
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 1

Automatic Sparse Connectivity Learning for Neural
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Abstract—Since sparse neural networks usually contain many
zero weights, these unnecessary network connections can po-
tentially be eliminated without degrading network performance.
Therefore, well-designed sparse neural networks have the poten-
tial to significantly reduce FLOPs and computational resources.
In this work, we propose a new automatic pruning method -
Sparse Connectivity Learning (SCL). Specifically, a weight is re-
parameterized as an element-wise multiplication of a trainable
weight variable and a binary mask. Thus, network connectivity
is fully described by the binary mask, which is modulated by
a unit step function. We theoretically prove the fundamental
principle of using a straight-through estimator (STE) for network
pruning. This principle is that the proxy gradients of STE
should be positive, ensuring that mask variables converge at
their minima. After finding Leaky ReLU, Softplus, and Identity
STEs can satisfy this principle, we propose to adopt Identity
STE in SCL for discrete mask relaxation. We find that mask
gradients of different features are very unbalanced, hence, we
propose to normalize mask gradients of each feature to optimize
mask variable training. In order to automatically train sparse
masks, we include the total number of network connections as
a regularization term in our objective function. As SCL does
not require pruning criteria or hyper-parameters defined by
designers for network layers, the network is explored in a larger
hypothesis space to achieve optimized sparse connectivity for
the best performance. SCL overcomes the limitations of existing
automatic pruning methods. Experimental results demonstrate
that SCL can automatically learn and select important net-
work connections for various baseline network structures. Deep
learning models trained by SCL outperform the state-of-the-
art human-designed and automatic pruning methods in sparsity,
accuracy, and FLOPs reduction.

Index Terms—neural networks, model compression, model
pruning, sparse connectivity learning, trainable binary mask.

I. INTRODUCTION

DESPITE the great success in improving neural networks
and learning systems [1]–[6], state-of-the-art deep neural

networks usually consist of dozens of stacked layers and a
huge number of parameters. It is difficult to deploy these
over-parameterized and over-redundant neural networks on
resource-constrained computing platforms [7]. To address this
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challenge, network pruning has received great attention. Net-
work pruning tends to remove unimportant trainable parame-
ters in a neural network architecture while maintaining its high
accuracy. Effective network pruning leads to less computing
operations, memory usage, and power consumption with little
performance degeneration. After performing network pruning,
sparse models are often implemented in hardware (e.g., GPUs,
ASICs1 or FPGAs2) for AI acceleration.

Network pruning can be divided into two categories: human-
designed pruning and automatic pruning. The former requires
some pruning criteria or hyper-parameters defined by design-
ers (e.g., importance measure or pruning threshold), while
automatic pruning generates optimized sparse networks with
little human intervention. Human-designed pruning usually
consists of three steps: (1) training weight parameters in a
selected baseline neural network, (2) eliminating unimportant
network connections based on designer-defined criteria or
hyper-parameters, and (3) training weight parameters again
in this pruned network architecture. Human-designed network
pruning can be further divided into two types: unstructured
[7]–[13] or structured [14]–[26]. It has been reported that
performing unstructured pruning on deep neural networks does
not cause much loss of accuracy. On the other hand, structured
pruning especially filter [14]–[19] and channel [20]–[24] prun-
ing, has been used to accelerate neural networks in general
hardware platforms (i.e., GPUs). Since zero-masked feature
maps can be deleted, less computational cost is required after
network pruning. Note that some existing neural networks
with multi-branch or multi-group structures may be considered
as human-designed sparse architectures (e.g., Inception [1],
ShuffleNet [27], MobileNet [28], ResNeXt [29]), even though
these sparse architectures do not involve network pruning.

Up to date, three major bottlenecks have hindered the use of
human-designed pruning methods to generate sparse networks.
First, although human-designed pruning can provide good
network performance under a low pruning rate, the network
performance under a high pruning rate is severely degraded.
Second, there is a lack of appropriate methods to effectively
prune network connections for high-compression and high-
performance neural networks. In most human-designed prun-
ing methods, network connections are pruned based on the as-
sumption of “smaller-norm-less-important”. Network connec-
tions with smaller weights are generally considered trivial and
eliminated during network pruning. However, researchers have
found that sometimes the amount of information in smaller

1 https://www.kneron.com/solutions/soc/
2 https://www.xilinx.com/applications/megatrends/machine-learning.html
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weights is important and cannot be ignored [30]. Therefore,
considering the variability of loss function sensitivity with
respect to different weights, eliminating network connections
with smaller weights does not guarantee a slight decrease
in network performance. Third, the biggest weakness is the
need for designer-defined pruning criteria (e.g., L1 [7] or
L2 [16] norm of filters) and hyper-parameters (e.g., pruning
threshold or ratio) for each network layer during network
pruning. Because the selection of pruning criteria or hyper-
parameters is manually determined, it heavily depends on
the designer’s prior experience and varies from application
to application. Consequently, since the pruning criteria and
hyper-parameters are not guaranteed to be the best choice,
the resulting network connectivity and performance are not
optimal. Note that even though weight importance estimation
methods have been proposed in [31], [32], layer-wise hyper-
parameters are still needed to determine a pruning threshold or
ratio for all layers during network pruning. Unfortunately, as
the optimal pruning threshold or ratio varies with local network
structures, the use of only one hyper-parameter for all layers
leads to inferior pruning performance. Recently, it is proposed
that a proper criterion may be selected from a set of designer-
defined criteria to learn pruning criteria for each network layer
[33]. Yet, the pruning performance of this method still depends
on the quality of candidate criteria defined by designers.

To get rid of shortcomings of human-designed pruning,
researchers have investigated automatic pruning, which trains
sparse network connectivity through task-aware loss or a
sparse regularization term [34]–[38]. Note automatic pruning
does not require designer-defined pruning criteria or layer-wise
hyper-parameters. Louizos et al. [34] train sparse neural net-
works through L0-norm regularization. They use the Gumbel-
Softmax trick [39], [40] (also known as a concrete distribution)
and apply gates to weights for connectivity training. Note
a stochastic gate produces zero connectivity only when the
probability is zero, which is almost impossible to reach during
network training. To address this problem, threshold operation
is applied on gates to made zero connectivity. The drawback of
[34] is that the expected L0-norm of stochastic training does
not reflect the L0-norm of deterministic inference. Therefore,
as will be discussed in Section V-D3, although the expected
L0 norm of weights is significantly reduced, it is still not low
enough to produce sparse connections. Kang et al. [35] pro-
pose soft channel pruning (SCP), which assumes that feature
maps follow a Gaussian distribution and features are pruned
if the cumulative density function is larger than a certain
threshold. The Gumbel-Softmax trick is used to tackle the non-
differentiable Bernoulli distribution sampling. Unfortunately,
the assumption of Gaussian distribution for feature maps is
too strict to derive accurate gradients. Moreover, SCP shows
good pruning performance in network layers that are followed
by both batch normalization (BN) and ReLU. According to
evaluation results in [35], its pruning performance is severely
degraded if only BN exists. Since many neural networks do
not include both BN and ReLU, the application scope of SCP
is limited. Herrmann et al. [36] jointly consider conditional
computation and network pruning. The Gumbel-Softmax trick
is used to relax the discrete masks to a continuous form.

The researchers focus on dynamic inference using conditional
computation. Depending on network inputs, masks are dy-
namically applied on channels. Unfortunately, these masks are
data-dependent rather than being fixed, and the dynamically
pruned structures are not friendly to hardware implementation.
Huang et al. [37] introduce a series of non-negative scaling
factors that are associated with neural network connectivity. To
encourage sparse network connectivity, these scaling factors
are penalized by an L1-norm regularization term. During the
training process, stochastic gradient descent (SGD) and a
proposed stochastic Accelerated Proximal Gradient (APG) are
used to train weight parameters and scaling factor parameters,
respectively. The scaling factor parameters are converted into
scaling factors through a soft-threshold operation. Xiao et al.
[38] utilize STE to relax binary masks. Even though empirical
experiments have shown potential, the fundamental principle
of using STE in network pruning has not been explored.

From the above discussion, it is clear that existing network
pruning methods, either human-designed or automatic, do not
fully address the requirement of highly effective spare connec-
tivity learning. It is attractive to develop new pruning methods
to overcome the drawbacks and limitations of existing pruning
methods. In this work, we propose a new automatic network
pruning technique - sparse connectivity learning (SCL). This
work makes the following contributions:

• We theoretically prove the fundamental principle of using
STE for network pruning. After finding Leaky ReLU,
Softplus, and Identity STEs can satisfy this principle,
we propose to adopt Identity STE in SCL for discrete
mask relaxation. Thus, SCL guarantees the convergence
of mask variables at their minima.

• We observe that mask gradients on different features have
a wide range of magnitudes and hence are unbalanced.
Therefore, we propose to normalize mask gradients of
each feature to optimize mask variable training.

• The pruning principle of our proposed SCL method is
the significance of weight, instead of the magnitude
of weight. SCL can automatically learn and determine
critical network connections of baseline networks (e.g.,
DenseNets, ResNets, VGGs, EfficientNets, and RNNs).

• SCL enables highly effective weight-level sparsity learn-
ing on neural networks under high pruning rates. Ex-
perimental results in the MNIST, CIFAR-10, CIFAR-
100, ImageNet, and WikiText-2 datasets demonstrate the
enhanced performance of SCL-induced sparse neural net-
works than the state-of-the-art network pruning methods
in the literature.

• SCL automatically learns optimized neural network
connectivity in a task-aware manner, ensuring that
performance-sensitive network connections are ultimately
preserved. As it does not need any designer-defined prun-
ing criteria or layer-wise pruning hyper-parameters, SCL
gets rid of the limitation of human designers. Compared
to the state-of-the-art pruning methods, experimental re-
sults demonstrate that SCL results in high-performance
neural networks with higher sparsity and fewer FLOPs.

Since this work focuses on the algorithm aspect of net-
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work pruning, the hardware implementation of spare models
generated from our proposed pruning algorithm is beyond the
scope of this paper. Sparse neural network models generated
from SCL can be implemented in FPGAs or Kneron edge
AI hardware products. This paper is organized as follows.
Section II introduces related works about pruning criteria and
binary mask relaxation. Section III describes the proposed
automatic sparse connectivity learning theory. Section IV
introduces the baseline network architectures and experimental
setups. Section V demonstrates various experimental results
and comparisons with the state-of-the-art works in the litera-
ture. Section VI concludes the paper.

II. RELATED WORK

A. Human-designed pruning criteria

The performance of human-designed pruning methods de-
pends to a large extent on the quality of pruning criteria
defined by designers. Unimportant network connections are
removed based on the importance measure, which usually
follows the assumption that smaller norms are less important.
The criterion for unstructured pruning is the absolute value of
weights [7], [8]. The pruning criterion for structured pruning is
the L1-norm [14] or L2-norm [16] of filter or channel weights.
The magnitude of scaling factors in batch normalization is
also proposed as the channel pruning criterion [20]. He et
al. [19] do not agree that smaller filters are less important,
but propose that the contribution of median filters is relatively
small, because they can be represented by other filters.

B. Gumbel-Softmax trick

Automatic pruning involves training binary masks. To ad-
dress the non-differentiation problem, the Gumbel-Softmax
trick [39], [40] has been used to relax binary masks [34]–
[36]. This trick uses gradient methods to train discrete random
variables. In this trick, discrete values produced by argmax are
encoded in a one-hot vector, and the random sampling f(U)
is expressed as

f(U) = argmax(logα+G(U)) (1)

G(U) = − log(−logU), U ∼ U(0, 1) (2)

where the argmax function finds the argument corresponding
to the maximum value, α is a set of unnormalized parameters
αk and the probability of outcome k is αk/

∑
i αi. Each

element in the vector G(U) obeys a Gumbel distribution.
As a binary mask has two possible discrete values, mask
re-parameterization is regarded as a special case. Due to
the sparsity consideration, there is a high possibility that
mask sampling results should be trained to be zero. As a
result, sparse binary masks are obtained. However, the discrete
argmax operation can not be trained by gradient methods.
Therefore, one way to circumvent this is to relax the argmax
operation by replacing it with softmax [39] and [40], as

f(U) = softmax((logα+G(U))/τ) (3)

where τ is a hyper-parameter of the softmax function to con-
trol relaxation. When τ → 0, the softmax function becomes

the argmax function. Thus, Eq. (3) provides a differentiable
form, which is able to train and optimize by gradient methods.

The Gumbel-Softmax trick has two limitations. First, its
gradient estimations are biased with respect to the gradients
of discrete connectivity. According to Eq. (3), this trick leads
to unbiased gradients only when the hyper-parameter τ tends
to 0. However, because the value of τ is used to balance bias
and variance in practice, τ is rarely chosen to be close to
0. As a result, the studies in [34]–[36] use biased gradients,
which may not meet the essential condition for convergence
(i.e., low-biased gradient). Second, the training process is
stochastic, but the inference is deterministic. Therefore, the
expected number of connections of stochastic training does not
reflect the number of connections of deterministic inference.
As shown in Section V-D3, the reduction of L0-norm during
training does not mean sparser network connections.

C. Straight-through estimator (STE) trick

Due to the derivatives of the binarization function are
mostly zero, training variables can not update using gradient-
based optimization methods. STE is a trick of using proxy
gradients in back-propagation [41]. In this trick, zero gradients
of a discrete function are replaced by the derivative of a
(sub)differentiable function. Derivatives of ReLU STE and
Clipped ReLU STE were used for network quantization [42]–
[44]. Yin et al. [45] referred to proxy gradients as coarse gradi-
ents, and studied the STE properties for network quantization.
[45] assumes that network inputs obey a normal distribution,
yet, this assumption has not been validated for network prun-
ing. Later, based on [45], Xiao et al. [38] proposed to use
Leaky ReLU STE and Softplus STE to relax binary masks.
Instead of performing network pruning, Hinton et al. [46]
proposed to use Identity STE for binary neuron training.
The (sub)differentiable functions of five existing STEs are
expressed as

σrelu(x) = max(0, x) (4)

σclipped relu(x) = min(max(0, x), α), α > 0 (5)

σleaky relu(x) = max(x, α · x), 0 < α < 1 (6)

σsoftplus(x) = log(1 + exp(x)) (7)

σidentity(x) = x (8)

The STE trick for network pruning has two limitations.
First, as Xiao et al. [38] treat connectivity as a hyper-
parameter, bi-level optimization is used to update weights and
masks separately. Because it involves two-pass calculations to
complete an update, the pruning optimization method is too
cumbersome and computationally expensive. Second, although
the use of STE for network pruning has achieved empirical
success in [38], yet, it is based on the assumption that network
inputs obey a normal distribution. Unfortunately, so far, the
fundamental principle of using STE for network pruning is
still unclear, which is the focus of this work.
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Fig. 1. Automatic sparse connectivity learning. Weight re-parameterization for sparse convolution, Identity STE for masked weight training, Identity STE
for binary mask relaxation, and mask gradient normalization. The elliptical symbols, ‘Weight V’ and ‘Mask V’, refer to trainable variables, the rectangular
symbols indicate intermediate tensors, and the circles indicate calculation operators. Dotted lines mean gradient process during backward propagation.

III. AUTOMATIC SPARSE CONNECTIVITY LEARNING

The proposed automatic sparse connectivity learning is
briefly described below and illustrated in Figure 1. First, we
represent the weight as a multiplication of a weight variable
and a binary mask (0 or 1). 1 indicates a network connection,
while 0 indicates no network connection. Thus, the connectiv-
ity of a neural network can be fully described by the binary
mask, which will be further modulated by a unit step function
on a mask variable. Second, during the training process, we
will decay the network connectivity to gradually push the
elements of the binary mask towards zero (i.e., no network
connection). Finally, without the need of designer-defined
criteria or layer-wise pruning hyper-parameters, unimportant
network connections will be automatically discovered and
removed. The design details of each step will be elaborated in
the following subsections.

A. Weight re-parameterization

We design to learn a binary mask that is a standard
convolution layer and is related to network connectivity. A
fully connected layer is a special case of an input with a feature
size of 1 × 1 convolved with a kernel with a size of 1 × 1.
The base cell of a RNN is actually composed of several fully
connected modules. We model this convolution operation as

y = w ∗ x (9)

where the convolutional kernel w is weight, x is input,
and y is output. ∗ annotates the convolution operation. As
shown in Figure 1, a weight is re-parameterized by a weight
variable w̃ and a binary mask m. Weight re-parameterization
is formulated as

w = w̃ �m (10)

where � is the element-wise multiplication. Mask is binarized
from the trainable mask variable m̃ using a unit step function.
The binarization is formulated as

m = H(m̃) =

{
0, m̃ ≤ 0
1, m̃ > 0

(11)

Therefore, the elements of w̃ will be zero-masked if the
corresponding elements in m̃ is non-positive.

B. Gradient redefinition for weight variables

According to the derivative chain rule and Eq. (10), the
gradient of loss function L with respect to w̃ is written as

∂L
∂w̃

=
∂L
∂w
�m (12)

As m is a sparse tensor, many elements of ∂L/∂w̃ are zero,
indicating that these masked variables are not updated. Even
though network connections that contribute less to precision
can be ignored in the current global structure, they may not be
negligible in future global structures. As a result, temporary
zero masks do not mean unimportant, and it is worth keeping
training for these zero-masked weight variables. In this work,
the gradient of loss function L with respect to a weight variable
w̃ is redefined as

∂L
∂w̃

:=
∂L
∂w

(13)

where ∂L/∂w is obtained through back-propagation. Similar
to [8], [16], even if some weight variables are temporarily
zero-masked during training, they will update later.

C. Gradient redefinition for mask variables

Due to the derivatives of a unit step function are mostly
zero, mask variables can not update using gradient-based
optimization methods. To solve this problem, we investigate
the fundamental principle of using STE for network pruning.
Let us analyze a realizable case that uses the following loss
function to update mask variables m̃.

min
m̃

`(m̃) =
1

2
(H(m̃)−m∗)2 (14)

where H(m̃) and m∗ represent the binarized mask values
and optimal mask values, respectively. Note that the optimal
solution of mask variables m̃ is a region rather than a point.
The gradient of m̃ is expressed as

∂`

∂m̃
=
∂H(m̃)

∂m̃
(H(m̃)−m∗) (15)
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Fig. 2. Proxy gradients of five existing STEs used for binarization relaxation. The X-axis and Y-axis represent mask variables m̃ and proxy gradients
∂H(m̃)/∂m̃, respectively. The dead zones for ReLU and Clipped ReLU STEs are marked.

As H(m̃i) and m∗i are binary values, there are three possible
values (i.e., 0, -1, and +1) for their difference H(m̃i) −m∗i .
Hence, the gradient of m̃i is expressed as

∂`

∂m̃ i
=


∂H(m̃i)
∂m̃i

· 0 , if H(m̃i) = m∗i
∂H(m̃i)
∂m̃i

· (−1), if m̃i ≤ 0 and m∗i = 1
∂H(m̃i)
∂m̃i

· (+1), if m̃i > 0 and m∗i = 0

(16)

When STE is used to relax the binarization, ∂H(m̃i)/∂m̃i

is replaced by proxy gradients. Correct proxy gradients should
move m̃i towards their optimal values during network pruning.
The gradient should be zero when the optimal value is reached,
indicating no further update. Based on the mechanism of
gradient descent optimizers (i.e., a variable is adjusted in
the opposite direction of its gradient), m̃i should move to-
wards the negative direction of proxy gradients. Consequently,
when STE is used for network pruning, positive values of
∂H(m̃i)/∂m̃i in Eq. (16) ensure mask variables converge at
their minima. This fundamental principle is derived without
any assumptions, and is just based on the mechanism of
gradient descent optimizers. In contrast, a normal distribution
is assumed for inputs in [38].

Figure 2 plots proxy gradients of the existing five STEs.
We can see that three STEs (i.e., Leaky ReLU, Softplus,
and identity) can satisfy the fundamental principle of positive
proxy gradients. In this work, the Identity STE is selected for
simplicity. Since its proxy gradient is always 1 as shown in
Figure 2(e), Eq. (16) is expressed as

∂`

∂m̃ i
=

 0 , if H(m̃i) = m∗i
−1, if m̃i ≤ 0 and m∗i = 1
+1, if m̃i > 0 and m∗i = 0

(17)

As indicated in Eq. (17), when m̃i reaches its optimal value,
the gradient is zero. As a result, m̃i does not update further.
When m̃i ≤ 0 and m∗i = 1, the gradient of -1 pushes m̃i to
be more positive. When m̃i > 0 and m∗i = 0, the gradient
of +1 pushes m̃i to be more negative. Thus, mask variables
and network connectivity (from 1 to 0 or vice versa) can
update during training. The Identity STE ensures that mask
variables move towards and finally stabilize at their optimal
values. According to Eq. (11) and Figure 2(e), we obtain

∂m

∂m̃
=
∂H(m̃)

∂m̃
= 1 (18)

which indicates that the differential of m̃ is redefined as that
of m. Thus, the gradient of loss function L with respect to
mask variables m̃ is redefined as

∂L
∂m̃

=
∂L
∂m

∂m

∂m̃
:=

∂L
∂m

=
∂L
∂w
� w̃ (19)

D. Mask gradient normalization

We observe a wide range of mask gradient magnitudes in
various layers and channels of common neural networks. To
visualize this observation, a pre-trained ResNet-110 is used
as an example to plot mask gradient magnitudes in Figure 3.
In Figure 3(a), layer-wise results show that the average mask
gradient magnitude of the first and last layers (e.g., 10−5) is
much higher than other layers (e.g., 10−7). Then, channel-wise
results of two typical layers in Figures 3(b) and 3(c) show that
mask gradient magnitudes fluctuate greatly between channels.

The influence of a wide range of mask gradient magnitudes
is analyzed below. Let us review the training process of mask
variables during network pruning. Through binarization (i.e.,
Eq. (11)), a positive mask variable means a mask state of 1,
indicating that there is a network connection. If this network
connection is pruned, the binary mask state should become 0.
According to Eq. (11), the final value of this mask variable
should be zero or negative. Assume two mask variables are
initialized to the same positive value and eventually become
zero. That is, two initially established network connections are
eliminated after pruning. Under the same learning rate for all
layers, the mask variable with a smaller gradient magnitude
requires more training iterations to update until convergence.
Therefore, it is difficult for mask variables with a wide range
of mask gradient magnitudes to converge to their optimal
solution, thereby degrading network pruning performance. To
mitigate this problem, we propose to normalize mask gradients
on different features. Mask gradients of each feature are
normalized to the unit variance in each mini-batch. As shown
in Eq. (20), mask gradients obtained through back-propagation
are divided by a gradient scale s.

Norm(
∂L
∂mj

) =
∂L
∂wj

� w̃j

/
(s+ ε) , where

s =

√√√√∑
xb∈B

∑
wk∈wj

(
∂L(xb)

∂wk
� w̃k)2

/
|B| · |wj |

(20)

where B and |B| denote the sampled mini-batch data and batch
size, respectively. wj and |wj | represent the weight and weight
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Fig. 3. Mask gradient magnitudes of pre-trained ResNet-110. (b) and (c) show mask gradient magnitudes of channels in layer-1 and layer-105, respectively.

number of the j-th feature, respectively. ε is a small positive
constant to avoid division by zero. Since it is not a zero-mean
normalization, the sign of each mask gradient does not change,
so the analysis derived in the previous subsection is still valid.
Because the same gradients are produced on all masks by
the connectivity decay introduced in the next subsection, the
gradient normalization excludes mask gradients caused by the
connectivity decay (i.e., normalization in Eq. (20) processes
the gradients produced by the first and third terms of Eq. (23)).

E. Connectivity decay for sparse connectivity learning
Through the proposed weight re-parameterization, the infor-

mation of network connectivity is completely represented by
the elements in the binary mask m. The degree of network
connectivity is equal to the sum of all element values in m. We
incorporate the degree of connectivity into an objective func-
tion to optimize network connectivity. The training objective
function is expressed as

L = C + λ1 ·
L∑

l=0

|m(l)|∑
i=0

m
(l)
i (21)

where C is the criteria to measure performance loss, m(l) is
the mask of l-th layer, i is the element index, |m(l)| is the
total number of elements in l-th layer, and L is the total
number of layers. λ1 is a hyper-parameter for connectivity
decay. As the second term includes the information of network
connectivity, so during training this term attenuation indicates
connectivity decay. Connectivity decay can be viewed as a way
of L0 regularization of weight. There are two gradients that
affect the training of mask variables. One gradient is due to
the connectivity decay, which pushes mask variables moving
towards the negative infinity direction all the time. The other
gradient is due to the performance loss minimization, which
usually pushes mask variables moving towards the positive
infinity direction according to the significance of network
connectivity. When training converges, both gradients on the
mask variables will reach equilibrium at important network
connections. Therefore, an optimized neural network with an
expected level of sparsity is learned and determined through
training.

F. Proposed SCL algorithm
Algorithm 1 describes the details of our proposed automatic

sparse connectivity learning method. Through repeatedly cal-

culating gradients of weight variables and mask variables, this
algorithm updates them through stochastic gradient descent
(SGD). When the network pruning process is complete, a
sparse neural network is obtained. The well-trained sparse
weights are calculated as

w∗ = w̃ �H(m̃) (22)

Algorithm 1 Automatic Sparse Connectivity Learning
Input: A training dataset D, a L-layer neural network,
weight variables W = {w̃(l)}l=L

l=1 , mask variables
M = {m̃(l)}l=L

l=1 , a connectivity decay coefficient λ1, an L2

regularization coefficient λ2, and the total number of training
epochs T .
Output: Well-trained sparse weights W∗ = {w(l)∗}l=L

l=1 .
Initialization: Initial values of mask variables are positive.
Initial values of weight variables are random according to
[47].

1: repeat
2: Sample a mini-batch from D as input data.
3: Forward pass:

First, calculate all the masks using Eq. (11). Next,
compute all weights using Eq. (10). Then, Calculate
all layers like a normal neural network with weights
and sampled input.

4: Backward pass:
First, calculate weight gradients using Eq. (13). Next,
relax mask gradients through the Identity STE using Eq.
(19). Then, normalize mask gradients using Eq. (20).

5: Update weights:
Use gradients obtained from the backward pass to
update all weight variables and mask variables via SGD.

6: until T epochs complete
7: Compute the well-trained sparse weights using Eq. (22)

and output a sparse neural network.

G. Comparison of SCL with existing automatic pruning

It is necessary to comprehensively compare our SCL algo-
rithm with existing automatic pruning methods in the liter-
ature (i.e., [34]–[38]). Therefore, conceptual comparison and
experimental results discussion of [34], [35], [37], [38] will be
provided in Sections V-D and V-E. Since [36] does not report
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proper experimental results to compare, we only discuss their
algorithm differences as below. Compared with [36], SCL has
the following differences. First, the way of dealing with the
non-differentiation problem of discrete masks is different. SCL
uses a deterministic STE to estimate the gradient of discrete
masks, whereas [36] uses the Gumbel-Softmax trick to relax
the discrete masks to a continuous form. Second, the way to
reduce the computational workload is different. [36] focuses
on conditional computation using dynamic inference, so masks
vary with network inputs. Besides, since the efficiency of
data handling is greatly affected, the conditional computational
graph in [36] is not friendly to hardware accelerators. In
contrast, SCL focuses on network pruning that is static during
inference, so the computational graph is fixed after training.
Therefore, the feature of static computation reduction in SCL
is more appropriate than [36] for hardware acceleration.

IV. BASELINE NETWORK ARCHITECTURES AND
EXPERIMENTAL SETUPS

We conduct the experiments on four NVIDIA TITAN
XP GPUs using PyTorch3. We choose VGGs [3], ResNets
[4], DenseNets [5], and EfficientNets [48] as our baseline
CNN architectures, because most of the state-of-the-art neural
networks are based on them. ResNets and DenseNets are
outstanding due to their high accuracy and fewer number
of trainable parameters. EfficientNet is a lightweight high-
accuracy convolutional neural network architecture with much
fewer parameters. In CNN experiments, the proposed SCL
technique is evaluated using the datasets of MNIST [49],
CIFAR [50], and ImageNet (i.e., full data of ImageNet2012
classification) [51]. In RNN experiments, SCL is evaluated on
a language model using the WikiText-2 dataset [52].

For the experiments on the MNIST dataset, the baseline is
a DenseNet-based network, where only fully connected layers
are implemented (i.e., no convolutional networks involved)
to evaluate the proposed SCL method. Then, two-dimension
28 × 28 image samples are flattened before being fed into
the neural network. The input images are normalized using
the channel mean and standard deviation. Within this baseline
network, sixteen fully connected layers with a growth rate
of 8 are applied to feature extraction, followed by a softmax
function for object classification. For the experiments on the
CIFAR dataset, convolutional networks are evaluated. The
VGGs and ResNets are adapted from the codes4 of [53]. The
codes of DenseNets are slightly different from the description
in the paper of [5], which is referred to official codes5. For
the experiments on the ImageNet dataset, we only evaluate
SCL on VGG-16, ResNet-506, and EfficientNet-B07 due to
the limitation of computational resources. The language model
used in the RNN experiments consists of an encoder embed-
ding, two LSTM layers, and a decoder embedding. As encoder
and decoder embeddings are tied to improve the perplexity

3 https://pytorch.org
4 https://github.com/Eric-mingjie/rethinking-network-pruning
5 https://github.com/liuzhuang13/DenseNet
6 https://github.com/pytorch/vision/tree/master/torchvision/models
7 https://github.com/lukemelas/EfficientNet-PyTorch

results [54], we only account for one of the encoder/decoder
embeddings in sparsity statistics. The vocabulary size and
LSTM hidden layer size are 33,278, and 1,500, respectively.
The language model used in the RNN experiments is adapted
from a PyTorch word language model8.

All the networks are trained by the SGD optimizer. We
adopt the weight initialization method in [47], and batch
normalization in [55] for fast training. The objective function
of an L-layer network is expressed as

L = C + λ1 ·
L∑

l=0

|m(l)|∑
i=0

m
(l)
i + λ2 ·

L∑
l=0

|w̃(l)|∑
i=0

(w̃
(l)
i )2 (23)

where C is the cross-entropy loss for classification, λ1 and
λ2 are the coefficients of connectivity decay and L2 regu-
larization, respectively. |m(l)| and |w̃(l)| refer to the number
of elements in m(l) and w̃(l), respectively. Note that λ1
and λ2 are not designer-defined pruning criteria or layer-wise
pruning hyper-parameters (e.g., pruning threshold or ratio),
which are indispensable in existing pruning methods in the
literature. In our proposed SCL method, the layer-wise sparsity
is automatically determined by the learning algorithm itself,
without the intervention of designers. In our SCL method,
tuning λ1 can adjust the trade-off between network sparsity
and accuracy. Therefore, designers can adjust λ1 to reach the
desired sparsity-accuracy balance. For a given value of λ1,
we do not run full training iterations to check the resulting
sparsity. Instead, we run a small portion (e.g., 10%) of the full
training iterations to see if the target sparsity can be achieved.
In this way, a proper λ1 for the target sparsity can be found
with several attempts. To further reduce the trial time, we start
with a larger value of λ1, which leads to faster network pruning
and hence shorter running time. Then, we decrease the value of
λ1 until the target sparsity is obtained. Therefore, the running
time for tuning λ1 is not huge. A similar process for tuning
λ1 is applied to other datasets and baseline architectures in
the experiments of Section V. To make a concise comparison
with existing works, we list the experimental results in terms
of sparsity, the number of parameters, FLOPs, and accuracy in
Tables II-XI. Note λ2 is the coefficient of L2 regularization,
which has nothing with network pruning. L2 regularization
is required to ensure an effective learning rate when batch
normalization is applied [56].

For experiments on the MNIST and CIFAR datasets, mini-
batch size and initial learning rate are set to 64, and 0.1,
respectively. For experiments on the MNIST dataset, a simple
training schedule is used, and mask variables do not update
in the first and last 15 epochs. For experiments on the CIFAR
datasets, mask variables do not update in the first 150 epochs
to facilitate weight convergence. Then, mask variables are up-
dated to obtain the corresponding sparse network connectivity.
The learning rate is adjusted to 0.01 when the target sparsity
is almost achieved. Finally, the mask variables continue to
update for 20 epochs and achieve stable network connectivity.
In order to achieve ultimate convergence stability, the weights
continue to update for 80 epochs with a learning rate of

8 https://github.com/pytorch/examples/tree/master/word language model

https://pytorch.org
https://github.com/Eric-mingjie/rethinking-network-pruning
https://github.com/liuzhuang13/DenseNet
https://github.com/pytorch/vision/tree/master/torchvision/models
https://github.com/lukemelas/EfficientNet-PyTorch
https://github.com/pytorch/examples/tree/master/word_language_model
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0.01 and then another 80 epochs with a learning rate of
0.001. Initial values of mask variables are positive. Weight
variables are randomly initialized according to [47] and trained
from scratch. A larger λ1 usually leads to less number of
training epochs for realizing the same sparsity expectation. For
experiments on the ImageNet dataset, all the models are pre-
trained before sparse training for saving time. Mini-batch size
and initial learning rate are set to 128 and 0.005, respectively.
We use 90 epochs for sparse connectivity training and another
60 epochs to achieve stable training convergence. In the RNN
experiments, we follow the training procedure of Distiller9.

V. EXPERIMENTAL RESULTS AND COMPARISON

A. Effect of STE and mask gradient normalization

An map fitting experiment has been designed to evaluate
the effect of STE and mask gradient normalization. A three-
layer fully connected network is built as a baseline input-
output mapping. Each network layer consists of 64 neurons,
followed by batch normalization and ReLU activation. In order
to ensure output convergence, weights are randomly initialized
according to [47]. A set of inputs and mask variables are
randomly selected and applied to this baseline. These inputs
and mask variables follow a normal distribution with 0-mean
and unit standard deviation. Thus, without any training, output
results of the baseline are obtained as a benchmark.

Next, the baseline architecture is reused to perform output
fitting experiments, where inputs and weights are the same
as the baseline, but mask variables are randomly initialized
and then trained through gradient descent to match the bench-
mark (i.e., baseline outputs). These fitting experiments involve
different STEs (i.e., proxy mask gradients) for binary mask
relaxation with or without mask gradient normalization. In
these experiments, the ideal fitting result is that after training,
mask variables finally converge and produce the same outputs
as the benchmark, indicating an accurate reproduction of the
baseline input-output mapping.

Figure 4 shows the mean squared errors (MSEs) obtained
from the above experiments. MSE tells how close the outputs
of trained networks are to the benchmark. The Clipped ReLU
STE leads to the worst fitting results, because its gradient is 0
when a mask variable is negative or larger than a threshold as
shown in Figure 2(b). The results of ReLU STE are better,
because it has fewer dead zones as shown in Figure 2(a).
Note that once a mask variable falls into a dead zone, there is
no chance to get out. Compared with the Clipped ReLU and
ReLU STEs, Leaky ReLU, Softplus, and Identity STEs achieve
better and similar results. This observation is consistent with
Eq. (16) and theoretical analysis in Section III-C. Positive
proxy gradients of these three STEs guarantee a loss descent
direction to push mask variables towards the minima. Mask
gradient normalization reduces MSEs for all STEs, validating
the necessity of normalizing mask gradients.

9 https://github.com/NervanaSystems/distiller/tree/master/examples/word l
anguage model

M
SE
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Clipped ReLU ReLU Softplus Leaky ReLU Identity

Fig. 4. Output fitting results with STEs for binary mask relaxation. Solid and
dashed curves are with or without mask gradient normalization, respectively.

TABLE I
TRAINED DENSENET-BASED NETWORKS ON MNIST.

Scheme # Param. Sparsity Accuracy

Baseline 117,152 0 % 98.35%

λ1 = 0 77,422 34.0% 98.47%
λ1 = 0.01 10,153 91.3% 98.24%
λ1 = 0.03 4,488 96.2% 98.01%
λ1 = 0.08 1,375 98.8% 94.64%
λ1 = 0.1 252 99.8% 78.46%

B. Sparse connectivity of fully connected network on MNIST

To quickly evaluate the effectiveness of the proposed SCL
method, we carried out experiments using a DenseNet-based
network with the MNIST database, as described in Section
IV. As shown in Table I, a larger connectivity decay λ1
corresponds to more sparse network connectivity. Even if λ1 is
set to 0, our experimental results show that the two gradients
due to performance loss minimization and L2 regularization
(the first and third term in Eq. (23)) can push some mask
variables to negative values, when their corresponding network
connections do no contribute to accuracy. As a result, our
SCL-induced neural network has a good sparsity of 34%,
and its object classification accuracy of 98.47% outperforms
the DenseNet-based baseline network (i.e., 98.35%). From a
system accuracy perspective, this means that the best network
connection for this example is inherently sparse. In addition,
when λ1 is 0.03, our SCL-induced sparse networks can achieve
a very high accuracy of above 98% and sparsity of about
96.2%. Note that in this fully connected layer experiment,
the sparsity is equal to the reduction in FLOPs. As a result,
the SCL-induced DenseNet-based network achieves a 96.2%
reduction in FLOPs (i.e., approximately 26.3× lower than
the baseline with an accuracy loss of only 0.34%). This
experiment validates that our proposed SCL method supports
effective network pruning on fully connected layer architec-
tures.

Based on these experimental results, we add together the
binary connections that are directly connected to the input
data and then normalize them. The normalized connections for
three typical λ1 values are illustrated in Figure 5. It is clear that

https://github.com/NervanaSystems/distiller/tree/master/examples/word_language_model
https://github.com/NervanaSystems/distiller/tree/master/examples/word_language_model
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(a) λ1 = 0.1 (b) λ1 = 0.03 (c) λ1 = 0.01

Fig. 5. Visualization of learned network connectivity on MNIST.dense-10
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Fig. 6. Connection density profiles for all layers in DenseNet-40 and ResNet-
110 for different overall densities.

network connections are mainly concentrated in central areas,
so our SCL training ignores edges. As a result, the pixels of
digits are trained to be connected in the central area. When
λ1 is set to 0.1 (i.e., very high sparsity), only a few central
pixels are connected as illustrated in Figure 5(a).

C. Connectivity learning analysis on CIFAR-10

In order to demonstrate the automatically learned network
connectivity, we report and discuss the density profiles (i.e., the
percentage of remaining network connections) of several SCL-
induced networks on the CIFAR-10 dataset. Figure 6 shows
that the proposed SCL method can automatically learn and
determine the corresponding density profile for each network
layer. In Figure 6(a), there are three layers with relatively
high densities, which are the layers located before the three
dense blocks. Since it is most often reused in this low-density
DenseNet network, the three important network layers should
retain more connections. In Figure 6(b), when this DenseNet
network has a high targeted density of about 30%, most of the
network layers obtained by our SCL method have a similar
density. Note that the density of the last network layer is
completely different in Figure 6(a) and Figure 6(c). This is
due to different types of redundancy between DenseNet and
ResNet structures. In DenseNet-40, the fact that previously
extracted features are channel-wise concatenated to subsequent
layers leads to 456 channel connections to the last layer. In
ResNet-110, previously extracted features are element-wise

added to subsequent layers, so the last layer contains only 64
channel connections and there is less redundancy. Therefore,
DenseNet-40 removes most weights in the last layer, whose
density is about 7% in Figure 6(a), while ResNet-110 retains
most weights in the last layer, whose density is about 65%
in Figure 6(c). In Figure 6(c) and 6(d), since ResNet-110 is
too deep, network connections in some layers are completely
removed. In Figure 6(d), even though 70% of weights and
some computational expensive shallow layers are removed,
our SCL-induced network is superior to the baseline networks
(94.82% vs. 93.57% in Table III). In summary, we find that
unlike conventional pruning methods which require designer-
defined pruning criteria or hyper-parameter for each layer,
our proposed SCL method can automatically learn and select
important network connections for given baseline structures.

D. Comparison with the state-of-the-art pruning methods on
CIFAR-10 and CIFAR-100

In order to comprehensively evaluate the proposed SCL
method, we compare with the state-of-the-art pruning methods
in the literature, including both non-structured and structured
methods on the baseline networks of VGGs, ResNets, and
DenseNets.

1) Comparison with non-structured pruning methods: We
compare the proposed SCL with non-structured pruning meth-
ods, e.g., Frankle et al. [13] and Han et al. [7]. The results
of Frankle et al. [13] (i.e., Lottery Ticket Hypothesis) are
copied from Liu et al. [53]. As illustrated in Figure 7, we use
a very high sparse target (97%) to learn sparse VGGs. Our
SCL-induced VGGs is superior to the state-of-the-art pruning
methods of [7], [13], [14], [20] in both sparsity and accuracy.
For DenseNet-BC-100, with the same sparsity of 80%, our
SCL method results in an accuracy of 95.40%, which is much
higher than the accuracy of 95.04% in Han et al. [7]. Even
though we don’t compare FLOPs here due to we are unable
to access pre-trained models in these previous works, the
reduction in FLOPs is positively correlated with the sparsity
for non-structured sparse models. Compared to the human-
determined criterion of non-structured pruning methods, the
proposed task-aware SCL method yields better results.

2) Comparison with structured pruning methods: As shown
in Table II and III, the ResNet networks trained by our
proposed SCL method are more sparse and more accurate.
The higher the sparsity, the more savings the FLOPs have.
Besides, even with a higher sparsity (e.g., 70% on ResNet-
20 and 90% on ResNet-110), the SCL-induced ResNet neural
networks achieve better accuracy than the baselines in [4].
In contrast, when the target sparsity exceeds about 30%, the
existing structured pruning methods in [13] [14] [16] [57]
exhibit significant accuracy degradation.

Table IV lists the experimental results for DenseNet neural
networks on the CIFAR-10 dataset. When the target sparsity
is moderate (e.g., sparsity = 40% in Table IV), our SCL-
induced networks show higher accuracy than the baseline in
[5]. When setting a higher target sparsity (e.g., 65%), the
accuracy of Liu et al. [53] drops significantly. In contrast, even
at a high sparsity of 90%, our SCL-induced DenseNet network
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(a) VGG-16, comparisons with Frankle et
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(b) VGG-19, comparisons with Han et al.
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Han et al. [7].

Fig. 7. Sparsity comparisons with non-structured pruning methods.

TABLE II
RESULTS OF RESNET-20 ON CIFAR-10.

Scheme # Param. Sparsity FLOPs ↓ Accuracy

Baseline [4] 0.268M 0% 0% 91.25%

He et al. [16] 0.241M 10% 15% 92.24%
He et al. [16] 0.214M 20% 29% 91.20%
He et al. [16] 0.188M 30% 42% 90.83%

SCL 0.133M 50% 49% 92.61%
SCL 0.080M 70% 69% 92.35%

TABLE III
RESULTS OF RESNET-110 ON CIFAR-10.

Scheme # Param. Sparsity FLOPs ↓ Accuracy

Baseline [4] 1.72M 0% 0% 93.57%

He et al. [16] 1.20M 30% 41% 93.86%
Yu et al. [57] 0.98M 43% 44% 93.39%
Yu et al. [57] 1.17M 32% 39% 93.34%
Li et al. [14] 1.17M 32% 39% 93.36%

Frankle et al. [13] 1.17M 32% 39% 93.15%

SCL 0.51M 70% 73% 94.82%
SCL 0.17M 90% 90% 94.56%

TABLE IV
RESULTS OF DENSENET-40 ON CIFAR-10. RESULTS OF PREVIOUS

METHOD ARE COPIED FROM LIU et al. [53].

Scheme # Param. Sparsity FLOPs ↓ Accuracy

Baseline [5] 1.04M 0% 0% 94.76%

Liu et al. [20] 0.66M 36% 28% 94.81%
Liu et al. [20] 0.35M 65% 55% 94.35%

SCL 0.62M 40% 38% 94.81%
SCL 0.30M 71% 70% 94.66%
SCL 0.10M 90% 88% 94.53%

demonstrates little loss of accuracy. The superiority of our SCL
is not only due to the advantage of the task-aware feature, but
also because the resultant weight-level sparse models have a
larger representative capacity.

3) Comparison with L0 regularization method: L0 reg-
ularization (Gumbel-Softmax trick) [34] determines zero-
weight network connections by including a set of non-negative
stochastic gates. Compared with [34], the SCL method has
significant differences in the objective function, mask training
method, actual reduction of sparse connectivity and FLOPs,

as described below. First, the the objective function is dif-
ferent. In this work, the sparse regularization term in the
objective function is the L0-norm of masks. In contrast, the
regularization term in the objective function of [34] is a
statistically expected L0-norm of masks. Second, the mask
training method is different. Stochastic sampling is used in
[34] to train mask variables, whereas this work directly trains
mask variables without using stochastic sampling. Due to the
use of stochastic sampling, the pruning method in [34] is
complicated. In contrast, in this work, masks are constrained
to 0 or 1 by applying a unit step function on it, and sparsity is
produced by penalizing the L0-norm of weights. Hence, this
work is simple and efficient. Third, the actual reduction of
sparse connectivity and FLOPs is different. Both training and
testing stages in this work are deterministic, whereas training
and testing stages in [34] are stochastic and deterministic,
respectively. Note a mask variable implies no connectivity only
when its probability is zero. In this work, the probability of
connectivity is either 0% or 100%, a reduction of L0-norm
of masks (i.e., probability of certain connectivity is regulated
from 100% to 0%) in the training stage indicates the same
reduction in the testing stage. In contrast, the probability of
connectivity is continuous from 0% to 100% in the training
stage of [34]. Hence, in [34], the reduction of expected L0-
norm during training does not necessarily mean a reduction of
L0-norm during testing. Besides, the discrete mask function
is used in [34] for hard pruning in the testing stage. Discrete
mask function potentially has a large discrepancy from the
probabilistic continuous mask function during training time
[35]. Furthermore, the use of stochastic sampling in [34] leads
to a huge gap between the expected L0 in the stochastic
training phase and the actual L0 in the deterministic testing
phase. In [34], although the hard concrete distribution trick
allows zero gates to be produced, the expected L0 can not
reflect the actual L0 during inference.

Our proposed SCL takes advantage of STE [41] to redefine
gradients of mask variables. Even though STE involves the use
of STE in stochastic neurons, we think STE is also applicable
to deterministic neurons, because deterministic neurons are
regarded as a special case of stochastic neurons with a prob-
ability of either 0% (i.e., no connection) or 100% (i.e., with
connection). The use of STE on deterministic problems has
been empirically verified by the deep learning community [38],
[45]. Then, L0 norm of weights is integrated as a regularization
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TABLE V
COMPARISON WITH L0 REGULARIZATION [34] ON CIFAR DATASETS.
WRN-28-10 [58] IS USED AS THE BASELINE. ”-” INDICATES RESULTS

NOT REPORTED.

Scheme CIFAR-10 CIFAR-100
Sparsity Accuracy Sparsity Accuracy

Baseline [58] 0% 96.00% 0% 80.75%

Louizos et al. [34] - 96.07% - 80.96%
Louizos et al. [34] - 96.17% - 81.25%

SCL 20% 96.36% 20% 81.79%
SCL 51% 96.53% 50% 81.87%
SCL 91% 96.33% 90% 81.51%

term of the objective function. Despite the role of SCL in
training is similar to that of L0 regularization, we think SCL is
advantageous because its efficient processing of mask variables
helps sparsity training. As a result, the proposed SCL method
is more direct and effective in encouraging sparse network
connections. Table V lists the experimental results of L0

regularization [34] and SCL on the CIFAR-10 and CIFAR-
100 datasets. The observation that both of them outperform
the baseline model [58] indicates that the best network con-
nections should be sparse. Moreover, the experimental results
of SCL with three sparsity levels (i.e., 20%, 50%, and 90%) are
provided. Their corresponding accuracy results are better than
those of L0 regularization, even though the sparsity results are
not reported in [34]. In fact, when we use the hyper-parameters
and codes in [34] to repeat the experiment for Table V, we find
that the obtained network is not sparse. Although the expected
L0 norm of weights has been significantly reduced, it is still
not low enough to generate sparse connections.

4) Comparison with existing STE-based pruning method:
In addition to evaluating the effect of STE and mask gradient
normalization in a mapping experiment in Section V-A, we
also conduct experiments with DenseNet-based networks on
MNIST and with ResNet-20 and ResNet-110 on CIFAR-10,
respectively. We compare the results of SCL with the existing
STE-based pruning method [38], which uses Leaky ReLU or
Softplus STEs without mask gradient normalization. As shown
in Tables VI and VII, under the same 95% sparsity, the result
of SCL (i.e., 90.08%) is superior to [38] (i.e., 88.01% or
87.95%). Table VII also provides the comparison results of
VGG-16 on CIFAR-10, as reported in [38].

TABLE VI
COMPARISON RESULTS OF DENSENET-BASED NETWORKS ON MNIST.

Sparsity Leaky ReLU Softplus Identity

w/o norm 95.0% 98.26% [38] 98.31% [38] 98.37%
w/ norm 98.33% 98.35% 98.39% (SCL)

E. Comparison with state-of-the-art pruning methods on Im-
ageNet

In Tables VIII and IX, except for Han et al. [7], the
performance results of existing pruning methods on ImageNet
are copied from Lin et al. [18].

TABLE VII
COMPARISON OF RESNET-20, RESNET-110, AND VGG-16 ON CIFAR-10.

Sparsity Leaky ReLU Softplus Identity

ResNet-20 w/o norm 95.0% 88.01% [38] 87.95% [38] 88.10%
w/ norm 89.48% 90.13% 90.08% (SCL)

ResNet-110 w/o norm 95.0% 93.15% [38] 92.26% [38] 92.76%
w/ norm 93.25% 93.44% 93.58% (SCL)

VGG-16 w/o norm 98.6% 92.18% [38]
w/ norm 97.0% 94.39% (SCL)

In most convolutional neural networks, most of the weights
are in fully connected layers, while most FLOPs are in convo-
lutional layers. The number of fully connected layers for VGG-
16 and ResNet is three and one, respectively. As shown in
Table VIII, the structured pruning methods of [15], [18], [59]
on VGG-16 lead to low sparsity and significant computational
cost reduction, because they only prune the convolutional
layers for fewer FLOPs and do not prune fully connected
layers. On the other hand, the non-structured pruning methods,
i.e., Han et al. [7] and our proposed SCL in this study, can
obtain higher weight compression ratios, mainly due to the
pruning of fully connected layers. Specifically, the method of
[7] achieves a weight sparsity of 92.5% over its baseline. At
a sparsity level of around 90%, even though the performance
(i.e., TOP-1 and TOP-5 drop) of our proposed SCL is worse
than [7], our SCL method can achieve a much higher accuracy
of 69.20% over 68.66% in [7] and a more FLOPs reduction
of 87% over 79% in [7]. The difference between our proposed
SCL and [7] is as followed. The pruning efforts in [7]
are mainly for fully connected layers, but less for pruning
convolutional layers. In contrast, depending on the weight
significance, the proposed SCL can efficiently perform pruning
on both fully connected layers and convolutional layers. We
also observe that the baseline of [7] may not converge, because
its baseline TOP-1 accuracy is reported as 68.5%, and our
TOP-1 accuracy is larger than 71.5%. The performance gain
in [7] is attributed to the use of hundreds of training epochs
during pruning, which leads to a much better convergence.

As shown in Table IX, for low-sparisty pruning, these
cutting-edge pruning methods [14], [15], [18], [25], [37], [59]
show significant performance degradation (i.e., TOP-1, TOP-5)
than our SCL-induced results. Furthermore, our SCL method
achieves a high sparsity of 74% with a FLOPs reduction of
79%, while retaining a slight performance degradation.

Compared with [33], this work has three main differences.
First, our SCL method is pruning criterion-free, whereas [33]
intends to learn proper layer-wise pruning criterion from a set
of designer-defined criteria. Due to the criterion-free nature,
our SCL method does not need hyper-parameters in criterion.
In contrast, [33] needs hyper-parameters to determine the
number of filters to keep. Second, the pruning performance
of [33] heavily depends on human experience, including
designer-defined hyper-parameters and criteria set. In contrast,
our SCL method automatically learns the optimized network
connectivity in a task-aware manner. Third, binary masks
and weight parameters are jointly updated in SCL, whereas
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mask and weight parameters are trained separately in [33]. As
shown in Table IX, this work shows better network pruning
results than [33]. SCL achieves a much lower drop of TOP-1
accuracy (i.e., 0.23%) than [33] (i.e., 1.69%) and a much lower
drop of TOP-5 accuracy (i.e., 0.40%) than [33] (i.e., 0.83%),
meanwhile largely reducing the number of FLOPs (i.e., 79%)
than [33] (i.e., 61%).

Compared with [37], this work has three main differences.
First, our SCL method uses binary masks to represent network
connectivity, whereas [37] uses continuous scaling factors to
represent network connectivity. In the proposed SCL method,
no threshold is needed to train binary masks. In contrast, soft-
threshold needs to be trained to obtain non-negative scaling
factors in [37]. In [37], if the value of a scaling factor is
zero, it indicates no network connection. In [37], a positive
scaling factor indicates the existence of network connection.
Second, our SCL method uses scheduled SGD to train the
binary masks, whereas [37] uses APG to train the scaling
factor parameters. Third, [37] only prunes convolutional layers
to reduce FLOPs, while our SCL method prunes convolutional
layers and fully-connected layers to compress the weight size.
As a result, the SCL method leads to much higher sparsity in
network connectivity, and therefore fewer trainable parameters.
As shown in Table IX, this work shows better network pruning
performance than [37]. SCL achieves a much lower drop of
TOP-1 accuracy (i.e., 0.23%) and a much lower drop of TOP-
5 accuracy (i.e., 0.40%) than [37], meanwhile reducing the
number of parameters by 58% (i.e., 6.6M vs. 15.6M).

Even though this work and [38] are all inspired by the
general concept of STE, the objective function optimization,
update rule for mask parameters, and coarse gradient es-
timation used in this work are significantly different from
[38]. In this work, the weight and mask parameters are
updated in the same optimization iteration. Yet, the weight
and mask parameters are updated separately in [38], which
corresponds to high computational complexity. As a result,
the training calculation cost of SCL is significantly reduced.
In this work, the update rule is not based on assumptions,
and the update rule for mask parameters is derived through
the back-propagation algorithm. In contrast, gradients in [38]
are modified by dividing true mask gradients (i.e., gradients
obtained through back-propagation) by the absolute value of
weights element-wisely. Two coarse gradient estimations (i.e.,
gradients of Leaky ReLU and Softplus function) are used in
[38], whereas the straight-through gradient estimation (i.e.,
gradient of identity function) is used in this work. As shown
in Table IX, in addition to the significant reduction of FLOPs
(i.e., 79% in this work vs. 55% in [38]), our SCL pruning
method achieves a much lower drop of TOP-1 accuracy (i.e.,
0.23% in this work vs. 0.40% in [38]). These experimental
results demonstrate that our SCL method is better than [38].

Compared with [35], this work has two main differences.
First, the SCP method in [35] assumes that feature maps follow
a Gaussian distribution. Yet, this assumption is too strict to
derive accurate gradients. In contrast, our SCL method does
not rely on any assumptions. Our SCL method trains network
connectivity through STE gradient estimation and gradient
back-propagation. Second, the SCP method in [35] has a

good pruning performance in network layers that are followed
by BN and ReLU. However, there are no BN and ReLU in
many deep neural networks. For example, BN does not exist
in the VGGs network. In the architectures of MobileNets or
EfficientNets, some convolutional layers are only followed by
BN rather than BN and ReLU. As shown in Table 5 of [35], the
network pruning performance is significantly degraded if only
BN exists for channel pruning. As a result, the SCP method
in [35] does not show good pruning performance for many
neural networks. In contrast, experimental results in this work
show that our SCL method is applicable to various neural net-
works, including VGGs, DenseNets, ResNets, EfficientNets,
and RNNs. As shown in Table IX, SCL shows better network
pruning performance than [35]. SCL achieves a much lower
drop of TOP-1 accuracy (i.e., 0.23%) than [35] (i.e., 1.69%)
and a much lower drop of TOP-5 accuracy (i.e., 0.40%) than
[35] (i.e., 0.98%), meanwhile largely reducing the number of
FLOPs (i.e., 79%) than [35] (i.e., 54%).

We also apply SCL to the EfficientNet [48] architecture to
learn sparse connections. Unlike VGG, ResNet, and DenseNet
architectures that are designed by humans, the EfficientNet
architecture is automatically determined by a neural archi-
tecture search technique. Depth-wise convolution is widely
used in EfficientNet architectures to improve efficiency. As
shown in Table X, three pruning polices are used by us for
depth-wise convolution in the experiments of [11] on the
ImageNet dataset. In the first pruning policy, the pruning
rates of the convolution, depth-wise convolution, and classifier
layers are set to 0.2, 0.1, and 0.2, respectively. In the second
pruning policy, the pruning rates of the convolution, depth-
wise convolution, and classifier layers are set to 0.5, 0.5,
and 0.5, respectively. In the third pruning policy, the pruning
rates of the convolution, depth-wise convolution, and classifier
layers are set to 0.5, 0.125, and 0.6, respectively. Compared
with the baseline EfficientNet-B0, Table X demonstrates that
when the sparsity is low (such as 19.5% and 25.8%), both the
pruning method of Zhu et al. [11] and SCL show a negligible
accuracy degradation. According to the magnitude of weights,
the work of Zhu et al. [11] forces smaller weights to zero.
As a result, although it is an element-wise pruning method,
if the difference of weight magnitudes between depth-wise
channels is large, the pruning method of Zhu et al. [11] tends
to completely remove certain depth-wise convolution channels.
The second policy of Zhu et al. [11] sets the weights of all
layers to be pruned by 50%, experimental results show that
FLOPs are reduced by 60% with a big TOP-1 accuracy drop
of 0.79%. The third policy of Zhu et al. [11] prunes less
weights of depth-wise layers and obtains a better accuracy.
These pruning results of Zhu et al. [11] show that it is difficult
to find an appropriate pruning policy to obtain satisfactory
pruning results. In contrast, since the network connectivity
learned by SCL is determined by the significance of weight,
SCL automatically retains necessary depth-wise channels even
if their magnitudes of weight are small. As a result, when SCL
prunes more weights than the pruning method of Zhu et al.
[11] (i.e., a sparsity of 55.0% versus 50.9%), SCL significantly
improves the accuracy results. Thus, SCL also outperforms
the pruning method of Zhu et al. [11] in terms of EfficientNet
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architectures.

F. Sparse RNN learning on WikiText-2

When SCL prunes weight matrices in RNNs (i.e., setting
some weight values to zero), it does not necessarily produce
zero gradients. In addition, the network connectivity of RNNs
is not sparsely initialized in SCL. During the training process,
sparse connections are gradually produced by SCL. Hence,
SCL does not cause the exploding/vanishing gradient problem
for RNNs. In this work, SCL is applied to a word-level
language model WikiText-2 [52] for verifying its effectiveness
on RNNs. The perplexity of the language model is evaluated.
The lower the perplexity, the better the RNN model. Table
XI lists the experimental results of existing pruning methods
(i.e., Zhu [11] and Narang [60]) and SCL. To obtain these
results, the pruning method of Zhu et al. [11] has to find
an appropriate combination of sparse rates for each weight
tensor through a lot of trials and errors, while the sparsity for
each weight is automatically found by SCL. Compared with
the baseline model that has a sparsity of 0%, sparse models
obtained by these existing state-of-the-art pruning methods and
SCL achieve higher perplexity values. The 80% sparse RNN
model trained by Zhu et al. [11] or SCL reduces the number of
weight parameters by almost 80% and meanwhile outperforms
the baseline in terms of perplexity on the test dataset. The
results indicate that SCL can effectively output excellent sparse
connectivity for RNNs. Besides, when the expected sparsity
is 95%, the perplexity results of SCL are better than those of
Zhu et al. [11] and Narang [60].

G. Applicability of SCL in Sparse IndRNN learning

IndRNN [61] has recently been proposed to solve the
exploding/vanishing gradient problem in RNNs. IndRNN mod-
ifies and updates the RNN states from

ht = σ(Wxt + Uht−1 + b) (24)

to
ht = σ(Wxt + u� ht−1 + b) (25)

where xt ∈ RM and ht ∈ RN are the input states and hidden
states at a time step t, respectively. W ∈ RN×M , U ∈ RN×N ,
and b ∈ RN represent the weights for the current input,
recurrent input, and bias of neurons, respectively. u ∈ RN

is a weight vector. When the weight matrix U happens to be a
diagonal matrix, the vector u can be regarded as the diagonal
vector of matrix U. N represents the number of neurons in
this layer and σ represents an activation function. We can see
that Uht−1 in the RNN is reformulated as Hadamard product
u � ht−1 in the IndRNN. Therefore, the gradient of the n-th
neuron at the time step t is changed from the RNN gradient

∂J

∂ht
=

∂J

∂hT

T−1∏
k=t

diag(σ
′
(hk+1))UT (26)

to the IndRNN gradient

∂Jn
∂hn,t

=
∂Jn
∂hn,T

uT−tn

T−1∏
k=t

σ
′

n,k+1 (27)

where diag(σ
′
(hk+1)) is the Jacobian matrix of the

element-wise activation function. Due to the term of∏T−1
k=t diag(σ

′
(hk+1))UT , it is difficult to control the gra-

dient of a RNN within a appropriate range. Fortunately,
the exploding/vanishing gradient problem is easily addressed
in the IndRNN by regulating the exponential term of
uT−tn

∏T−1
k=t σ

′

n,k+1 within an appropriate range during the
training process.

Next, let us analyze the impact of our SCL method on
the exploding/vanishing gradient problem in IndRNN neural
networks. For IndRNN networks, the proposed SCL method
is applicable to prune weights in the matrix W in the IndRNN
without affecting the exploding/vanishing gradient problem in
training. Moreover, the weights in the vector u should be
excluded from being pruned by SCL, because if some weights
in u are pruned, some values of uT−tn will be set to zero, thus
causing the vanishing gradient problem in the IndRNN. In fact,
by comparing the dimension of weight matrix W ∈ RN×M

and weight vector u ∈ RN , we see that the majority of weight
parameters are located in the matrix W. As a result, when
SCL prunes the weight matrix U and meanwhile prevents the
vector u from being pruned, the pruning ability and space in
the IndRNN networks are not significantly reduced. Since we
have shown the effectiveness of the proposed SCL on RNNs,
both of whose weight matrices W and U are pruned by SCL,
it is expected that when only pruning the weight matrix W,
the proposed SCL method can achieve highly sparse IndRNN
networks without affecting the exploding/vanishing gradient
problem.

VI. CONCLUSION

We present a Sparse Connectivity Learning (SCL) method
to automatically explore and optimize sparse network con-
nectivity. As the number of neural network connections is
incorporated into the objective function, the network connec-
tivity can be optimized for a given sparsity expectation to
achieve the best performance. Our proposed SCL method has
the task-aware ability, which does not require designer-defined
pruning criteria or hyper-parameters for each network layer.
As a result, the SCL-induced sparse networks are explored
in a larger hypothesis space, and they have the potential to
generate optimized network connections. The proposed SCL
is applicable to various neural network architectures includ-
ing fully connected networks, convolutional neural networks
(VGGs, ResNets, DenseNets, and EfficientNets), and recur-
rent neural networks (RNNs). Experiments on the MNIST,
CIFAR-10, CIFAR-100, ImageNet, and WikiText-2 datasets
demonstrate that the proposed SCL method achieves highly
efficient learning of sparse network connectivity in network
compression ratio, FLOP reduction, and accuracy over existing
state-of-the-art pruning methods in the literature. So far, SCL
supports convolutions, fully connected layers, and RNN layers.
We will explore SCL on other operators in the future.
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TABLE VIII
PRUNING RESULTS OF VGG-16 ON IMAGENET.

Scheme # Param. Sparsity FLOPs ↓ TOP-1 ↓ (TOP-1) TOP-5 ↓ (TOP-5)

Li et al. [14] 126.7M 8.38% 71% 0.29% -0.05%
Luo et al. [15] 131.5M 4.92% 68% -1.46% -1.09%
Hu et al. [59] 126.7M 8.38% 71% -0.64% -0.43%
Lin et al. [18] 126.2M 8.75% 71% -1.65% -0.97%
Han et al. [7] 10.3M 92.5% 79% -0.26% (68.66%) 0.44% (89.12%)

SCL 60.2M 56.5% 50% -1.11% (72.84%) -0.54% (90.88%)
SCL 36.9M 73.3% 71% -0.33% (72.05%) -0.25% (90.60%)
SCL 13.9M 89.9% 87% 2.49% (69.24%) 1.11% (89.24%)

TABLE IX
PRUNING RESULTS OF RESNET-50 ON IMAGENET.

Scheme # Param. Sparsity FLOPs ↓ TOP-1 ↓ TOP-5 ↓

Li et al. [14] 15.9M 38% 54% 3.36% 2.08%
Li et al. [14] 12.2M 52% 59% 4.31% 2.42%

Luo et al. [15] 16.9M 34% 41% 3.09% 1.63%
Luo et al. [15] 12.3M 52% 59% 4.12% 2.28%
Wen et al. [25] 13.2M 48% 49% 4.58% 2.68%
Hu et al. [59] 15.9M 38% 54% 3.47% 2.39%
Hu et al. [59] 12.2M 52% 59% 4.25% 2.41%
Lin et al. [18] 15.5M 39% 54% 2.83% 1.57%
Lin et al. [18] 12.0M 53% 59% 3.65% 2.11%
He et al. [33] - - 61% 1.69% 0.83%

Huang et al. [37] 15.6M 39% 43% 4.30% 2.07%
Xiao et al. [38] - - 55% 0.40% -
Kang et al. [35] - - 54% 1.69% 0.98%

SCL 17.9M 30% 24% −0.30% −0.16%
SCL 6.6M 74% 79% 0.23% 0.40%

TABLE X
PRUNING RESULTS OF EFFICIENTNET-B0 [48] ON IMAGENET. 1 , 2 , AND 3

INDICATE THE FIRST, SECOND, AND THIRD PRUNING POLICY,
RESPECTIVELY.

Scheme # Param. Sparsity FLOPs ↓ TOP-1 ↓ TOP-5 ↓

Zhu et al. [11]1 4.24M 19.5% 18% 0.04% −0.04%
Zhu et al. [11]2 2.65M 49.7% 60% 0.79% 0.26%
Zhu et al. [11]3 2.59M 50.9% 51% 0.41% 0.18%

SCL 3.91M 25.8% 24% 0.02% 0.01%
SCL 2.37M 55.0% 53% 0.32% 0.13%

TABLE XI
RESULTS OF SPARSE RNN LEARNING ON WIKITEXT-2 [52]. PERPLEXITY
OF THE LANGUAGE MODELS IS EVALUATED, THE LOWER PERPLEXITY THE

BETTER.

Scheme # Param. Sparsity Perpl. (Validation) Perpl. (Test)

Baseline 85.9M 0 % 87.49 83.85

Zhu et al. [11] 16.8M 80.4% 89.31 83.64
Zhu et al. [11] 8.6M 90.0% 90.70 85.67

Narang et al. [60] 4.9M 94.3% 100.23 95.35
Zhu et al. [11] 4.3M 95.0% 98.42 92.79

SCL 16.1M 81.3% 88.97 83.16
SCL 4.6M 94.7% 97.63 91.27
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