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Abstract—Inherent in virtually every iterative machine learn-
ing algorithm is the problem of hyper-parameter tuning which
includes three major design parameters: (a) the complexity of
the model, e.g., the number of neurons in a neural network,
(b) the initial conditions, which heavily affect the behavior
of the algorithm, and (c) the dissimilarity measure used to
quantify its performance. We introduce an online prototype-
based learning algorithm that can be viewed as a progressively
growing competitive-learning neural network architecture for
classification and clustering. The learning rule of the proposed
approach is formulated as an online gradient-free stochastic
approximation algorithm that solves a sequence of appropriately
defined optimization problems, simulating an annealing process.
The annealing nature of the algorithm contributes to avoiding
poor local minima, offers robustness with respect to the initial
conditions, and provides a means to progressively increase the
complexity of the learning model, through an intuitive bifurcation
phenomenon. The proposed approach is interpretable, requires
minimal hyper-parameter tuning, and allows online control over
the performance-complexity trade-off. Finally, we show that
Bregman divergences appear naturally as a family of dissimilarity
measures that play a central role in both the performance and
the computational complexity of the learning algorithm.

Index Terms—Machine learning algorithms, progressive learn-
ing, annealing optimization, classification, clustering, Bregman
divergences.

I. INTRODUCTION

LEARNING from data samples has become an important
component of artificial intelligence. While virtually all

learning problems can be formulated as constrained stochas-
tic optimization problems, the optimization methods can be
intractable, typically dealing with mixed constraints and very
large, or even infinite-dimensional spaces [1]. For this reason,
feature extraction, model selection and design, and analysis of
optimization methods, have been the cornerstone of machine
learning algorithms from their genesis until today.

Deep learning methods, currently dominating the field of
machine learning due to their performance in multiple ap-
plications, attempt to learn feature representations from data,
using biologically-inspired models in artificial neural networks
[2], [3]. However, they typically use overly complex models
of a great many parameters, which comes in the expense
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of time, energy, data, memory, and computational resources
[4], [5]. Moreover, they are, by design, hard to interpret
and vulnerable to small perturbations and adversarial attacks
[6], [7]. The latter, has led to an emerging hesitation in
their implementation outside common benchmark datasets
[8], and, especially, in security critical applications. On the
other hand, it is understood that the trade-off between model
complexity and performance is closely related to over-fitting,
generalization, and robustness to input noise and attacks [9].
In this work, we introduce a learning model that progressively
adjusts its complexity, offering online control over this trade-
off. The need for such approaches is reinforced by recent
studies revealing that existing flaws in the current benchmark
datasets may have inflated the need for overly complex models
[10], and that over-fitting to adversarial training examples may
actually hurt generalization [11].

We focus on prototype-based models, mainly represented by
vector quantization methods, [12]–[14]. In vector quantization,
originally introduced as a signal processing method for com-
pression, a set of codevectors (or prototypes) M := {µi}, is
used to represent the data space in an optimal way according
to an average distortion measure:

min
M

J(M) := E
[
min
i
d(X,µi)

]
,

where the proximity measure d defines the similarity between
the random input X and a codevector µi. The codevectors can
be viewed as a set of neurons, the weights of which live in
the data space itself, and constitute the model parameters. In
this regard, vector quantization algorithms can be viewed as
competitive-learning neural network architectures with a num-
ber of appealing properties: they are consistent, data-driven,
interpretable, robust, topology-preserving [15], sparse in the
sense of memory complexity, and fast to train and evaluate.
In addition, they have recently shown impressive robustness
against adversarial attacks, suggesting suitability in security
critical applications [16], while their representation of the input
in terms of memorized exemplars is an intuitive approach
which parallels similar concepts from cognitive psychology
and neuroscience. As iterative learning algorithms, however,
their behavior heavily depends on three major design parame-
ters: (a) the number of neurons/prototypes, which, defines the
complexity of the model, (b) the initial conditions, that affect
the transient and steady-state behavior of the algorithm, and
(c) the proximity measure d used to quantify the similarity
between two vectors in the data space.

Inspired by the deterministic annealing approach [17], we
propose a learning approach that resembles an annealing
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process, tending to avoid poor local minima, offering ro-
bustness with respect to the initial conditions, and providing
a means to progressively increase the complexity of the
learning model, allowing online control over the performance-
complexity trade-off. We relax the original problem to a soft-
clustering problem, introducing the association probabilities
p(µi|X), and replacing the cost function J by D(M) :=
E [
∑
i p(µi|X)d(X,µi)]. This probabilistic framework (to be

formally defined in Section III) allows us to define the
Shannon entropy H(M) that characterizes the “purity” of
the clusters induced by the codevectors. We then replace the
original problem by a sequence of optimization problems:

min
M

FT (M) := D(M)− TH(M),

parameterized by a temperature coefficient T , which acts as
a Lagrange multiplier controlling the trade-off between min-
imizing the distortion D and maximizing the entropy H . By
successively solving the optimization problems minM FT (M)
for decreasing values of T , the model undergoes a series of
phase transitions that resemble an annealing process. Because
of the nature of the entropy term, in high temperatures T , the
effect of the initial conditions is greatly mitigated, while, as
T decreases, the optimal codevectors of the last optimization
problem are used as initial conditions to the next, which helps
in avoiding poor local minima. Furthermore, as T decreases,
the cardinality of the set of codevectors M increases, accord-
ing to an intuitive bifurcation phenomenon.

Adopting the above optimization framework, we introduce
an online training rule based on stochastic approximation [18].
While stochastic approximation offers an online, adaptive, and
computationally inexpensive optimization algorithm, it is also
strongly connected to dynamical systems. This enables the
study of the convergence of the learning algorithm through
mathematical tools from dynamical systems and control [18].
We take advantage of this property to prove the convergence
of the proposed learning algorithm as a consistent density
estimator (unsupervised learning), and a Bayes risk consistent
classification rule (supervised learning). Finally, we show
that the proposed stochastic approximation learning algorithm
introduces inherent regularization mechanisms and is also
gradient-free, provided that the proximity measure d belongs
to the family of Bregman divergences. Bregman divergences
are information-theoretic dissimilarity measures that have been
shown to play an important role in learning applications [19],
[20], including measures such as the widely used Euclidean
distance and the Kullback-Leibler divergence. We believe that
these results can potentially lead to new developments in
learning with progressively growing models, including, but not
limited to, communication, control, and reinforcement learning
applications [21]–[23].

II. PROTOTYPE-BASED LEARNING

In this section, the mathematics and notation of prototype-
based machine learning algorithms, which will be used as a
base for our analysis, are briefly introduced. For more details
see [14], [19], [20], [24].

A. Vector Quantization for Clustering

Unsupervised analysis can provide valuable insights into the
nature of the dataset at hand, and it plays an important role in
the context of visualization. Central to unsupervised learning
is the representation of data in a vector space by typical
representatives, which is formally defined in the following
optimization problem:

Problem 1. Let X : Ω → S ⊆ Rd be a random variable
defined in a probability space (Ω,F,P), and d : S× ri(S)→
[0,∞) be a divergence measure, where ri(S) represents the
relative interior of S. Let V := {Sh}Kh=1 be a partition of
S and M := {µh}Kh=1 a set of codevectors, such that µh ∈
ri(Sh), for all h = 1, . . . ,K. A quantizer Q : S → M is
defined as the random variable Q(X) =

∑K
h=1 µh1[X∈Sh]

and the vector quantization problem is formulated as

min
M,V

J(Q) := E [d (X,Q)] .

Vector quantization is a hard-clustering algorithm, and, as
such, assumes that the quantizer Q assigns an input vector
X to a unique codevector µh ∈ M with probability one. As
a result, Problem 1 becomes equivalent to

min
{µh}Kh=1

K∑
h=1

E
[
d (X,µh)1[X∈Sh]

]
(1)

for V being a Voronoi partition, i.e., for

Sh =

{
x ∈ S : h = arg min

τ=1,...,K
d(x, µτ )

}
, h = 1, . . . ,K.

It is typically the case that the actual distribution of X ∈ S
is unknown, and a set of independent realizations {Xi}ni=1 :=
{X(ωi)}ni=1, for ωi ∈ Ω, are available. In case the observa-
tions {Xi}ni=1 are available a priori, the solution of the VQ
problem is traditionally approached with variants of the LBG
algorithm [25], a generalization of the Lloyd algorithm [26]
which includes the widely used k-means algorithm [27].

When the training data are not available a priori but are
being observed online, or when the processing of the en-
tire dataset in every optimization iteration is computationally
infeasible, a stochastic vector quantization algorithm can be
defined as a recursive asynchronous stochastic approximation
algorithm based on gradient descent [14]:

Definition 1 (Stochastic Vector Quantization (sVQ) Algo-
rithm). Repeat:

µt+1
h = µth − α(v(h, t))1[Xt+1∈S

t+1
h ]∇µhd

(
Xt+1, µ

t
h

)
St+1
h =

{
X ∈ S : h = argmin

τ=1,...,k
d(X,µtτ )

}
, h ∈ K

for t ≥ 0 until convergence, where µ0
h is given during

initialization, and v(h, t) represents the number of times the
component µh has been updated up until time t.

B. Learning Vector Quantization for Classification

The supervised counterpart of vector quantization is the par-
ticularly attractive and intuitive approach of the competitive-
learning Learning Vector Quantization (LVQ) algorithm, ini-
tially proposed by Kohonen [12]. LVQ for binary classification



is formulated in the following optimization problem (and
generalized to any type of classification task, see, e.g. [28]):

Problem 2. Let the pair of random variables {X, c} ∈
S × {0, 1} defined in a probability space (Ω,F,P), with c
representing the class of X and S ⊆ Rd. Let M := {µh}Kh=1,
where µh ∈ ri(Sh) represent codevectors, and define the set
Cµ := {cµh}

K
h=1, such that cµh ∈ {0, 1} represents the class

of µh for all h ∈ {1, . . . ,K}. The quantizer Qc : S → {0, 1}
is defined such that Qc(X) =

∑k
h=1 cµh1[X∈Sh]. Then, the

minimum-error classification problem is formulated as

min
{µh,Sh}Kh=1

JB(Q
c) := π1

∑
H0

P1 [X ∈ Sh] + π0

∑
H1

P0 [X ∈ Sh]

where πi := P [c = i] ,Pi {·} := P {·|c = i}, and Hi is defined
as Hi := {h ∈ {1, . . . ,K} : Qc = i}, i ∈ {0, 1}.

LVQ algorithms that solve Problem 2 are similar in structure
with the stochastic vector quantization algorithm of Def. 1,
and make use of a modified distortion measure, which in the
case of the original LVQ1 algorithm [12] takes the form:

dl(x, cx, µ, cµ) =

{
d(x, µ), cx = cµ

−d(x, µ), cx 6= cµ

Generalizations of this definition based on similar principles
have also been proposed [29], [30].

C. Bregman Divergences as Dissimilarity Measures

Prototype-based algorithms rely on measuring the proximity
between different vector representations. In most cases the
Euclidean distance or another convex metric is used, but
this can be generalized to alternative dissimilarity measures
inspired by information theory and statistical analysis, such as
the Bregman divergences:

Definition 2 (Bregman Divergence). Let φ : H → R, be a
strictly convex function defined on a vector space H such that
φ is twice F-differentiable on H . The Bregman divergence
dφ : H ×H → [0,∞) is defined as:

dφ (x, µ) = φ (x)− φ (µ)− ∂φ

∂µ
(µ) (x− µ) ,

where x, µ ∈ H , and the continuous linear map ∂φ
∂µ (µ) : H →

R is the Fréchet derivative of φ at µ.

Notice that, as a divergence measure, Bregman divergence
can be used to measure the dissimilarity of one probability
distribution to another on a statistical manifold, and is a notion
weaker than that of the distance. In particular, it does not
need to be symmetric or satisfy the triangle inequality. In this
work, we will concentrate on nonempty, compact convex sets
S ⊆ Rd so that the derivative of dφ with respect to the second
argument can be written as

∂dφ
∂µ

(x, µ) =
∂φ(x)

∂µ
− ∂φ(µ)

∂µ
− ∂2φ(µ)

∂µ2
(x− µ) + ∂φ(µ)

∂µ

= −∂
2φ(µ)

∂µ2
(x− µ) = −

〈
∇2φ(µ), (x− µ)

〉
where x, µ ∈ S, ∂

∂µ represents differentiation with respect to
the second argument of dφ, and∇2φ(µ) represents the Hessian
matrix of φ at µ.

Example 1. As a first example, φ(x) = 〈x, x〉 , x ∈ Rd, gives
the squared Euclidean distance

dφ(x, µ) = ‖x− µ‖2

for which ∂dφ
∂µ (x, µ) = −2(x− µ).

Example 2. A second interesting Bregman divergence that
shows the connection to information theory, is the generalized
I-divergence which results from φ(x) = 〈x, log x〉 , x ∈ Rd++

such that

dφ(x, y) = 〈x, log x− logµ〉 − 〈1, x− µ〉

for which ∂dφ
∂µ (x, µ) = −diag−1(µ)(x− µ), where 1 ∈ Rd is

the vector of ones, and diag−1(µ) ∈ Rd×d++ is the diagonal
matrix with diagonal elements the inverse elements of µ.
It is easy to see that φ(x) reduces to the Kullback-Leibler
divergence if 〈1, x〉 = 1.

The family of Bregman divergences provides proximity
measures that have been shown to enhance the performance of
a learning algorithm [31]. In addition, the following theorem
shows that the use of Bregman divergences is both necessary
and sufficient for the optimizer µh of (1) to be analytically
computed as the expected value of the data inside Sh, which
is implicitly used by many “centroid” algorithms, such as k-
means [27]:

Theorem 1. Let X : Ω → S be a random variable defined
in the probability space (Ω,F,P) such that E [X] ∈ ri(S),
and let a distortion measure d : S × ri(S) → [0,∞), where
ri(S) denotes the relative interior of S. Then µ := E [X] is
the unique minimizer of E [d (X, s)] in ri(S), if and only if d
is a Bregman divergence for any function φ that satisfies the
definition.

Proof. For necessity, identical arguments as in Appendix B of
[19] are followed. For sufficiency,

E [dφ(X, s)]− E [dφ(X,µ)] =

= φ(µ) +
∂φ

∂µ
(µ) (E [X]− µ)− φ(s)− ∂φ

∂s
(s) (E [X]− s)

= φ(µ)− φ(s)− ∂φ

∂s
(s) (µ− s) = dφ (µ, s) ≥ 0, ∀s ∈ S

with equality holding only when s = µ by the strict convexity
of φ, which completes the proof.

In Section III, we will show a similar result for the proposed
algorithm that uses a soft-partition approach.

III. ONLINE DETERMINISTIC ANNEALING FOR
UNSUPERVISED AND SUPERVISED LEARNING

Online vector quantization algorithms, are proven to con-
verge to locally optimal configurations [14]. However, as
iterative machine learning algorithms, their convergence prop-
erties and final configuration depend heavily on two design
parameters: the number of neurons/clusters K, and their initial
configuration. Inspired by the deterministic annealing frame-
work [17], we relax the the original optimization problem (1)
to a soft-clustering problem, and replace it by a sequence
of deterministic optimization problems, parameterized by a



temperature coefficient, that are progressively solved at suc-
cessively reducing temperature levels. As will be shown, the
annealing nature of this algorithm will contribute to avoiding
poor local minima, provide robustness with respect to the
initial conditions, and induce a progressive increase in the
cardinality of the set of clusters needed to be used, via a
intuitive bifurcation phenomenon.

A. Soft-Clustering and Annealing Optimization

In the clustering problem (Problem 1), the distortion func-
tion J is typically non convex and riddled with poor local min-
ima. To partially deal with this phenomenon, soft-clustering
approaches have been proposed as a probabilistic framework
for clustering. In this case, an input vector X is assigned,
through the quantizer Q, to all codevectors µh ∈ M with
probabilities p(µh|X) , where

∑K
h=1 p(µh|X) = 1. In this

regard, the quantizer Q : S →M becomes a discrete random
variable, with the set M being its image, and can be fully
described by the values of M = {µh}Kh=1 and the probability
functions {p(µh|x)}Kh=1. In contrast, hard clustering assumes
that Q is a simple random variable that can be described fully
by M and V = {Sh}Kh=1, since p(µh|X) = 1[X∈Sh] (see
Problem 1).

For the randomized partition we can rewrite the expected
distortion as

D = E [dφ(X,Q)]

= E [E [dφ(X,Q)|X]]

=

∫
p(x)

∑
µ

p(µ|x)dφ(x, µ) dx

where p(µ|x) is the association probability relating the input
vector x with the codevector µ. We note that, at the limit,
where each input vector is assigned to a unique codevector
with probability one, this reduces to the hard clustering
distortion. The main idea in deterministic annealing, is to seek
the distribution that minimizes D subject to a specified level
of randomness, measured by the Shannon entropy

H(X,M) = E [− log p(X,Q)]

= H(X) +H(Q|X)

= H(X)−
∫
p(x)

∑
µ

p(µ|x) log p(µ|x) dx

by appealing to Jaynes’ maximum entropy principle1 [32].
This multi-objective optimization is conveniently formulated
as the minimization of the Lagrangian

F = D − TH (2)

where T is the temperature parameter that acts as a Lagrange
multiplier. Clearly, for large values of T we maximize the
entropy, and, as T is lowered, we trade entropy for reduction
in distortion. Equation (2) also represents the scalarization
method for trade-off analysis between two performance met-
rics [33]. As T varies we essentially transition from one Pareto

1Informally, Jaynes’ principle states: of all the probability distributions that
satisfy a given set of constraints, choose the one that maximizes the entropy.

point to another, and the sequence of the solutions will corre-
spond to a Pareto curve of the multi-objective optimization (2)
that resembles annealing processes in chemical engineering.
In this regard, the entropy H , which is closely related to the
“purity” of the clusters, acts as a regularization term which is
given progressively less weight as T decreases.

As in the case of vector quantization, we form a coordinate
block optimization algorithm to minimize F , by successively
minimizing it with respect to the association probabilities
p(µ|x) and the codevector locations µ. Minimizing F with
respect to the association probabilities p(µ|x) is straightfor-
ward and yields the Gibbs distribution

p(µ|x) =
e−

d(x,µ)
T∑

µ e
− d(x,µ)T

, ∀x ∈ S (3)

while, in order to minimize F with respect to the codevector
locations µ we set the gradients to zero

d

dµ
D = 0 =⇒ d

dµ
E [E [d(X,µ)|X]] = 0

=⇒
∫
p(x)p(µ|x)

d

dµ
d(x, µ) dx = 0

(4)

In the following theorem, we show that we can have analyt-
ical solution to the last optimization step (4) in a convenient
centroid form, if d is a Bregman divergence. This is a similar
result to Theorem 1 for vector quantization.

Theorem 2. Assuming the conditional probabilities p(µ|x)
are fixed, the Langragian F in (2) is minimized with respect
to the codevector locations µ by

µ∗ = E [X|µ] =

∫
xp(x)p(µ|x) dx

p(µ)
(5)

if d := dφ is a Bregman divergence for some function φ that
satisfies Definition 2.

Proof. If d := dφ is a Bregman divergence, then, by Definition
2, it follows that

d

dµ
dφ(x, µ) = −∂

2φ(µ)

∂µ2
(x− µ)

Therefore, (4) becomes∫
(x− µ)p(x)p(µ|x) dx = 0 (6)

which is equivalent to (5) since
∫
p(x)p(µ|x) dx = p(µ).

B. Bifurcation Phenomena

This optimization procedure takes place for decreasing
values of the temperature coefficient T such that the solution
maintains minimum free energy (thermal equilibrium) while
gradually lowering the temperature. Adding to the physical
analogy, it is significant that, as the temperature is lowered,
the system undergoes a sequence of “phase transitions”, which
consists of natural cluster splits where the cardinality of the
codebook (number of clusters) increases. This is a bifurcation
phenomenon and provides a useful tool for controlling the size
of the clustering model relating it to the scale of the solution.



At very high temperature (T →∞) the optimization yields
uniform association probabilities

p(µ|x) = lim
T→∞

e−
d(x,µ)
T∑

µ e
− d(x,µ)T

=
1

K

and, provided d := dφ is a Bregman divergence, all the
codevectors are located at the same point:

µ = E [X]

which is the expected value of X (Theorem 1). This is true
regardless of the number of codevectors available. We refer
to the number of different codevectors resulting from the
optimization process as effective codevectors. These define the
cardinality of the codebook, which changes as we lower the
temperature. The bifurcation occurs when the solution above
a critical temperature Tc is no longer the minimum of the
free energy F for T < Tc. A set of coincident codevectors
then splits into separate subsets. These critical temperatures
Tc can be traced when the Hessian of F loses its positive
definite property, and are, in some cases, computable (see
Theorem 1 in [17]). In other words, an algorithmic imple-
mentation needs only as many codevectors as the number of
effective codevectors, which depends only on the temperature
parameter, i.e. the Lagrange multiplier of the multi-objective
minimization problem in (2). As will be shown in Section
III-E, we can detect the bifurcation points by maintaining and
perturbing pairs of codevectors at each effective cluster so that
they separate only when a critical temperature is reached.

C. Online Deterministic Annealing for Clustering

The conditional expectation E [X|µ] in eq. (5) can be
approximated by the sample mean of the data points weighted
by their association probabilities p(µ|x), i.e.,

Ê [X|µ] =

∑
xp(µ|x)

p(µ)
.

This approach, however, defines an offline (batch) optimization
algorithm and requires the entire dataset to be available a
priori, subtly assuming that it is possible to store and also
quickly access the entire dataset at each iteration. This is rarely
the case in practical applications and results to computationally
costly iterations that are slow to converge. We propose an
Online Deterministic Annealing (ODA) algorithm, that dynam-
ically updates its estimate of the effective codevectors with
every observation. This results in a significant reduction in
complexity, that comes in two levels. The first refers to huge
reduction in memory complexity, since we bypass the need to
store the entire dataset, as well as the association probabilities
{p(µ|x), ∀x} that map each data point in the dataset to
each cluster. The second level refers to the nature of the
optimization iterations. In the online approach the optimization
iterations increase in number but become much faster, and
practical convergence is often after a smaller number of
observations.

To define an online training rule for the above optimization
framework, we formulate a stochastic approximation algorithm

to recursively estimate E [X|µ] directly. Stochastic approxi-
mation, first introduced in [34], was originally conceived as a
tool for statistical computation, and, since then, has become a
central tool in a number of different disciplines, often times
unbeknownst to the users, researchers and practitioners. It
offers an online, adaptive, and computationally inexpensive
optimization framework, properties that make it an ideal opti-
mization method for machine learning algorithms. In addition
to its connection with optimization and learning algorithms,
however, stochastic approximation is strongly connected to
dynamical systems, as well, a property that allows the study of
its convergence through the analysis of an ordinary differential
equation, as illustrated in the following theorem:

Theorem 3 ( [18], Ch.2). Almost surely, the sequence {xn} ∈
S ⊆ Rd generated by the following stochastic approximation
scheme:

xn+1 = xn + α(n) [h(xn) +Mn+1] , n ≥ 0 (7)

with prescribed x0, converges to a (possibly sample path
dependent) compact, connected, internally chain transitive,
invariant set of the o.d.e:

ẋ(t) = h (x(t)) , t ≥ 0, (8)

where x : R+ → Rd and x(0) = x0, provided the following
assumptions hold:

(A1) The map h : Rd → Rd is Lipschitz in S, i.e., ∃L with 0 <
L <∞ such that ‖h(x)− h(y)‖ ≤ L ‖x− y‖ , x, y ∈ S,

(A2) The stepsizes {α(n) ∈ R++, n ≥ 0} satisfy
∑
n α(n) =

∞, and
∑
n α

2(n) <∞ ,
(A3) {Mn} is a martingale difference sequence

with respect to the increasing family of σ-
fields Fn := σ (xm,Mm, m ≤ n), n ≥ 0, i.e.,
E [Mn+1|Fn] = 0 a.s., for all n ≥ 0, and,
furthermore, {Mn} are square-integrable with
E
[
‖Mn+1‖2 |Fn

]
≤ K

(
1 + ‖xn‖2

)
, a.s., where

n ≥ 0 for some K > 0,
(A4) The iterates {xn} remain bounded a.s., i.e.,

supn ‖xn‖ <∞ a.s.

As an immediate result, the following corollary also holds:

Corollary 3.1. If the only internally chain transitive invariant
sets for (8) are isolated equilibrium points, then, almost surely,
{xn} converges to a, possibly sample dependent, equilibrium
point of (8).

Now we are in place to prove the following theorem:

Theorem 4. Let S a vector space, µ ∈ S, and X : Ω → S
be a random variable defined in a probability space (Ω,F,P).
Let {xn} be a sequence of independent realizations of X , and
{α(n) > 0} a sequence of stepsizes such that

∑
n α(n) =∞,

and
∑
n α

2(n) <∞. Then the random variable mn = σn/ρn,
where (ρn, σn) are sequences defined by

ρn+1 = ρn + α(n) [p(µ|xn)− ρn]

σn+1 = σn + α(n) [xnp(µ|xn)− σn] ,
(9)

converges to E [X|µ] almost surely, i.e. mn
a.s.−−→ E [X|µ].



Proof. We will use the facts that p(µ) = E [p(µ|x)] and
E
[
1[µ]X

]
= E [xp(µ|x)]. The recursive equations (9) are

stochastic approximation algorithms of the form:

ρn+1 = ρn + α(n)[(p(µ)− ρn)+

(p(µ|xn)− E [p(µ|X)])]

σn+1 = σn + α(n)[(E
[
1[µ]X

]
− σn)+

(xnp(µ|xn)− E [xnp(µ|X)])]

(10)

It is obvious that both stochastic approximation algorithms
satisfy the conditions of Theorem 3 and Corollary 3.1. As
a result, they converge to the asymptotic solution of the
differential equations

ρ̇ = p(µ)− ρ
σ̇ = E

[
1[µ]X

]
− σ

which can be trivially derived through standard ODE analysis
to be

(
p(µ),E

[
1[µ]X

])
. In other words, we have shown that

(ρn, σn)
a.s.−−→

(
p(µ),E

[
1[µ]X

])
(11)

The convergence of mn follows from the fact that E [X|µ] =
E[1[µ]X]/p(µ), and standard results on the convergence of the
product of two random variables.

As a direct consequence of this theorem, the following
corollary provides an online learning rule that solves the
optimization problem of the deterministic annealing algorithm.

Corollary 4.1. The online training rule{
ρi(n+ 1) = ρi(n) + α(n) [p̂(µi|xn)− ρi(n)]

σi(n+ 1) = σi(n) + α(n) [xnp̂(µi|xn)− σi(n)]
(12)

where the quantities p̂(µi|xn) and µi(n) are recursively up-
dated as follows:

p̂(µi|xn) =
ρi(n)e−

d(xn,µi(n))

T∑
i ρi(n)e−

d(xn,µi(n))

T

µi(n) =
σi(n)

ρi(n)
,

(13)

converges almost surely to a possibly sample path dependent
solution of the block optimization (3), (5).

Finally, the learning rule (12), (13) can be used to define a
consistent (histogram) density estimator at the limit T → 0.
This follows from the fact that as T → 0, the number of
clusters K goes to infinity, p(µh|X) → 1[X∈Sh], and, as
a result, F → J , i.e., the consistency of Alg. 1 can be
studied with similar arguments to the stochastic divergence-
based vector quantization algorithm (1) (see [13], [14]).

D. Online Deterministic Annealing for Classification

We can extend the proposed learning algorithm to be used
for classification as well. In this case we can rewrite the
expected distortion as

D = E
[
db(cX , Q

c)
]

where db(cx, cµ) = 1[cx 6=cµ]. Because db is not differentiable,
using similar principles as in the case of LVQ, we can instead

approximate the optimal solution by solving the minimization
problem for the following distortion measure

dc(x, cx, µ, cµ) =

{
d(x, µ), cx = cµ

0, cx 6= cµ
(14)

This particular choice for the distortion measure dc will lead
to some interesting regularization properties of the proposed
online approach (see Section III-E).

It is easy to show that the coordinate block optimization
steps (3) and (5), in this case become:

p(µ, cµ|x, cx) =
e−

dc(x,cx,µ,cµ)

T∑
µ,cµ

e−
dc(x,cx,µ,cµ)

T

, and

µ∗ =

∑
cx=cµ

xp(x, cx)p(µ, cµ|x, cx)∑
cx=cµ

p(x, cx)p(µ, cµ|x, cx)

respectively. In the last step, we have assumed that the class cµ
of each centroid µ is given and cannot be changed dynamically
by the algorithm, which results to the minimization with
respect to µ only. In a similar fashion, it can be shown that
the online learning rule that solves the optimization problem of
the deterministic annealing algorithm for classification, based
on the distortion measure (14), is given by:

ρi(n+ 1) =ρi(n) + α(n)1[cxj=cµi ]

[p̂(µi, cµi |xn, cxn)− ρi(n)]

σi(n+ 1) =σi(n) + α(n)1[cxj=cµi ]

[xnp̂(µi, cµi |xn, cxn)− σi(n)]

(15)

where

p̂(µi, cµi |xn, cxn) =
ρi(n)e−

dc(xn,cxn ,µi(n),cµi(n))

T∑
i ρi(n)e−

dc(xn,cxn ,µi(n),cµi(n))

T

µi(n) =
σi(n)

ρi(n)

(16)

At the limit T → 0, the quantization scheme described above
equipped with a majority-vote classification rule is strongly
Bayes risk consistent, i.e., converges to the optimal (Bayes)
probability of error (see Ch. 21 in [13]). However, due to the
choice of the distortion measure dc in (14) used in ODA for
classification, the algorithm can be used to estimate consistent
class-conditional density estimators, which define the natural
classification rule:

ĉ(x) = cµh∗ (17)

where h∗ = arg max
τ=1,...,K

p(µτ |x), h ∈ {1, . . . ,K}.

E. The algorithm

The proposed Online Deterministic Annealing (ODA) al-
gorithm (Algorithm 1), is based on (15), (16), and can be
used for both clustering and classification alike, depending
on whether the data belong to a single (clustering) or several
classes (classification).

Temperature Schedule. The temperature schedule Ti plays
an important role in the behavior of the algorithm. Starting



at high temperature Tmax ensures the correct operation of
the algorithm. The value of Tmax depends on the domain of
the data and should be large enough such that there is only
one effective codevector at T = Tmax. When the range of
the domain of the data is not known a priori, overestimation
is recommended. The stopping temperature Tmin can be set
a priori or be decided online depending on the performance
of the model at each temperature level. The temperature step
dTi = Ti−1− Ti should be small enough such that no critical
temperature is missed. On the other hand, the smaller the step
dTi, the more optimization problems need to be solved. It is
common practice to use the geometric series Ti+1 = γTi.

Stochastic Approximation. Regarding the stochastic approx-
imation stepsizes, simple time-based learning rates, e.g. of the
form αn = 1/a+bn, have been sufficient for fast convergence
in all our experiments so far. Convergence is checked with the
condition dφ(µni , µ

n−1
i ) < εc for a given threshold εc that can

depend on the domain of X . Exploring adaptive learning rates
would be an interesting research direction for the future.

Bifurcation and Perturbations. To every temperature level
Ti, corresponds a set of effective codevectors {µj}Kij=1, which
consist of the different solutions of the optimization problem
(2) at Ti. Bifurcation, at Ti, is detected by maintaining a pair
of perturbed codevectors {µj + δ, µj − δ} for each effective
codevector µj generated at Ti−1, i.e. for j = 1 . . . ,Ki−1.
Using arguments from variational calculus [17], it is easy
to see that, upon convegence, the perturbed codevectors will
merge if a critical temperature has not been reached, and
will get separated otherwise. In case of a merge, one of the
perturbed codevectors is removed from the model. Therefore,
the cardinality of the model is at most doubled at every
temperature level. For classification, a perturbed codevector
for each distinct class is generated.

Regularization. Merging is detected by the condition
dφ(µj , µi) < εn, where εn is a design parameter that acts
as a regularization term for the model. Large values for
εn (compared to the support of the data X) lead to fewer
effective codevectors, while small εn values lead to a fast
growth in the model size, which is connected to overfitting.
It is observed that, for practical convergence, the perturbation
noise δ is best to not exceed εn. An additional regulariza-
tion mechanism that comes as a natural consequence of the
stochastic approximation learning rule, is the detection of
idle codevectors. To see that, notice that the sequence ρi(n)
resembles an approximation of the probability p(µi, cµi). In
the updates (12), (13), ρi(n) becomes negligible (ρi(n) < εr)
if not updated by any nearby observed data, which is a natural
criterion for removing the codevector µi. This happens if all
observed data samples xn are largely dissimilar to µi. In
classification, because of the choice of dc in (14), codevectors
µi that are not assigned the same class as the data in their
vicinity, will end up to be removed, as well. The threshold εr
is a parameter that usually takes values near zero.

Complexity. The worst case complexity of Algorithm 1
behaves as O(σmaxNK

2
maxd), where:

• N is an upper bound of the number of data samples
observed, which should be large enough to overestimate
the iterations needed for convergence;

• d is the dimension of the input vectors, i.e., x ∈ Rd;
• Kmax is the maximum number of codevectors allowed;
• σmax = {σ1, σ2, . . . , σKmax}, where σi is the number

of temperature values in our temperature schedule that
lie between two critical temperatures Ti and Ti+1, with
the understanding that at Ti there are i distinct effective
codevectors present. Here we have assumed that Kmax

is achievable within our temperature schedule.
Fine-Tuning. In practice, because the convergence to the

Bayes decision surface comes at the limit (K,T ) → (∞, 0),
a fine-tuning mechanism should be designed to run on top of
the proposed algorithm after Tmin. This can be either an LVQ
algorithm (Section II-B) or some other local model.

Algorithm 1 Online Deterministic Annealing

Select Bregman divergence dφ
Set temperature schedule: Tmax, Tmin, γ
Decide maximum number of codevectors Kmax

Set convergence parameters: {αn}, εc, εn, εr, δ
Select initial configuration

{
µi
}

: cµi = c, ∀c ∈ C

Initialize: K = 1, T = Tmax
Initialize: p(µi) = 1, σ(µi) = µip(µi), ∀i
while K < Kmax and T > Tmin do

Perturb µi ←
{
µi + δ, µi − δ

}
, ∀i

Increment K ← 2K
Update p(µi), σ(µi)← µip(µi), ∀i
Set n← 0
repeat

Observe data point x and class label c
for i = 1, . . . ,K do

Compute membership si = 1[cµi=c]
Update:

p(µi|x)← p(µi)e−
dφ(x,µi)

T∑
i p(µ

i)e−
dφ(x,µi)

T

p(µi)← p(µi) + αn
[
sip(µi|x)− p(µi)

]
σ(µi)← σ(µi) + αn

[
sixp(µi|x)− σ(µi)

]
µi ← σ(µi)

p(µi)
Increment n← n+ 1

end for
until dφ(µin, µ

i
n−1) < εc, ∀i

Keep effective codevectors:
discard µi if dφ(µj , µi) < εn, ∀i, j, i 6= j

Remove idle codevectors:
discard µi if p(µi) < εr, ∀i

Update K, p(µi), σ(µi), ∀i
Lower temperature T ← γT

end while

IV. EXPERIMENTAL EVALUATION AND DISCUSSION

We illustrate the properties and evaluate the performance
of the proposed algorithm in widely used artificial and real
datasets for clustering and classification2.

2Code and Reproducibility: The source code is publicly available online at
https://github.com/MavridisChristos/OnlineDeterministicAnnealing.



(a) Concentric circles.

(b) Half moons.

(c) Gaussians.

(d) Poor initial conditions.

Fig. 1: (a)-(c)Illustration of the evolution of Alg. 1 for
decreasing temperature T in binary classification in 2D. (d)
Showcasing robustness with respect to bad initial conditions.

A. Toy Examples

We first showcase how Alg. 1 works in three simple, but
illustrative, classification problems in two dimensions (Fig.
1). The first two are binary classification problems with the
underlying class distributions shaped as concentric circles (Fig.
1a), and half moons (Fig. 1b), respectively. The third is a multi-
class classification problem with Gaussian mixture class distri-
butions (Fig. 1c). All datasets consist of 1500 samples. Since
the objective is to give a geometric illustration of how the
algorithm works in the two-dimensional plane, the Euclidean
distance is used. The algorithm starts at high temperature
with a single codevector for each class. As the temperature
coefficient gradually decreases (Fig. 1, from left to right), the
number of codevectors progressively increases. The accuracy
of the algorithm typically increases as well. As the temperature
goes to zero, the complexity of the model, i.e. the number of
codevectors, rapidly increases (Fig. 1, rightmost pictures). This
may, or may not, translate to a corresponding performance
boost. A single parameter –the temperature T– offers online
control on this complexity-accuracy trade-off. Finally, Fig.
1d showcases the robustness of the proposed algorithm with
respect to the initial configuration. Here the codevectors are
poorly initialized outside the support of the data, which is not
assumed known a priori (e.g. online observations of unknown
domain). In this example the LVQ algorithm has been shown to
fail [35]. In contrast, the entropy term H in the optimization
objective of Alg. 1, allows for the online adaptation to the
domain of the dataset and helps to prevent poor local minima.

B. Real Datasets

Clustering. For clustering, we consider the following
datasets: (a) the dataset of Fig. 1c (Gaussians), (b) the WBCD

(a) Gaussians. (b) WBCD.

(c) PIMA. (d) Adult.

Fig. 2: Algorithm comparison for clustering.

dataset [36], (c) the PIMA dataset [37], and (d) the Adult
dataset3 [36]. In Fig. 2, we compare Alg. 1 with the online
sVQ algorithm (Def. 1), and two offline algorithms, namely
k-means [27], and the original deterministic annealing (DA)
algorithm [17]. The algorithms are compared in terms of the
minimum average distortion achieved, as a function of the
number of samples they observed, and the number of clusters
they used (floating numbers inside the figures). The Euclidean
distance is used for fair comparison. Since there is no criterion
to decide the number of clusters K for k-means and sVQ,
we run them sequentially for the K values estimated by DA,
and add up the computational time. All algorithms are able
to achieve comparable average distortion values given good
initial conditions and appropriate size K. Therefore, the pro-
gressive estimation of K, as well as the robustness with respect
to the initial conditions, are key features of both annealing
algorithms, i.e., DA and ODA (Alg. 1). Compared to the offline
algorithms, i.e., k-means and DA, ODA and sVQ achieve
practical convergence with significantly smaller number of
observations, which corresponds to reduced computational
time, as argued above. Notice the substantial difference in
running time between the original DA algorithm and the
proposed ODA algorithm in Fig. 4. Compared to the online
sVQ (and LVQ), the probabilistic approach of ODA introduces
additional computational cost: all neurons are now updated in
every iteration, instead of only the winner neuron. However,
the updates can still be computed fast when using Bregman
divergences (Theorem 2), and the aforementioned benefits of
the annealing nature of ODA, outweigh this additional cost in
many real-life problems.

Classification. For classification, we consider the Gaussian
(Fig. 1c), WBCD, PIMA, and Credit Card4 [38] datasets.
We compare Alg. 1 against an SVM model with a linear
kernel [39], a feed-forward fully-connected neural network
with a single hidden layer of nNN neurons (NN), and the

315000 samples randomly selected. Non-numerical features removed.
415000 samples randomly selected.



(a) Gaussians. (b) WBCD.

(c) PIMA. (d) Credit Card (F1 score).

Fig. 3: Algorithm comparison for classification.

Fig. 4: Running time of the algorithms in Fig. 2a, Fig. 3a.

Random Forests (RF) algorithm with tRF estimators [40].
These algorithms have been selected to represent today’s stan-
dards in simple classification tasks, i.e., when no sophisticated
feature extraction is required. The SVM classifier represents
the class of linear classification models, the neural network
represents the class of non-linear approximation models, and
the random forests algorithm represents the class of partition-
based methods with bootstrap aggregating. Table I shows the
results of a 5-fold cross validation (80/20%), and Fig. 3
illustrates the performance of the algorithms during a random
test. The evolution of the complexity of the ODA model
is depicted as a function of the observed samples and the
classification accuracy achieved. We use the generalized I di-
vergence (Example 2) in the WBCD dataset and the Euclidean
distance in the rest. ODA (Alg. 1) outperforms the linear SVM
classifier, and can achieve comparable performance with the
NN and the RF algorithms, which are today’s standards in
classification tasks where no feature extraction is required.
In the greatly unbalanced Credit Card dataset, all algorithms
achieved accuracy close to 100%, but the F1 scores dropped
significantly (Fig. 3d). Notably, this was not the case with the
ODA algorithm. This may be due to the generative nature of
the algorithm, and might also be an instance of the robustness
expected by vector quantization algorithms [16]. Justifying and

DATA SET ODA SVM NN RF

GAUSSIAN 98.9± 0.0 79.5± 0.0 98.6± 0.0 98.7± 0.0

WBCD 90.7± 0.0 85.6± 0.0 92.7± 0.0 94.6± 0.0

CREDIT (F1) 95.6± 0.0 69.1± 0.2 58.9± 0.1 62.8± 0.1

PIMA 70.5± 0.0 62.9± 0.0 76.3± 0.0 74.4± 0.0

TABLE I: Classification accuracies in 5-fold cross-validation.

quantifying this robustness is beyond the scope of this paper.
Parameters. The parameters nNN ∈ [10, 100] and tRF ∈

[10, 100] were selected through extensive grid search. In
contrast, the parameters of the ODA algorithm for all the
experiments were set as follows: Tmax = 100∆Sd, Tmin =
0.001∆Sd, Kmax = 100, γ = 0.8, εc = 0.0001∆Sd,
εn = 0.001∆Sd, εr = 10−7, δ = 0.01∆Sd, and αn =
1/1+0.9n, where d is the number of dimensions of the input
X ∈ S ⊆ Rd, and ∆S represents the length of the largest edge
of the smallest d-orthotope that contains S. We stress that no
parameter tuning has taken place for the proposed algorithm.

Limitations. Finally, we note that both NN and RF out-
perform Alg. 1 in some datasets (Table I). A fine-tuning
mechanism, as discussed in Section III-E, could alleviate these
differences, and is currently not used in our experiments.
Regarding the running time of the ODA algorithm, Fig. 4
shows the execution time of the learning algorithms used in
Fig. 2a and Fig. 3a. All experiments were implemented in a
personal computer. We note that, in contrast to the commercial,
and, therefore, optimized versions of the k-means, SVM, NN,
and RF algorithms, the algorithmic implementation of the
proposed algorithm is not yet optimized, and substantial speed-
up is expected through appropriate software development.

V. CONCLUSION

It is understood that the trade-off between model com-
plexity and performance in machine learning algorithms is
closely related to over-fitting, generalization, and robustness
to input perturbations and adversarial attacks. We investigate
the properties of learning with progressively growing models,
and propose an online annealing optimization approach as a
learning algorithm that progressively adjusts its complexity
with respect to new observations, offering online control over
the performance-complexity trade-off. The proposed algorithm
can be viewed as a neural network with inherent regularization
mechanisms, the learning rule of which is formulated as an
online gradient-free stochastic approximation algorithm. As a
prototype-based learning algorithm, it offers a progressively
growing knowledge base that can be interpreted as a memory
unit that parallels similar concepts form cognitive psychology
and neuroscience. The annealing nature of the algorithm pre-
vents poor local minima, offers robustness to initial conditions,
and provides a means to progressively increase the complexity
of the learning model as needed. To our knowledge, this is the
first time such a progressive approach has been proposed for
machine learning applications. We believe that these results
can lead to new developments in learning with progressively
growing models, especially in communication, control, and
reinforcement learning applications.
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