
 
 

Delft University of Technology

Distributed Actor-Critic Algorithms for Multiagent Reinforcement Learning Over Directed
Graphs

Dai, Pengcheng; Yu, Wenwu; Wang, He; Baldi, Simone

DOI
10.1109/TNNLS.2021.3139138
Publication date
2023
Document Version
Final published version
Published in
IEEE Transactions on Neural Networks and Learning Systems

Citation (APA)
Dai, P., Yu, W., Wang, H., & Baldi, S. (2023). Distributed Actor-Critic Algorithms for Multiagent
Reinforcement Learning Over Directed Graphs. IEEE Transactions on Neural Networks and Learning
Systems, 34(10), 7210-7221. https://doi.org/10.1109/TNNLS.2021.3139138

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/TNNLS.2021.3139138
https://doi.org/10.1109/TNNLS.2021.3139138


Green Open Access added to TU Delft Institutional Repository 

'You share, we take care!' - Taverne project  
 

https://www.openaccess.nl/en/you-share-we-take-care 

Otherwise as indicated in the copyright section: the publisher 
is the copyright holder of this work and the author uses the 
Dutch legislation to make this work public. 

 
 



7210 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 34, NO. 10, OCTOBER 2023

Distributed Actor–Critic Algorithms for Multiagent
Reinforcement Learning Over Directed Graphs

Pengcheng Dai , Student Member, IEEE, Wenwu Yu , Senior Member, IEEE, He Wang ,

and Simone Baldi , Senior Member, IEEE

Abstract— Actor–critic (AC) cooperative multiagent reinforce-
ment learning (MARL) over directed graphs is studied in this
article. The goal of the agents in MARL is to maximize the glob-
ally averaged return in a distributed way, i.e., each agent can only
exchange information with its neighboring agents. AC methods
proposed in the literature require the communication graphs to
be undirected and the weight matrices to be doubly stochastic
(more precisely, the weight matrices are row stochastic and
their expectation are column stochastic). Differently from these
methods, we propose a distributed AC algorithm for MARL over
directed graph with fixed topology that only requires the weight
matrix to be row stochastic. Then, we also study the MARL
over directed graphs (possibly not connected) with changing
topologies, proposing a different distributed AC algorithm based
on the push-sum protocol that only requires the weight matrices
to be column stochastic. Convergence of the proposed algo-
rithms is proven for linear function approximation of the action
value function. Simulations are presented to demonstrate the
effectiveness of the proposed algorithms.

Index Terms— Directed graph, distributed actor–critic (AC)
algorithm, multiagent reinforcement learning (MARL), push-sum
protocol.

I. INTRODUCTION

REINFORCEMENT learning (RL) is a mathematical
framework to describe the problem of a learner to achieve

a goal by interacting with an unknown environment [1], [2].
This framework is gaining more and more attention due
to its wide applicability in many fields, such as optimal
control [3]–[7], board games [8], [9], smart grids [10]–[13],
and cyber-physical systems [14]–[16], among others (see also
references therein).

Very often, RL involves the participation of many learners,
giving rise to multiagent reinforcement learning (MARL)
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problems [17]. The concept of MARL first appeared in [18],
where the author studied a competitive RL setting with two
agents, where one agent aims to maximize the long-term
return and the other aims to minimize it. As a generalization
of [18], Hu and Wellman [20] proposed a Nash Q-learning
algorithm for multiagent game where all agents have different
reward functions and each agent aims to maximize the local
long-term return. The disadvantage of Nash Q-learning is that
the number of Q-functions (i.e., action value functions) that
each agent needs to calculate is the same as the number of
agents; furthermore, the convergence of the algorithm cannot
be proved analytically. In place of a competitive setting, Lauer
and Riedmiller [19] proposed a cooperative MARL where all
agents share a common reward function and the objective of
all agents is to maximize the long-term return cooperatively;
in the resulting algorithm, each agent only makes use of the
local action value function to solve the problem.

With the recent development of the fields of multiagent sys-
tems [21]–[27] and distributed optimization [28], [29], many
techniques from these two fields have been used in MARL
problems to obtain distributed RL algorithms. Compared to
a centralized RL algorithm requiring a central controller to
collect the global information from every agent, distributed RL
algorithms only rely on local exchange of information with
neighboring agents. In general, centralized RL exhibits the
issue of increasing computational costs, whereas distributed
RL manages to distribute computations over the communica-
tion network to reduce the cost of computing. As a result,
the design of distributed RL algorithms has gained increasing
attention. A pioneering work combining average consensus
protocol and Q-learning resulted in the so-called distributed
QD algorithm [30], applicable to MARL with finite state and
action spaces. However, it is well known in the RL field
that the distributed QD algorithm with finite spaces does
not scale as the dimensions of the state and action spaces
increase (i.e., the curse of dimensionality issue). In order to
improve the scalability of MARL, a new kind of value-based
MARL paradigm, called centralized training with decentral-
ized execution (CTDE), was proposed based on value function
decomposition [31]–[35]. The CTDE mechanism has recently
attracted significant attention whenever agents’ policies are
trained with access to global information in a centralized
way and executed in a decentralized way. Inspired by CTDE,
many CTDE-based MARL methods have proposed, such as
VDN [31], QMIX [32], QTRAN [33], MAVEN [34], and
QPLEX [35], among many others.

2162-237X © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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Different from the above value-based methods, policy gradi-
ent methods promise to address the stability and convergence
in MARL. For large state and action spaces, a classical policy
gradient method uses both value function approximation (i.e.,
critic) and policy parameters update (i.e., actor), which gives
rise to the so-called actor–critic (AC) algorithms [2]. Accord-
ingly, combining the advantages of distributed computation
and AC, some distributed versions of AC algorithms have been
proposed. Zhang et al. [36] proposed a fully decentralized
AC algorithm where the collective goal of all agents is to
maximize the globally averaged return over time-varying undi-
rected graphs. To the best of our knowledge, this was the first
provably convergent AC-based distributed MARL algorithm.
Different from [36], Zhang et al. [37] proposed a distributed
MARL algorithm using the expected policy gradient. Both
the works [36] and [37] are on-policy algorithms, meaning
that each agent learns only about the policy it is executing.
Different from the on-policy algorithms, in off-policy algo-
rithms, each agent can learn about a policy different from
the one it is executing [38]. A distributed off-policy AC
algorithm based on multiagent off-policy gradient theorem
was proposed in [39]. Despite the recent advances in the
field, common assumptions to these recent AC methods are
that the communication graphs between agents are undirected
and that the weight matrices associated with the graphs are
doubly stochastic (more precisely, the weight matrices are row
stochastic and their expectations are column stochastic [36],
[37], [39]). An exception in this sense is [40], which considers
MARL over directed graphs with column stochastic weight
matrices.

In view of the recent results in MARL, it is a relevant
and largely unsolved problem to design distributed AC meth-
ods with analytic convergence guarantees over more general
graphs and weight matrices. In this work, we provide a
solution to this problem for directed graphs with both fixed
and time-varying topologies. The main contributions of this
work are as follows.

1) Different from the state of the art [36], [37], [39], we are
relaxing the conditions of undirected graphs and doubly
stochastic weight matrices (more precisely, the weight
matrices are row stochastic and their expectations are
column stochastic). Two distributed AC algorithms are
proposed to handle MARL over directed graphs with
fixed topology and row stochastic weight matrix or
directed graphs with changing topologies and column
stochastic weight matrices.

2) In the case of MARL over directed graphs with fixed
topology, considering that the row stochastic weight
matrix of fixed directed graph may not have a left
eigenvector (1/N)1�, we design a new temporal differ-
ence (TD) error to ensure consensus over the normalized
left Perron eigenvector of the weight matrix.

3) Different from the AC method in [40], which handles
the MARL over directed graphs with column stochastic
weight matrices, we propose a new distributed AC
algorithm with the push-sum protocol that can han-
dle directed graphs with time-varying topologies and

column stochastic weight matrices. Interestingly, com-
pared to [40], the time-varying topologies we consider
can even give rise to disconnected graphs over finite-
time intervals.

The rest of this article is organized as follows. Section II
introduces some preliminary notions of graph theory and
single-agent RL. The cooperative MARL problem is formu-
lated in Section III. In Section IV, two distributed AC algo-
rithms for MARL over directed graphs with fixed and changing
topologies are proposed. Section V analyzes the convergence
of the two proposed distributed AC algorithms with linear
action value function approximation. Simulation results to
demonstrate the effectiveness of the proposed algorithms are
shown in Section VI. Conclusion and future problems are
discussed in Section VII.

Throughout this article, the notations R
N , R

N×M , I , A�,
and �·� are standard. The vector with each element being 1 is
denoted by 1. ei is a vector whose i th element is 1 and others
are 0. For notational simplicity, we use limt , supt , and

�
t

to represent limt→∞, supt→∞, and
�

t≥0, respectively. For a
finite set S, we use |S| to denote the cardinality of S. ⊗ and

�
are the Kronecker product and Cartesian product, respectively.
I{·} is the indicator function.

II. PRELIMINARIES

A. Preliminaries on Graph Theory

Denote a directed communication graph over N agents as
G = (N , E), where N = {1, . . . , N} is the set of nodes and
E is the set of edges. A node i ∈ N represents the agent
with label i . A directed edge ei j = ( j, i) ∈ E represents
that agent i can receive and use the information from agent
j . Denote N in

i = { j |ei j ∈ E} and N out
i = { j |e ji ∈ E}

as the in-neighborhoods and out-neighborhoods of agent i ,
respectively. A directed path from agent i1 to agent ik can
be represented as a sequence of edges: (i1, i2) → (i2, i3) →
· · · → (ik−1, ik). A directed graph G is strongly connected if
there exists at least one directed path from agent j to agent
i for all i, j ∈ N . A weight matrix C = [ci j ]N×N associated
with graph G gives weight to every edge (including self-edges)
and satisfies cii > 0 for any i , ci j > 0 for ( j, i) ∈ E
and ci j = 0 otherwise. The weight matrix C = [ci j ]N×N is
row stochastic if

�
j∈N ci j = 1 for all i ∈ N and column

stochastic if
�

i∈N ci j = 1 for all j ∈ N . The weight
matrix C = [ci j ]N×N is said to be double stochastic if it
is both row stochastic and column stochastic. Let us also
define directed graphs with possibly changing topologies as
Gt = (N , Et ), where N = {1, . . . , N} is the set of agents and
Et is the (time-varying) set of edges at time t . The sequence
of communication graphs {Gt} is said to be uniformly strongly
connected if there exists an integer B > 0 such that the graph
with agents set N and edge set EB(k) = �(k+1)B−1

t=kB Et is
strongly connected for every k ≥ 0.

B. Preliminaries on Single-Agent RL

RL formalizes the problem where agent aims to maximize
a return by interacting with an unknown environment [2]. The
RL problem typically relies on the Markov decision process
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(MDP), which can be represented as a tuple (S,A, P, R),
where S and A are state space and action space, respectively,
P(s	|s, a):S ×A×S → [0, 1] is a state transition probability
function, and R(s, a):S × A → R is the expected reward
function. Assume that at time step t , the state is st and
agent executes the action at , and then, agent will get the
instantaneous reward rt+1, which takes a random variable
with expected value R(st , at), i.e., R(st , at) = E[rt+1|st , at ].
Define the policy π(s, a):S × A → [0, 1] as a probability
distribution over actions for a state. A policy π can be
executed in the environment and produce sample sequence
{s0, a0, r1, s1, a1, r2, . . .}. When the RL problem involves large
state and action spaces, the policy is typically parameterized as
πθ(s, a), where θ is the policy parameter. In particular, policy
parameterization can take many forms, for example, according
to an exponential soft-max distribution [2]

πθ(s, a) = exp( fπ (s, a, θ))�
b∈A exp( fπ (s, b, θ))

where fπ (s, a, θ) = φπ(s, a)�θ and φπ(s, a) is the feature
vector of (s, a).

In continuing tasks, the goal of the agent is to maximize
the expected time-average reward J (θ) that is represented as
follows:

J (θ) = lim
T→∞

1

T

T−1�
t=0

E
�
rt+1

� =�
s∈S

dθ (s)
�
a∈A

πθ (s, a)R(s, a)

where dθ (s) = limt→∞ P(st = s|πθ) is the stationary dis-
tribution of state s under policy πθ and satisfies dθ (s	) =�

s∈S dθ (s)
�

a∈A πθ(s, a)P(s	|s, a) for all s	 ∈ S. Under a
given policy πθ , the quantitative evaluation of a state–action
pair (s, a) (i.e., action value function) is denoted as

Qπθ (s, a) =
�

t

E
�
rt+1 − J (θ)|s0 = s, a0 = a, πθ

�
where Qπθ (s, a) is also typically parameterized as Q(s, a;w)
with parameter w (i.e., action value function approximation).
In general, the action value function approximation can take
many forms, for example, linear function approximation, i.e.,
Q(s, a;w) = φ(s, a)�w, where φ(s, a) is the feature vector
of state–action pair (s, a). Let us now recall the standard AC
algorithm [36] based on action value function approximation
at time step t⎧⎨

⎩
μt+1 = (1− βw,t)μt + βw,trt+1 (1a)

wt+1 = wt + βw,tδt∇wQ(st , at ;wt) (1b)

θt+1 = θt + βθ,t Atψt (1c)

where βw,t , βθ,t > 0 are stepsizes, μt is the estimation of J (θ),
δt = rt+1 − μt + Q(st+1, at+1;wt) − Q(st , at ;wt) is the TD
error, At = Q(st , at;wt ) −�

a∈A πθt (st , a)Q(st , a;wt), and
ψt = ∇θ logπθt (st , at).

III. PROBLEM SETUP

The MARL over directed graphs can be described as the
networked multiagent MDP, which is characterized by a tuple
(S, {Ai }i∈N , P, {Ri }i∈N , {Gt }t≥0), where N = {1, . . . , N} is
the set of agents, S is the state space shared by all the

agents, and Ai is the local action space of agent i . Denote
the joint action of all agents as a = (a1, . . . , aN ) ∈ A, where
ai ∈ Ai and A = �N

i=1 Ai is the joint action space of all
agents. P(s	|s, a):S × A × S → [0, 1] is the state transition
probability function and Ri (s, a):S × A → R is the local
expected reward function of agent i . Assume that at time step
t , the global state is st , and agents execute the joint action
at = (a1

t , . . . , aN
t ); each agent i ∈ N will get the local

instantaneous reward r i
t+1, which takes a random variable with

expected value Ri (st , at ), i.e., Ri (st , at ) = E[r i
t+1|st , at ]. Gt =

(N , Et ) represents a possibly time-varying directed graphs that
describe the information interaction between agents at time
step t . Denote π i (s, ai):S × Ai → [0, 1] as the local policy
of agent i and π(s, a) = �

i∈N π i (s, ai):S × A → [0, 1] as
the joint policy of all agents. Consequently, the joint action
at = (a1

t , . . . , aN
t ) at time step t can be produced according

to the joint policy π(st , ·). In this article, we consider the same
assumption as in [36], [37], and [39] that the state s and the
joint action a are globally observable, whereas the reward r i

t
is observed only locally by agent i .

We focus on the MARL with large state space S and action
space {Ai }i∈N in continuing task. Denote the parameterized
local policy of agent i as π i

θ i (s, ai), where θ i ∈ �i is the policy
parameter and �i ⊆ R

mi is a compact set. The parameterized
joint policy is denoted as πθ(s, a) = �

i∈N π i
θ i (s, ai ), where

θ = ((θ1)�, . . . , (θ N )�)� ∈ � and � = �
i∈N �i . In order

to understand how the multiagent MDP evolves, assume that
at time step t , the global state is st ∈ S and each agent
i executes the local action ai

t according to a local policy
π i
θ i

t
(st , ·). After the joint action at = (a1

t , . . . , aN
t ) is exe-

cuted, each agent i receives the instantaneous reward r i
t+1;

meanwhile, the multiagent MDP shifts to a new state st+1

with probability P(st+1|st , at). Also, the whole process will
continue to develop. For notational convenience, we denote
πθ = �

i∈N π i
θ i . Before moving on, the following standard

regularity assumption is made for the multiagent MDP and
the policy parameterization.

Assumption 1 [36], [37], [39]: For any θ i ∈ �i , the policy
function satisfies π i

θ i (s, ai) > 0 for any i ∈ N , s ∈ S, and
ai ∈ Ai . The policy π i

θ i (s, ai ) is continuously differentiable
with respect to θ i for all i ∈ N . In addition, for any θ ∈ �, let
Pθ ∈ R

|S|·|A|×|S|·|A| be the transition matrix of the state–action
pair in the Markov chain induced by the joint policy πθ , which
satisfies

Pθ
�
s	, a	|s, a

� = P
�
s	|s, a

�
πθ

�
s	, a	

�
(2)

for all (s, a), (s	, a	) ∈ (S,A). As in [36], we assume that the
Markov chain {(st , at)}t≥0 is irreducible and aperiodic under
any πθ with the stationary distribution denoted by dθ (s) =
limt→∞ P(st = s|πθ).

The objective of the all agents is to collaboratively find a
joint policy πθ to maximize the globally averaged long-term
return, i.e.,

max
θ

J (θ) = lim
T→∞

1

T
E


T−1�
t=0

1

N

�
i∈N

r i
t+1

�

Authorized licensed use limited to: TU Delft Library. Downloaded on November 01,2023 at 13:05:23 UTC from IEEE Xplore.  Restrictions apply. 



DAI et al.: DISTRIBUTED AC ALGORITHMS FOR MULTIAGENT REINFORCEMENT LEARNING OVER DIRECTED GRAPHS 7213

=
�
s∈S

dθ (s)
�
a∈A

πθ(s, a) R̄(s, a) (3)

where R̄(s, a) = (1/N)
�N

i=1 Ri (s, a). Denote r̄t+1 =
(1/N)

�N
i=1 r i

t+1 as the averaged instantaneous reward gen-
erated at time step t , and the global expected action value
function Qθ (s, a) associated with state–action pair (s, a) under
policy πθ is as follows:

Qθ (s, a) =
�

t

E
�
r̄t+1 − J (θ)|s0 = s, a0 = a, πθ

�
. (4)

Meanwhile, the state value function Vθ (s) with state s satis-
fies Vθ (s) = �

a∈A πθ(s, a)Qθ (s, a). Moreover, the advan-
tage function of state–action pair (s, a) can be defined as
Aθ (s, a) = Qθ (s, a)− Vθ (s).

Lemma 1 [36]: For any θ ∈ � and i ∈ N , we define the
local advantage function of agent i as follows:

Ai
θ (s, a) = Qθ (s, a)−

�
ai∈Ai

π i
θ i

�
s, ai

�
Qθ

�
s, ai , a−i

�
(5)

where a−i is the action of agents except for i . The gradient
of J (θ) in (3) with respect to θ i is given by

∇θ i J (θ) =
�
s∈S

dθ (s)
�
a∈A

πθ(s, a)
�
Ai
θ (s, a)ψ i

θ i

�
(6)

where ψ i
θ i = ∇θ i logπ i

θ i (s, ai ).
Consider that the action value function Qθ (s, a) can be

parameterized in a centralized way as Q(s, a;wcen) with
parameters wcen. Motivated by the standard AC algorithm (1),
the parameters wcen and θ can be updated at time step t as
follows: ⎧⎪⎨

⎪⎩
μcen

t+1 = (1− βw,t)μcen
t + βw,t r̄t+1 (7a)

wcen
t+1 = wcen

t + βw,tδcen
t ∇wQ

�
st , at;wcen

t

�
(7b)

θ i
t+1 = 	i

�
θ i

t + βθ,t Acen,i
t ψ i

t

�
(7c)

where βw,t , βθ,t > 0 are stepsizes, δcen
t = r̄t+1 −

μcen
t + Q(st+1, at+1;wcen

t ) − Q(st , at ;wcen
t ), Acen,i

t =
Q(st , at ;wcen

t ) − �
ai∈Ai π i

θ i
t
(st , ai)Q(st , ai , a−i

t ;wcen
t ), and

ψ i
t = ∇θ i logπ i

θ i
t
(st , ai

t ). Furthermore, 	i (·) : R
mi → �i ⊆

R
mi is the local projection operator of agent i that projects

θ i
t + βθ,t Acen,i

t ψ i
t onto a compact set �i .

IV. DISTRIBUTED AC ALGORITHMS

In this section, we propose two distributed AC algorithms
for MARL over directed graphs with fixed and changing
topologies. Different from the assumptions in [36], [37],
and [39], the first distributed AC algorithm we propose
only requires a row stochastic weight matrix. The second
distributed AC algorithm we propose uses the framework of
push-sum protocol and only requires column stochastic weight
matrices [42].

A. Distributed AC Algorithm for MARL Over Directed
Graph With Fixed Topology

Assumption 2: The fixed graph G is strongly connected and
the weight matrix C = [ci j]N×N is row stochastic.

Each agent i maintains its own parameter wi and uses
Q(s, a;wi ) as a local estimation of Qθ (s, a). Moreover,

each agent i can collect and use the parameters of its
in-neighborhoods through the distributed information inter-
action. The distributed AC algorithm (hereafter referred to
as Algorithm 1) for MARL over directed graph with fixed
topology is designed as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

μi
t+1 = (1− βw,t)μi

t + βw,tr i
t+1 (8a)

pi
t+1 =

�
j∈N in

i

ci j p j
t (8b)

w̃i
t+1 = wi

t + βw,tδi
t∇wQt

�
wi

t

�
(8c)

wi
t+1 =

�
j∈N in

i

ci jw̃
i
t+1 (8d)

θ i
t+1 = 	i

�
θ i

t + βθ,t Ai
tψ

i
t

�
(8e)

where μi
t tracks the long-term return of agent i , βw,t , βθ,t >

0 are the stepsizes, pi
t is a local estimation of the normalized

left Perron eigenvector p = (p1, . . . , pn)
� of C with 1� p =

1, and the initial value of pi
t is set as pi

0 = ei ∈ R
N .

In this article, for notational convenience, we let Qt (w
i
t ) =

Q(st , at;wi
t ). In particular, δi

t is the local TD-error that is
defined as δi

t = (r i
t+1 − μi

t )(N · pi
t,i)
−1 + Qt+1(w

i
t )− Qt (w

i
t ),

where pi
t,i is the i th element of pi

t . w̃
i
t+1 is the intermediate

of wi
t+1 and is not involved in the interaction of information.

Ai
t = Qt (w

i
t ) −

�
ai∈Ai π i

θ i
t
(st , ai)Q(st , ai , a−i

t ;wi
t ) is the

advantage function of agent i and ψ i
t = ∇θ i logπ i

θ i
t
(st , ai

t ).
The distinguishing features of the proposed algorithm can be
remarked as follows.

Remark 1: The distributed AC algorithms in [36], [37],
and [39] require the communication graph to be undirected
and the weight matrix to be double stochastic matrix (more
precisely, the weight matrices are row stochastic and their
expectations are column stochastic), which is no longer
applicable in directed graph with row stochastic weight matrix
since (1/N)1� may not be a left eigenvector for the weight
matrix C = [ci j ]N×N . pi

t,i > 0 used in the TD error δi
t =

(r i
t+1−μi

t)(N · pi
t,i)
−1+Qt+1(w

i
t )−Qt(w

i
t ) is to guarantee that

wi
t converges to the consensus term

�N
i=1 piw

i
t . In particular,

in the TD error δi
t , the scaling coefficient (N · pi

t,i)
−1 is only

set for reward term (r i
t+1−μi

t) without setting the action value
function term Qt+1(w

i
t )− Qt (w

i
t ), which is due to the change

of reward guiding action value function.

B. Distributed AC Algorithm for MARL Over Directed
Graphs With Changing Topologies

Assumption 3: The sequence {Gt }t≥0 is uniformly strongly
connected. Moreover, the column stochastic weight matrix
C(t) = [ci j(t)]N×N for all t > 0 is defined by

ci j(t) =
�

1/d j(t), if i ∈ N out
j (t)

0, otherwise
(9)

where d j(t) is the number of out-neighborhoods of agent j
in Gt .

The distributed AC algorithm (hereafter referred to as
Algorithm 2) for MARL over directed graphs with changing
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Algorithm 1 Distributed AC Algorithm for Directed Graph
With Fixed Topology

Set the initial values of C = [ci j ]N×N , μi
0, wi

0, θ i
0 for all

i ∈ N , the initial state s0, and the stepsizes {βw,t}t≥0,
{βθ,t}t≥0;
Set t = 0, pi

0 = ei for all i ∈ N ;
Each agent i ∈ N observes the global state s0, executes
the local action ai

0 ∼ π i
θ i

0
(s0, ·), and observes the joint

action a0 = (a1
0, . . . , aN

0 );
repeat

for i ∈ N do
Agent i observes the reward r i

t+1 and the global
state st+1, executes the local action
ai

t+1 ∼ π i
θ i

t
(st+1, ·), and observes the joint action

at+1 = (a1
t+1, . . . , aN

t+1);
μi

t+1 = (1− βw,t )μi
t + βw,tr i

t+1;
pi

t+1 =
�

j∈N in
i

ci j p j
t ;

δi
t = (r i

t+1 − μi
t)(N · pi

t,i)
−1 + Qt+1(w

i
t )− Qt (w

i
t );

w̃i
t+1 = wi

t + βw,tδi
t∇wQt(w

i
t );

wi
t+1 =

�
j∈N in

i
ci jw̃

i
t+1;

Ai
t = Qt (w

i
t )−

�
ai∈Ai π i

θ i
t
(st , ai)Q(st , ai , a−i

t ;wi
t );

ψ i
t = ∇θ i logπ i

θ i
t
(st , ai

t );

θ i
t+1 = 	i (θ i

t + βθ,t Ai
tψ

i
t );

end
Update the iteration counter t ← t + 1;

until Convergence;

topologies is designed as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

μi
t+1 = (1− βw,t)μi

t + βw,tr i
t+1 (10a)

oi
t+1 =

�
j∈N in

i

ci j(t)o
j
t (10b)

w̃i
t+1 =

�
j∈N in

i

ci j(t)w̃
j
t + βw,t δ̃i

t∇wQt
�
w̃i

t

�
(10c)

wi
t+1 =

1

oi
t+1

�
j∈N in

i

ci j(t)w̃
j
t (10d)

θ i
t+1 = 	i

�
θ i

t + βθ,t Ai
tψ

i
t

�
(10e)

where oi
0 = 1 and δ̃i

t = r i
t+1−μi

t + Qt+1(w̃
i
t )− Qt (w̃

i
t ) for all

i ∈ N . Ai
t = Qt (w

i
t )−

�
ai∈Ai π i

θ i
t
(st , ai)Q(st , ai , a−i

t ;wi
t ) is

the advantage function of agent i and ψ i
t = ∇θ i logπ i

θ i
t
(st , ai

t ).
The distinguishing features of the proposed algorithm can be
remarked as follows.

Remark 2: In Algorithm 2, (10b)–(10d) are designed based
on the push-sum protocol. The push-sum protocol was also
used in [40] under the assumption of column stochastic weight
matrices. Since the column stochastic weight matrices as in
Assumption 3 cannot guarantee average consensus in general,
the ratios (1/oi

t+1)
�

j∈N ci j(t)w̃
j
t are introduced to track the

average (1/N)(1�⊗ I )w̃t , where w̃t = ((w̃1
t )
�, . . . , (w̃N

t )
�)�.

In order to achieve a similar convergence result as the central-
ized algorithm (7), we propose the different TD error in (10c)
containing ∇wQt (w̃

i
t ) in place of the TD error in [40]. It is

Algorithm 2 Distributed AC Algorithm for Directed
Graphs With Changing Topologies

Set the initial values of C(t) = [ci j(t)]N×N , μi
0, w̃i

0, θ i
0

for all i ∈ N , the initial state s0, and the stepsizes
{βw,t}t≥0, {βθ,t}t≥0;
Set t = 0, oi

0 = 1 for all i ∈ N ;
Each agent i ∈ N observes the global state s0, executes
the local action ai

0 ∼ π i
θ i

0
(s0, ·), and observes the joint

action a0 = (a1
0, . . . , aN

0 );
repeat

for i ∈ N do
Agent i observes the reward r i

t+1 and the global
state st+1, executes the local action
ai

t+1 ∼ π i
θ i

t
(st+1, ·), and observes the joint action

at+1 = (a1
t+1, . . . , aN

t+1);
μi

t+1 = (1− βw,t)μi
t + βw,tr i

t+1;
oi

t+1 =
�

j∈N in
i

ci j(t)o
j
t ;

δ̃i
t = r i

t+1 − μi
t + Qt+1(w̃

i
t )− Qt (w̃

i
t );

w̃i
t+1 =

�
j∈N in

i
ci j(t)w̃

j
t + βw,t δ̃i

t∇wQt (w̃
i
t );

wi
t+1 = (1/oi

t+1)
�

j∈N in
i

ci j(t)w̃
j
t ;

Ai
t = Qt (w

i
t )−

�
ai∈Ai π i

θ i
t
(st , ai )Q(st , ai , a−i

t ;wi
t );

ψ i
t = ∇θ i logπ i

θ i
t
(st , ai

t );

θ i
t+1 = 	i (θ i

t + βθ,t Ai
tψ

i
t );

end
Update the iteration counter t ← t + 1;

until Convergence;

noted that this new TD error requires a different convergence
analysis.

V. THEORETICAL RESULTS

In this section, we establish theoretical convergence results
for the proposed distributed AC algorithms. Specifically, the
convergence proofs are given for the case of linear function
approximation of the action value function, according to the
following standard assumptions that are taken from [36], [37],
and [39].

Assumption 4: The instantaneous reward r i
t is uniformly

bounded for any agent i and t ≥ 0.
Assumption 5: For each agent i , the action value func-

tion is parameterized by the class of linear func-
tions, i.e., Q(s, a;w) = φ(s, a)�w, where φ(s, a) =
(φ1(s, a), . . . , φK (s, a))� ∈ R

K is the feature vector asso-
ciated with the state–action pair (s, a). The feature vectors
φ(s, a) are uniformly bounded for any s ∈ S, a ∈ A.
Furthermore, the feature matrix 
 ∈ R

|S|·|A|×K whose kth
column is (φk(s, a), s ∈ S, a ∈ A)� has full column rank.
In addition, for any v ∈ R

K , 
v �= 1.
Assumption 6: The stepsizes βw,t and βθ,t satisfy

βw,t , βθ,t > 0,
�

t βw,t = ∞,
�

t βθ,t = ∞,�
t β

2
w,t +

�
t β

2
θ,t < ∞, and βθ,t = o(βw,t). In addition,

limt→∞ βw,t+1 · β−1
w,t = 1.

Assumption 7: The joint policy parameter set � =�N
i=1 �

i

is large enough to include at least one local minimum of J (θ).
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Before moving on, for notational simplicity, we define
Ds,a
θ = diag[dθ (s)πθ(s, a), s ∈ S, a ∈ A] ∈ R

|S|·|A|×|S|·|A|
and R̄ = [R̄(s, a), s ∈ S, a ∈ A]� ∈ R

|S|·|A|. The Bellman
operator Tθ : R|S|·|A| → R

|S|·|A| is denoted as

Tθ (Q) = R̄ − J (θ)1+ Pθ Q (11)

where Q ∈ R
|S|·|A| is the action value function. Define the

vector 	̂i (·) as

	̂i
�
gi(θ)

� = lim
0<η→0

�
	i

�
θ i + ηgi (θ)

�− θ i
�
/η (12)

where gi :�→ R
mi is a continuous function.

A. Convergence of Algorithm 1

Denote an increasing θ -algebra Ft as the filtration with
Ft = θ(rι , μι ,wι , sι , aι , ι ≤ t), where rι = (r1

ι , . . . , r
N
ι )
�,

μι = (μ1
ι , . . . , μ

N
ι )
�, and wι = ((w1

ι )
�, . . . , (wN

ι )
�)�.

Before moving on, the following lemmas are presented.
Lemma 2 [36]: Under Assumptions 1 and 4, the sequence
{μi

t} generated from (8a) is bounded almost surely (a.s.), i.e.,
supt |μi

t | <∞ a.s. for all i ∈ N .
Proof: Define hi (μi

t , st , at) = −μi
t+E[r i

t+1|Ft ]. It is obvi-
ous that hi (μi

t , st , at) is Lipschitz continuous in μi
t . According

to Assumption 1, {(st , at)}t≥0 is an irreducible and aperiodic
Markov chain. In addition, by Assumption 6, the stepsize
βw,t satisfies

�
t βw,t = ∞ and

�
t β

2
w,t < ∞. Since r i

t
is uniformly bounded by Assumption 4, we can get that
E[|r i

t+1−E[r i
t+1|Ft ]|2|Ft ] ≤ K i

0(1+|μi
t|2) for some K i

0 <∞.
Hence, the conditions (a.1)–(a.5) in Appendix A are satisfied.
Define h̄i(μi ) = −μi + �

s∈S dθ (s)
�

a∈A πθ(s, a)Ri (s, a).
According to the stochastic approximation results in Appen-
dix A, the asymptotic behavior of (8a) can be captured by
the ordinary differential equation (ODE): μ̇i = h̄i (μi). Define
h̄i

c(μ
i ) = h̄i (cμi)/c, and then, hi∞(μi) = limc→∞ h̄i

c(μ
i) =

−μi . By Lemma 11, it can be concluded that supt |μi
t | < ∞

a.s. for all i ∈ N .
Lemma 3: Under Assumptions 1 and 4–6, the sequence
{wi

t } generated from (8d) is bounded a.s., i.e., supt |wi
t | <∞

a.s. for all i ∈ N .
Proof: The proof is along similar lines as that in

[36, Lemma 5.1].
Lemma 4 [41]: Under Assumption 2, limt Ct = 1 p�,

where p = (p1, . . . , pN )
� ∈ R

N > 0 is the normalized left
Perron eigenvector of C . For each λ ∈ (λ2(C), 1), there exists
M1 > 0 such that |Ct

ji − pi | ≤ M1λ
t and |pi

t,i − pi | ≤ M1λ
t

for any i, j ∈ N and t > 0, where λ2(C) is the second largest
eigenvalue of C , Ct

ji is the j th row and i th column element in
Ct and pi

t,i is the i th element of pi
t . Furthermore, there exists

η1 > 0 satisfying η−1
1 ≤ pi

t,i ≤ 1 for any i ∈ N and t ≥ 0.
Lemma 5 [28]: Let 0 < β < 1 and {γk} be a pos-

itive scalar sequence, which satisfies limk γk = 0. Then,
limk

�k
l=0 β

k−lγl = 0.
In Algorithm 1, we are concerned with demonstrating the

convergence result for wi
t and θ i

t for all i ∈ N . In order
to demonstrate the convergence of wi

t , we first establish the
asymptotic consensus of wi

t for all i ∈ N . Note that the update
of wt = ((w1

t )
�, . . . , (wN

t )
�)� ∈ R

K N in Algorithm 1 can be

rewritten in a compact form as follows:
wt+1 = (C ⊗ I )

�
wt + βw,t yt+1

�
(13)

where yt+1 = (δ1
t φ
�
t , . . . , δ

N
t φ
�
t )
� ∈ R

K N and φt = φ(st , at).
Denote the operator �·� : RK N → R

K as follows:
�w� = �

p� ⊗ I
�
w =

�
i∈N

piw
i (14)

where wi ∈ R
K for any i ∈ N and w =

((w1)�, . . . , (wN )�)� ∈ R
K N . Denote J = (1 p�) ⊗ I and

J⊥ = I − J , and we can obtain that Jw = 1 ⊗ �w� and
w⊥ � J⊥w = w − 1⊗ �w�.

Let zi
t = (μi

t , (w
i
t )
�)� and zt = ((z1

t )
�, . . . , (zN

t )
�)�.

By Lemmas 2 and 3, we have P(supt �zt� <∞) = 1. Hence,
it is sufficient to show that limt �wi

t−�wt ��I{supt �zt�≤M} = 0 for
any M > 0, to establish the asymptotic consensus of wi

t for
all i ∈ N .

Lemma 6: Under Assumptions 2 and 4–6, for any i ∈ N ,
we have limt w

i
t − �wt � = 0 a.s.

Proof: From (13), for each agent i , we have wi
t+1 =�

j∈N ci jw
i
t + εi

t , where εi
t = βw,t

�
j∈N ci j((r i

t+1 − μi
t )(N ·

pi
t,i)
−1 + φ�t+1w

i
t − φ�t wi

t )φt is an error term. As a result,

wi
t =

�
j∈N

Ct
i jw

j
0 +

t−1�
l=0

�
j∈N

Ct−1−l
i j ε

j
l .

According to the fact that p�C = p�, we can obtain

�wt � =
�
j∈N

p jw
j
0 +

t−1�
l=0

�
j∈N

p jε
j
l .

As a result, it can be obtained that wi
t − �wt � =�

j∈N (C
t
i j −

p j)w
j
0 +

�t−1
l=0

�
j∈N (C

t−1−l
i j − p j)ε

j
l . By Lemma 4, the

following holds for any i ∈ N and t ≥ 0:��wi
t − �wt �

��I{supt �zt�≤M}
≤

�
j∈N

��Ct
i j − p j

�����w j
0

���I{supt �zt�≤M}

+
t−1�
l=0

�
j∈N

���Ct−1−l
i j − p j

������ε j
l

���I{supt �zt�≤M}

≤
�
j∈N

M1λ
t
���w j

0

���I{supt �zt�≤M}

+
t−1�
l=0

�
j∈N

M1λ
t−1−l

���ε j
l

���I{supt �zt�≤M}. (15)

By Assumptions 4 and 5 and Lemma 4, r i
t+1 and φt are

uniformly bounded for any i ∈ N and t ≥ 0, and 1/pi
t,i ≤ η1,

which can guarantee that �ε j
l �I{supt �zt�≤M} is bounded for any

M > 0, i.e., there exists K1 <∞ such that�
j∈N

���ε j
l

���I{supt �zt�≤M} ≤ βw,l K1 ∀ l ≥ 0.

As a result, we can obtain��wi
t − �wt �

��I{supt �zt�≤M} ≤
�
j∈N

M1λ
t
���w j

0

���I{supt �zt�≤M}
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+
t−1�
l=0

K1 M1λ
t−1−lβw,l . (16)

By Assumption 6 and Lemmas 2–5, we have limt �wi
t −

�wt ��I{supt �zt�≤M} = 0 a.s. Consider that {supt �zt� ≤ ∞}
holds with probability 1, and it can be obtained that limt w

i
t −

�wt � = 0 a.s.
Lemma 7: Under Assumptions 1 and 4–6, we have

limt μ̄t = J (θ) and limt �wt � = wθ a.s.
Proof: According to the update of (13), the iteration of

�wt � has the form

�wt+1� = �wt � + βw,t�yt+1�. (17)

The updates for μ̄t and �wt � are as follows:⎧⎨
⎩

μ̄t+1 = μ̄t + βw,tE[r̄t+1 − μ̄t |Ft ] + βw,tξt+1,1 (18a)

�wt+1� = �wt � + βw,tE[δ̄tφt |Ft ] + βw,tξt+1,2

+βw,tξt+1,3 (18b)

where μ̄t = (1/N)
�

i∈N μi
t and δ̄t = (1/N)

�
i∈N (r

i
t+1 −

μi
t) +

�
i∈N pi(φt+1 − φt )

�wi
t . Moreover, ξt+1,1, ξt+1,2, and

ξt+1,3 are defined as follows:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ξt+1,1 = r̄t+1 − E[r̄t+1|Ft ] (19a)

ξt+1,2 = δ̄tφt − E[δ̄tφt |Ft ] (19b)

ξt+1,3= 1

N

�
i∈N

�
pi

�
pi

t,i

�−1 − 1
��

r i
t+1−μi

t

�
φt . (19c)

Recall that, from the definition of δ̄t in (18b), we have

δ̄t = r̄t+1 − μ̄t + (φt+1 − φt)
��wt �.

Since E[r̄t+1 − μ̄t |Ft ] is Lipschitz continuous in μ̄t , we can
obtain that E[δ̄tφt |Ft ] is Lipschitz continuous in both μ̄t and
�wt �.

Consider that ξt+1,1 is a martingale difference sequence and
r̄t+1 is uniformly bounded, and we can obtain

E
��ξt+1,1�2|Ft

� ≤ K2
�
1+ �μ̄t�2 + ��wt ��2�

for some K2 < ∞ [36]. By the definition of ξt+1,2 in (19b),
it is obvious that ξt+1,2 is also a martingale difference sequence
and satisfies

E
��ξt+1,2�2|Ft

� ≤ 2E
��δ̄tφt�2|Ft

�+ 2�E�
δ̄tφt |Ft

��2.

Due to the boundedness of r i
t and φt for any i ∈ N and

t ≥ 0, there exists K3 < ∞ such that E[�ξt+1,2�2|Ft ] ≤
K3(1 + �μ̄t�2 + ��wt ��2) over the set I{supt �zt�≤M} for any
M > 0. By Lemma 4, for any M > 0, it holds that

�ξt+1,3�I{supt �zt�≤M}
= 1

N

�
i∈N

����� pi

pi
t,i

− 1

�����
��r i

t+1 − μi
t

���φt�I{supt �zt�≤M}

≤ 1

N

�
i∈N

M1η1λ
t
��r i

t+1 − μi
t

���φt�I{supt �zt�≤M}. (20)

According to the uniformly boundedness of r i
t and φt , we can

obtain that, for any M > 0 and t ≥ 0, there exists a constant
K4 > 0 such that �ξt+1,3� < K4λ

t on the set I{supt �zt�≤M}.

This verifies that {ξt,3} is a bounded random sequence with
limt ξt,3 = 0 a.s. on the set I{supt �zt�≤M} for any M > 0.

Consider that the ODE captures the asymptotic behavior
of (18a) and (18b) as follows:� ˙̄μ
˙�w�

�
=

� −1 0
−
�Ds,a

θ 1 
�Ds,a
θ

�
Pθ − I

�



��
μ̄
�w�

�

+
�

J (θ)

�Ds,a

θ R̄

�
. (21)

Recall that Ds,a
θ = diag[dθ (s)πθ(s, a), s ∈ S, a ∈ A] ∈

R
|S|·|A|, and R̄ = [R̄(s, a), s ∈ S, a ∈ A]� ∈ R

|S|·|A|.
According to Assumption 1 and the Perron–Frobenius theorem
in [36], the stochastic matrix Pθ has a simple eigenvalue of
1 and the remaining eigenvalues have real parts less than 1.
Since 
 satisfies the full column rank condition in Assump-
tion 5, we can obtain that all eigenvalues of 
�Ds,a

θ (Pθ− I )

have negative real parts, except one eigenvalue that is zero.
Due to the fact that α1 (α �= 0) lies in the eigenspace
of Ds,a

θ (P
θ − I ) associated with zero, it is possible for the

simple eigenvalue of zero to have eigenvector v, which satisfies

v = α1. However, by Assumption 5, this will not happen
with any choice of 
 since 
v �= 1 for any v ∈ R

K . As a
result, the ODE (21) is globally asymptotically stable and has
its equilibrium satisfying�

μ̄ = J (θ) (22)


�Ds,a
θ (R̄ − μ̄1+ Pθ
�w� −
�w�) = 0. (23)

Note that the solution for �w� has the form of wθ + αv with
any α ∈ R and v ∈ R

K such that 
v = 1. By Assumption 5
that for any v ∈ R

K , 
v �= 1, the term wθ is unique solution
and it follows that 
�Ds,a

θ [Tθ (
wθ)−
wθ ] = 0. Recall from
Lemmas 2 and 3 that (μ̄t , �wt ��)� is bounded a.s. According
to Lemma 12, we have limt μ̄t = J (θ) and limt �wt � = wθ over
the set I{supt �zt�≤M} for any M > 0. Hence, limt μ̄t = J (θ) and
limt�wt � = wθ a.s.

Based on Lemmas 6 and 7, we obtain the following theorem.
Theorem 1: Under Assumptions 1, 2, and 4–6, for any

given policy πθ , the sequences {μi
t} and {wi

t } generated
from Algorithm 1 satisfying limt→∞(1/N)

�
i∈N μi

t = J (θ)
and limt→∞wi

t = wθ a.s. for all i ∈ N , where J (θ) =�
s∈S dθ (s)

�
a∈A πθ(s, a)R̄(s, a) and wθ is the unique solu-

tion to 
�Ds,a
θ [Tθ (
wθ) − 
wθ ] = 0. Suppose further that

Assumption 7 holds, and the sequence {θ i
t } for any i ∈ N

obtained from Algorithm 1 converges a.s. to a point in the set
of the asymptotically stable equilibria of

θ̇ i = 	̂i
�
Est∼dθ ,at∼πθ

�
Ai

t,θψ
i
t,θ

��
. (24)

Proof: By Lemmas 6 and 7, we can obtain that
limt(1/N)

�
i∈N μi

t = J (θ) and limt w
i
t = wθ a.s. for all

i ∈ N . As for the convergence of {θ i
t }, and the proof is

along similar lines as that in [36, Th. 4.7] based on the
Kushner–Clark lemma in Appendix B.

B. Convergence of Algorithm 2

In order to obtain the convergence of wi
t and θ i

t in
Algorithm 2, some preliminary definitions and lemmas are
introduced.
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In Algorithm 2, we define w̃t = ((w̃1
t )
�, . . . , (w̃N

t )
�)� and

�t+1 = ((�1
t+1)

�, . . . , (�N
t+1)

�)� with �i
t+1 = βw,t δ̃

i
tφt for all

i ∈ N . Let z̃i
t = (μi

t , (w̃
i
t )
�)� and z̃t = ((z̃1

t )
�, . . . , (z̃ N

t )
�)�.

Lemma 8 [42]: Suppose that the graph sequence {Gt} is
uniformly strongly connected. For each integer l ≥ 0, there is
a stochastic vector sequence {ϕ(l)} such that for all i, j ∈ N
and t ≥ l

|Ci j(t : l)− ϕi (t)| ≤ M2λ
t−l

for some M2 > 0 and λ ∈ (0, 1), where C(t : l) = C(l)C(l +
1), . . . ,C(t), Ci j(t : l) being the i th row and the j th column
element in C(t : l), and ϕi(t) is the i th element in ϕ(t).

Lemma 9: Under Assumptions 3–6, for any i ∈ N , we have
limt w

i
t+1 − (1/N)(1� ⊗ I )w̃t = 0 a.s.

Proof: The compact form of (10c) is

w̃t+1 = (C(t)⊗ I )w̃t + �t+1

= (C(t : 0)⊗ I )w̃0 +
t�

l=1

[C(t : l)⊗ I ]�l + �t+1 (25)

which implies that (C(t+1)⊗ I )w̃t+1 = (C(t+1 : 0)⊗ I )w̃0+�t+1
l=1(C(t + 1 : l) ⊗ I )�l . Since C(t) is column stochastic

for all t ≥ 0, we have that (1� ⊗ I )w̃t+1 = (1� ⊗ I )w̃0 +�t+1
l=1(1

� ⊗ I )�l . Then, it can be obtained that (C(t + 1) ⊗
I )w̃t+1− ((ϕ(t+1) ·1�)⊗ I )w̃t+1 = ((C(t+1 : 0)−ϕ(t+1) ·
1�)⊗ I )w̃0+�t+1

l=1((C(t+1 : l)−ϕ(t+1) ·1�)⊗ I )�l . Define
D(t, l) = C(t : l)−ϕ(t)·1�, and we have (C(t+1)⊗ I )w̃t+1 =
((ϕ(t+1)·1�)⊗ I )w̃t+1+(D(t+1 : 0)⊗ I )w̃0+�t+1

l=1(D(t+1 :
l)⊗ I )�l . For convenience, denote Di (t : 0) as the i th row of
D(t : 0). Consider that ot+1 = N · ϕ(t)+ D(t : 0) · 1, and we
have

wi
t+1 −

1

N

�
1� ⊗ I

�
w̃t

=
�
ϕi(t) · 1� ⊗ I

�
w̃t + (Di (t : 0)⊗ I )w̃0

N · ϕi(t)+ Di (t : 0) · 1
+

�t
l=1(Di (t : l)⊗ I )�l

N · ϕi (t)+ Di (t : 0) · 1 −
�
1� ⊗ I

�
w̃t

N

= (Di (t : 0)⊗ I )w̃0 +�t
l=1(Di (t : l)⊗ I )�l

N · ϕi (t)+ Di (t : 0) · 1
− (Di (t : 0) · 1)

�
1� ⊗ I

�
w̃t

N · (N · ϕi(t)+ Di (t : 0) · 1) . (26)

Based on [42, Proof of Lemma 1], there exists κ > 0 such
that N · ϕi(t)+ Di (t : 0) · 1 ≥ κ . Therefore, we have����wi

t+1 −
1

N

�
1� ⊗ I

�
w̃t

����
≤ �(Di (t : 0)⊗ I )w̃0� +

���t
l=1(Di (t : l)⊗ I )�l

��
N · ϕi (t)+ Di (t : 0) · 1

+�(Di (t : 0) · 1) · (1� ⊗ I )w̃t�
N · (N · ϕi(t)+ Di (t : 0) · 1)

≤
√

N

κ


M2λ

t�w̃0� +
t�

l=1

M2λ
t−l��l�

�

+M2λ
t

κ
��1� ⊗ I

�
w̃t�. (27)

According to [36, Proof of Lemma 5.1], it can show that
supt |w̃i

t | < ∞ a.s. can also be obtained when the weight
matrix is column stochastic. Consider �wi

t+1 − (1/N)(1� ⊗
I )w̃t� on the set I{supt �z̃t�≤M}, and then, we have����wi

t+1 −
1

N

�
1� ⊗ I

�
w̃t

����I{supt �z̃t�≤M}

≤
√

N

κ


M2λ

t�w̃0� +
t�

l=1

M2λ
t−l��l�

�
I{supt �z̃t�≤M}

+M2λ
t

κ
�(1� ⊗ I )w̃t�I{supt �z̃t�≤M}. (28)

By Assumptions 4 and 5, r i
t+1 and φt are uniformly bounded

for any i ∈ N and t ≥ 0, and there exists K5 and K6

such that �wi
t+1 − (1/N)(1� ⊗ I )w̃t�I{supt �z̃t�≤M} ≤ K5λ

t +�t
l=1 K6βw,tλ

t−l . As a result, we have limt w
i
t+1−(1/N)(1T⊗

I )w̃t = 0 a.s.
For notational convenience, we define the consensus vector

ŵt � (1/N)(1� ⊗ I )w̃t . In the following, we will show the
convergence of ŵt .

Lemma 10: Under Assumptions 2, 3, and 4–6, we have
limt μ̄t = J (θ) and limt ŵt = wθ a.s.

Proof: By (10), we can write the updates for μ̄t and ŵt

as follows:�
μ̄t+1 = μ̄t + βw,tE[r̄t+1 − μ̄t |Ft ] + βw,tξt+1,1 (29a)

ŵt+1 = ŵt + βw,tE[δ̂tφt |Ft ] + βw,tξt+1,4 (29b)

where δ̂t = (1/N)
�

i∈N ((r
i
t+1 − μi

t) + (φt+1 − φt)
�w̃i

t ) and
ξt+1,4 = δ̂tφt − E[δ̂tφt |Ft ].

Notice that (29a) is the same as (18a), so we will just
analyze (29b) in the following. According to the definition
of ξt+1,4, ξt+1,4 is a martingale difference sequence and we
have

E[�ξt+1,4�2|Ft ] ≤ 2E[�δ̂tφt�2|Ft ] + 2�E[δ̂tφt |Ft ]�2.

For any M > 0, since the boundedness of r i
t and φt for any i ∈

N and t ≥ 0, there exists K7 <∞ such that E[�ξt+1,4�2|Ft ] ≤
K7(1 + �μ̄t�2 + �ŵt�2) over the set I{supt �z̃t�≤M}. Consider
the following ODE captures the asymptotic behavior of (29a)
and (29b):� ˙̄μ
˙̂wt

�
=

� −1 0
−
�Ds,a

θ 1 
�Ds,a
θ

�
Pθ − I

�



��
μ̄
ŵt

�

+
�

J (θ)

�Ds,a

θ R̄

�
. (30)

By a similar analysis as in the proof of Lemma 7, we have�
μ̄ = J (θ) (31)


�Ds,a
θ (R̄ − μ̄1+ Pθ
ŵt −
ŵt ) = 0. (32)

Meanwhile, limt μ̄t = J (θ) and limt ŵt = wθ a.s.
Based on Lemmas 9 and 10, we obtain the following result.
Theorem 2: Under Assumptions 1, 3, and 4–6, for any

given policy πθ , the sequences {μi
t} and {wi

t } generated from
Algorithm 2 satisfying limt→∞(1/N)

�
i∈N μi

t = J (θ) and
limt→∞wi

t = wθ a.s. for all i ∈ N . Furthermore, suppose
that Assumption 7 holds, and the sequence {θ i

t } obtained
from Algorithm 2 also converges to a point in the set of the
asymptotically stable equilibria of (24).
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Proof: By the above result with Lemmas 9 and 10, it can
be obtained that limt(1/N)

�
i∈N μi

t = J (θ) and limt w
i
t =

wθ a.s. for all i ∈ N . As for the convergence of θ i
t , the proof

is along similar lines as that in [36, Th. 4.7] based on the
Kushner–Clark lemma in Appendix B.

VI. CASE STUDY

In this section, we evaluate the proposed distributed AC
algorithms through numerical simulations on directed graphs
with fixed and changing topologies.

A. Directed Graph With Fixed Topology

Consider the MARL problem, which can be represented
as the multiagent MDP (S, {Ai }i∈N , P, {Ri }i∈N ,Gt ), where
N = {1, . . . , N}, S has 20 states, and with binary-valued
action space at each state, i.e., Ai = {0, 1} for all i ∈ N .
Consider that |N | = 20, and the cardinality of the set of
actions A = �N

i=1 Ai at each state is 220. Assume that
all agents are connected according to the communication
network in Fig. 1 and the elements in the transition prob-
ability matrix P are uniformly sampled from the interval
[0, 1] and normalized to be stochastic. For each agent i and
each state–action pair (s, a), the expected reward Ri (s, a) is
sampled uniformly from [0, 4], which varies among agents.
The instantaneous rewards for all i ∈ N are sampled
from the uniform distribution [Ri (s, a)− 0.5, Ri(s, a)+ 0.5].
We approximate the action value function by a quadratic
function in a and also linear in the parameter w ∈ R

K , i.e.,
Q(s, a;w) = (a/5)�E(s)(a/5)w1+(a/5)�F(s)w2:K−1+wK ,
where w = (w1, w

�
2:K−1, wK )

� with dimensions K = 10 and
the feature functions E(s) ∈ R

N×N and F(s) ∈ R
N×(K−2)

are Gaussian radial basis functions (RBFs) with their means
randomly selected from [0, 1] and variances set as 0.1. The
policy π i

θ i (s, ai ) is parameterized according to the Boltzmann
policies, i.e.,

π i
θ i

�
s, ai

� = exp
�

q�s,aiθ
i
�

�
bi∈Ai exp

�
q�s,bi θ i

�
where qs,ai ∈ R

5 is the feature vector defined as follows:

qs,ai =
⎧⎨
⎩

exp
��
−�

s1/20− G�i
�2

�
/0.2

�
, if ai = 0

exp
��
−�

s1/20− H�i
�2

�
/0.2

�
, otherwise

where G ∈ R
20×5 and H ∈ R

20×5 are uniformly sampled from
the interval [0, 1] and Gi and Hi are the i th row of G and H ,
respectively. The gradient of the policy function has the form

∇θ i logπ i
θ i

�
s, ai

� = qs,ai −
�

bi∈Ai

π i
θ i

�
s, bi

�
qs,bi . (33)

Assume that the weight matrix C = [ci j ]N×N of the commu-
nication network in Fig. 1 is as follows:

ci j =
�

0.1, if j ∈ N in
i

0, otherwise

Fig. 1. Directed graph with fixed topology.

Fig. 2. Globally averaged return of distributed Algorithm 1 and centralized
algorithm (7).

Fig. 3. Relative Q-values in distributed Algorithm 1 and centralized
algorithm (7).

which is row stochastic since the in-degree of each agent in
Fig. 1 is 10. In particular, the stepsizes are selected as βw,t =
1/(10 · t0.65) and βθ,t = 1/(10 · t0.85).

The performance of Algorithm 1 is compared with the cen-
tralized algorithm (7) where the instantaneous rewards r i

t for
all i ∈ N are available to a centralized controller. We compare
the proposed Algorithm 1 and the centralized algorithm with
respect to the globally averaged return, the relative Q-value,
and the local policy of each agent at randomly selected states.
As shown in Fig. 2, the proposed Algorithm 1 converges to
the same globally long-term averaged return of the centralized
algorithm. Fig. 3 shows that for agent 3, 14, and 18, the
state–action value at state–action pair (s, a) with s = 4 and
a = (0 1 0 1 0 0 0 0 1 1 0 1 1 1 1 0 1 1 1 0) in
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Fig. 4. Probability distribution π i (s, ai ) at a randomly selected state s =
1 and ai = 0 for distributed Algorithm 1 and centralized algorithm (7).

Fig. 5. Directed graphs with changing topologies. Notice that the two
resulting graphs are not strongly connected. (a) Graph 1. (b) Graph 2.

Fig. 6. Relative Q-values in distributed Algorithm 2 and centralized
algorithm (7).

Algorithm 1 reaches consensus and converges the correspond-
ing state–action value of the centralized algorithm. In addition,
Fig. 4 shows that both algorithms converge to similar policies
at state s = 1, meaning that the joint policy obtained by agents
using local information is close to the policy obtained by the
centralized controller with full network information.

B. Directed Graphs With Changing Topologies

We consider a similar MARL as the previous case study,
with the difference that the graphs have time-varying topolo-
gies, as it switches between the two directed graphs that are
shown in Fig. 5, meanwhile satisfying Assumption 3. The
weight matrices of the two directed graphs are designed as
in (9). We use the same approximation action value function
and approximation policy function as the previous case study

Fig. 7. Probability distribution π i (s, ai ) at a randomly selected state s =
12 and ai = 0 for distributed Algorithm 2 and centralized algorithm (7).

and compare the proposed Algorithm 2 with the centralized
algorithm (7). Fig. 6 shows that the relative Q-values of agent
3, 14, and 18 at state–action pair (s, a) with s = 4 and
a = (0 1 0 1 0 0 0 1 1 0 1 0 1 0 0 0 0 0 1 1)
calculated by Algorithm 2 achieve consensus and converge to
the relative Q-values calculated by the centralized algorithm.
Fig. 7 shows that both algorithms converge to similar policies
at state s = 12.

VII. CONCLUSION

In this article, MARL over directed graphs has been investi-
gated. Two new distributed AC algorithms have been proposed
to make each agent collaborate to the maximization of the
globally averaged return. More specifically, a first distributed
AC algorithm using a row stochastic weight matrix has been
proposed for MARL over directed graphs with fixed topology,
while the other distributed AC algorithm has been proposed for
MARL over directed graphs with changing topologies using a
push-sum idea. The convergence with linear function approx-
imation has been proved for both algorithms. The proposed
algorithms extend the applicability of distributed MARL.
Future work will further extend the proposed algorithms to
MARL settings with continuous state and action spaces.

APPENDIX A
STOCHASTIC APPROXIMATION

Consider the n-dimensional stochastic approximation itera-
tion in R

n as follows:
xt+1 = xt + βt

�
h(xt ,Yt )+ Mt+1 + ζt+1

�
(A.1)

where βt > 0 and {Yt }t≥0 is a Markov chain on a finite set S.
Consider the following assumptions.

1) h(xt ,Yt ):Rn × S→ R
n is Lipschitz continuous in xt .

2) {Yt}t≥0 is an irreducible Markov chain with stationary
distribution d .

3) βt is the stepsize, which satisfies
�

t βt = ∞ and�
t β

2
t <∞.

4) {Mt } is a martingale difference sequence, which satisfies
that E(� Mt+1 �2 |xm,Mm ,Ym,m ≤ t) ≤ K (1+ � xt �2)
for some K ≥ 0 and t ≥ 0.

5) {ζt} is a bounded random sequence with limt→∞ ζt =
0 a.s.
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Let h̄(x) = �
s d(s)h(x, s) and h̄c(x) = h̄(cx). Under

assumptions 1)–5), we have the following lemmas [43].
Lemma 11: If the limc→∞ h̄(cx)/c = h∞(x) exists uni-

formly on compact sets and the ODE ẏ = h∞(y) has the origin
as the unique globally asymptotically stable equilibrium, then
supt �xt� <∞ a.s.

Lemma 12: If ẋ = h̄(x) has a unique globally asymptoti-
cally stable equilibrium x∗ and supt �xt� <∞, then limt xt →
x∗ a.s.

APPENDIX B
KUSHNER–CLARK LEMMA

Let 	 : R
N → R

N be an operator that projects a vector
onto a compact set X ⊆ R

N . Define

	̂(h(x)) = lim
0<η→0

	(x + ηh(x))− x

η
(B.1)

for x ∈ X and with h:X → R
N continuous. Consider the

following iteration:
xt+1 = 	

�
xt + βt

�
h(xt)+ ζt,1 + ζt,2

��
. (B.2)

The ODE associated with (B.2) is

ẋ = 	̂(h(x)). (B.3)

Consider the following assumptions.

1) h(·) is a continuous function.
2) βt satisfies

�
t βt = ∞ and

�
t β

2
t <∞.

3) The sequence {ζt,1} satisfies limt P(supn≥t ��n
ι=t βtζt,1 �≥ �) = 0 for all � > 0.

4) The sequence {ζt,2} is a bounded random sequence with
ζt,2 → 0 a.s.

Under assumptions 1)–4), we have the following
lemma [43].

Lemma 13: If (B.3) has a compact set K∗ as its asymp-
totically stable equilibria, then (B.2) converges to K∗
a.s.
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[17] K. Zhang, Z. Yang, and T. Başar, “Multi-agent reinforcement learning:
A selective overview of theories and algorithms,” in Studies Systems
Decision Control Handbook RL Control. New York, NY, USA: Springer,
2020.

[18] M. L. Littman, “Markov games as a framework for multi-agent rein-
forcement learning,” in Proc. 11th Int. Conf. Mach. Learn. (ICML),
New Brunswick, NJ, USA, Jul. 1994, pp. 157–163.

[19] M. Lauer and M. Riedmiller, “An algorithm for distributed reinforcement
learning in cooperative multi-agent systems,” in Proc. 17th Int. Conf.
Mach. Learn. (ICML), vol. 2, Stanford, CA, USA: Stanford Univ.,
Jun. 200, pp. 535–542.

[20] J. Hu and M. P. Wellman, “Nash Q-learning for general-sum stochastic
games,” J. Mach. Learn. Res., vol. 4, pp. 1039–1069, Nov. 2003.

[21] R. Olfati-Saber and R. M. Murray, “Consensus problems in networks of
agents with switching topology and time-delays,” IEEE Trans. Autom.
Control, vol. 49, no. 9, pp. 1520–1533, Sep. 2004.

[22] Z.-W. Liu, G. Wen, X. Yu, Z.-H. Guan, and T. Huang, “Delayed
impulsive control for consensus of multiagent systems with switch-
ing communication graphs,” IEEE Trans. Cybern., vol. 50, no. 7,
pp. 3045–3055, Jul. 2020.

[23] H.-X. Hu, G. Wen, W. Yu, T. Huang, and J. Cao, “Distributed sta-
bilization of multiple heterogeneous agents in the Strong–Weak com-
petition network: A switched system approach,” IEEE Trans. Cybern.,
vol. 51, no. 11, pp. 5328–5341, Nov. 2021, doi: 10.1109/TCYB.2020.
2995154.

[24] H.-X. Hu, Q. Zhou, G. Wen, W. Yu, and W. Kong, “Robust distributed
stabilization of heterogeneous agents over Cooperation–Competition
networks,” IEEE Trans. Circuits Syst. II: Exp. Briefs, vol. 67, no. 8,
pp. 1419–1423, Aug. 2020.

[25] H.-X. Hu, G. Wen, X. Yu, Z.-G. Wu, and T. Huang, “Distributed
stabilization of heterogeneous MASs in uncertain strong-weak compe-
tition networks,” IEEE Trans. Syst., Man, Cybern. Syst., early access,
Nov. 24, 2020, doi: 10.1109/TSMC.2020.3034765.

[26] M. Chen, H. Yan, H. Zhang, M. Chi, and Z. Li, “Dynamic event-
triggered asynchronous control for nonlinear multiagent systems based
on T–S fuzzy models,” IEEE Trans. Fuzzy Syst., vol. 29, no. 9,
pp. 2580–2592, Sep. 2021, doi: 10.1109/TFUZZ.2020.3004009.

[27] R. Yang, H. Zhang, G. Feng, H. Yan, and Z. Wang, “Robust
cooperative output regulation of multi-agent systems via adaptive
event-triggered control,” Automatica, vol. 102, no. 6, pp. 129–136,
Apr. 2019.

[28] A. Nedic and A. Ozdaglar, “Distributed subgradient methods for multi-
agent optimization,” IEEE Trans. Autom. Control, vol. 54, no. 1,
pp. 48–61, Jan. 2009.

[29] A. Nedic, A. Ozdaglar, and P. A. Parrilo, “Constrained consensus and
optimization in multi-agent networks,” IEEE Trans. Autom. Control,
vol. 55, no. 4, pp. 922–938, Apr. 2010.

Authorized licensed use limited to: TU Delft Library. Downloaded on November 01,2023 at 13:05:23 UTC from IEEE Xplore.  Restrictions apply. 

http://dx.doi.org/10.1109/TCYB.2021.3082639
http://dx.doi.org/10.1109/TSMC.2020.3034765
http://dx.doi.org/10.1109/TFUZZ.2020.3004009
http://dx.doi.org/10.1109/TCYB.2020.2995154
http://dx.doi.org/10.1109/TCYB.2020.2995154


DAI et al.: DISTRIBUTED AC ALGORITHMS FOR MULTIAGENT REINFORCEMENT LEARNING OVER DIRECTED GRAPHS 7221

[30] S. Kar, J. M. Moura, and H. V. Poor, “QD-learning: A collaborative
distributed strategy for multi-agent reinforcement learning through con-
sensus + innovations,” IEEE Trans. Signal. Process., vol. 61, no. 7,
pp. 1848–1862, Apr. 2013.

[31] P. Sunehag et al., “Value-decomposition networks for cooperative multi-
agent learning based on team reward,” in Proc. 17th Int. Conf. Auton.
Agents MultiAgent Syst., 2018, pp. 2085–2087.

[32] T. Rashid, M. Samvelyan, C. S. De Witt, G. Farquhar, J. Foerster,
and S. Whiteson, “QMIX: Monotonic value function factorisation for
deep multi-agent reinforcement learning,” in Proc. 35th Int. Conf. Mach.
Learn., 2018, pp. 6846–6859.

[33] K. Son, D. Kim, W. J. Kang, D. Hostallero, and Y. Yi, “Qtran:
Learning to factorize with transformation for cooperative multi-agent
reinforcement learning,” in Proc. 36th Int. Conf. Mach. Learn., 2019,
pp. 5887–5896.

[34] A. Mahajan, T. Rashid, M. Samvelyan, and S. Whiteson, “MAVEN:
Multi-agent variational exploration,” in Proc. Adv. Neural Inf. Process.
Syst., 2019, pp. 7613–7624.

[35] J. Wang, Z. Ren, T. Liu, Y. Yu, and C. Zhang, “QPLEX: Duplex dueling
multi-agent Q-learning,” in Proc. Int. Conf. Learn. Represent., Sep. 2021,
pp. 1–11.

[36] K. Zhang, Z. Yang, H. Liu, T. Zhang, and T. Başar, “Fully decentralized
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