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MHSA-Net: Multi-Head Self-Attention Network for
Occluded Person Re-Identification

Hongchen Tan, Xiuping Liu, Baocai Yin and Xin Li, Senior Member, IEEE

Abstract—This paper presents a novel person re-identification
model, named Multi-Head Self-Attention Network (MHSA-Net),
to prune unimportant information and capture key local in-
formation from person images. MHSA-Net contains two main
novel components: Multi-Head Self-Attention Branch (MHSAB)
and Attention Competition Mechanism (ACM). The MHSAB
adaptively captures key local person information, and then
produces effective diversity embeddings of an image for the
person matching. The ACM further helps filter out attention noise
and non-key information. Through extensive ablation studies, we
verified that the Multi-Head Self-Attention Branch (MHSAB) and
Attention Competition Mechanism (ACM) both contribute to the
performance improvement of the MHSA-Net. Our MHSA-Net
achieves competitive performance in the standard and occluded
person Re-ID tasks.

Index Terms—Occluded Person Re-ID, Multi-Head Self-
Attention, Attention Competition Mechanism, Feature Fusion.

I. INTRODUCTION

Person re-identification (Re-ID) is a fundamental task in
distributed multi-camera surveillance. It identifies the same
person in different (non-overlapping) camera views. Re-ID
has important applications in video surveillance and criminal
investigation. With the surge of interest in deep representation
learning, the person Re-ID task has achieved great progress in
recent years [61]. Although recently many methods [52], [72],
[71], [12], [77], [81], [58] have boosted the performance of the
standard person Re-ID task, they didn’t consider the situation
that the person is occluded by various obstructions like cars,
trees, or other people. The occlusion in person images is still
a key challenging issue that hinders Re-ID performance. Thus,
this paper aims to develop a Re-ID algorithm that can better
handle occlusions in images.

In the occluded person Re-ID task, occluded regions often
contain a lot of noise that results in mismatching. So a key is-
sue in occluded Re-ID is to build discriminative features from
unoccluded regions. Some part-based methods [55], [39], [41]
manually crop the occluded target person in probe images and
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Fig. 1. The occluded person images’ attention maps are produced by our
Baseline, RGA-SC [66], SCSN (3-stage) [6] and the person Re-ID model
equipped with Multi-Head Self-Attention mechanism (MHSAM) [3], [25].
The red dot is the target person.

then use the unoccluded parts as the new query. However, these
manual operations are inefficient in practice. Another type of
approach is to use human model to help build person features.
More recently, [29], [18], [17] applied pose estimators to
obtain the person’s key points to locate effective regions of the
person. However, the difference between training datasets of
pose estimation and that of person retrieval often exist, making
pose estimation based feature extraction sometimes unstable.
It is desirable to design an effective mechanism to adaptively
capture the key features from non-occlusion regions without
relying on human models.

We are inspired by the recent Multi-Head Self-Attention
mechanism (MHSAM) [3], [25], [34], [67], which flexibly
captures spatially different local salience from the whole
image, and generates multiple attention maps, from different
aspects, for a single image. With MHSAM, noisy/unimportant
regions can be pruned and key local feature information can
be highlighted. Therefore, we believe the idea of MHSAM can
help a Re-ID model to better locate key features from occluded
images. As shown in Fig. 1, compared with the Baseline,
two outstanding attention Re-ID model RGA-SC [66] and
SCSN (3-stage) [6], the MHSAM can help the person Re-ID
model better capture key information of the target person from
the unoccluded regions and avoid information from occluded
regions. The baseline may undesirably pay attention to clutter
regions (left example) or other persons (right example), while
our MHSAM model handles such occlusions much better.

However, developing effective MHSAM for the task of Re-
ID is non-trivial and needs careful design. We propose a novel
MHSAM module for the person Re-ID task with a set of
new strategies to help select the key sub-regions in the image.
We call our new attention module a Multi-Head Self-Attention
Branch (MHSAB).

Furthermore, attention noise from the occluded or non-key
regions often exists, and it affects the performance of the Re-
ID model, we propose to design an Attention Competition
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Mechanism (ACM) to further help MHSAB suppress or filter
out such attention noise from non-key sub-regions. Our main
contributions are as follows:

(I) We proposed a new attention module, MHSAB, that can
more effectively extract person features in occluded person
Re-ID.

(II) We proposed a new attention competition module (ACM)
to better prune attention noise from unimportant regions.

(III) By integrating MHSAB and ACM modules, our fi-
nal MHSA-Net framework demonstrates better perfor-
mance over most state-of-the-art methods when process-
ing occluded images, i.e., on four occlusion datasets:
Occluded-DukeMTMC [29], P-DukeMTMC-reID [30],
Partial-REID [55], and Partial-iLIDS [39]. On standard
generic person Re-ID datasets, e.g., Market-1501 [38],
DukeMTMC-reID [46], [74], and CUHK03 [53], our
MHSA-Net produces similar results with these state-of-
the-art algorithms.

II. RELATED WORK

A. Attention Mechanism in Person Re-identification

Attention mechanisms have been widely exploited in com-
puter vision and natural language processing, for instance
in Text-to-Image Synthesis [22], Object Tracking [2], Im-
age/Video Captioning [28], Visual Question Answering [82],
Neural Machine Translation [15], and some Video Tasks [69],
[37], [68] It can effectively capture task-relevant information
and reduce interference from less important ones. Recently,
many person Re-ID approaches [62], [33], [10], [60], [8], [32],
[51], [5] also introduced various attention mechanisms into
deep models to enhance identification performance.

[33], [10], [60], [8] applied a human part detector or a
human parsing model to capture features of body parts. [14]
explored both the human part masks and human poses to
enhance human body feature extraction. [32], [29] exploited
the connectivity of the key points to generate human part
masks and focuses on the human’s representation. However,
the success of such approaches heavily relies on the accuracy
of the human parsing models or pose estimators.

Other methods typically focus on extracting the person
appearance or gait information, from the 3D space or depth
images, to reduce the interference of background or occlusion.
For example, Zhedong et al [76] try to project the 2D person
image into the 3D space, and conduct the person matching
in the 3D space. Munaro et al. [42] proposed point cloud
matching (PCM) stragy to compute the distances of multi-view
point cloud sets, so as to distinguish between different persons.
Haque et al. [20] adopted 3D LSTM to build motion dynamics
of 3D person point clouds for person matching. [45] proposed
a self-supervised gait encoding approach that can leverage
unlabeled 3D skeleton data to learn gait representations for
person Re-ID. Sivapalan et al. [50] extended the Gait Energy
Image (GEI) [11] to 3D domain and proposed Gait Energy
Volume (GEV) strategy based on depth images to perform gait-
based person Re-ID. In [35], Convolutional Neural Network

Long Short-Term Memory (CNN-LSTM) with reinforced tem-
poral attention (RTA) was proposed for person matching based
on a split-rate RGB-Depth transfer method.

Besides, many methods [51], [5], [54], [9], [63] tried to
exploit a different type of attention mechanism that does not
need to use human models to capture human body features.
[27] proposed a dual attention matching network based on
an inter-class and an intra-class attention module to capture
context information of video sequences for person Re-ID.
ABD-Net [51] combined spatial and channel attention to
directly learn human’s information from the data and context.
[63] calculated the similarity of the local features to enhance
local part information. [9] applied an attribute classification
to gain local attention information. However, it does not
consider how to filter out information from the occlusion
regions in the image. Therefore, with its fixed and parameter-
free attention patterns, information from the occlusion region
will be inevitably included.

Similar to [51], [27], [9], [63], our attention module also
does not rely on an external human model. But different
from these methods, our attention mechanism can adaptively
enhance/suppress attention weights of local features through a
multi-parameter learning strategy. The attention information of
occluded and unoccluded regions in our attention mechanism
is adaptively adjusted according to the targeting task. For
the person Re-ID task, our attention module can flexibly
capture the key local features and prune out information from
occlusion regions.

B. Occluded Person Re-identification

Occlusion is a key challenging issue in person Re-ID.
Recent studies [55], [39], [41], [30], [29], [40], [17], [18] on
this topic can be divided into two categories: (i) partial person
Re-ID methods [55], [39], [41], and (ii) occluded person Re-
ID methods [30], [29], [40], [17], [18].

The former category aims to match a partial probe image to
a gallery holistic image. For example, [55] adopted a global-
to-local matching mechanism to capture the key information
from the spatial channel of the feature maps. DSR [39], [41]
proposed a spatial feature reconstruction strategy to align the
partial person image with holistic images. However, these
methods need a manual crop of the occluded target person
in the probe image, before the cropped unoccluded part can
be used to retrieve the target person.

The latter category aims to directly capture key features
from the whole occluded person image to perform the per-
son matching. AFPB [30] combined the occluded/unoccluded
classification task and person ID classification task to improve
the performance of deep model on capturing key information.
FPR [40] reconstructed the feature map of unoccluded regions
in occluded person image and further improved it by a
foreground-background mask to avoid the influence of back-
ground clutter. [29], [17], [18] proposed pose guided feature
alignment methods to match the local patches of query and
the gallery images based on human key-points. Our MHSA-
Net also belongs to this type of method. However, different
from these methods, the MHSA-Net does not require any
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Fig. 2. The architecture of Multi-Head Self-Attention Network (MHSA-Net) for occlusion/standard person Re-ID task. The MHSA-Net contains three modules:
the Global Feature Branch, the Multi-Head Self-Attention Branch (MHSAB), and the Attention Competition Mechanism (ACM). The CE loss denotes the
cross entropy loss function.

additional model. Also, the MHSA-Net can more effectively
capture unoccluded local information.

III. MHSA-NET OVERVIEW

Our MHSA-Net contains three modules: the Global Feature
Branch, the Multi-Head Self-Attention Branch (MHSAB), and
the Attention Competition Mechanism (ACM), as illustrated
in Fig. 2.

The Global Feature Branch computes a basic large feature
tensor Q(x) and a global feature q∗(x) for MHSAB and person
matching (CE loss). We use the widely adopted Backbone
Network ResNet-50 [21] to compute feature tensor Q(x), then
down-sample it to q∗(x) for MHSAB and person matching.

The MHSAB, the core component in MHSA-Net, captures
the key local information and outputs the fusion feature
p∗(x) for the person matching. The MHSAB contains four
sub-modules: the (1) Multi-Head Self-Attention Mechanism
(MHSAM), (2) Feature Regularization Mechanism (FRM),
(3) Self-Attention Feature Fusion Module (SAFFM), and (4)
Residual Learning Module (RLM). MHSAB outputs attention
weights α(x), and fusion features z(x) and p∗(x) that capture
key local information. These α(x), z(x) and p∗(x), will be
refined in the Attention Competition Mechanism (ACM).

The ACM is composed of a series of loss functions and
a regularization item; and it updates attention weights α(x),
and fusion features z(x) and p∗(x) to enhance key person
information and suppress non-key person information.

In the testing stage. For the standard person Re-ID task, we
concatenate the feature vector p∗(x) ∈ R512 and q∗(x) ∈ R512

to find the best matching person in the gallery by comparing
the squired distance,i.e. d(a, b) = ‖a− b‖22. For the occlusion
person task, we only use the feature vector p∗(x) ∈ R512 to
find the best matching person in the gallery by comparing the
squared distance.

IV. GLOBAL FEATURE BRANCH (BASELINE)

Following recent state-of-the-art methods [77], [63], [5],
[56], [47], [83], [19], we adopted ResNet-50 (pre-trained on
ImageNet [26]) as the backbone network to encode a person
image x. We modify the backbone ResNet-50 slightly to
extract richer information via larger-sized high-level feature
maps. The down-sampling operation at the beginning of stage
4 is not employed, then the output of the Backbone Network
is Q(x) ∈ R24×8×2048. Following [83], [63], [19], we also
append a series of downsampling operations to the large
feature map Q(x). As shown in Fig. 2, firstly we employ a
global average pooling operation on the output feature Q(x),
the 24×8×2048 tensor from the stage 4 of ResNet-50, to get
a feature vector q(x) ∈ R2048. Then, q(x) is further reduced
to a 512-dimensional feature vector q(x)∗ through a 1 × 1
convolution layer, a batch normalization layer, and a Rectified
Linear Units (ReLU) layer. Finally, the feature vector q(x)∗

is fed into the loss function, which is cross entropy loss LCE
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Fig. 3. The architecture of the Multi-Head Self-Attention Mechanism (MHSAM).

in this baseline model. The baseline model of our MHSA-Net
is composed of the Global Feature Branch and the BackBone
Network.

Unlike existing methods [77], [5], [56], [47], [73], we don’t
introduce the triplet loss into the GFB. In our experiments, we
observed that incorporating triplet loss in the GFB negatively
impacts the performance of MHSA-Net on generic person
Re-ID with occlusions. It seems this more strict constraint
on global features affects the local feature capturing in some
degree. So, in our MHSA-Net, the loss function in the baseline
model only contains LCE .

V. MULTI-HEAD SELF-ATTENTION BRANCH (MHSAB)
We introduce the Multi-Head Self-Attention Mechanism

(MHSAM) [3], [25], [67] into the person Re-ID pipeline, to
help the network capture key local information from occluded
images. However, there are two issues need to be solved for
this MHSAM in the occluded person Re-ID task.

(1) MHSAM [3], [25] can capture key local information
using multiple embeddings; but these existing methods directly
concatenate these embeddings, which result in a huge dimen-
sional feature space, making search and training expensive
and difficult. For our Re-ID task which is more complicated
than the Natural Language Processing (NLP) task in [3], [78],
we need a more effective design on MHSAM to output a
low dimensional and efficient person descriptor for the person
matching task.

(2) MHSAM produces multiple attention maps and feature
embeddings for an image to encode rich information, which
enhances the robustness of the deep model in representation
learning [3]. But this design itself often makes different
embeddings to redundantly encode similar or same personal
information. Thus, it is desirable to make the generated
embeddings diverse, namely, they capture various features of
the person from different aspects.

Based on these observations, we propose a novel Multi-
Head Self-Attention Branch (MHSAB) to tackle the above
issues. MHSAB contains three components: the Multi-Head
Self-Attention mechanism (MHSAM), Feature Regularization

Mechanism (FRM), and Self-Attention Feature Fusion Module
(SAFFM). The MHSAM computes multiple attention maps
for key sub-regions and multiple embeddings for each person
image. The FRM contains a Feature Diversity Regularization
Term (FDRT) and an Improved Hard Triplet Loss (IHTL)
function. The FDRT enhances the diversity of the multiple
embeddings in MHSAM, and the IHTL refines each individual
embedding to better capture key information. The SAFFM
adaptively combines multiple embeddings to produce a fused
low-dimension feature vector.

A. Multi-Head Self-Attention Mechanism (MHSAM)
As described in Section I, it is desirable to adaptively

capture key local features in unoccluded regions and avoid
information from occluded regions. To achieve this, we adopt
a Multi-Head Self-Attention mechanism (MHSAM) [3], [25],
[34]. The architecture of MHSAM is shown in Fig. 3. Here, we
build K-head for this MHSAM in two steps: (1) first, given a
person image, we learn its K attention weights α(x) ∈ RJ×K

(where J = [24 × 8]) on each pixel j ∈ J of feature
maps Q(x) ∈ RJ×2048. (2) Second, we compute the K
attention-weighted embeddings of Q(x) for this person image.
Specifically:

(Step 1) Compute α(x) by the Attention Weight Calculation
module (Figs. 3 ):

α(x) = softmax(ω2ReLU(ω1Q(x)T )), (1)

where Q(x) ∈ RJ×2048 is reshaped to a matrix in R192×2048,
α(x) ∈ RK×192 is reshaped to a tensor in R24×8×K , ω2 ∈
RK×512 and ω1 ∈ R512×2048 are two parameter weight
matrices to learn, and the softmax is applied pixel-wise so
that on each pixel the K attention weights sum up to one.

(Step 2) Multiply the attention weight α(x) with feature
maps Q(x), and further apply a non-linear transformation, to
get K attention-weighted embeddings P ∈ RK×512 (Figs. 3):

P (x) = AvgPool(α(x)�Q(x))ω3 + b3, (2)

where ω3 ∈ R2048×512 is the parameter weight matrix,
AvgPool(·) is the average pooling operation, and b3 ∈ R512 is
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the bias to learn for the fully connection layer “FC” in Fig. 3.
Since this, we can obtain K feature branch heads, and the
number of the heads is K. The � is the element-wise product
operation.

The attention weights α(x) in Eq. (1) are adaptively learned
toward the objective of person matching in Re-ID. Greater
α values indicate bigger importance of pixels/local regions
and vice versa. As some examples shown in Figs. 1 and 7,
key information from unoccluded regions can be captured by
MHSAM, while occluded regions can be suppressed. Here,
the hyper-parameter K is discussed in the Subsection VII-E1.

B. Feature Regularization Mechanism (FRM)

FRM contains a Feature Diversity Regularization Term
(FDRT) and an Improved Hard Triplet Loss (IHTL). The
FDRT encourages the multiple embeddings P (x) to cover
more key local information from various respects. The IHTL
refines the embeddings so that they individually can better
serve person matching. FRM takes in P (x) ∈ RK×512, and
outputs a new tensor P⊥(x) ∈ RK×512.

1) Feature Diversity Regularization Term (FDRT):
The K embeddings directly produced by MHSAM tend to

capture similar/same person information redundantly. To avoid
this, following [3], we also introduce the Feature Diversity
Regularization Term (FDRT) into MHSAM, to regularize the
K representations and enforce their diversity.

The K embeddings in MHSAM are not overcomplete [23],
[13]. So we can restrict the Gram matrix of K embeddings
to be close to an identity matrix under Frobenius norm.
Firstly, we create a Gram matrix G(x) of P (x) by G(x) =
P (x)P (x)T . Each element in G(x) denotes the correlation
between P (x). Here, P (x) is normalized so that they are on
an L2 ball. Secondly, to enhance the diversity of the K feature
vectors in P (x), we minimize the deviation of G(x) from
the identity matrix. Therefore, we define the Feature Diversity
Regularization Term (FDRT) as

LFDRT =
1

K2
‖G(x)− I‖1 , (3)

where G(x) is the gram matrices of P (x), and I ∈ RK×K is
an identity matrix. With FDRT, the K embeddings P (x) are
more diverse and can capture key information from different
perspectives, which enhances the model robustness.

2) Improved Hard Triplet Loss (IHTL): MHSAM produces
K embeddings P (x) ∈ RK×H for each person image. To
further filter out non-key information, we design a new loss
function to help train the network so that each individual
embedding can be used separately for person matching. We are
inspired by the hard triple loss [1], which uses a hard sample
mining strategy to achieve desirable performance. Hence, we
propose an Improved Hard Triplet Loss (IHTL) by revising
the hard triple loss [1].

Before defining the Improved Hard Triplet Loss (IHTL),
we firstly organize the training samples into a set of triplet
feature units, S = (s(xa), s(xp), s(xn)), or simply S =
(sa, sp, sn) in the following. The raw person image triplet
units is X = (xa, xp, xn). Here, (sa, sp) represents a positive

pair of features ya = yp, and (sa, sn) indicates a negative pair
of features with ya 6= yn. Here, y ∈ Y is the person ID.

In the hard triple loss [1], a hard-sample mining strategy is
introduced: a positive sample pair with the largest distance is
defined as the hard positive sample pair; the negative sample
pair with the smallest distance is defined as the hard negative
sample pair. The hard triple loss function can then be defined
using hard sample pairs:

THardTriplet = ln(1+ exp(max
xa,xp

d(sa, sp)− min
xa,xn

d(sa, sn))),

(4)
Based on the hard triplet loss function, we define an

Improved Hard Triplet Loss (IHTL). We define the improved
hard positive sample pair and improved hard negative sample
pair in two steps: (I): Between each sample image pair, K×K
distances can be computed, because each person image has K
embeddings P (x) ∈ RK×512 in MHSAM. We use the largest
distance from these distances to measure the embeddings of
the positive sample pairs, and use the smallest distance from
these distances for the negative sample pairs.

(II): We further use the hard samples mining strategy [1]
to define the hard sample pairs. The improved hard positive
sample pair is max

xa,xp
max
i,j

d(P (xa)i, P (x
p)j); the improved hard

negative sample pair is min
xa,xn

min
i,j

d(P (xa)i, P (x
n)j). The Im-

proved Hard Triplet loss is defined as:

TIHTL = ln(1 + exp(max
xa,xp

max
i,j

d(P (xa)i, P (x
p)j)−

min
xa,xn

min
i,j

d(P (xa)i, P (x
n)j))),

(5)

where i, j ∈ {1, 2, · · · ,K}, d(a, b) = ‖a − b‖22 denotes the
squired distance in feature space. Here, During training, the
IHTL refines embeddings so that they individually can perform
better person matching. This encourages the embeddings to
focus on important information.

C. Self-Attention Feature Fusion Module (SAFFM)

The output of FDRT, the K embeddings P⊥(x) ∈ RK×512

covers various properties of a person image. But directly using
P⊥(x) by concatenation will lead to dimension explosion in
person matching. Thus, we design a Self-Attention Feature
Fusion Module (SAFFM) to first learn K attentional weights
by a series of neural networks, then fuse P⊥(x) to get a lower-
dimensional p(x)∗ ∈ R512.

Specifically, Step-1, compute the attentional weight β(x) ∈
RK×512 (Fig. 2 and Fig. 4). The matrix P⊥(x) ∈ RK×512 is
transposed to P ∗(x) ∈ R512×K , then compute β by

β(x) = softmax(ω5ReLU(ω4P
∗(x))), (6)

where ω4 ∈ R512×1024 and ω5 ∈ R1024×512 are two parameter
weight matrices to learn, and the softmax is applied pixel-wise
so that each pixel on the each attention vector of the β(x) sum
up to one.

Step-2, compute the self-attention weighted feature vector
p(x)∗ ∈ R512, by

p(x)∗ =

K∑
i=1

[β(x)� P⊥]i. (7)
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Here, p(x)∗ ∈ R512, � is the element-wise product operation.
SAFFM reduces the dimension of the multiple embeddings

P⊥(x) for both training and testing. In the training stage,
p∗(x) is also fed to the cross entropy loss and the hard triplet
loss function,

LSAFFM = L∗CE + T ∗HardTriplet. (8)

Here, the input to both L∗CE and L∗HardTriplet is p∗(x).

D. Residual Learning Module

As shown in the RLM module in Fig. 2, with MHSAM,
P⊥(x) aims to capture key information in unoccluded regions
from local perspective; while q(x)∗ captures global informa-
tion of the whole person image. To prevent P⊥(x) from being
redundant with q(x)∗, we cast their feature fusion as a residual
learning task. Specifically, (1) to match with the dimension
K × 512 of P⊥(x), we copy q(x)∗ for K times to obtain
Q(x)∗ ∈ RK×512. (2) The input to the residual block includes
global feature Q(x)∗ and local feature P⊥(x). The parameters
(ω1, ω2, ω3, b3) of P⊥(x) will be optimized. (3) We define the
residual learning embedding as

Z(x) = Norm(Q(x)∗ + P⊥(x)), (9)

where Norm(·) denotes the layer normalization [31]. This
RLM encourages P⊥(x) to only capture important local
information.

In the training stage, Z(x) ∈ RK×512 is simply summed
along the first dimension to obtain z(x) ∈ R512. And z(x) is
also fed into the cross entropy loss and the hard triplet loss
function, i.e.

LReN = L∗∗CE + L∗∗HardTriplet (10)

Here, the input of L∗∗CE and L∗∗HardTriplet is z(x). And z(x)
does not participate in person matching in the testing stage.

Finally, the loss functions in MHSAB are summarized as

LMHSAB = LSAFFM + λ1LFDRT + LReN + λ2TIHTL,
(11)

where λ1 and λ2 are the balance paremeters (see detail in
Subsection VII-E2 and the Subsection VII-E3).

VI. ATTENTION COMPETITION MECHANISM

MHSAB enhances attention on key sub-regions, but the ex-
tracted attention maps still contain some non-key information.
We propose an Attention Competition Mechanism (ACM) to
further refine the attention weights.

In [22], an attention competition strategy was proposed
to filter out attention information of the non-key words in
the Text-to-Image generation task. This idea was composed
of an attention regularization term and a series of cross-
modal matching loss functions. This has been shown effective
in the Text-to-Image generation task. In the image genera-
tion: an attention regularization term can effectively filter out
the attention information of non-key words; the cross-modal
matching loss functions can effectively enhance or preserve
the attention information of the key words according to the
objective. Similarly, we believe it can also help the person
Re-ID model filter out the attention information of the non-
key sub-regions from the person images. Therefore, we also
design a similar strategy in this Person Re-ID pipeline. To our
knowledge, this is the first time a competition strategy was
designed for Re-ID task. Through a series of experiments, we
observe that this mechanism is promising.

Specifically, we use an attention regularization term to
suppress non-key information, and use the aforementioned
person Re-ID loss function LMHSAB to enhance attention
on important regions. The attention regularization term [22]
is defined as:

LC =
∑
i,j

(min(αi,j , γ))
2, (12)

where the subscript “C” stands for “Competition”, and γ > 0
is a threshold. Fig. 5 shows a schematic diagram of the
ACM. The grey columns illustrate attention weights on non-
key sub-regions, and the green columns are for weights on
key regions. In the initial state of training, as shown in sub-
fig (a), all attention weights in α are small. In ACM, the
attention regularization term LC sets a threshold and pushes
the attention weights lower than this threshold toward zero;
while LMHSAB increases attention weights of sub-regions if
they benefit person matching. An illustration of this procedure
is given in (b).

The total loss functions in MHSA-Net. The total loss
function LTotal is

LTotal = LMHSAB + LGFB + λ3LC , (13)

where λ3 is the balance parameter (see its discussion in the
Section VII-F).

VII. EXPERIMENT

To evaluate the MHSA-Net, we conduct extensive exper-
iments on three widely used generic person Re-ID bench-
marks, i.e. Market-1501 [38], DukeMTMC-reID [46], [74]
and CUHK03 [53] datasets, and four occluded person
Re-ID benchmarks, i.e. Occluded-DukeMTMC [29], P-
DukeMTMC-reID [30], Partial-REID [55] and Partial-
iLIDS [39]. First, we compare the performance of MHSA-
Net with state-of-the-art methods on these datasets. Second,
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Fig. 5. The schematic diagram of the attention competition process on α(x).
Grey columns are the attention weights of non-key sub-regions, and green
columns are the weights of key sub-regions.

we perform ablation studies to validate the effectiveness of
each component.

A. Datasets and Evaluation
We follow almost all person Re-ID approaches [81], [77],

[83], [63], [46], [74], [39], [55], [29], [30], [4], [70] to set the
following seven person Re-ID datasets.

Market-1501 [38] has 32, 668 labeled images of 1, 501
identities collected from 6 camera views. The dataset is
partitioned into two non-overlapping parts: the training set
with 12, 936 images from 751 identities, and the test set with
19, 732 images from 750 identities. In the testing stage, 3, 368
query images from 750 identities are used to retrieve the
persons from the rest of the test set, i.e. the gallery set.

DukeMTMC-reID [46], [74] is another large-scale person
Re-ID dataset. It has 36, 411 labeled images of 1, 404 identities
collected from 8 camera views. The training set consists of
16, 522 images from 702 identities; We used 2, 228 query
images from the other 702 identities, and 17, 661 gallery
images.

CUHK03 [53] is a challenging Re-ID benchmark. It has
14, 096 images of 1, 4674 identities captured from 6 cameras.
It contains two datasets. CUHK03-Labeled: the bounding
boxes of person images are from manual labeling. CUHK03-
Detected: the bounding boxes of person images are de-
tected from deformable part models (DPMs), which is more
challenging due to severe bounding box misalignment and
background cluttering. Following [81], [77], [83], [63], we
used the 767/700 split [53] of the detected images.

Occluded-DukeMTMC [29] has 15, 618 training images,
17, 661 gallery images, and 2, 210 occluded query images. We
use this dataset to evaluate our MHSA-Net in Occluded Person
Re-ID task.

P-DukeMTMC-reID [30] is a modified version based on
DukeMTMC-reID [46], [74]. There are 2, 652 images (665
identifies) in the training set, 2, 163 images (634 identities) in
the query set and 9, 053 images in the gallery set.

Partial-REID [55] is a specially designed partial person
Re-ID benchmark that has 600 images from 60 people. Each
person has five partial images in query set and five full-
body images in gallery set. These images are collected at

a university campus under different viewpoints, backgrounds,
and occlusions.

Partial-iLIDS [39] is a simulated partial person Re-ID
dataset based on the iLIDS dataset. It has a total of 476 images
of 119 people.

Evaluation Protocol. We employed two standard metrics
adopted in most person Re-ID approaches, namely, the cumu-
lative matching curve (CMC) that generates ranking accuracy,
and the mean Average Precision (mAP). The CMC curve
shows the probability that a query identity appears in different-
sized candidate lists. This evaluation measurement is valid
only if there is only one ground truth match for a given
query. In this paper, we report the Rank-1 accuracy. The mAP
calculates the area under the Precision-Recall curve, which is
known as average precision (AP). Then, the mean value of
APs of all queries, i.e., mAP, is calculated, which considers
both precision and recall of an algorithm, thus providing a
more comprehensive evaluation.

B. Implementation Details

Following many recent approaches [29], [77], [63], [83], [9],
the input images are re-sized to 384×128 and then augmented
by random horizontal flip and normalization in the training
stage. In the testing stage, the images are also re-sized to
384 × 128 and augmented only by normalization. Using the
ImageNet pre-trained ResNet-50 as the backbone, our network
is end-to-end in the whole training stage. Our network is
trained using 2 GTX 2080Ti GPUs with a batch size of 128.
Each batch contains 32 identities, with 4 samples per identity.
We use Adam optimizer [36] with 400 epochs. The base
learning rate is initialized to 10−3 with a linear warm-up [44]
in first 50 epochs, then decayed to 10−4 after 200 epochs, and
further decayed to 10−5 after 300 epochs. The whole training
procedure has 400 epochs and takes approximately 2 hours.
Our MHSA-Net achieves the satisfactory performance in the
general person Re-ID and occluded person Re-ID tasks, when
λ1 = 1e− 4, λ2 = 1.0, λ3 = 1e− 3, γ = 1e− 3 and K = 8.

C. Comparison with state-of-the-art Methods

In this subsection, we compared MHSA-Net with a series
of state-of-the-art approaches on seven person Re-ID datasets.
Here, MHSA-Net concatenates the local feature p(x)∗ and
global feature q(x)∗ to conduct the person matching task.
Compared with the proposed MHSA-Net, MHSA-Net† in-
dicates that we drop the LCE in the training process. The
MHSA-Net∗ only uses the local feature p(x)∗ to conduct the
person Re-ID task.

Person Re-ID on General Datasets. Firstly, we compared
MHSA-Net with the state-of-the-art generic person Re-ID
approaches on Market-1501, DukeMTMC-Re-ID, CUHK03-
Labeled, and CUHK03-Detected datasets, and reported the
results in Tables I. We randomly set K = 5 and K = 8
in these experiments (Through experiments, we observed that
the K value does not affect the result much. Some discussions
on different K values are given in Subsection VII-E1). Our
MHSA-Net gets Rank-1= 94.6 , 87.3 , 73.4 , 75.8 and mAP=
84.0 , 73.1 , 70.2 , 73.0 for Market-1501, DukeMTMC-reID,
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TABLE I
THE COMPARISON WITH THE MANY STATE-OF-THE-ART GENERIC PERSON RE-ID METHODS ON MARKET-1501, DUKEMTMC-REID, AND CUHK03
DATASETS. MHSA-NET† INDICATES THAT WE DROP THE LCE IN THE TRAINING PROCESS. MHSA-NET∗ INDICATES THAT WE ONLY USE THE KEY

LOCAL FEATURE p∗(x) FROM MHSAB+ACM TO CONDUCT THE PERSON MATCHING TASK.

Method Market-1501 DukeMTMC-reID CUHK03-Detected CUHK03-Labeled
Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP

MLFN [59] 90.0 74.3 81.0 62.8 52.8 47.8 54.7 49.2
HA-CNN [54] 91.2 75.7 80.5 63.8 41.7 38.6 44.4 41.0
PCB+RPP[63] 93.8 81.6 83.3 69.2 62.8 56.7 - -

Mancs[7] 93.1 82.3 84.9 71.8 65.5 60.5
PAN [75] 82.8 63.4 71.6 51.5 36.3 34.0 36.9 35.0
FANN[48] 90.3 76.1 - - 69.3 67.2 - -
VCFL[16] 90.9 86.7 - - 70.4 70.4 - -
PGFA [29] 91.2 76.8 82.6 65.5 - - - -

HACNN+DHA-NET [52] 91.3 76.0 81.3 64.1 - - - -
IANet[47] 94.4 83.1 87.1 73.4 - - - -
BDB[83] 94.2 84.3 86.8 72.1 72.8 69.3 73.6 71.7
AANet[9] 93.9 83.4 87.7 74.3 - - - -

CAMA[56] 94.7 84.5 85.8 72.9 66.6 64.2
OSNet[77] 94.8 84.9 88.6 73.5 72.3 67.8 - -

RANGEv2[57] 94.7 86.8 87.0 78.2 64.6 61.6 67.4 64.3
JWSAA[43] 94.8 83.2 88.3 75.6 72.3 67.8 - -

HOReID [18] 94.2 84.9 86.9 75.6 - - - -
SCSN (4-stage) [6] 92.4 88.3 91.0 79.0 84.7 81.0 86.8 84.0
SCSN (3-stage) [6] 95.7 88.5 90.1 79.0 84.1 80.2 86.3 83.3

RGA-SC [66] 95.8 88.1 86.1 74.9 77.3 73.3 80.4 76.4
Baseline 92.0 78.8 81.0 62.8 56.3 53.0 58.6 55.2

MHSA-Net (K=5) 94.3 83.5 87.1 73.0 73.4 70.2 75.8 73.0
MHSA-Net (K=8) 94.6 84.0 87.3 73.1 72.8 69.3 75.6 72.7

MHSA-Net∗ (K=8) 94.0 82.9 86.3 72.5 72.4 69.7 74.4 72.0
MHSA-Net† (K=8) 94.3 82.5 87.0 72.6 72.7 69.9 75.2 72.3

MHSA-Net+Re-ranking [79] (K=8) 95.5 93.0 90.7 87.2 80.2 80.9 82.6 84.2

TABLE II
THE COMPARISON WITH THE OTHER OCCLUDED PERSON RE-ID METHODS

ON OCCLUDED-DUKEMTMC DATASET. MHSA-NET† INDICATES THAT
WE DROP THE LCE IN THE TRAINING PROCESS. MHSA-NET∗ INDICATES

THAT WE ONLY USE THE KEY LOCAL FEATURE p∗(x) FROM
MHSAB+ACM TO CONDUCT THE PERSON MATCHING TASK. THE FIRST,
SECOND AND THIRD HIGHEST SCORES ARE SHOWN IN RED, GREEN AND

BLUE RESPECTIVELY.

Method Occluded-DukeMTMC
Rank-1 Rank-5 Rank-10 mAP

Random Erasing [80] 40.5 59.6 66.8 30.0
HA-CNN [54] 34.4 51.9 59.4 26.0

Adver Occluded [24] 44.5 - - 32.2
PCB [63] 42.6 57.1 62.9 33.7

Part Bilinear [65] 36.9 - - -
FD-GAN [64] 40.8 - - -

DSR [39] 40.8 58.2 65.2 30.4
SFR [41] 42.3 60.3 67.3 32.0

PGFA [29] 51.4 68.6 74.9 37.3
HOReID [18] 55.1 - - 43.8

PVPM+Aug [17] 57.3 72.6 77.2 45.7
Baseline 38.9 53.5 60.1 25.6

MHSA-Net∗ (K=8) 59.7 74.3 79.5 44.8
MHSA-Net (K=8) 55.4 70.2 76.4 42.4
MHSA-Net† (K=8) 58.2 73.2 78.4 43.1

CUHK03-Detected and CUHK03-Labeled, respectively. If we
introduce the Re-ranking [79] into the MHSA-Net, i.e. MHSA-
Net+Re-ranking (K=8), the accuracy further increases to Rank-
1= 95.5 , 90.7 , 80.2 , 82.6 and mAP= 93.0 , 87.2 , 80.9 ,
84.2 for Market-1501, DukeMTMC-reID, CUHK03-Detected
and CUHK03-Labeled, respectively. Recently, the state-of-
the-art performance on Market-1501 and DukeMTMC-Re-ID
has been saturated. Yet the MHSA-Net still gains effective

TABLE III
THE COMPARISON WITH THE OTHER OCCLUDED PERSON RE-ID METHODS

ON P-DUKEMTMC-REID DATASET. MHSA-NET† INDICATES THAT WE
DROP THE LCE IN THE TRAINING PROCESS. MHSA-NET∗ INDICATES

THAT WE ONLY USE THE KEY LOCAL FEATURE p∗(x) FROM
MHSAB+ACM TO CONDUCT THE PERSON MATCHING TASK. THE FIRST,
SECOND AND THIRD HIGHEST SCORES ARE SHOWN IN RED, GREEN AND

BLUE RESPECTIVELY.

Method P-DukeMTMC-reID
Rank-1 Rank-5 Rank-10 mAP

OSNet[77] 33.7 46.5 54.0 20.1
PCB+RPP[63] 40.4 54.6 61.1 23.4

PCB[63] 43.6 57.1 63.3 24.7
PGFA [29] 44.2 56.7 63.0 23.1

PVPM+Aug [17] 51.5 64.4 69.6 29.2
Baseline 61.0 72.5 78.4 27.0

MHSA-Net∗ (K=8) 70.7 81.0 84.6 41.1
MHSA-Net (K=8) 67.9 79.7 83.7 37.6
MHSA-Net† (K=8) 69.6 81.4 85.0 37.5

improvement over the baseline model and outperforms most
existing methods. The CUHK03 is the most challenging
dataset among the three. Following the data setting in [81],
[77], [83], [63], MHSA-Net also outperforms the most state-
of-the-art methods on both CUHK03-Labeled and CUHK03-
Detected datasets.

Occluded Person Re-ID. A feature of MHSA-Net is that it
handles Re-ID of occluded persons well. So, we also compared
MHSA-Net with a series of occluded person re-id methods
on the Occluded-DukeMTMC dataset, P-DukeMTMC-reID
dataset, Partial-REID dataset, and Partial-iLIDS dataset.

Occluded-DukeMTMC and P-DukeMTMC-reID.
MHSA-Net∗ only uses the local features p(x)∗ for the
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TABLE IV
THE COMPARISON WITH THE OTHER OCCLUDED PERSON RE-ID METHODS
ON PARTIAL-REID AND PARTIALILIDS. MHSA-NET† INDICATES THAT

WE DROP THE LCE IN THE TRAINING PROCESS. MHSA-NET∗ INDICATES
THAT WE ONLY USE THE KEY LOCAL FEATURE p∗(x) FROM

MHSAB+ACM TO CONDUCT THE PERSON MATCHING TASK. THE FIRST,
SECOND AND THIRD HIGHEST SCORES ARE SHOWN IN RED, GREEN AND

BLUE RESPECTIVELY.

Method Partial-REID Partial iLIDS
Rank-1 Rank-3 Rank-1 Rank-3

MTRC [49] 23.7 27.3 17.7 26.1
AMC+SWM [55] 37.3 46.0 21.0 32.8

DSR [39] 50.7 70.0 58.8 67.2
SFR [41] 56.9 78.5 63.9 74.8
FPR [40] 81.0 - 68.1 -

PGFA [29] 68.0 80.0 69.1 80.9
PVPM+Aug [17] 80.6 84.2 68.7 81.4

HOReID [18] 85.3 91.0 72.6 86.4
Baseline 68.8 81.7 66.4 79.0

MHSA-Net∗ (K=8) 85.7 91.3 74.9 87.2
MHSA-Net† (K=8) 85.5 91.0 74.1 86.6
MHSA-Net (K=8) 81.3 87.7 73.6 85.4

A

B

C

Fig. 6. Visualization of feature map corresponding to random manual
occlusion. Image Group A (the first row ) is the normal person images. We
randomly erase part of Image Group A to get Image Group B (the second
row). The Image Group C (the third row) is corresponding feature maps of
Image Group B.

occluded Re-ID task. As shown in Table II, on Occluded-
DukeMTMC, our MHSA-Net∗ achieves 59.7 Rank-1
accuracy and 44.8 mAP, which outperforms most previous
methods. Compared with the baseline model, the MHSA-Net∗

gains 20.8 Rank-1 and 19.6 mAP improvement. As shown in
Table III, on P-DukeMTMC-reID, our MHSA-Net∗ achieves
70.7 Rank-1 accuracy and 41.1 mAP, which outperforms all
the previous methods. Compared with the baseline model, the
MHSA-Net∗ gains 9.7 Rank-1 and 14.1 mAP improvement.

The MHSA-Net combines both global feature q(x)∗ and
local feature p(x)∗ to do the occluded person Re-ID task.
The global feature q(x)∗ captures global information from the
whole person image. Hence, it inevitably encodes contents
of scene regions that occlude the person, and this leads to
decreased performance. This can be remedied by reducing
the constraints on the global feature branch. Specifically, if
we drop the LCE in the Global Feature Branch (GFB), the
extraction of global feature becomes a simple downsampling

from local features, making this global feature q(x)∗ less
sensitive to occlusions. We denote the pipeline using such
a design as MHSA-Net†. In Table II and Table III, the
performance of MHSA-Net† is clearly better than MHSA-Net,
and only slightly worse than MHSA-Net∗. The MHSA-Net†

also achieves a competitive performance in Table I.
In summary, for general database, we can use MHSA-Net.

For datasets with certain occlusions, we can use MHSA-Net†,
which best balances the global and local features. For datasets
with severe occlusions, we can use MHSA-Net∗, where local
features play more important roles. As shown in Fig. 6, for
the manually drawn occlusion, the MHSAM can better avoid
the feature extraction of the occlusion part, and better extract
the key person information of the non-occlusion part.

Partial-REID and Partial-iLIDS. The comparison of Re-
ID on these two datasets is shown in Table IV. We also
trained our model using the Market-1501 training set. Our
MHSA-Net∗ and MHSA-Net† also achieve the best perfor-
mance on both datasets. In both of these two data settings,
compared with the baseline model, MHSA-Net∗ and MHSA-
Net† gain a large improvement on both datasets. Like in
Occluded-DukeMTMC and P-DukeMTMC-reID, MHSA-Net∗

and MHSA-Net† have better performance than MHSA-Net in
Partial-REID and Partial-iLIDS datasets.

D. Ablation Study of MHSA-Net

We conducted ablation studies to show effectiveness of
each component in the MHSA-Net. We show the ablation
experiments results in Tables V and VI. By a series of dis-
cussions of hyper-parameters in Subsection VII-E, we found
the best hyper-parameters setting for the proposed MHSA-Net:
λ1 = 1e− 4 and λ2 = 1.0 in Eq. 11; λ3 = 1e− 3 in Eq. 13;
γ = 1e − 3 in Eq. 12. In these experiments, we set K = 8
in MHSAM, as we observed it produces stable and effective
person matching results.

Through ablation studies, we have the following observa-
tions: (1) Each individual component effectively improves the
performance of the baseline model, as shown in Table V.
Compared with the baseline model, the entire MHSA-Net
(K=8) achieves: 2.6 Rank-1 and 7.2 mAP improvement on
Market-1501; 6.3 Rank-1 and 10.3 mAP improvement on
DukeMTMC-Re-ID; 16.5 Rank-1 and 16.3 mAP on CUHK03-
Detected; 17.0 Rank-1 and 17.5 mAP on CUHK03-Labeled.
When K = 5 or 6, the change in performance is mi-
nor. (2) We show the effectiveness of each embedding in
P⊥(x) ∈ RK×512, i.e. P⊥(x)i, i = 1, 2, · · · ,K, K = 8.
We only use the P⊥(x)i to search the target person. Here, we
conduct the ablation studies on Occluded-DukeMTMC and
CUHK03-Detected datasets in Table VI. As we can see the
Table VI, compared with the baseline model, each feature
P⊥(x)i achieves large improvement over the baseline model in
these two datasets. So, it indicates that each feature in P⊥(x)
can better carry on both the generic and occluded person Re-
ID tasks.

In the visualization results in Fig. 7, compared with Base-
line, MHSAB can effectively capture more key sub-regions.
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TABLE V
RESULTS PRODUCED BY COMBINING DIFFERENT COMPONENTS OF THE MHSA-NET. MHSA-NET† INDICATES THAT WE DROP THE LCE IN THE

TRAINING PROCESS. MHSA-NET∗=MHSAM+IHTL+FDRT+ACM DENOTES THAT WE ONLY USE THE LOCAL FEATURE p∗(x) CONDUCTS PERSON
RE-ID TASK. FROM “BASELINE” TO “MHSA-NET†” IN THIS TABLE, THE PARAMETER K IS SET TO 8 IN IMPLEMENTATION.

Method Market-1501 DukeMTMC-reID CUHK03-Detected CUHK03-Labeled
Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP

Baseline 92.0 78.8 81.0 62.8 56.3 53.0 58.6 55.2
Baseline+MHSAM (K=8) 93.0 80.2 85.2 70.2 68.1 64.4 72.1 69.4

Baseline+MHSAM+ACM (K=8) 93.4 81.9 86.5 73.1 69.9 65.8 72.9 70.1
Baseline+MHSAM+FDRT (K=8) 93.6 82.1 86.3 72.6 70.0 65.7 73.4 69.5
Baseline+MHSAM+IHTL (K=8) 93.5 82.2 86.4 72.6 71.2 67.6 73.6 70.5

Baseline+MHSAM+IHTL+ACM (K=8) 94.1 83.3 86.8 72.7 72.2 69.9 75.9 73.4
Baseline+MHSAM+FDRT+ACM (K=8) 94.1 83.6 86.5 73.1 71.1 69.4 72.9 68.9
Baseline+MHSAM+IHTL+FDRT (K=8) 93.9 83.2 86.9 73.2 72.2 69.3 75.0 72.3

MHSA-Net∗ (K=8) 94.0 82.9 86.3 72.5 72.4 69.7 74.4 72.0
MHSA-Net† (K=8) 94.3 82.5 87.0 72.6 72.7 69.9 75.2 72.3
MHSA-Net (K=5) 94.3 83.5 87.1 73.0 73.4 70.2 75.8 73.0
MHSA-Net (K=6) 94.2 84.1 87.0 73.0 73.4 70.1 75.2 72.8
MHSA-Net (K=8) 94.6 84.0 87.3 73.1 72.8 69.3 75.6 72.7

TABLE VI
RESULTS ON OCCLUDED-DUKEMTMC AND CUHK03-DETECTED

DATASET FOR EACH EMBEDDING IN THE P⊥(x). THE BOLD IS THE BEST
RESULT.

Method Occluded-DukeMTMC CUHK03-Detected
Rank-1 mAP Rank-1 mAP

Baseline 38.9 25.6 56.3 53.0
P⊥(x)1 55.2 40.4 68.7 65.0
P⊥(x)2 55.7 40.4 68.1 64.4
P⊥(x)3 53.3 39.6 69.4 66.4
P⊥(x)4 54.9 40.1 68.6 64.7
P⊥(x)5 54.5 39.9 69.1 66.3
P⊥(x)6 54.3 40.2 69.4 66.4
P⊥(x)7 53.2 38.7 70.0 67.7
P⊥(x)8 53.8 39.4 68.9 65.7

Image     Baseline MHSAB
MHSAB
+ACM Image     Baseline MHSAB

MHSAB
+ACM

Fig. 7. Visualization of attention maps from Baseline, MHSAB and
MHSAB+ACM. As shown in column four and eight, the attention areas from
MHSAB+ACM can effectively locate on the key suregions.

Based on the MHSAB, we introduce the ACM into MHSAB,
i.e. MHSAB+ACM. Compared with MHSAB, some attention
information is suppressed and some attention information is
highlighted. And subjectively, we can see that the highlight
attention areas conducted by MHSAB+ACM are more im-
portant than that of MHSAB. Besides, the left half of the
Fig. 7, compared with baseline model, our MHSAB, and

MHSAB+ACM can better capture the key information from
the unoccluded regions in the occlusion person images.

Besides, as shown in Fig. 8, we visualized the feature maps
of the 8 feature branches (from K1 to K8) of MHSAB under
different variants. The feature maps corresponding to Ki, (i =
1, 2, · · · ,K) represents the person information captured by the
Ki-th attention head in MHSAB. (I) As shown in “Group A:
MHSAB” of Fig. 8, the Feature Diversity Regularization Term
(FDRT) can help the MHSAB effectively capture diversity
information for person matching. Since this, MHSAM can
capture key information from different perspectives, which
enhances the model robustness. (II) If we remove the FDRT
from MHSAB, i.e. “Group B: MHSAB w/o FDRT”, the
feature maps (from K1 to K8) are mixed with some redundant
information, and some feature responses (in red box especially
) are scattered and weak. (III) If we remove the FDRT
and Improved Hard Triplet Loss(IHTL) from MHSAB, i.e.
“Group B: MHSAB w/o FDRT and IHTL”, the responses of
key inforamtion in the feature maps become sparse and weak.
Without the constraint of IHTL and FDRT, it is difficult to
ensure that every feature branch head in MHSAB can capture
the key diversity information for person matching.

In all, results in Table V can sufficiently evidence that the
effectiveness of each component.

E. Hyper-parameters Discussion in MHSA-Net

1) Multi-Head Self-Attention Mechanism (MHSAM):
In this module, we (1) try to find suitable K for MHSAM;

and (2) discuss the influence of different mechanisms in
MHSAM.

(1) Table VII shows the main results in the Market-1501
and CUHK03-Detected datasets. We set λ1 = 0 and λ2 = 0
in Eq. 11, and λ3 = 0 in Eq. 13. Here, we set K = 1, 2, · · · , 9
in MHSAM. As the results show, MHSAM with K > 0
can effectively improve the baseline’s performance in both
datasets. And we find K = 7, 8 are suitable parameters when
MHSAM produces good performance in both datasets over
both measures.
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K1           K2          K3 K4 K5 K6         K7 K8 K1           K2          K3 K4 K5 K6         K7 K8 K1           K2          K3 K4 K5 K6         K7 K8

Group A: MHSAB                                                          GroupB: MHSAB w/o FDRT                         Group C:  MHSAB  w/o  (FDRT and  IHTL)

Fig. 8. The feature maps of the K = 8 feature branches (from K1 to K8) of MHSAB under different variants. The feature maps corresponding to
Ki, (i = 1, 2, · · · ,K) represents the person information captured by the Ki-th attention head in MHSAB.

TABLE VII
RESULTS ON MARKET-1501 AND CUHK03-DETECTED TESTING DATA

FROM DIFFERENT HYPER-PARAMETER K IN THE MHSAM. THE BOLD IS
THE BEST RESULT.

Method Market-1501 CUHK03-Detected
Rank-1 mAP Rank-1 mAP

Baseline 92.0 78.8 56.3 53.0
K = 1 93.0 80.8 65.5 61.2
K = 2 93.0 80.8 66.1 62.0
K = 3 93.1 80.7 66.1 62.9
K = 4 93.2 80.5 68.3 64.0
K = 5 92.7 80.6 68.2 64.8
K = 6 92.8 80.0 67.4 64.6
K = 7 93.3 81.0 68.9 65.1
K = 8 93.0 80.2 68.1 64.4
K = 9 92.6 80.1 68.6 65.4

(2) Table VIII show the influence of different mechanisms
in MHSAM on the Occluded-DukeMTMC dataset. First, the
effects of different feature fusion operations to P⊥(x) ∈
RK×512 in MHSAM are compared: MHSA-Net∗ uses SAFFM
to fuse the P⊥(x) and produces a 512-dimensional vector;
MHSA-Net∗ (CONCAT) directly concatenates the P⊥(x) to
one (K + 1)× 512 vector; MHSA-Net∗ (SUM) simply sums
up the P⊥(x) to one 512-D vector. The SAFFM results in the
best performance in these three feature fusion operations. The
output vector from SAFFM also has much lower dimension
than that from feature concatenation. Second, the effect of the
“Residual Learning Module” is compared. “MHSA-Net∗ w/o
RLM” drops the “Residual Learning Module” from MHSA-
Net∗, and this leads to declined performance. Hence, “Residual
Learning Module” is beneficial for MHSA-Net∗ to capture
useful local information.

2) Feature Diversity Regularization Term (FDRT):
This section discusses the suitable λ1 for LFDRT ,

and FDRT’s performance under different values of hyper-
parameter K in MHSAM. Table IX and Fig. 9 show the

TABLE VIII
INFLUENCE OF DIFFERENT STRATEGY ON THE OCCLUDED-DUKEMTMC

DATASET IN THE MHSAM. HERE, THE HYPER-PARAMETER K IN THE
MHSAM IS 8. THE BOLD IS THE BEST RESULT.

Method Occluded-DukeMTMC
Rank-1 Rank-5 Rank-10 mAP

MHSA-Net∗ 59.7 74.3 79.5 44.8
MHSA-Net∗ (CONCAT) 51.7 68.1 73.5 36.3

MHSA-Net∗ (SUM) 53.8 70.9 76.4 38.8
MHSA-Net∗ w/o RLM 55.9 72.4 77.4 41.8

TABLE IX
RESULTS ON CUHK03-DETECTED TESTING DATA FROM DIFFERENT
HYPER-PARAMETERS λ1 IN FEATURE DIVERSITY REGULARIZATION

TERM (FDRT). THE BOLD IS THE BEST RESULT.

Method CUHK03-Detected
Rank-1 mAP

Baseline+MHSAM 68.1 64.4
K = 8, λ1 = 10−6 69.6 65.8
K = 8, λ1 = 10−5 69.7 64.9
K = 8, λ1 = 10−4 70.0 65.7
K = 8, λ1 = 10−3 69.4 65.3
K = 8, λ1 = 10−2 69.1 65.4
K = 8, λ1 = 10−1 69.1 65.3

results. We set λ2 = 0 (Eq. 11) and λ3 = 0 (Eq. 13).
Table IX shows Rank-1 and mAP results under different

λ1, from 10−6 to 10−1. Both Rank-1 and mAP reaches the
highest score when λ1 = 10−4.

Then, with this setting of λ1 = 10−4 (Eq. 6), we discuss
performance of FDRT on different hyper-parameter K values
in MHSAM. We conducted ablation studies in Market-1501
and CUHK03-Detected datasets. Compared with MHSAM
(in Orange polylines and bars Figs. 9), adding FDRT in
MHSAM (in Blue polylines and bars, respectively) improves
the performance of MHSAM in person Re-ID.

3) Improved Hard Triplet Loss (IHTL):
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Fig. 9. Results of MHSAM+FDRT and MHSAM in the Market-1501
and CUHK03-Detected testing data from different hyper-parameters K in
MHSAM. Here, the hyper-parameter λ1 = 10−4. Figure a shows the
influence of the parameter K on the MHSAM+FDRT under Rank-1 score
in Market-1501 dataset. Figure b shows the influence of the parameter K on
the MHSAM+FDRT under mAP score in Market-1501 dataset. Figure c shows
the influence of the parameter K on the MHSAM+FDRT under Rank-1 score
in CUHK03-Detected dataset. Figure d shows the influence of the parameter
K on the MHSAM+FDRT under mAP score in CUHK03-Detected dataset.
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Fig. 10. Results of the MHSAM+IHTL and the MHSAM in the Market-
1501 and CUHK03-Detected testing data from different hyper-parameter K in
MHSAM. Here, the hyper-parameter λ2 = 1.0. Figure a shows the influence
of the parameter K on the MHSAM+IHT under Rank-1 score in Market-1501
dataset. Figure b shows the influence of the parameter K on the MHSAM+IHT
under mAP score in Market-1501 dataset. Figure c shows the influence of the
parameter K on the MHSAM+IHT under Rank-1 score in CUHK03-Detected
dataset. Figure d shows the influence of the parameter K on the MHSAM+IHT
under mAP score in CUHK03-Detected dataset.

For this module, we find the suitable weight λ2 in IHTL,
and discuss the performance of different K values in MHSAM.
Table X and Fig. 10 show the main results. Here we set λ1 = 0
(Eq. 11) and λ3 = 0 (Eq. 13).

Table X shows that with the setting of λ2 from 0.01 to 100,
Rank-1 and mAP scores get better and then decline. For both
K = 7 and 8, IHTL gets the best performance when λ2 = 1.0.

Then, with λ2 = 1.0 set, we compare the performance
of different K in MHSAM. We conducted ablation studies
in Market-1501 and CUHK03-Detected datasets. Compared
with the MHSAM (Orange polylines and bars in Fig. 10),

TABLE X
RESULTS ON CUHK03-DETECTED TESTING DATA FROM DIFFERENT
HYPERPARAMETERS λ2 IN IMPROVED HARD TRIPLET LOSS (IHTL).
HERE K = 7, 8 IN THE MHSAM. THE BOLD IS THE BEST RESULT.

Method CUHK03-Detected
Rank-1 mAP

K = 7 Baseline+MHSAM 68.9 65.1
K = 7, λ2 = 102 61.2 59.5
K = 7, λ2 = 101 67.8 65.5
K = 7, λ2 = 1.0 70.7 67.5
K = 7, λ2 = 10−1 69.8 65.2
K = 7, λ2 = 10−2 68.6 64.8

K = 8 Baseline+MHSAM 68.1 64.4
K = 8, λ2 = 102 63.4 61.1
K = 8, λ2 = 101 69.9 67.0
K = 8, λ2 = 1.0 71.2 67.6
K = 8, λ2 = 10−1 70.9 67.5
K = 8, λ2 = 10−2 68.7 65.1

introducing IHTL into MHSAM, i.e. MHSAM+IHTL (Blue
polylines and bars in Fig. 10), improves the performance of
MHSAM in person Re-ID.

F. Attention Competition Mechanism (ACM)

In this module, we try to find suitable hyper-parameters
λ3 (Eq. 13) and γ (Eq. 12) in the Attention Competition
Mechanism (ACM). Table XI shows the main results. We
conducted the experiments on the CUHK03-Detected test
dataset with K = 8 set in MHSAM.

The competition loss functions in ACM are LMHSAB =
LSAFFM + λ1LFDRT + λ2LIHTL + LReN and LC . The
LFDRT and LIHTL are two terms we proposed here. To
demonstrate the effectiveness of ACM individually, we set
λ1 = 0 and λ2 = 0 in LMHSAB . (Table V in Setion VII-D
shows the effectiveness of ACM combined with other contri-
butions.)

Table XI shows that when γ ≤ 10−2 and λ3 ≤ 10−1, the
ACM effectively improves the performance of MHSAM in
the person Re-ID task. When γ is too big, the performance
declines. This is because that each element in α belongs to
[0, 1]. If we set a too-big γ, attention weights on most regions
will be suppressed by LC . Based on these observations, we set
λ3 = 10−3 and γ = 10−3 in our MHSA-Net. In all, based on
the suitable parameter setting, ACM can effectively improve
the performance of the MHSAB.

VIII. LIMITATION AND DISCUSSION

Although our proposed MHSA-Net achieved the compet-
itive performance in the occluded person Re-ID task, some
limitations and discussion must be taken into consideration.

Firstly, our proposed MHSA-Net mainly considers the sit-
uation of objects occluding person. The situation of person
occluding person is not considered in the proposed MHSA-
Net. Therefore, it is necessary to continue to optimize MHSA-
NET in future work, to improve the model performance on the
situation of person occluding person.

Besides, the person search requires a combination of the
person detection task and the person Re-ID task in actual
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TABLE XI
RESULTS ON CUHK03-DETECTED TESTING DATA FROM THE DIFFERENT
HYPERPARAMETER λ3 AND γ IN ATTENTION REGULARIZATION TERM 7.

HERE, K = 8 IN THE MHSAM. THE BOLD IS THE BEST RESULT.

Method CUHK03-Detected
Rank-1 mAP

Baseline+MHSAM 68.1 64.4
λ3 = 10−5, γ = 10−3 68.7 65.1
λ3 = 10−4, γ = 10−3 69.1 65.0
λ3 = 10−3, γ = 10−3 69.9 65.8
λ3 = 10−2, γ = 10−3 69.0 65.3
λ3 = 10−1, γ = 10−3 69.4 65.1
λ3 = 1, γ = 10−3 58.4 55.6

λ3 = 10−3, γ = 10−4 68.8 65.9
λ3 = 10−3, γ = 10−2 69.5 65.4
λ3 = 10−3, γ = 10−1 67.9 64.5

λ3 = 10−3, γ = 5× 10−1 67.4 64.2
λ3 = 10−3, γ = 1 66.9 63.8

scenarios. Only relying on the person Re-ID model cannot ef-
fectively search for the target person. Therefore, it is necessary
to study how to combine MHSAN-Net with person detection
models to build an end-to-end person search framework

IX. CONCLUSION

We proposed a Multi-Head Self-Attention Network
(MHSA-Net) to improve the ability of the Re-ID model on
capturing the key information from the occluded person im-
age. Specifically, we introduced the Multi-Head Self-Attention
Branch (MHSAB) to adaptively capture key local person
information, and produce multiple diversity embeddings of one
person image to facilitate person matching. We also designed
an Attention Competition Mechanism (ACM) to further help
MHSAB prune out non-important local information. Extensive
experiments were conducted to validate the effectiveness of
each component in MHSA-Net; and they showed that MHSA-
Net achieves competitive performance on three standard per-
son Re-ID datasets and four occlusion person Re-ID datasets.
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