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Abstract— In high-stakes applications of data-driven decision-
making such as healthcare, it is of paramount importance to learn
a policy that maximizes the reward while avoiding potentially
dangerous actions when there is uncertainty. There are two main
challenges usually associated with this problem. First, learning
through online exploration is not possible due to the critical
nature of such applications. Therefore, we need to resort to
observational datasets with no counterfactuals. Second, such
datasets are usually imperfect, additionally cursed with missing
values in the attributes of features. In this article, we consider
the problem of constructing personalized policies using logged
data when there are missing values in the attributes of features
in both training and test data. The goal is to recommend an
action (treatment) when X̃ , a degraded version of X with missing
values, is observed. We consider three strategies for dealing with
missingness. In particular, we introduce the conservative strategy
where the policy is designed to safely handle the uncertainty due
to missingness. In order to implement this strategy, we need
to estimate posterior distribution p(X|X̃) and use a variational
autoencoder to achieve this. In particular, our method is based
on partial variational autoencoders (PVAEs) that are designed to
capture the underlying structure of features with missing values.

Index Terms— Missing values, observational data, policy con-
struction, variational autoencoder.

I. INTRODUCTION

IN MANY real-life applications, the datasets suffer from
various forms of imperfection. Missingness in the attributes

of the features is one of the most common types of imperfec-
tion [1]. In the problem of constructing policies when there are
missing values, one can simply use an imputation method to
fill out missing attributes and then use one of the many exist-
ing approaches for policy recommendation for the complete
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dataset. However, this does not reflect the uncertainty in the
features. Multiple imputations (MIs) [2] can be used instead
of single imputation. In order to combine the recommended
actions of different imputed instances, one simple idea is to
use the mode of actions, and another possibility is to use a
stochastic policy where the probability of choosing an action
is proportionate to its frequency. In this work, we address this
problem in a systematic way. We suggest using a generative
model, partial VAEs (PVAEs) [3], to estimate the probability
of different imputed features and use these probabilities as the
scores of recommended actions for each particular complete
feature. An advantage of using VAEs is that they make
weak assumptions about the way the data are generated [4],
[5]. Also, it has been shown that they are very effective
in capturing the latent structure and the correlations among
variables in several tasks [3], [6]–[8]. Using posterior prob-
abilities produced by PVAE, we can estimate the action that
maximizes the expected reward. However, simply maximizing
the expected reward, given that we have uncertainty about the
true feature, might be problematic in sensitive applications
such as healthcare since the chosen action that maximizes the
expected reward may impose poor reward in some of the less
likely scenarios, which is not safe. To address this, we suggest
using conservative strategy for policy recommendations. With
this strategy, we consider all likely scenarios (we can choose
how prudent we need to be via a tuning parameter) and
recommend an action that maximizes the reward in the worst
case scenario (a max-min criterion).

The main factor that differentiates the problem of learning
from observational data from supervised learning is that for
each feature, the reward is only known for the prescribed
action, i.e., we do not know the counterfactuals. Another
complicating factor is that the logging policy (also known as
propensity score) is usually not random, and hence, we need
to deal with the selection bias. In addition to these two issues,
in this work, we are considering that features have missing
attributes. Note that, as a consequence of this, we not only
do not know counterfactuals but also no longer have access
to the actual reward for a given action and complete feature.
The goal of this work is to address how one can deal with
the uncertainty imposed from the missing attributes. Note that
there are other sources of uncertainty in the problem that we
are leaving for future work. In particular, here, we are using
inverse propensity score (IPS) for dealing with selection bias—
a method that is known to have high variance (especially when
there are not enough samples for actions with low propensity
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scores) [9], [10]. Here, we are not considering this uncertainty
and implicitly assume that there are enough samples to have
a low variance estimate of the propensity score.

In summary, our contribution is as follows. We propose
using a max-min criterion (conservative strategy) when there
are missing values in the attributes for sensitive applications.
We are proposing a new method based on VAEs for handling
missing attributes in the counterfactual estimation problem.
In one of our methods, we use the VAE to produce a similarity
score to determine how much each of the samples should
contribute to the estimation of the outcome for the sample
in hand. In the other method, we use a conditional VAE setup
to directly estimate the reward via the network. We are using
the IPS for dealing with selection bias.

Notation: We use capital letters for random variables,
lowercase for realization, boldface letters for vectors, and
calligraphic letters for denoting sets.

II. PROBLEM DEFINITION AND RELATED WORK

The feature x is a d-dimensional vector belonging to the set
X = X1 ×X2 ×· · · ×Xd . Here Xi can be a set of continuous,
integer, or categorical variables. Define X̃i = Xi∪{∗}, and now,
the observed vector with missing attributes x̃ belongs to X̃ =
X̃1 ×X̃2 ×· · ·×X̃d . Define binary vector M, which determines
the missingness pattern. Mi = 0 means that the i th element
is observed and Mi = 1 otherwise. We assume missing at
random (MAR) mechanism for missingness. This means that
the probability of a value to be missing may only depend
on the observed data (see [11] for exact definition). For each
observed covariate x̃, we can recommend an action a ∈ A,
where A is a finite set (note that we are not restricting actions
to be binary). The reward R given action a and true feature
x is drawn from an unknown distribution R ∼ �(R|x, a).
We denote E[R|x, a] by θ(x, a). The available datasets are
triplets of (X̃ i , Ai , Ri ):

Dn = {(X̃1, A1, R1), . . . , (X̃n, An, Rn)} (1)

where actions Ai are produced from an unknown logging
policy π0(A|X̃) (also called generalized propensity score).
Note that we assume that the treatments in the dataset are
administered by only observing X̃ , and hence, Fig. 1 represents
the causal graph that describes the problem. The conditional
distribution of these variables is given in (2). With some abuse
of notation, the joint distribution is written as (X, X̃, A, R) ∼
p(X, X̃, A, R)

X ∼ μ(X), X̃ ∼ p(X̃|X),

A ∼ π0(A|X̃), R ∼ �(R|X, A). (2)

We make the two standard assumptions about the
logging policy and rewards in the potential outcome
framework [12], [13].

1) Common Support: π0(a|x̃) > 0 for all a ∈ A and
x̃ ∈ X̃ .

2) Unconfoundedness With Missing Values: For each fea-
ture vector X , the set of possible rewards {R(a)}a∈A
is statistically independent of the taken action:
{R(a)}a∈A ⊥⊥ A|X̃ .

Fig. 1. Causal model for noisy observation problem.

Note that the second assumption can be inferred from our
causal graph. This is required for using generalized propensity
score π0(A|X̃) as we do in Section IV [14]. The missing data
problem frequently arises in machine learning. A motivating
example for our model is the following, assume a medical
setting where at the time that the treatment was administered
to the patient, some of the attributes were missing. This can
happen for various reasons, for example, maybe because of the
different practices across different hospitals (where some of
the attributes are not recorded), lack of certain tests, or maybe
emergency situations to name a few. Note that since the
treatment was administered only by observing X̃ , the causal
model of Fig. 1 holds.

A. Related Work

We are considering the problem of off-policy evaluation
(also known as offline evaluation in bandit literature). Here,
we are using the IPS reweighting method [15], [16] to deal
with selection bias. We are using IPS in a deep network model,
and from this point of view, our work is mostly related to [17],
[18]. Direct method is another method for counterfactual
estimation where the goal is to learn a function, mapping
pairs of actions and features to rewards [19]. A doubly robust
method combines the former two approaches [20], [21]. Note
that none of these works consider missing attributes in the
feature. Hoiles and van der Schaar [22] provided an off-policy
evaluation method based on the regression estimator given
in [23] and [24] when there are missing pairs of action and
feature in the dataset. However, they do not consider missing
attributes in the feature.

The treatment effect estimation problem is another related
line of work, where the goal is to find the causal effect of a cer-
tain intervention (treatment) on the population or on individu-
als. The missing value problem is discussed in this framework
from early on [14], [25]. The use of generalized propensity
scores computed via MIs is suggested in [26]. A summary
of several early works can be found in [27]. More recently,
in [28], matrix factorization has been proposed for estimating
confounders from noisy covariates (also includes covariates
with missing values). In [29], a doubly robust-based method
is suggested. Parbhoo et al. [30] considered missing values
only during test time and suggested a method based on the
information bottleneck technique. Finally, Mayer et al. [31]
suggested a new method based on VAEs (adopted for missing
values), which learns distribution of the latent confounder and
hence assumes a weaker condition than unconfoundedness
with missing values, which is harder to justify. In Section V,
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we compare our results with several of these recent works.
Some of the other notable works in the treatment effect
literature are [6] and [32]–[34]. However, they do not consider
missing values. Thus, we will compare our results with [6],
by imputing the missing values to get complete features and
train and use the algorithm on the complete feature.

The problem studied in this work can be considered as an
offline version of contextual bandits problem [35]–[37]. There
are several works in bandit literature (and more generally in
reinforcement learning) that are related to conservative strat-
egy, e.g., [38]–[40]. The goal in bandit literature is to minimize
regret, and conservatism in this area means guaranteeing that
we are not performing poorly in the process of achieving a
low regret (exploration). This is fundamentally different from
conservatism in our problem, which is due to uncertainty in
the feature.

Our method is based on PVAE introduced in [3]. A few
other VAE-based methods are also suggested for the impu-
tation task [4], [41]. Methods based on PVAE have been
suggested for other tasks. In [42], they use PVAE for hybrid
recommender system, and in [43], they use PVAE for elemen-
twise training data acquisition.

III. STRATEGIES FOR FINDING THE BEST ACTION

In this section, we discuss three different strategies for
action recommendation when there is uncertainty (in our prob-
lem due to missing attributes) in the features. In Section III-A,
we address all three of these strategies using two different
methodologies.

Assume that for feature x, the action that gives the highest
expected reward is denoted by a(x),

a(x) = arg max
a

θ(x, a). (3)

Since we observe x̃, the degraded version of x, there is
uncertainty in the true value of a(x). This uncertainty can be
quantified using the Shannon entropy H (a(X)|X̃ = x̃). The
following proposition presents an expansion for this quantity.

Proposition 1: The uncertainty in the best action a(X)
when we observe X̃ ∼ p(X̃|X) can be expressed as follows:

H (a(X)|X̃) = H (a(X)) − (I (X; X̃) − I (X; X̃|a(X)). (4)

Proof: See the proof in the Appendix.
The first term of the right-hand side, H (a(X)), represents
the uncertainty in a(X) itself. This can be interpreted as the
complexity of the function a(·). For example, in the extreme
case when there is a single action that is always the best
action, then H (a(X)) = 0. The second term I (X; X̃) is
the mutual information between X and X̃ , which represents
the quality of the channel between these two variables, and
this channel is characterized by the conditional distribution
p(X̃|X), i.e., I (X; X̃) shows how much information is passed
to X̃ from X . The last term is subtracting the amount of
information passed to X̃ that is irrelevant to a(X). The
probability that the best algorithm finds a(X) by observing X̃
is given by (1/2H (a(X)|X̃)). A simple example is given in the
Appendix for which we compute these quantities, and we leave
further discussion about fundamental limits to future work.

We reiterate that in this work, we ignore the uncertainty in
the true value of reward, i.e., the uncertainty in the estimation
of θ(x, a). The above analysis holds for any degradation
of the input. In particular, in this work, we are considering
missingness. The three strategies below can be used to deal
with this type of uncertainty.

A. Imputation

The first strategy is to use an imputation algorithm in order
to find the most likely feature x given the observed incomplete
feature x̃, i.e.,

x̂ = arg max
x

p(x|x̃). (5)

Then, the recommended action aI (x̃) can be found by maxi-
mizing the reward for x̂

aI (x̃) = a(x̂) = arg max
a

θ(x̂, a). (6)

B. Maximum Expected Reward

The imputation strategy recommends the action only based
on one possible complete feature. This does not account
for the uncertainty in the true feature. A natural way is to
directly maximize the expected reward instead of finding a
single potential complete feature. Assuming that attributes are
discrete and |X | is finite (the summation below should be
replaced with an integral if this is not the case), the expected
reward when x̃ is observed for a given policy like π(A|X̃)
can be computed

Eπ (R(x̃)) =
∑
a,x

θ(x, a)π(a|x̃)p(x|x̃)

=
∑

a

π(a|x̃)
∑

x

θ(x, a)p(x|x̃).

The policy π that maximizes this expectation is a deterministic
policy that recommends aM(x̃) defined as follows:

aM(x̃) = arg max
a

∑
x

θ(x, a)p(x|x̃). (7)

MI method is an approximation for this strategy, where we
consider several possible complete features and recommend
an action that maximizes the average reward over the imputed
samples. This method is widely used in the literature (see [27],
[31], [44]).

C. Conservative Strategy

In sensitive applications, the strategies presented above may
not be acceptable, because in these applications, we have
to avoid less likely (but still possible) scenarios for which
a very low reward is expected (e.g., death in healthcare
application). To achieve this, we suggest a max-min criterion
that recommends the action that maximizes the reward in the
worst case scenario, which is likely “enough”

aC(x̃) = arg max
a

min
x:p(x|x̃)>cp(x̂|x̃)

θ(x, a). (8)

Here, the constant 0 ≤ c < 1 determines how prudent we
want to be [x̂ is defined in (5)]. If we choose c = 0, we get
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Fig. 2. Encoder of PVAE (PNP setting).

the most conservative policy, where we essentially ignore
observed input x̃ and choose the action that has the highest
minimum reward for all inputs, while c → 1 is equivalent to
the imputation method.

Remark: If we define R = ∫
S p(x|x̃)d x where S =

{x | p(x|x̃) < cp(x̂|x̃)}, then R is representing the risk of not
considering the true feature in the process of recommending
the action. When we choose c = 0, we have R = 0, and
it increases with c. The parameter c then can be thought
of as a tuning parameter for this risk. As a proxy, we can
model p(x|x̃) with a multivariate Gaussian distribution and
can consider x̂ to be the center of the distribution. Thus,
we can compute this risk for a given c.

IV. ESTIMATION METHODS

In this section, we suggest two methods for counterfactual
estimation. We show how we can implement the three strate-
gies discussed in Section III using these two methods. In the
core of both methods, we use PVAE. In the first method,
we train the network using only x̃ as the input, which will
produce a similarity score for two features. We will use this
similarity score to estimate the reward (we call this method
SPVAE). In the second method (called CPVAE), we train a
conditional VAE [45] using x̃ incomplete context, and the
reward (conditioned on action), and we will use the network
for both estimating p(x|x̃) and also estimating the expected
rewards θ(x, a).

A. Partial Variational Autoencoder

We will be using the encoder of partial VAE that was
introduced in [3]. In particular, we use the pointnet plus (PNP)
setting. The structure of the encoder is represented in Fig. 2.
PVAE is designed to deal with the missingness in the input
and its structure allows the input dimension to vary. Assume
that xi1, . . . , xi|O| are the observed attributes of the feature, and
each observed attribute xi j will be multiplied by an embedding
vector e j that will represent the position of the observed
attribute. Denote the elementwise multiplication of e j and xi j

by s j = xi j ∗e j . Now, s j ’s will be fed to h, a shared neural net.
Then, there is a permutation invariant function g (in our setup,
g is a summation similar to [3]) that maps (h(s1), . . . , h(s|O|))
to R

k (k is a hyperparameter). Finally, this k-dimensional
latent variable will be fed to a fully connected network f ().
Therefore, we have Z = f

(
g(h(s1), . . . , h(s|O|))

)
. We refer

to [3] for a more detailed discussion about the encoder.

For the decoder of PVAE, we use a fully connected net-
work. Inspired from the decoder in the HI-VAE model [46],
we consider the following distributions for different types of
variables and map Z to the parameters of an appropriate dis-
tribution. This will enable us to handle heterogeneous features
of the context. For continuous variables, we have p(xi |Z) =
N (μi (Z), σi (Z)), where μi (Z) and σi(Z) are outputs of the
neural network with input Z. For categorical attributes, we use
one-hot encoding, and the posterior distribution is given by a
softmax p(xi = j |Z) = (exp−s j (Z)/

∑m
t=1 exp−st (Z)), where

st (Z) is the output of the decoder corresponding to the
t th category. The loss function is similar to the evidence lower
bound (ELBO) used for training of PVAE in [3]

log p(X̃) ≥ log p(X̃) − DK L
(
q(Z|X̃)||p(Z|X̃)

)
= EZ∼q(Z|X̃)

[
log p(X̃|Z)

] − DK L
(
q(Z|X̃)||p(Z)

)
.

(9)

We consider normal distribution for p(Z) = N (0, 1). Similar
to [3] and [46], we assume that the two following equations
hold. The first one states the independence of attributes given
the latent variable, i.e.,

p(x|Z) =
d∏

i=1

p(xi |Z). (10)

The second one states that all the information about unob-
served attributes in x̃ is encoded into Z, i.e., if xM represents
the set of missing attributes, then we have

p(xM |x̃, Z) = p(xM |Z). (11)

B. SPVAE

We suggest using the following simple estimator for finding
θ̂ (x, a):

θ̂ (x, a) =
N∑

i=1

wi
�[Ai = a] Ri

π̂0(a|X̃ i )
(12)

where wi = (p(x|X̃ i)/
∑N

j=1 p(x|X̃ j )) are similarity scores
corresponding to each of the data samples and π̂0(a|X̃ i ) is
the estimation of the propensity score. We explain how to
compute π̂0(a|X̃ i ) in Section IV-C. Essentially, wi shows how
much the reward of sample X̃ i is relevant for estimating the
reward for x. The IPS term adjusts for the selection bias in
the data. For estimating p(x|X̃ i ), we can feed X̃ i to PVAE,
and the output of the network gives the required posterior
distribution. Recall that we assumed the Gaussian distribution
for the output of the VAE. Using (10) and (11), we have

p(x|X̃ i) =
d∏

j=1

p(x j |Z). (13)

A variation of SPVAE method that computes θ̂ (x, a) in
a slightly different way is proposed in the Supplementary
Material.

Remark: Notice that the summation in (12) may become
computationally costly. If this is the case, one can randomly
choose M < N samples from the dataset and estimate θ̂ (x, a)
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Fig. 3. CPVAE structure.

only using those M samples. The CPVAE method that we
propose next will not have this issue since it can estimate the
reward with a singe forward pass through a network.

C. Propensity Score

For computing π̂0(A|X̃), we first use an MI method to
produce multiple complete datasets. Any standard MI method
such as [47] or [48] can be used. Then, we fit a standard
multinominal logistic regression (LR) model similar to [17]
on the completed features. In the test time, we average
the propensity score over MIs. This is a classical method
that is well studied in the literature [26], [27], [44]. (It is
known that averaging the propensity score before performing
casual inference gives a better result [49].) A more advanced
method for estimating propensity scores with missing values
is recently introduced in [29]. We leave exploring effect of
using more advanced methods for future work.

D. CPVAE

In this section, we modify PVAE and use it as an end-
to-end network to produce an estimation of θ(x, a). We use
conditional VAE and call this method CPVAE. First, the input
of the CPVAE is different. During training, the input is a
subset of rewards, actions, and observed attributes that we
represent with (X̃ i , Ai , R̃i ) (by denoting the rewards with R̃,
we highlight that they might be missing from the input of the
network). The idea is that in the test time, the reward can be
treated as a missing attribute of the input, i.e., the input at test
time will be the observed attributes and action (X̃, A, ∗). The
decoder network attempts to reconstruct (X, R), and hence,
it will produce an estimation for the reward (see Fig. 3). This
method has the advantage that the correlations among different
attributes of feature, reward, and action are expected to be
captured by the latent variable Z. Also, in comparison with
SPVAE for producing the estimated rewards, we do not need to
compute the summation in (12) and can get the reward with
a single forward pass through the network. (Note that it is
expected to have a better quality of imputation using outcome
in the imputation process [27], [50].)

1) Loss Function: The standard ELBO loss function for
CPVAE can be written as follows:

log p(X̃, R̃|A) ≥ log p(X̃, R̃|A)

− DK L
(
q(Z|X̃, R̃, A)||p(Z|X̃, R̃, A)

)
= EZ∼q(Z|X̃,R̃,A)

[
log p(X̃, R̃|Z, A)

]
− DK L

(
q(Z|X̃, R̃, A)||p(Z|A)

)
. (14)

In order to account for the selection bias in the loss function,
we use the IPS technique and write the final loss as

L = 1

N

N∑
i=1

∑
a∈A

(
log p(X̃ i |Z, A) + log p(Ri |Z, A)

− DK L
(
q(Z|X̃, A, R)||p(Z|A)

))�[Ai = a]
π̂0(a|X̃ i)

. (15)

Notice that E[L] is equal to the lower bound in (14). The
IPS term can also be interpreted as a method to force the
autoencoder to learn rare action–feature pairs more carefully
by penalizing the loss function.

E. Implementing Strategies
In this section, we explain how to implement three strategies

using our two suggested methods.
1) Imputation: For SPVAE, when x̃ is observed, we first

find the output of PVAE to impute the missing attributes
of x̃ (we do not change the values that are not missing).
Denote the complete feature vector by x. We now
use (12) to estimate θ̂ (x, a) for all possible actions a and
then recommend the action that maximizes θ̂ (x, a). For
CPVAE, we simply feed x̃ along with different actions
to the network and choose the action with the highest
expected reward.

2) Maximum Expected Reward: For SPVAE, we feed x̃
to PVAE and then sample t times from q(Z |x̃) (t is
a hyperparameter) to get z1, . . . , zt . Denote the imputed
output of the decoder network of these t latent variables
by x1, . . . , x t . For all a ∈ A and xi , we use (12)
to compute θ̂ (xi , a). Then, we recommend a, which
maximizes the average reward of these t inputs. We do
similarly for CPVAE, and the estimation of θ̂ (xi , a) will
be done by observing the output of CPVAE.

3) Conservative: We need to compute the following expres-
sion for all a ∈ A: minx:p(x|x̃)>cp(x̂|x̃) θ(x, a). First,
we pass x̃ through PVAE to get x̂ and the poste-
rior distribution p(x|x̃). We produce u samples from
the generator model through random sampling, that is,
we can randomly sample u times from P(Z) to get
z1, . . . , zu [recall that p(Z) = N (0, 1)]. Then, output
of the decoder gives us u generated samples x1, . . . , xu .
Now, using the posterior distribution p(x|x̃), we find
samples that satisfy the constraints. Assume that S is
the set of all indices 1 ≤ i ≤ u in which p(xi |x̃)
satisfies the inequality constraint. Then, for SPVAE,
we compute mini∈S θ̂ (xi , a) using (12) for all a ∈ A
and recommend a, which maximizes this expression. For
CPVAE, for all a ∈ A, we pass |S| samples along with
actions a and compute the minimum reward for each
action. Then, we recommend the action with the highest
reward.

V. EXPERIMENTS

In this section, we evaluate our suggested methods using
three experiments. First, we use the MNIST dataset [51] and
frame the usual classification task for identifying handwritten
digits in a logged bandit setup. Note that for policy recom-
mendation problems, since counterfactuals are not available,
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TABLE I

EXPECTED REWARD OF DIFFERENT STRATEGIES FOR MNIST DATA
WITH 50% MISSING ATTRIBUTES AND AVERAGE NUMBER

OF INSTANCES OF REWARD LESS THAN −7

evaluating an algorithm is not directly possible, this is why
here, similar to many other works (see, e.g., [17]), we use
a classification problem to evaluate our method. We use this
dataset to highlight the differences between the three strategies
discussed in this article. Second, we use the Infant Health
and Development Program (IHDP) dataset [52], which is a
widely used dataset in treatment effect literature, to compare
the predictive capability of our methods in the presence
of missing value with other recent suggested methods. We
show that our methods outperform state-of-the-art methods
for estimating average treatment effect (ATE) in the presence
of missing values. Finally, to further evaluate our method,
we use the OhioT1DM dataset [53], a medical dataset that
includes blood glucose measurements and insulin doses for
numerous type 1 diabetes mellitus patients using the insulin
pump therapy.

A. MNIST
In the first experiment, we use the MNIST dataset. The goal

of this experiment is to compare different strategies introduced
in Section III. Thus, here, we only implement CPVAE using
the three strategies. The complete feature has 784 attributes,
and each one is a number between 0 and 255. We will erase a
fixed percentage of pixels (50% in this experiment) from each
image uniformly at random. The goal is to predict the correct
label associated with the image, and hence, the set of actions
is A = {0, 1, . . . , 9}. The reward is defined as a Gaussian,
centered around the difference of the true label (yi) and the
predicted one (i.e., action Ai ) Ri ∼ N (−|yi−Ai |, 0.1). Note
that this is different from the standard binary reward defined
for classification task (i.e., R = 1 if the predicted label is
correct and zero otherwise). The reason we choose this reward
is to highlight the differences between the three strategies and
the necessary compromises that need to be made in the face
of uncertainty. For example, assume that we are considering
an image that is 0 with probability 0.7 and 8 with probability
0.3. In this scenario, using the reward, we defined that all three
strategies are meaningful (i.e., you may choose 2 to avoid low
probability), while with the binary reward, all three strategies
coincide (all three recommend a = 0). The mechanism for
assigning actions to images for creating dataset is as follows.
For images representing even numbers, π0(a|X̃ i ) = 1/20 for
0 ≤ a < 5 and π0(a|X̃ i ) = 3/20 for 5 ≤ a < 10. For odd
images, π0(a|X̃ i) = 3/20 for 0 ≤ a < 5 and π0(a|X̃ i) =
1/20 for rest of the actions.

In Table I, the average reward of different strategies is
reported. We are using the CPVAE method in this experiment.
The maximum expected strategy gets the highest reward as

expected, followed by the imputation strategy. It can be
seen that, as we decrease parameter c, the expected reward
decreases. In exchange, the number of instances for which we
get a poor reward (here, we considered reward less than −7)
is decreasing with c.

In Fig. 4, we show the distribution of recommended action
for three conservative strategies where we change tuning
parameter c, from top to bottom c = 0.001, c = 0.1, and
c = 0.7. For the first figure with c = 0.001, it can be seen
that the method always chooses action 5, which is the safest
action. This action avoids losses more than 5. Since c is
too small, images of different digits can pass the condition
on (8), and hence, the best action would be 5 (or 4). It can be
seen that, as we increase c, fewer images with random digits
pass the constraint and, as a result, the distribution of actions
spreads over different actions. The details of the experiment
setup and some additional experiments are available in the
Supplementary Material.

B. IHDP

In this section, we repeat the experiment in [31] on the
IHDP dataset. IHDP is a semisynthetic datasets based on
the IHDP compiled by Hill [52]. This experiment studies
the effects of specialist home visits on future cognitive test
scores. The dataset comprises 25 attributes for each instance
and 747 instances in total (139 treated, i.e., a = 1, and
698 instances with a = 0). Following [31], we report the
in-sample mean absolute error in the estimation of ATE. ATE
denoted by τ is defined as follows:

τ = E[R(1) − R(0)] = E[E[R(1) − R(0)|X̃]].
Since both values of R(0) and R(1) for all X’s are known from
the dataset, we can calculate the mean absolute error exactly
� = ∣∣τ̂ − (1/n)

∑
i R(1)i − R(0)i

∣∣. We consider scenario “B”
of [52], where R(0) ∼ N (μ0, 1) and R(1) ∼ N (μ1, 1).
Here, (μ0, μ1) = (exp(X + A)β, Xβ − ω), where ω is
chosen such that we have an ATE of τ = 4. The missing
values are added with missing completely at random (MCAR)
mechanism. We compare three missing rates of 10%, 30%, and
50%. We compare our results with several recent methods in
Table II. MI is the multiple imputation approach suggested
in [44] and [54] with 20 imputations. MF is the matrix
factorization method introduced in [28], and MDC.process and
MDC.mi are two methods introduced in [31]. They use a VAE
to produce a latent space. Then, for finding τ , they fit an
estimator on the latent variable. For all three above methods,
the results of an OLS estimator and two different doubly robust
estimators are reported in [31, Table 1]. Here, we only report
the best of the three results for each of the methods for each
setting and refer to [31] for the complete table. MIA.GRF is
a doubly robust estimator suggested in [29]. Finally, CEVAE,
a method introduced in [6], is another baseline we compare
with. This method is not designed to work with missing
values, and thus, a mean imputation method was performed
to get the complete features before applying this method for
estimating ATE. For a more detailed explanation about these
competitor methods, we refer to [31, Sec. 4]. In Table II, for
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Fig. 4. Distribution of actions recommended by conservative strategy with
c = 0.001, c = 0.1, and c = 0.7 from top to bottom.

SPVAE and CPVAE, we use the maximum expected reward
strategy with five-time imputations. We can see that both of
our methods outperform other methods in 50% missingness
and also SPVAE has the best result for 30% (and comparable
result in 10%). In the Appendix, we provide a table where
we show that our result is not sensitive to the choice of
hyperparameters.

C. Type 1 Diabetes OhioT1DM Data

For this experiment, we are using the OhioT1DM
dataset [53] that contains continuous glucose monitoring
(CGM), insulin dosage, physiological sensor, and self-reported
life-event data for six patients with type 1 diabetes for eight
weeks. Patients receiving insulin therapy are exposed to the
risk of hyperglycemia and hypoglycemia due to underdosing
and overdosing. Therefore, it is important that they receive
the right dosage of bolus insulin. Note that for evaluating a

TABLE II

MEAN ABSOLUTE ERROR WITH STANDARD ERROR FOR ESTIMATION OF
ATE FOR VARIOUS MISSING RATES ON IHDP BENCHMARK DATA

TABLE III

AVERAGE REWARD AND THE PERCENTAGE OF REWARDS LESS

THAN −2 OF DIFFERENT METHODS FOR OHIOT1DM DATASET

recommendation method, we need to have access to counter-
factuals that are not available, and hence, it is not possible to
directly use the dataset. Here, we follow [55] and first use the
dataset to train a simulator using gradient boosting and then
use the trained model to produce glucose level for a pair of
context (feature) and action (bolus insulin dosage). The corre-
sponding reward will be computed using (16). There are nine
attributes for each patient and ten actions uniformly chosen
between 0 and 1 (corresponding to normalized insulin dosage).
To create missingness, we erase each attribute independently
with probability 0.3. We refer to the Appendix for a more
detailed explanation of the experiment setting. We compare
our method with several baselines, including LR and random
forest (RF). In LR1 and RF1, we consider the action as one of
the attributes, whereas in LR2 and RF2, we train ten different
models corresponding to each of the actions. Many of the more
recent competing methods accommodate only two actions and
hence cannot be directly used in our setting. Here, we compare
with GANITE [34] a GAN-based method that does not have
a restriction on the number of actions. For these baseline
methods, we first impute missing values using both mean
imputation and PVAE (we only report the best performance
of the two and use MIs when using PVAE) and then feed the
completed feature to the algorithm. As shown in Table III,
CPVAE with MER strategy outperforms other methods and
the proposed conservative strategy has fewer instances with
rewards less than −2

R =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x − 80

10
, x ≤ 90 (hypoglycemia)

1, 90 ≤ x ≤ 130
180 − x

50
, 130 ≤ x (hyperglycemia)

. (16)
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VI. CONCLUSION AND FUTURE WORK

In this work, we proposed using a conservative strategy for
dealing with uncertainty due to missingness. We suggested
two methods for counterfactual estimation in the presence of
missing data using VAEs. Our methods were based on using
IPS, which is known to have high variance. One direction for
future work is to improve the method we used for estima-
tion of the propensity scores (see, e.g., [29]). We assumed
unconfoundedness with missing values, which may not hold
in some scenarios. Looking for methods for relaxing this
condition is another direction for future work. One direction
for future work is to also account for the uncertainty due to
the variance of our reward estimation, which could vary for
different actions, and this can change our recommendation (we
may decide to choose an action with smaller variance). Also,
for computing (8), we used random sampling. The minimum
in this expression can be approximated using the constrained
Bayesian optimization method [56].

APPENDIX

A. Proposition 1

Proof: First, notice that since H (a(X)|X) = 0, hence,
we have H (a(X), X, X̃) = H (X, X̃). We also have

H (a(X), X, X̃) = H (X̃) + H (a(X)|X̃) + H (X|X̃, a(X)).

Therefore,

H (X̃, X) = H (X̃) + H (a(X)|X̃) + H (X|X̃, a(X)).

Thus, the following equations hold:
H (a(X)|X̃) = H (X̃, X) − H (X̃) − H (X|X̃, a(X))

= H (X|X̃) − H (X|X̃, a(X))

= H (X) − I (X; X̃) − H (X|X̃, a(X))

= I (X; X̃, a(X)) − I (X; X̃)

= I (X; a(X)) − I (X; X̃) + I (X; X̃|a(X))

= H (a(X)) − (I (X; X̃) − I (X; X̃|a(X)).

In the above equations, we used the fact that H (X̃, X) =
H (X̃) + H (X|X̃) and H (a(X)|X) = 0.

Example 1: Assume that X = {0, 1}4, and X is uniformly
distributed. The channel between X and X̃ is an erasure
channel, which erases each bit independently with probability
1/2. We have A = {a1, a2}, and the reward is distributed as
follows:
R|x, a1 ∼ Ber

(
x1 + x2

3

)
, R|x, a2 ∼ Ber

(
x3 + x4

3
+ 0.1

)
.

Therefore, if x1 + x2 > x3 + x4, a(x) = a1; otherwise,
a(x) = a2. For instance, Xi could be the results of four
different tests (in which a subset of them will be available)
and A is the treatment assigned to the patient. In this setting,
we have H (a(X)) = 0.896 and this is because x1 + x2 >
x3 + x4 holds with probability of 5/16; hence, we have
H (a(X)) = h2(5/16) = 0.896, where h2 is the binary entropy
function. For computing I (X; X̃), note that since attributes

of X are independent and also each attribute will be erased
independently, we have

I (X; X̃) = 4(H (X̃) − H (X̃|X)) = 4(1.5 − 1) = 2.

Finally, for computing I (X; X̃|a(X)), note that

I (X; X̃|a(X)) = H (X|a(X)) − H (X|X̃, a(X)).

Now, for the second term, we have

H (X|a(X)) = 5

16
H (X|a(X) = a1) + 11

16
H (X|a(X) = a2)

= 5

16
log2

(
1

5

)
+ 11

16
log2

(
1

11

)
.

The other term can be computed similarly by considering the
different cases of X̃ and a(X) and using the symmetries for
simplifications. Thus, H (a(X)|X̃) = 0.570. Note that, the
probability that the best algorithm find a(X) by observing X̃
is given by

1

2H (a(X)|X̃)
.

Thus, in our example, we can hope for guessing a(X) correctly
on average in 67.3% of cases.

B. Variation of SPVAE

Instead of using propensity score, we can estimate the
reward using the following equation, by simply matching the
similar actions. For each action a ∈ A, define Na = {i : Ai =
a} to be the set of all indices with action a

θ̂ (x, a) =
∑
i∈Na

w′
i Ri , where w′

i = p(x|X̃ i)∑
j∈Na

p(x|X̃ j)
. (17)

The idea is similar to the original SPVAE, and we estimate
the reward with a weighted average of the reward of all
instances for which action a was prescribed. The weights
measure the similarity between x and X̃ i . Comparing this
estimator with (12), we note that the denominator of wi here
is different and also the IPS is missing. Note that we have∑n

i=1 wi = 1 in (12). However, on average, only π0(a|X̃ i )
fraction of samples satisfies �[Ai = a]. One can interpret
the propensity score in (12) as a way for compensating this.
Basically, we have

E

[
n∑

i=1

wi
�[Ai = a]
π0(a|X̃ i )

]
= 1. (18)

C. Experiments

In this section, we are outlining details of experiment set-
ting, including hyperparameters and architecture of the neural
nets. To implement our experiments, we have used JADE,
the U.K. Tier-2 HPC Server specialized for deep learning
applications. In particular, all our models are trained with a
Nvidia Tesla V100 GPU card, with access to 70-GB memory
(though we did not use up the whole memory space). One
can also run experiments 1 and 2 on a personal laptop. Also,
tensorflow 1.15 is the library used for implementation.
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1) MNIST: For our MNIST experiment, we used a reduced
MNIST dataset of 5000 data points and performed an
80%–20% train–test split. We used the CPVAE architecture.
The encoder followed the PNP-based architecture from [3].
We used the 400-D feature mapping h parameterized by a
single fully connected network with ReLU activations and
20-D ID ei for each variable. For Gaussian latent variables,
we used a 20-D diagonal vector to represent it. The encoder
(denoted by function f in this article) is a k-500-200-40,
where k is a vector resulted from the concatenation of h
and aone is a one-hot encoded action vector. The network
f is a fully connected neural network with ReLU activa-
tions. The decoder (generator) shares the similar architecture:
Z -200-500-D, where Z is a vector resulted from the concate-
nation of the latent variable and aone, and thus, here, Z = 30.
Also, D represents the output of the generator model, which
should produce pixels and the reward, and hence, D = 785.
For the conservative strategy, we generated 50 random samples
(with the notation of this article u = 50). During the training
phase, we created artificial missingness to dataset by randomly
erasing 50% of the pixels from each image. We used an Adam
optimizer with default hyperparameter settings, a learning rate
of 0.001, and a batch size (BS) of 8. We trained the network
for 20 epochs and repeated the experiment 100 times to get
our results.

2) Additional Experiment Results: In Fig. 5, the distribution
of the rewards for MNIST experiment for three cases of
conservative strategy with c = 0.001 and c = 0.4 and also
imputation strategy is provided. As expected, this illustrates
that the imputation strategy has a longer tail in comparison
with conservative strategies. Also, c = 0.001 has the shortest
tail.

3) IHDP: We used both SPVAE and CPVAE on this dataset;
for both models, we used 20% of the whole dataset as
our training data. Missingness was injected into the dataset
by assuming the MCAR mechanism at different levels of
missingness, i.e., 10%, 30%, and 50%.

We used 5-D feature mapping h parameterized by a single
fully connected network with ReLU activations and 10-D ID
ei for each variable. The Gaussian latent variable z is set to a
10-D diagonal vector. The inference net is a h-20-20-20 fully
connected network with ReLU activations. The generator net
is a z-20-20-D (where D is the observed feature dimension of
IHDP dataset) fully connected network with ReLU activations.
We trained the PVAE using the Adam optimizer with its
default hyperparameter settings, a learning rate of 0.001, and a
BS of 8. The network was trained for 25 epochs each time and
the entire procedure is repeated 100 times for each missingness
level.

For CPVAE, we used the same architecture as SPVAE, and
the training objective is to reproduce all the attributes with
their corresponding rewards given the missing attributes and
the action taken. The only difference is that one-hot encoded
action was added as the input of encoder and also as an
input to the decoder, similar to what we described for MNIST
dataset.

4) Hyperparameters: Here, in Table IV, we show that the
dependence of our result for IHDP to hyperparameters is

Fig. 5. Distribution of reward for conservative strategies with c = 0.001,
c = 0.4, and imputation strategy (from top to bottom).

insignificant and our method consistently outperforms com-
petitors regardless of choice of hyperparameters. Here, we con-
sider several combinations of latent dimension (LD), BS, and
value K in the structure of PVAE, which is the output of
the layer that encodes input variables and feeds it to the first
encoder.

5) OhioT1DM: The OhioT1DM dataset contains eight
weeks of information about six individuals with Diabetes 1 in
a time series format. Since, in the original dataset, only the
response to the actual dose that was administered exists, it is
not possible to evaluate recommendation methods directly
using dataset. Thus, we use a simulator suggested in [55]
that is trained on the actual data to estimate the response to
a bolus injection. The simulator maps a pair of context and
action to the mean of CGM. From CGM, the reward can be
calculated according to (16). A gradient boosting regression
model with the Huber loss is used to achieve this. In the model,
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TABLE IV

ESTIMATED ATE FOR DIFFERENT HYPERPARAMETER SETTINGS WITH
pMISS = 0.5. WE CHANGE LATENT VARIABLE DIM., BS,

AND VARIABLE K IN THE PVAE ENCODER

100 trees of maximum depth of 5 are used as weak learner.
Furthermore, a multivariate Gaussian distribution is fit to
approximate patients’ features. For producing dataset, we first
sample from this distribution to get the features, and then,
we choose an action for this feature and then feed the pair of
action and feature to the simulator to produce the output. Then,
we randomly remove 30% of features and store the triple of
feature (with missing values), action, and the simulated reward
in the dataset. We have produced 5000 samples for training.
The way we produce actions is to train a simple LR model to
learn the action that is prescribed in the original dataset and use
this model to produce actions. In order to guarantee the second
condition of the assumptions in Section II (i.e., π(a|x̃) > 0),
we choose the action half of times from the action generator
(LR model), and for the other half, we randomly choose one of
the ten actions. In the test time, we sample from the Gaussian
distribution to get the features, then randomly remove 30% of
the features, and feed it to our method to get the recommended
action. Then, we feed the complete feature and action to the
simulator to get the reward. We refer to [55] for more details
about the data generation mechanism. We chose the following
hyperparameters for the model: K = 8, ei = 5, LD is 5, and
BS is 8. A two-layer encoder and a two-layer decoder are
used, with 10-10-5 and 5-10-10 nodes, respectively.
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