GANs,
etc.) that learn the distribution of normal data. Genera-
tive Probabilistic Novelty Detection (GPND) (Pidhorskyi
et al., 2018) adopts an adversarial autoencoder to create
a low-dimensional representation and compute how likely
one sample is anomalous. In (An & Cho, 2015) researchers
train a variational autoencoder obtain the reconstruction
probability through Monte-Carlo sampling as the anomaly
score. Anomalyn Detection GAN (ADGAN) (Schlegl et al.,
2017) trains a regular GAN model on normal data and
projects data back to latent space by gradient descent to
compute the reconstruction loss as anomaly score function.
Consistency-based anomaly detection (ConAD) (CONAD)
(Nguyen et al., 2019) employs multiple-hypotheses net-
works to model normal data distributions. Regularized
Cycle-Consistent GAN (RCGAN) (Yang et al., 2020) in-
troduces a regularized distribution to bias the generation of
the bidirectional GAN towards normal data and provides
theoretical support for the guarantee of detection.

Other representative anomaly detection algorithms include
One-Class Support Vector Machines (OC-SVM) (Schölkopf
et al., 2000) that models a distribution to encompasses nor-
mal data, and those are out-of-distribution are labeled as
abnormal. Researchers also utilizes the softmax score distri-
butions from a pretrained classifier by temperature scaling
and perturbing inputs (Liang et al., 2017). Deep Support
Vector Data Description (DSVDD) jointly trains networks
to extract common factors of variation from normal data to-
gether, together with a data-enclosing hypersphere in output
space (Ruff et al., 2018).

Memory augmented neural networks have been proved ef-
fective in many applications, e.g., questions answering,
graph traversal tasks and few-shot learning (Graves et al.,
2016; Santoro et al., 2016b). In such models, neural net-

works have access to external memory resources and interact
with them by reading and writing operations (Graves et al.,
2014) to resemble Von Neumann architecture in modern
computers. Recently, Gong et al. (2019) proposes to com-
bine memory mechanism and autoencoders for anomaly
detection. However, as mentioned in the introduction, the
guarantees for anomaly detection are weak for most of the
models above, or their training objective functions are not
specifically designed for anomaly detection.

3. Problem Statement
Anomaly detection refers to the task of identifying anoma-
lies from what are believed to be normal. The normal data
can be described by a probability density function q(x)
(Yang et al., 2020). In the training phase, we want to learn
an anomaly score function A(x) given only normal data.
The function A(x) is expected to assign larger score for
anomalous data than normal ones.

Deep generative models are capable of learning the normal
data distribution q(x), e.g., generative adversarial networks
(GANs) proposed in Goodfellow et al. (2014). GAN trains
a discriminator D and a generator G such that D learns
to distinguish real data sampled using q(x) from synthetic
data generated by G using a random distribution p(z). The
minmax optimization objective of GANs is given as:

min
G

max
D

V (D,G) = Ex∼q(x)[logD(x)]

+ Ez∼p(z)[log(1−D(G(z)))]
(1)

where p(z) denotes a random distribution such as uniform
distributions. As shown in Goodfellow et al. (2014), the
optimal generator distribution p(x) matches with the data
distribution, i.e., p(x) = q(x).

In order to provide a convenient projection from the data
space to the latent space, bidirectional GAN proposed in
Dumoulin et al. (2016) and Donahue et al. (2016) includes
an encoder E network with the following optimization ob-
jective:

min
E,G

max
Dxz

VALI(Dxz, G,E) = Ex∼q(x)[logDxz(x, E(x))]

+ Ez∼p(z)[log(1−Dxz(G(z), z))] (2)

where Dxz denotes a discriminator with dual inputs data
x and the latent variable z. Its output is the probabil-
ity that x and z are from the real data joint distribution
q(x, z). ALI attempts to match the generator joint distribu-
tion q(x, z) = q(x)q(z|x) and the data joint distribution
p(x, z) = p(z)p(x|z). It follows that

Theorem 1. The optimum of the encoder, generator and
discriminator in ALI is a saddle point of Eq. (2) if and only
if the encoder joint distribution matches with the generator
joint distribution, i.e., q(x, z) = p(x, z).
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4. Methodology
4.1. Memory Augmented Bidirectional GAN

The fundamental building block for MEMGAN is the bidi-
rectional GAN proposed in ALI. Besides the bidirectional
projection in ALI, MEMGAN also maintains an external
memory M ∈ Rn×d, where n represents the number of
memory slots and d denotes the dimension of memory unit.
In other words, each row of the memory matrix M is a
memory unit.

Specifically, the adversarial loss in MEMGAN is as follows:

min
E,G

max
Dxz

VMEM(Dxz, G,E) = Ex∼q(x)[logDxz(x, E(x))]

+ Ez∼M [log(1−Dxz(G(z), z))] (3)

where z ∼M denotes sampling the latent variable z as a
linear combination of the memory units inM with positive
coefficients, i.e., z is a convex combination of rows inM .
Note that this step is distinct from classical GANs that
latent variables are sampled from a random distribution, e.g.
Gaussian distribution. We will see in the next section that
sampling from memory units confines the encoded normal
data in a convex polytope and makes memory units more
interpretable, which leads to strong guarantee for anomaly
detection.

4.2. Cycle Consistency

The cycle consistency is a desirable property in bidirectional
GANs (Li et al., 2017) and data translation (Zhu et al., 2017).
It requires that a data example x matches with its recon-
struction G(E(x)), which can be fulfilled by minimizing
the norm of difference between x and its reconstruction
(Zhu et al., 2017) or by adversarial training through a dis-
criminator (Li et al., 2017; Yang et al., 2020). In MEMGAN,
the reconstruction error will be used as the anomaly score.

In order to guarantee a good reconstruction for normal data
x ∼ q(x), MEMGAN enforces the cycle consistency by
minimizing the reconstruction error. One key difference
is instead of directly generating from the encoded E(x),
MEMGAN applies a linear transformation in the latent
space using an attention algorithm with the external memory
M . The cycle consistency loss in MEMGAN is given as
follows:

lcyc = Ex∼q(x)||x−G(P (E(x)))||2 (4)

where P denotes a “projection” of the encoded E(x) onto
the subspace spanned by memory units (the rows of M ).
The exact equation is

P (z) =MTα (5)

with α = softmax(Mz).

The reconstruction loss is also used to update memory units
such that the features of normal data are designed to mini-
mize the reconstruction error.

4.3. Memory Projection Loss

To ensure that the linear combinations of memory units can
represent the encodings of normal data, we include a third
optimization objective, the memory projection loss:

lproj = Ex∼q(x)‖E(x)− P (E(x))‖2 (6)

As explained later, the memory projection loss together with
mutual information loss below constitutes a strong guarantee
for anomaly detection. We also conduct an ablation study
in Section 7 to show that without lproj, memory units tend
to cluster around a sub-region in the latent space and fail to
enclose the encoded normal data.

4.4. Mutual Information Loss

In order to learn disentangled and interpretable memory
units and maximize the mutual information between mem-
ory units and the normal data, we introduce the mutual
information loss similar to InfoGAN (Chen et al., 2016).
First we randomly sample a vector α, with positive coeffi-
cients and such that the sum of its elements is 1 (by applying
softmax to a random vector); then we use α to compute a
linear combination of the memory units, denoted as z. z is
mapped to data space by the generator and encoded back
as z′ = E(G(z)). z′ is then projected onto the memory
units to compute new projection coefficients α′. Finally,
the mutual information loss is defined as the cross entropy
between α′ and α:

z =MTα

z′ = E(G(z))

α′ = softmax(Mz′)

lmi = −
n∑
i=1

αi logα
′
i

(7)

where n is the number of memory units. lmi essentially
ensures that the structural information is consistent between
a sampled memory information z and the generated G(z).

We provide the complete and detailed training process of
MEMGAN in Algorithm 1. The memory matrix M is
optimized as a trainable variable and its gradient is com-
puted from lcyc, lproj and lmi. Note in order to avoid the
vanishing gradient problem (Goodfellow et al., 2014), the
generator is updated to minimize − logDxz(G(z), z) in-
stead of log(1−Dxz(G(z), z). After MEMGAN is trained
on normal data, in the test phase, the anomaly score for x is
defined as

A(x) = ‖x−G(P (E(x)))‖2 (8)
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Algorithm 1 The training process of MEMGAN
Input: a set of normal data x, the encoder E, the gen-
erator G, the discriminator Dxz and the memory matrix
M .
for number of epochs do

for k steps do
Sample a minibatch of m normal data from x.
Sample a minibatch of m random convex combina-
tion of memory units z.
Update the discriminator using its stochastic gradi-
ent:

∇θDxz

1

m

m∑
i=1

[− logDxz(x
(i), E(x(i)))

− log(1−Dxz(G(z(i)), z(i))]

Compute l(i)cyc and l(i)proj with x(i), compute l(i)mi with
z(i) for i = 1 . . .m.
Update the Encoder E using its stochastic gradient:

∇θG
1

m

m∑
i=1

[logDxz(x
(i), E(x(i)))+l(i)cyc+l

(i)
proj+l

(i)
mi ]

Update the GeneratorG using its stochastic gradient:

∇θG
1

m

m∑
i=1

[− logDxz(G(z
(i)), z(i)) + l(i)cyc + l

(i)
mi ]

Update the MemoryM using its stochastic gradient:

∇θM
1

m

m∑
i=1

(l(i)cyc + l
(i)
proj + l

(i)
mi )

end for
end for

This function measures how well an example can be re-
constructed by generating from E(x)’s projection onto the
subspace spanned by the memory units. In the next section,
we will further explain the effectiveness of this anomaly
score.

5. The Mechanism of MEMGAN
Previous literature on anomaly detection mostly focus on
demonstrating the effectiveness of models by showing re-
sults on test dataset, while efforts on why and how the
proposed algorithms work are lacking. In this section, we
will present an explanation for the mechanism of MEM-
GAN. First, we will show that the memory units obtained
by MEMGAN successfully capture high quality latent rep-
resentations of the normal data. Second, by visualizing the

memory units and encoded normal & abnormal data with a
2D projection, we find that the memory units form a convex
hull of the normal data and separate them from abnormal
data. This property provides a strong guarantee for anomaly
detection.

5.1. What Do Memory Units Memorize?

After training MEMGAN on normal data, one natural ques-
tion to ask is what exactly do the memory units store. In
Fig. 1, we visualize the decoding of memory units, i.e., in-
putting the rows of the memory matrixM to the generator
after training on images of a digit from MNIST dataset
(i.e. treat each digit as the normal class). Results from
MEMGAN are shown in the first and second row, as well
as the first two sub-figures in the third row. Each sub-figure
contains eight samples of 50 decoded memory units due
to the space limit. Examples of all 50 decoded units are
available in the supplementary material. The last sub-figure
in the third row is directly taken from the original paper of
MEMAE (a previous memory augmented anomaly detec-
tion algorithm) which presented four decoded memory units
trained on the digit 9.

The memory units from MEMGAN successfully learn latent
representations of normal data. The generated images are
highly distinct, recognizable and diverse. In contrast, the
decoded memory vectors of MEMAE are vague, even the
background which should be dark is noisy with gray dots.
The superior memory mechanism of MEMGAN should be
attributed to our novel adversarial loss and mutual infor-
mation loss. The former one guarantees that the generated
results from the memory units are indistinguishable from
normal data judged by Dxz . The latter one makes the mem-
ory units distinct from one another that prevents slots from
memorizing the same thing and spread along the boundary
of the convex polytope containing the encoded normal data.
The diversity of decoded memory units and the topological
property of the memory units space confirm this.

5.2. Topological Property of the Latent Space in
MEMGAN

Now, we scrutinize the latent space where the memory units
M live. By optimizing Eq. (3), we have the following
theorem:

Theorem 2. Assume the dimension of the latent variables d
and the number of memory units n are large enough. Since
z is a convex combination of rows in M , the support of
the z distribution is a convex polytope S in Rd, where the
vertices of S are the memory units. The support of the
encoded normal data distribution E(x) is also S.

Proof. Because z is convex combination of memory units,
the support of z is a convex polytope. As claimed in The-
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Decoded memory units by 
MEMAE (not ours) on digit 9

Figure 1. Examples of decoded memory units on MNIST dataset. The sub-figures in the first and second rows, as well as the first two
pictures in the third rows are of MEMGAN (ours). The last picture in the third row is directly taken from the original paper of MEMAE
(a baseline model also using memory augmentation). The decoded memory units from MEMGAN display more disentangled and
recognizable digits than MEMAE.

orem 1, at the optimality of Eq. (2), the joint distribution
p(x, z) and q(x, z) matches. Therefore the marginal dis-
tributions, including the supports, should also match, i.e.,
E(x) and z.

Given a fixed encoder and generator, consider the mem-
ory units optimized using the definition of projection loss
and mutual information loss. As mentioned previously, the
memory projection loss in Eq. (6) ensures that the mem-
ory units can effectively represent the encoded normal data.
The mutual information loss ensures the sampled memory
vectors are within the support of E(x). Denote the support
of E(x) as S. For the purpose of our theoretical analysis,
we therefore replace the mutual information loss by the
term

∫
α
1−1S(

∑
iαimi)dα which expresses the fact that

points inside the convex hull of the memory are mapped
to the normal data. Note that α > 0 and

∑
iαi = 1. 1S

denotes the indicator function of S. We then prove the
following
Proposition 1. For the convex hull S of a set of zj points,
the optimal memory units m that minimize the following
function (α > 0 and

∑
iαi = 1) are the vertices of S:

min
m

∫
α

1− 1S(
∑
i

αimi)dα

+
∑
j

min
α
‖
∑
i

αimi − zj‖2
(9)

assuming the number of rows inM is not smaller than the
number of vertices.

Proof. If m are the vertices of the convex hull, Eq. (9)
reaches its global minimum value 0. The solution is unique,

Figure 2. The orange dots denote encoded normal data for training
bounded in [−1, 1]2. The red dots represent obtained memory
units by optimizing Eq. (9). The memory units approximate with
the vertices of the convex hull of encoded data.

since perturbing the memory units away from the convex
set S causes the first term to be positive. Perturbing the
memory units inside S (or away from the vertices, on the
boundary) causes the second term to be non-zero.

We also ran numerical experiments that confirm the above
proposition. As shown in Fig. 2, given a set of encoded nor-
mal data (orange) bounded in [−1, 1]2 ∈ R2, the obtained
memory units (red) by optimizing Eq. (9) are approximately
the vertices of convex hull.

Based on the analysis above, we can conclude that at op-
timality for Eq. (9), E(x) lies within a convex polytope
in the latent space, whose vertices are the memory units.
In other words, the training phase of MEMGAN is learn-
ing a low dimensional linear representation of the normal
data, as well as the memory units which are the vertices of
the convex hull. In Fig. 3, we visualize the memory units,
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Figure 3. Projections of memory units, normal data and abnormal data onto 2D for MNIST dataset. The memory units (red) form a convex
hull for the normal data (orange) and separates them from the abnormal data (blue). This “isolation” property yields a strong guarantee for
anomaly detection of MEMGAN.

encoded normal and abnormal data on MNIST dataset on
2D by applying t-SNE (T-distributed Stochastic Neighbor
Embedding) algorithm (Maaten & Hinton, 2008). We find
that the memory units enclose most of the encoded normal
data and lie near the boundary of the cluster of normal data.
Meanwhile the memory units are able to separate the normal
from the abnormal data. This figure is consistent with the
theoretical results although making stronger conclusions is
difficult because of the non-linearity in the low-dimensional
t-SNE projection. In particular, due to the t-SNE visualiza-
tion, points on the boundary may appear inside the domain.

5.3. Detection of Anomalous Data

Abnormal data are separated from normal ones by resid-
ing outside of the convex hull, which eventually leads to
larger reconstruction losses for anomalies in the data space
(compared with normal data). This is confirmed by our
theoretical result and partially illustrated by Fig. 3. Con-
sider an abnormal data xabn, the projection of its encoding
P (E(xabn)) will be inside of the convex hull of the memory
units, while E(xabn) is outside of it. Therefore, the differ-
ence between G(P (E(xabn))) and xabn is expected to be
large. In contrast, for a normal data xnor ∼ q(x), since
E(xnor) are inside the convex hull of memory units, we
expect a smaller difference (compared with abnormal data)
betweenG(P (E(xnor))) and xnor. This distinction provides
a strong guarantee for anomaly detection. This claim is also
validated by the superior performance of MEMGAN.

6. Experiments
In this section, we evaluate MEMGAN on MNIST and
CIFAR-10 datasets. We test on computer vision datasets
since images are high dimensional data that can better eval-
uate MEMGAN’s ability. We create anomaly detection
datasets from image classification benchmarks by regarding
each class as normal for each dataset. The evaluation metric
is the area under a receiver operating characteristic curve
(AUROC). We first start with the introduction of baseline

models.

6.1. Baseline Models

In our experiments with real-world dataset, we compare
MEMGAN with the following baseline models:

Isolation Forests (IF) “isolates” data by randomly selecting
a feature and then randomly selecting a split value between
the maximum and minimum values of the selected feature to
construct trees (Liu et al., 2008). The averaged path length
from the root node to the example is a measure of normality.

Anomaly Detection GAN (ADGAN) trains a DCGAN on
normal data and compute the corresponding latent variables
by minimizing the reconstruction error and feature match-
ing loss using gradient descent (Schlegl et al., 2017). The
anomaly score is the reconstruction error.

Adversarially Learned Anomaly Detection (ALAD)
trains a bidirectional GAN framework with an extra dis-
criminator to achieve cycle consistency in both data and
latent space (Houssam Zenati, 2018). The anomaly score is
the feature matching error.

Deep Structured Energy-Based Model (DSEBM) trains
deep structured EBM with a regularized autoencoder (Zhai
et al., 2016). The energy score is used as the anomaly score
function.

Deep Autoencoding Gaussian Mixture Model
(DAGMM) trains a Gaussian Mixture Model for
density estimation together with a encoder (Zong et al.,
2018). The probability given by the Gaussian mixture are
defined as the anomaly score.

Deep Support Vector Data Description (DSVDD) mini-
mizes the volume of a hypersphere that encloses the encoded
representations of data (Ruff et al., 2018). The Euclidean
distance of the data the center of hypersphere is regarded as
the anomaly score.

One Class Support Vector Machines (OC-SVM) is a
kernel-based method that learns a decision function for nov-
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Table 1. Experiment results on MNIST dataset by treating each class as the normal one, evaluated by AUROC. Performance with highest
mean is in bold. MEMGAN achieves the highest mean performance in seven out of ten experiments. MEMGAN also has the highest
average performance on ten datasets. Standard deviations are also included.

Normal OCSVM DCAE IF ADGAN KDE DSVDD MEMAE MEMGAN

0 98.6±0.0 97.6±0.7 98.0±0.3 96.6±1.3 97.1±0.0 98.0±0.7 99.3±0.1 99.3±0.1
1 99.5±0.0 98.3±0.6 97.3±0.4 99.2±0.6 98.9±0.0 99.7±0.1 99.8±0.0 99.9±0.0
2 82.5±0.1 85.4±2.4 88.6±0.5 85.0±2.9 79.0±0.0 91.7±0.8 90.6±0.8 94.5±0.1
3 88.1±0.0 86.7±0.9 89.9±0.4 88.7±2.1 86.2±0.0 91.9±1.5 94.7±0.6 95.7±0.4
4 94.9±0.0 86.5±2.0 92.7±0.6 89.4±1.3 87.9±0.0 94.9±0.8 94.5±0.4 96.1±0.4
5 77.1±0.0 78.2±2.7 85.5±0.8 88.3±2.9 73.8±0.0 88.5±0.9 95.1±0.1 93.6±0.3
6 96.5±0.0 94.6±0.5 95.6±0.3 94.7±2.7 87.6±0.0 98.3±0.5 98.4±0.5 98.6±0.1
7 93.7±0.0 92.3±1.0 92.0±0.4 93.5±1.8 91.4±0.0 94.6±0.9 95.4±0.2 96.2±0.2
8 88.9±0.0 86.5±1.6 89.9±0.4 84.9±2.1 79.2±0.0 93.9±1.6 86.9±0.5 93.5±0.1
9 93.1±0.0 90.4±1.8 93.5±0.3 92.4±1.1 88.2±0.0 96.5±0.3 97.3±0.2 95.9±0.1

Average 91.3 89.7 92.3 91.4 87.0 94.8 95.2 96.5

Table 2. Anomaly detection on CIFAR-10 dataset. Performance with highest mean is in bold. In three out of ten datasets, MEMGAN has
the highest performance. MEMGAN achieves the highest (together with DSVDD) average performance on all ten datasets.

Normal DSVDD DSEBM DAGMM IF ADGAN ALAD MEMAE MEMGAN

airplane 61.7±4.1 41.4±2.3 56.0±6.9 60.1±0.7 67.1±2.5 64.7±2.6 66.5±0.9 73.0±0.8
auto. 65.9±2.1 57.1±2.0 48.3±1.8 50.8±0.6 54.7±3.4 38.7±0.8 36.2±0.1 52.5±0.7
bird 50.8±0.8 61.9±0.1 53.8±4.0 49.2±0.4 52.9±3.0 67.0±0.7 66.0±0.1 62.1±0.3
cat 59.1±1.4 50.1±0.4 51.2±0.8 55.1±0.4 54.5±1.9 59.2±1.1 52.9±0.1 55.7±1.1

deer 60.9±1.1 73.3±0.2 52.2±7.3 49.8±0.4 65.1±3.2 72.7±0.6 72.8±0.1 73.9±0.9
dog 65.7±0.8 60.5±0.3 49.3±3.6 58.5±0.4 60.3±2.6 52.8±1.2 52.9±0.2 64.7±0.5
frog 67.7±2.6 68.4±0.3 64.9±1.7 42.9±0.6 58.5±1.4 69.5±1.1 63.7±0.4 72.8±0.7
horse 67.3±0.9 53.3±0.7 55.3±0.8 55.1±0.7 62.5±0.8 44.8±0.4 45.9±0.1 52.5±0.5
ship 75.9±1.2 73.9±0.3 51.9±2.4 74.2±0.6 75.8±4.1 73.4±0.4 70.1±0.1 74.1±0.3
truck 73.1±1.2 63.6±3.1 54.2±5.8 58.9±0.7 66.5±2.8 39.2±1.3 38.1±0.1 65.6±1.6

Average 64.8 60.4 54.4 55.5 61.8 59.3 56.5 64.8

elty detection (Schölkopf et al., 2000). It classifies new data
as similar or different to the normal data.

Kernel Density Estimation (KDE) models the normal data
probability density function q(x) in a non-parametric way
(Parzen, 1962). The anomaly score can be the negative of
the learned data probability.

Deep Convolutional Autoencoder (DCAE) trains a
regular autoencoder with convolutional neural network
(Makhzani & Frey, 2015) on normal data. The anomaly
score is defined as the reconstruction error.

Memory Augmented Autoencoder (MEMAE) trains an
autoencoder with an external memory (Gong et al., 2019).
The input to the decoder is a sample of memory vectors.
During training, the weight coefficients are sparsified by a
threshold.

6.2. MNIST Dataset

We test on the MNIST dataset. Ten different datasets are
generated by regarding each digit category as the normal
class. We use the original train/test split in the dataset. The
training set size for one dataset is around 6000. MEMGAN
is trained on all normal images in the training set for one
class. The evaluation metrics is area under the receiver op-
erating curve (AUROC), averaged on 10 runs. The number
of memory units is n = 50. The size of one memory unit is
d = 64. We also explore the effects of number of memory
units on the performance on Section 7. The learning rate is
between 10−5 and 10−4, varying between different classes.
The number of epochs is 7. The configurations of neural
networks can be found in the supplementary materials.

MEMGAN shows superior performance compared with all
other models, achieving highest mean in seven out of ten
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Table 3. Sensitivity study on the number of units n tested on
MNIST dataset (class 0, 1 and 5). MEMGAN does not show
significant sensitivity to n.

n 25 50 100 200

0 99.2±0.1 99.3±0.1 99.1±0.1 99.2±0.1
1 99.7±0.0 99.9±0.0 99.8±0.0 99.8±0.0
5 93.6±0.1 93.6±0.3 93.2±0.2 93.7±0.9

classes. MEMGAN also has the best highest average AU-
ROC of ten experiments. MEMGAN clearly outperforms
MEMAE and DSVDD in terms of overall performance.

6.3. CIFAR-10 Dataset

Similar to the experimental settings in MNIST, we also test
MEMGAN on CIFAR-10. Each image category is regarded
as the normal class to generate ten distinct datasets. The
size of a training dataset is 6000. The number of memory
units are chosen to be 100. The size of one memory unit
is 256. The learning rate is between 5 · 10−5 and 10−4,
varying between different classes. The model is trained for
10 epochs. The experiments on MINST and CIFAR-10 are
both conducted on a GeForce RTX 2080. The configura-
tions of neural networks are specified in the supplementary
material.

Overall, MEMGAN’s performance is on a par with previous
state-of-the-art models. MEMGAN achieves the highest per-
formance in three out of ten classes and the highest average
performance (together with DSVDD). Compared with previ-
ous GAN based models (ADGAN and ALAD), MEMGAN
exhibits superior performance. Notably MEMGAN out-
performs another memory augmented model MEMAE by
significant margins. MEMGAN also shows great advantage
over non-deep-learning baselines.

7. Discussion
Ablation study on the memory projection loss. We test
with and without the memory projection loss in Eq. (6), and
then visualize the data and memory units in Fig. 4. Without
the memory projection loss, the memory units tend to cluster
together in an area with high density of normal data. In
contrast, with the memory projection loss, the memory units
are more evenly distributed in the latent space and their
convex hull covers most of the encoded normal data. This
observation again confirms the effectiveness of the memory
projection loss.

Sensitivity Study on Number of Memory Units. We test
the performance sensitivity of MEMGAN with respect to
the number of memory units. Results in Table 3 show that

w/o the projection loss

with the projection loss

Figure 4. Projections of memory units and data examples with
(lower) and without (upper) the memory projection loss. The
convex hull of memory units no longer contains the normal data
without the memory projection loss.

MEMGAN is robust to different number of memory units.
This means that MEMGAN can effectively learn memory
units with different number of memory units.

8. Conclusion
In this paper, we introduced MEMGAN, a memory aug-
mented bidirectional GAN for anomaly detection. We pro-
posed a theoretical explanation on MEMGAN’s effective-
ness and showed that trained memory units enclose encoded
normal data. This theory led to the discovery that the en-
coded normal data reside in the convex hull of the memory
units, while the abnormal data are located outside. De-
coded memory units obtained by MEMGAN are of much
improved quality and disentangled compared to previous
methods. Experiments on CIFAR-10 and MNIST further
demonstrate quantitatively as well as qualitatively the supe-
rior performance of MEMGAN.
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