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Theme-Aware Aesthetic Distribution Prediction
With Full-Resolution Photographs
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Abstract—Aesthetic quality assessment (AQA) is a challenging
task due to complex aesthetic factors. Currently, it is common to
conduct AQA using deep neural networks that require fixed-size
inputs. Existing methods mainly transform images by resizing,
cropping, and padding or employ adaptive pooling to alternately
capture the aesthetic features from fixed-size inputs. However,
these transformations potentially damage aesthetic features. To
address this issue, we propose a simple but effective method
to accomplish full-resolution image AQA by combining image
padding with region of image (RoM) pooling. Padding turns
inputs into the same size. RoM pooling pools image features
and discards extra padded features to eliminate the side effects
of padding. In addition, the image aspect ratios are encoded
and fused with visual features to remedy the shape information
loss of RoM pooling. Furthermore, we observe that the same
image may receive different aesthetic evaluations under different
themes, which we call theme criterion bias. Hence, a theme-
aware model that uses theme information to guide model predic-
tions is proposed. Finally, we design an attention-based feature
fusion module to effectively utilize both the shape and theme
information. Extensive experiments prove the effectiveness of the
proposed method over state-of-the-art methods.

Index Terms—Aesthetic quality assessment, RoM pooling,
Theme, Full resolution.

I. INTRODUCTION

PHOTO aesthetic quality assessment (AQA) is an interest-
ing task with wide applications, such as retrieving photos

of high aesthetic quality and guiding aesthetic-driven image
enhancement [1]. However, the subjectivity and diversity of
human assessment make the task complex. Many efforts [2],
[3] have been made to leverage general human criteria, such
as “the rule of thirds”, color harmony, and depth of field.
Some researchers also directly introduced generic features
widely adopted in pattern recognition [2], [3], [4], [5], [6],
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[7]. Although the handcrafted features are carefully designed,
they still suffer from limited representation ability.

With the development of deep learning methods [8], [9] and
the collection of large-scale databases for aesthetic analysis
[10], methods based on deep neural networks (DNNs) are
widely employed in AQA. However, the size of inputs needs
to be fixed for traditional DNNs. To handle the various sizes
of real-world images, three types of image transformations are
widely adopted. The first method that directly resizes different
images is the most common solution, but considerable side
effects, including distortion, blur, and artifacts are harmful to
AQA, as shown in Fig. 1d. The second method crops fixed-
size patches from the original images [11], [12]. Although
the original local resolution can be maintained, its damage
to the image global structure and the layout information is
irreversible. As Fig. 1b shows, even the completeness of the
image object is destroyed. The third method that pads images
to the same size confuses the learning model because the
shape and size of padded regions are different in different
images, as shown in Fig. 1c. In addition to image transforma-
tion methods, some works employ special networks such as
fully convolutional networks (FCNs) [13] and spatial pyramid
pooling (SPP) [14]. However, these architectures only relax the
constraint from one uniform input size to predefined multiple
input sizes to adapt to the deep learning tools [15], [16], [17].
Obviously, it is insufficient to reflect the diversity of real-world
image sizes with only a few predefined numbers. There are two
solutions to absolutely avoid image transformations with these
architectures. One solution is two-stage training without fine-
tuning the feature extractor. The performance of this method
is significantly limited by the insufficient feature extraction
ability, and the training process is complicated. The other
solution is to set the training batch size to one, but this results
in unstable and inefficient training processes and worsens the
performance [16].

To address the conflict between the uniform input size
constraint and diverse sizes of real-world images, we propose
to combine padding with region of interest (RoI) pooling
[18]. RoI pooling is used to downsample features in a local
region called an RoI in feature maps. In our model, we first
pad the original images to a predefined size. The inputs,
therefore, become the combination of an image region and
a padded region, and the image region is regarded as the
RoI. Then, the RoI pooling layer in the networks will only
pool features inside the image region, leaving the features
from the padded region unused. We call the RoI used in our
model the RoM (Region of iMage) to distinguish it from the
traditional RoI. For simplicity, this method is called padding
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(a) Original (b) Crop (c) Pad (d) Resize

Fig. 1. Examples of transformations to fix the image size. (a): The original image is evaluated with a high average score (5.94). (b): Cropping destroys both
the image layout and the object integrity. (c): The additional padded regions will confuse the network since the padded areas are different on different images.
(d): The resizing operation warps the image and introduces noise.

with RoM pooling (PRP). Through this procedure, we finally
achieve arbitrary input sizes with arbitrary batch sizes (as long
as the GPU memory can hold) but introduce no sampling
noise or useless information from padding pixels. To the
best of our knowledge, this approach is the first method in
AQA that supports end-to-end batch training on full-resolution
images. Despite the advantages, the PRP module still neglects
some useful information. For example, the original shape
information is lost since the shapes of the RoM pooling outputs
are the same. This information loss may cause performance
degradation because image shapes influence human aesthetic
perception [19], [20]. To remedy this shortcoming, we propose
a shape-aware (SA) module to utilize the lost shape informa-
tion. Specifically, the original image aspect ratios are firstly
discretized and turned into one-hot codes. Then, we extract
the shape features from the one-hot shape codes through fully
connected layers. Finally, the shape features and the image
features are fused to predict the aesthetic qualities.

The AQA criteria may be influenced by many factors [3],
[21]. We find that a factor may significantly change the AQA
criteria in the widely used AVA dataset. We call this factor a
“theme”. Specifically, the AVA dataset is collected from the
website Dpchallenge.com which regularly holds photographic
challenges with different themes. Photos taken by challenge
participants are submitted to one of the challenges and eval-
uated by website users. There are some rules for the users to
evaluate the challenge entries. One of the important rules is
“consider the challenge topics when voting, and adjust your
score accordingly” [22]. In other words, the photos are eval-
uated under the criteria influenced by the challenge themes.
We use some typical examples to show how themes influence
aesthetic criteria. We select two pairs of images from the AVA
dataset and ask some people to vote on them. Specifically, 21
people are asked to select the most attractive image in each
pair without knowing their corresponding themes (we try to
keep the other conditions, such as the presentation method,
the same as for website users). In Fig. 2, the corresponding
themes, ground-truth average scores, and voting results are
given below the images. Each pair of images are shown in
one row. The two images in the first row are both highly
blurred. The right image obtains a significantly higher score
than the left image. One possible reason is that the right image
comes from the theme “motion blur”, in which blurring is
regarded as a good feature. The images in the second row are

all of natural scenes. Although the left image that belongs to
the theme ”Landscape” is considered more beautiful by most
users who do not know the themes, the score for it is lower
than that for the right image, possibly because the content and
the style of the right image better match the theme “harsh
environments”. In summary, themes are the challenge topics
that photos need to match. If images are the entries of the
challenges from dpchallenge.com, predicting their aesthetic
qualities without the corresponding themes may bring about
inaccurate results because of criterion bias. To address this
issue, it is natural to introduce the challenge themes in AQA.
The theme information is encoded and combined with the
extracted visual features. With the help of theme features, vi-
sual features can be extracted and evaluated adaptively, which
makes the assessment consistent with the human evaluation
process.

As described before, two extra features need to be fused
with image visual features in our model. One extra fearture is
the aspect ratio feature aiming to remedy the shape information
loss of the PRP module, and the other extra feature is the
theme feature aiming to introduce theme criterion bias. To
better fuse different features, we propose an attention-based
feature fusion module. In this module, the relations between
the extra features and the visual features are captured with
the help of the attention mechanism [23]. The visual features
are finally aggregated according to the learned relations. This
fusion module utilizes the extra features more effectively; thus,
the performances are further improved.

Most previous works [3], [11], [12] adopted the classifi-
cation task to predict a binary aesthetic label. However, as
discussed by previous works [17], [24], binary labels cannot
reflect the subjectivity and diversity of human assessment.
Some works proposed to predict the average score instead.
The methods include direct regression [25], [26] and pairwise
comparison [27], but these methods still cannot reflect the di-
versity of human assessment. Considering all these drawbacks,
we decided to predict the aesthetic score distributions as in
[17], [24], [28], [29].

The contributions of this paper are summarized as follows:

• We develop a novel method called PRP by applying RoM
pooling in networks that take padded images as inputs.
This method enables us to utilize padding to maintain a
unified image size while eliminating its side effects. This
is the first method in AQA that supports end-to-end batch
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Fig. 2. Examples of the theme criterion bias. We asked 21 people to compare
the images in each row and voted for better images without knowing the
corresponding themes. The ”Number of Votes” gives the voting results. The
images in the first row are both heavily blurred. We can see that the second
image with a higher score also obtains more votes. However, in the second
row, although the right image looks less attractive and receives significantly
fewer votes, it obtains a higher score due to its fits to the theme.

training on arbitrary full-resolution images.
• An SA module is proposed to remedy the shape infor-

mation loss in RoM pooling layer. The original image
aspect ratios are encoded and fused with visual features
to make the model adapt to different image shapes.

• We find that it is inaccurate to evaluate images in the
AVA dataset without theme information because of the
existence of theme criterion bias. A theme-aware module
is proposed to tackle this issue. The themes are encoded
and combined with visual features to predict the aesthetic
quality more accurately.

• We propose an attention-based fusion module to fuse
extra features including shape features and theme features
with image features. This module mines the relations
between different features effectively. The experiments
prove the effectiveness of the proposed method.

The remainder of this paper is organized as follows. We
summarize the AQA related works in Section II and provide
the details of the proposed method in Section III. The exper-
iments are described in Section IV. Finally, we conclude our
paper and analyze future works in Section V.

II. RELATED WORK

A. Photo Aesthetic Quality Assessment

Traditional aesthetic quality assessment is based on hand-
crafted features and shallow classifiers [30], [31]. Ke et al.
[2] analyzed several aesthetic factors and connected them
with low-level visual features, such as the edge distribution to
reflect the simplicity of a photo. Luo et al. [32] proposed to

focus on the image foreground and extracting different features
to describe it. Tang et al. [3] further stated that the assessment
should be based on the content. For example, they designed
features, especially for human photos. Many other works [4],
[5], [6], [7] are also based on these low-level handcrafted
features and may emphasize different features in different
situations. Some works [4] also introduced applications based
on aesthetic quality assessment such as aesthetic enhancement.
In addition to these aesthetic-related features, generic features
such as the GIST [33] and SIFT [34] were employed, and
good performance was obtained [35]. Although many of these
features are carefully designed, their representation power is
still limited.

In recent years, DNNs have become widely adopted models
in many research areas, and many new techniques [36], [37],
[38] based on DNNs have widened the applications of auto-
matic AQA. Lu et al. [39], [40] were the first to assess photo
aesthetic quality based on deep neural networks. The authors
designed a two-column architecture to learn features on both
the global and local views. Kao et al. [41] proposed to use a
regression model instead of a classification model because a
continuous score can deliver more precise information about
aesthetics. Dong et al. [42] used features from an ImageNet
pretrained network to predict aesthetic binary labels. Tian et
al. [43] designed a query-based model; they trained a network
for each query image based on a subset of images that is
strongly related to the query. Additionally, Kao et al. [44]
proposed a multitask learning model to predict aesthetic labels
and semantic labels simultaneously. The authors explained that
AQA is strongly associated with image semantics.

Although these works based on DNNs have made great
progress, they still suffer from the fixed input size prob-
lem. Thus, researchers have proposed methods to solve this
problem. Some works [11], [12], [40], [45] proposed to
crop multiple fixed-size patches from the original images,
and aggregating the features extracted from these patches to
predict the aesthetic quality. Ma et al. [12] proposed to select
patches according to some criteria based on human perception;
therefore, the patches can be more representative. Instead of
selecting patches according to predefined criteria, Sheng et
al. [46] proposed an attention-based method that dynamically
learns weights for different patches. Other works sought to
maintain the aspect ratio of input images; they adopted either
an FCN [13] or SPP [14] to generate fixed-size features
from arbitrary network inputs [16], [15], [47], [17]. To adapt
to the deep learning tools that are preferably run on fixed
inputs, some used multisize training as an approximation, but
only 1.0 and 1.5 aspect ratios were taken into account [15],
[17]. Apostolidis et al. [16] conducted experiments with a
batch size of 1 so that any input size could be accepted.
However, the performance of this method is even worse than
that of the image transformation methods, possibly due to the
unstable training process. Hosu et al. [26] extracted features
from ImageNet pretrained models without fine-tuning; thus,
they could use the original photos in a two-stage training
process. Chen et al.[48] proposed a different thought that uses
convolutions of fractional strides to adapt to warped inputs.

In addition to various works on solving the fixed-size input
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Fig. 3. Overall architecture. The bottom-left region gives examples to show how images of different sizes are processed. The padded images are fed into
the network. In RoM pooling, the features inside the RoM are pooled to a uniform size of 146 × 146. The pooled features are then processed by several
convolutional blocks and transformed into features of the shape 2048× 17× 17. The themes and aspect ratios are encoded into one-hot codes in their coding
modules and are turned into 2048-dimensional features by the corresponding fully connected layers. Finally, the visual features, the theme features, and the
shape features are fused in the attention-based fusion module. The fused features are used to predict aesthetic distributions. EMD is employed as our loss
function.

problem, some other researchers have focused on different
aesthetic evaluation forms. Most previous works used bi-
nary labels. Recently, other frameworks, including the aes-
thetic score regression, pairwise comparison, and distribution
learning, were developed. Kao et al. [41] used a regression
model to evaluate images. Lee et al. [27] designed a unified
framework based on pairwise comparison to achieve classifica-
tion, regression and, personalization simultaneously. Similarly,
Li et al. [49] also achieved both generic and personalized
AQA via a multitask learning and fusion framework. The
aesthetic distribution can reflect the diversity and subjectivity
of image qualities. Therefore, it attracted the attention of
many researchers. Some early works [50] have employed
label distribution learning based on a support vector machine.
They also used the voting number to represent the reliability
of the ground-truth distribution. Recently, many other works
predicting aesthetic rating distributions were proposed and
there were various loss functions such as the Kullback- Leibler
(KL) divergence [17], earth mover distance [28], χ2 distance
[51], and cumulative Jensen-Shannon divergence [24]. These
works also combined other strategies, such as using semantic
information or defining reliability based on the distribution
kurtosis.

B. Pooling Methods and Multisize Feature Extraction Methods

Pooling is one of the basic components in current deep
neural networks. It plays a crucial role in reducing computa-
tional complexity. In the original implementations of pooling
methods, the stride and the kernel size are manually fixed so

that the ratio between the pooling input size and the output
size is fixed. He et al. [14] stated out that such a property
makes the networks inflexible because the fully connected
layers can only accept fixed-size inputs. SPP was designed to
enable the pooling layers to generate fixed-size features from
arbitrary inputs, and it can also extract multiscale informa-
tion. This is achieved by using adaptive pooling kernels and
strides. Specifically, the pooling size is manually fixed, and
the pooling stride, as well as the kernel size, are defined as
the ratio between the input size and the fixed pooling size.
To incorporate SPP into networks, two types of methods were
proposed. One uses a multisize end-to-end training strategy
with two predefined sizes 224 and 180. The other uses a
two stage training framework without fine-tuning the backbone
CNN such that images do not need to be resized.

In both traditional pooling and SPP, pooling is applied to
the entire input feature map. In other words, the moving range
of the pooling kernel is fixed as the entire input. However,
in the object detection task, an object only occupies a part
of the image region. To extract features from only object
regions and discard other features, RoI pooling was proposed
in [18]. RoI pooling is able to extract fixed-size features from
regions of arbitrary sizes and locations. This means that the
kernel moving range, the kernel size and the stride can be
adaptively modified according to different RoIs. RoI pooling
was improved to RoI align in [52] to rectify the quantification
error. This enhancement significantly improves the detection
performance of small objects. RoI pooling (align) has become
a standard module in many object detection and segmentation



IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL.XX, NO.XX, JANUARY, 2021 5

(a) Crossing the line1 (b) Brown2

Fig. 4. Examples of the images with the same semantic label but different
themes. Both images are downloaded from DPChallenge.com.

models [53], [54], [55].
SPP and RoI pooling both enable the network to accept

input images of arbitrary sizes. To achieve this goal, removing
the fully connected layers and using only convolutional layers
is also a solution. Such a network named an FCN was first
introduced to solve semantic segmentation tasks [13].

III. METHODS

This section provides a detailed introduction of the proposed
method. We first describe how to combine RoM pooling and
image padding in Section III-A and introduce the shape-aware
module in Section III-B. Then we introduce the theme-aware
model in Section III-C and describe how to fuse shape features
and theme features with visual features in Section III-D.
Finally, we detail the training and inference procedure and
network architecture in Sections III-E.

A. RoM Pooling on Padded Full-Resolution Images

Image transformations in traditional DNNs cause mis-
matches between images and their annotations. Theoretically,
SPP and an FCN can handle inputs of arbitrary sizes, but such
an ability is not fully utilized because GPU implementations
are preferably run on fixed inputs. Therefore, our method aims
to remove the image-annotation mismatches while keeping the
uniform input size to adapt to current deep learning tools.
This goal is achieved by combining image padding with RoM
pooling. In summary, padding turns the inputs into the same
size, and RoM pooling eliminates the side effects that padding
causes.

Specifically, we pad all images in datasets to the same size.
It does not matter how the images are padded, so we use
the most straightforward method that pads zeroes along the
bottom and right boundaries. After padding, the input image
becomes the spatially separable combination of two regions:
one region is filled with padded values of 0, and the other
region is the original image. The region of the original image
is called the RoM, and its spatial coordinate range is from

1www.dpchallenge.com/image.php?IMAGE ID=1254363
2www.dpchallenge.com/image.php?IMAGE ID=439173

(0, 0) to (w, h), where w and h are the original image width
and height, respectively.

The padded image is then fed into the network and pro-
cessed by some convolutional layers. The RoM is mapped
on the feature maps correspondingly. As a result, the input
feature maps of the RoM pooling layer also become a spatially
separable combination of a padded region and an image region
(RoM). The RoM pooling layer pools features in the RoM to
the manually defined size and the features outside the RoM are
discarded. Therefore, the pooled features are of the same size,
and the extra information introduced by padding is removed.

Formally, the feature at output location (b, c,m, n) of the
RoM pooling is given below.

Ab,c,m,n = max
(i,j)∈Ωb

mn

{fb,c,i,j}, (1)

where b is the batch index, c is the channel index, m,n are the
spatial locations, f is the RoM pooling input features, A is the
output pooled feature maps, and Ωbmn is the pooling kernel.
The pooling stride is the same as the kernel size by default, and
the kernel size is defined as the ratio of the pooling input RoM
size to the manually defined pooling size Spool = (wout, hout).
The pooling input RoM size is calculated as

SbRoM = (round(
wb
τ

), round(
hb
τ

)), (2)

where (wb, hb) is the original size of the bth image in one
batch, τ is the downsampling ratio of the RoM pooling input
size to the image padding size, and round(·) is the rounding
operation. Based on the pooling size Spool and the RoM size
SbRoM , the kernel size is given as

Sbk = (round(
wb

τwout
), round(

hb
τwout

)), (3)

The kernel moving range needs to be inside the RoM. Taking
the top-left corner of the image to be (0, 0), we give the exact
definition of the RoM pooling kernel as follows.

Ωbmn = [mSbk(0), (m+1)Sbk(0)]×[nSbk(1), (n+1)Sbk(1)], (4)

Note that the kernel Ωbmn may be different for different input
images. The overall procedure is to apply the pooling operation
to specific regions (RoM) that only contain features of the
original images, as shown in Fig. 3. In the bottom left of the
figure, light blue and gray regions denote the features from the
RoM and padded region, respectively. The features inside the
RoMs are eventually pooled into feature maps of the same size
so that the network can be trained in an end-to-end manner.

From the RoM pooling process, we can easily observe
the differences between RoM pooling, SPP, and traditional
pooling. In traditional pooling methods, the kernel size and
the pooling stride are manually assigned regardless of the
inputs. Therefore, the pooling size cannot be kept unchanged
for different inputs. In SPP, the pooling kernel scans the entire
image; thus, we cannot discard the features in specific regions.
Only in RoM pooling is the kernel moving range flexible and
can the kernel size (pooling stride) be adaptively modified.

Discussion: RoM pooling aims to achieve arbitrary pooling
kernel sizes on a tensor; therefore, quantification approxima-
tions are introduced on both the region location and pooling
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stride. Such quantification error causes mismatches of RoMs.
He et al. [52] proposed to solve this problem by using
interpolation; we call this improved version used in our model
RoM align. RoM pooling and RoM align perform nearly the
same in our model for two reasons. First, the mismatches
of RoMs caused by quantification errors are determined by
the downsampling ratio between network inputs and pooling
inputs. For the downsampling ratio of τ , the number of mis-
matched pixels along one dimension is at most b τ2 c. Therefore,
the small downsampling ratio (which will be discussed in
Section III-E) brings small mismatches in our model. Second,
the mismatches have fewer influences on larger regions. For
example, mismatches of 10 pixels may totally change the
location of a 10 × 10 region, but cause nearly no visible
differences on a 500×500 region. Since the RoM is the entire
full-resolution image in our model, the mismatches have nearly
no impact.

B. Encoding Shape Information

It is widely known that image shapes influence human
aesthetic perception. For example, images with some specific
aspect ratios, such as 16:9, 4:3 and 1:1, are more popular
in daily applications [20], [19]. Furthermore, images with
extremely large or small aspect ratios may be unpopular.
Revisiting our proposed PRP module, we find that although the
model learns some knowledge from the original-shape images,
the unified pooling output size of the RoM pooling layer still
makes some shape information to be lost. This property will
exert negative influences on our AQA model. To remedy this
shortcoming, we propose a shape-aware (SA) module that
encodes and extracts features from image aspect ratios and
combines them with visual features. Specifically, we discretize
the continuous aspect ratios, and turn the discrete values into
one-hot codes. Then two fully connected layers are employed
to extract shape features from the one-hot codes. Finally, the
shape features are fused with visual features to predict the
aesthetic quality. The SA module can be regarded as a patch to
fill the loophole of the PRP module, making the model directly
utilize shape information to improve the performance. We will
introduce the feature fusion module in detail in Section III-D.

C. Theme-aware AQA

In the AVA dataset, images are submitted to the predefined
challenges and assessed under specific challenge themes such
as “shapes” and “harsh environments”. Different aesthetic cri-
teria are adopted in different themes. We call this phenomenon
theme criterion bias. As illustrated in Fig. 2, if people assess
an image without its corresponding theme, the results may be
inaccurate since the assessment criterion is improper.

Some previous works [3], [10], [17] proposed to assess
images based on semantic labels. There are two major dif-
ferences between semantic labels and themes. The first is the
coverage difference. Semantic labels mainly describe objective
contents such as “human”, “landscape”, “city” and “night”
[3]. The themes cover a wider range. Objects and abstract
descriptions, such as “balance”, “affluence” and “second ex-
posure” are included [56]. The second difference distinguishes

Fig. 5. Attention-based fusion module. The module outputs are the summation
of three features: (1) The outputs of an attention layer that takes theme features
as query inputs and visual features as key and value inputs. (2) The outputs of
an attention layer that takes shape features as query inputs and visual features
as key and value inputs. (3) The global average pooling outputs of visual
features.

the two concepts from the view of the information sources.
Themes are determined by humans subjective intents while
semantic labels are determined by the images themselves and
cannot be manually changed. We then use two phenomena
to further demonstrate the differences. The first phenomenon
is that images with the same semantic labels may belong to
different themes. Fig. 4 shows an example in which the two
images, both labeled with “dog”, belong to different themes.
The second phenomenon is that the themes are sometimes
impossible to infer from images, but we can easily know the
semantic labels. This is also obvious in Fig. 4. It is nearly
impossible to infer the theme “crossing the line” for Fig. 4(a)
based on only the image itself.

From the previous analysis, we conclude that semantic
labels are sometimes helpless in handling theme criterion
bias. Since the themes cannot be obtained from the images
themselves, they need to be provided along with the images
in the evaluation process. To this end, we introduce a theme-
aware (TA) module that fuses theme information with visual
features. Specifically, we turn the 1,397 different themes in the
AVA dataset into one-hot codes, and two fully connected layers
are employed to extract theme features. The theme features are
fused with the visual features using an attention-based fusion
module. Finally, the fused features are fed into the head layers
to predict the aesthetic qualities. The process is illustrated in
Fig. 3. The detailed feature fusion process is introduced in
Section III-D.

The theme features allow the network to adapt to different
themes. This theme-adaptation advantage can be reflected in
two aspects. First, visual aesthetic features from different
themes are used differently. For example, suppose that two
identical images may obtain different aesthetic quality assess-
ments just because of their different themes. In this situation,
only theme information can help the model to predict different
aesthetic qualities to match the ground truth. Second, different
images from the same themes are treated equally. Only visual
features can influence the model assessments when the images
share the same theme.
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Fig. 6. Attention module. First, we calculate the inner-product of the flattened
visual features fi and the extra features ft. The obtained attention matrix A
that reflects pairwise relations between visual features and extra features is
then normalized with the softmax function. Finally, the visual features are
aggregated based on the attention matrix A. Note that we do not plot the
linear transformations applied to the input features, the normalization layers,
and the activation function for simplicity.

D. Attention-Based Feature Fusion

In addition to the visual features, two types of extra features
are used in our model. The shape features aim to remedy the
lost shape information in the PRP module. The theme features
introduce theme criterion bias such that the model learns
aesthetic criteria more accurately. To effectively fuse the extra
features with visual features, we propose an attention-based
feature fusion module. The overall architecture of the module
is displayed in Fig. 5. Two independent attention layers are
used to process shape features and theme features, respectively.
We also use a global average pooling layer to pool the visual
features directly. As a result, we finally obtain three features,
including shape-guided visual features, theme-guided visual
features, and pure visual features. The three features are added
together as the fusion outputs.

The two attention layers in Fig. 5 are the same. In general,
an attention process is formulated as follows [23],

Attention (Q,K, V ) = SoftMax
(
QKT /

√
d+B

)
V, (5)

where Q, K, V are query, key and value features respectively.
d is the feature dimension, and B is the positional embedding.
In our model, the extra features are regarded as queries Q and
the flattened visual features are used as keys K and values V .
The architecture of the attention layer is illustrated in Fig. 6,
where ft and fi are the extra features and the flattened visual
features, respectively. In our implementation, we directly use
the multihead attention proposed in [23] and set the number of
heads to eight. Because the length of the query features ft is
one, there is no need for positional embedding. The attention
layer turns the spatial dimension of visual features to 1 and
can be regarded as a special global pooling layer that assigns
different weights to different spatial locations according to
the extra features. This module mines the relations between
extra features and image spatial features. Therefore, the extra
features are utilized more effectively.

Fig. 7. Distributions of image aspect ratios. Blue and red bins denote the
distributions of the AVA and Photo.net datasets, respectively. We can see that
the range is wide, showing the diversity of the aspect ratios. The figure also
shows that the two datasets show nearly the same aspect ratio distribution.

E. Network Architecture and Learning Process

We choose Inception-V3 [9] as our backbone network,
which is the same as previous works [28], [29], [26]. We
insert the RoM pooling layer in Inception-V3 to replace the
original first pooling layer. Our model takes the padded images
as the inputs. This is different from the original Inception-V3,
which resizes all the inputs to 299 × 299. As a result, the
RoM pooling size needs to be modified correspondingly. The
RoM pooling size is a hyperparameter and there is no simple
method to find an optimal solution. Therefore, we choose
the pooling size based on some empirical clues. Our main
consideration is to keep the ratio between the first pooling
size and the original image size similar to that of the original
Inception-V3. However, the size may be different for different
images. Therefore, we choose a relatively common image size
600 in the AVA dataset as the benchmark. As a result, the
RoM pooling size (wout, hout) is obtained by multiplying the
benchmark size of 600 with the corresponding ratio 73

299 in the
original Inception-V3

wout = hout = 600× 73

299
≈ 146, (6)

where 73 is the pooling size of the first pooling layer in the
original Inception-V3.

In the training stage, we calculate the ground-truth aesthetic
distribution pi for the training image xi by normalizing the
numbers of votes on all the predefined quality scores.

pik =
vik∑K
k=1 v

i
k

, (7)

where vik is the number of votes for the quality score k, and K
is the maximum quality score. After obtaining the predicted
aesthetic distribution p̂i from our model, we employ the earth
mover distance (EMD) [28] between distributions as the loss
function. The EMD loss is based on the cumulative distribution
density, which works well when the distribution is ordered, as
discussed in [50]. It is defined as

EMD(pi, p̂i) = (
1

K

K∑
k=1

|CDFpi(k)− CDFp̂i(k)|r) 1
r , (8)
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Fig. 8. Some distribution prediction results. The blue bins are the predictions, and the red bins are the ground truth. The EMD between them and the mean
scores (both ground-truth score (GTScore) and predicted score (PDScore)) are annotated in the corresponding figures. The corresponding themes are given
below the images. The figure shows that our model adequately predicts distributions of both good (GTScore > 5) and bad (GTScore < 5) photos.

where CDFp(k) is the cumulative distribution of p defined
as
∑k
j=1 pj . We also choose r = 2 for its simplicity in

optimization.
In the testing stage, we adopt the same procedure as in the

training stage. Testing images are padded to the same size and
fed into the network. One may argue that using the original
images without padding and removing the RoM pooling layer
is better, but such a method leads to weak accordance between
the testing and training stages. The learned network may not fit
such a situation. We test this method and obtain worse results.

IV. EXPERIMENTS

A. Datasets and Evaluation Metrics

We evaluate and compare our algorithm with other AQA al-
gorithms on two widely used datasets, AVA [10] and Photo.net
[57]. Both datasets are collected from websites. The aspect
ratio distribution is shown in Fig. 7. We can see that both
datasets contain various aspect ratios and cover a wide range.
Surprisingly, although the two datasets come from different
websites and have different scales, their aspect ratio distribu-
tions are nearly the same.

1) AVA: AVA is a large-scale database for image aesthetic
quality analysis and contains over 250,000 color images. All
images are collected from www.DPChallenge.com. The aes-
thetic assessment is given by 78 ∼ 549 individuals, and each
of the voters chooses a score from 1 to 10. Each image belongs
to one theme and there are 1,397 themes. The theme labels
are provided in the dataset from the file “Challenges.txt”.
The dataset also provides other two types of annotations. The
first is photographic style annotation, which is a sampled and
merged subset of different themes and only covers a small

part of the images. The second is semantic annotation. There
are 66 different labels and each image contains at most two
labels. As explained in Section III-C, semantic annotation and
themes are different concepts. We follow the standard dataset
partition as in [10]. There are approximately 19,817 images
for testing. For the other images, we use 230,000 images for
training and the remaining 4404 images for validation. The
aesthetic annotations, semantic labels, and challenge themes
can be found at https://github.com/mtobeiyf/ava downloader/.

2) Photo.net: The Photo.net dataset only provides aesthetic
labels. It contains 20,278 images and each image is rated by
at least ten users using a score of 1 to 7. Only the mean
score and standard deviation are given in some images because
their voting information is lost. Some images have been lost
due to several website updates; therefore, only 16,666 images
can be downloaded. We randomly select 14,800 images as the
training set, 1200 images as the testing set, and 666 images as
the validation set. The dataset can be found at https://ritendra.
weebly.com/aesthetics-datasets.html

We evaluate our method using three types of metrics.
The first is for distribution prediction. We employ several
distribution distance metrics, including the Euclidean distance
(Euc), Kullback-Leibler (KL) divergence, Jensen-Shannon (JS)
divergence, chi-square (χ2) distance, EMD with r = 1 in
Eq. 8, and cosine distance (CD), according to previous works
[24], [15], [17], [28], [29]. All these metrics indicate better
performances if the value is smaller. The second is based
on the expectation (mean score) and standard deviation of
the aesthetic distribution. For the predicted and ground-truth
score distributions, we calculate their mean score and the
standard deviation, respectively, and use correlation coeffi-

www.DPChallenge.com
https://github.com/mtobeiyf/ava_downloader/
https://ritendra.weebly.com/aesthetics-datasets.html
https://ritendra.weebly.com/aesthetics-datasets.html


IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL.XX, NO.XX, JANUARY, 2021 9

Fig. 9. Some well-predicted images. The images are shown in their original aspect ratio. The predicted mean score (ground-truth score), EMD (r=1) and the
corresponding themes are given below each image.

cients and the mean squared error (MSE) to evaluate the
performances. The correlation coefficients include the Pearson
linear correlation coefficient (PLCC) and Spearman rank-order
correlation coefficient (SRCC). Larger coefficients indicate
better performance. The MSE is only applied to the mean score
due to the lack of previously reported results. The third type
is for binary classification. The mean score of the distribution
is binarized to obtain the class labels. We use classification
accuracy (Acc) as the metric to evaluate our model.

B. Implementation Details

All our models are pretrained on ImageNet to accelerate the
convergence and fine-tuned on the corresponding data sets. An
SGD optimizer with momentum of 0.9 and weight decay of
0.0001 is used to train the network. The learning rate is divided
by 2 every 10 epochs, and the model is trained for 40 epochs.
We set the initial learning rate as 4×10−3 on the convolutional
layers; and for randomly initialized layers, the learning rate is
10 times larger. We test two types of padding implementations
and get nearly the same performances. One pads all images
to 800 × 800, the other pads batched images to their biggest
size in this batch. The batch size is set as 64. Due to the
memory limitation, each GPU can only process our padded
images with a maximum batch size of 16. Therefore, we use
4 GPUs to train the model. In case the batch normalization
layers learn the statistical information inaccurately under such
a small batch size on a single GPU, we use the cross-GPU
synchronized batch normalization. Data augmentation is used
to ease the overfitting problem. Specifically, we randomly use
cropping and horizontal flipping to augment the images. Four
types of cropping augmentations are applied, and each crops
the height and width of the original image from one of the

TABLE I
PERFORMANCES OF THE DISTRIBUTION PREDICTION ON AVA. ”ALIGN”

INDICATES THAT WE REPLACE ROM POOLING WITH ROM ALIGN

Models Euc KL JS χ2 EMD CD
(r=1)

Talebi et al. [28] - - - - 0.050 -
Zhang et al. [29] - - - - 0.045 -
Wang et al. [45] - - - - 0.065 -
Li et al. [49] - - - - 0.047 -
Fang et al. [15] 0.144 0.120 - - - 0.056
Cui et al. [17] 0.127 0.094 - - - 0.042
Jin et al. [24] 0.158 - 0.037 0.068 - -

Ours 0.132 0.085 0.021 0.039 0.039 0.039
Ours (Align) 0.132 0.085 0.021 0.039 0.040 0.040

four corners by 7
8 . In the test stage, we average the results on

all the augmented images as the final predictions.

C. Performance Evaluation

To compare with previous models comprehensively, we
evaluate the performance of our distribution prediction model
with three different types of metrics as introduced in Sec-
tion IV-A. In addition, some well-predicted and failed exam-
ples are shown and analyzed to better reflect the performance.

We first compare our method with previous distribution
prediction methods [15], [17], [24], [28], [29], [45], [49],
where [15], [17], [29], [45] use fully convolutional networks
or crop patches of fixed sizes from the original images for
fixed input size problem while [28], [24] propose new loss
functions for the distribution learning problem. The results in
Table I show that our method achieves the best performance in
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TABLE II
PERFORMANCES OF THE MEAN SCORE AND STANDARD DEVIATION

PREDICTION ON THE AVA DATASET.

Models
SRCC↑ PLCC↑ SRCC↑ PLCC↑ MSE↓
(mean) (mean) (std.dev) (std.dev) (mean)

Kao et al. [41] - - - - 0.4501
Jin et al. [51] - - - - 0.3373
Kao et al. [25] - 0.5214 - - 0.3988
Kong et al. [58] 0.5581 - - - -
Talebi et al. [28] 0.6120 0.6360 0.2330 0.2180 -
Chen et al. [48] 0.6489 0.6711 - - 0.2706
Meng et al. [59] 0.6730 0.6860 - - -
Li et al. [49] 0.6770 - - - -
Wang et al. [45] 0.6868 0.6923 - - 0.2764
Zhang et al. [29] 0.6900 0.7042 - - -
Hosu et al. [26] 0.7450 0.7480 - - -

Ours 0.7736 0.7753 0.7562 0.7512 0.2305
Ours (Align) 0.7737 0.7749 0.7551 0.7498 0.2311

five of the six metrics and obtains the second-best results on
the Euc metric, indicating the superiority over the competitors.

Then, we calculate the mean score and the standard de-
viation of the distributions, and compare their performances
with previous methods. Among the competitors, GPF-CNN
[29], NIMA [28] and WCNN [51] are distribution prediction
models, while the rest competitors are regression models.
Specifically, [25], [58] introduce extra useful information
such as scenes and attributes to guide the aesthetic learning.
Some works [48], [45], [29], [26] try to avoid changing the
image aspect ratios with different modules, such as fractional
dilated convolutions. Other problems, including personality
[49], sample weighting [51] and feature fusion [59], are also
studied. Although these models are effective, the results in
Table II show that our method represents a new state-of-
the-art approach. The performance improvement of 0.0287
on the SRCC (mean) is significant. Furthermore, our model
obtains more than three times higher SRCC (std.dev) and
PLCC (std.dev) than the previously reported best performances
[28]. These results effectively prove the merits of our model.

Finally, we calculate the mean scores of the aesthetic dis-
tributions and binarize them using a threshold of 5 to perform
binary classification. Previous aesthetic quality classification
methods mainly employ multi-patch aggregation [11], [12],
[46] methods or introduce semantic information [44]. The
results in Table III show that our method achieves the third-
best performance. Note that our model employs the EMD loss
to learn aesthetic score distributions, while A-Lamp [12] and
MP-Adam [46] are binary classification models. Thus, our
model can be applied to a wider variety of tasks.

The results of the model that replaces RoM pooling with
RoM align are also given. Both results are nearly the same,
which proves our analysis in Section III-A. For simplicity, we
only use RoM pooling in other experiments. We show some
distribution prediction results on the AVA dataset in Fig. 8. The
blue bins represent prediction, and the red bins represent the
ground truth. The results show that our method can precisely
predict distributions. Other results are given in Fig. 9, in which

Fig. 10. Failure cases. The model fails to predict uncommon distributions.
The two distributions are both non-Gaussian and have abnormal values. In
the first image, the number of people who vote for score 9 is too small. For
the second image, many users vote for the score 1.

TABLE III
BINARY CLASSIFICATION PERFORMANCES ON THE AVA DATASET.

Models NMA-Net[11] ADB-CNN [58] MNA-CNN[47]

Acc(%) 75.4 77.3 77.4

Models MTRL-CNN[44] NIMA[28] POOL-3FC[26]

Acc(%) 79.1 81.5 81.7

Models A-Lamp[12] MP-Adam[46] Ours

Acc(%) 82.5 83.0 82.4

we keep the aspect ratio of the displayed images but only
show the predicted (ground-truth) mean score and the EMD.
Two failure cases are shown in Fig. 10. The figure shows that
the ground-truth distributions of the two images are abnormal.
They are both nontypical distributions in the AVA dataset, such
as Gamma distribution [10]. This may be the reason why the
model cannot assess them well.

D. Ablation Study

To validate the effectiveness of each module, we use the
methods based on three traditional transformations (the trans-
formations shown in Fig. 1) as the baseline models. The
first baseline model resizes images to the same size. Since
full-resolution images are used in our method, for a fair
comparison, we resize all images to 800 × 800, which is the
largest image size in the AVA dataset. The second baseline
model uses padding transformation. We pad all images to
800 × 800. In both the resizing and padding baselines, to
eliminate the influences of other factors, we use the same
data augmentation methods and feature map size (the output
size of the first pooling layer) as our full model experiments.
The third baseline that randomly crops fixed-size patches
needs to be combined with image resizing because the size



IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL.XX, NO.XX, JANUARY, 2021 11

TABLE IV
ABLATION STUDY I.

Models
SRCC↑ SRCC↑

EMD↓ KL↓
(mean) (std.dev)

Baselines
Resize 0.7353 0.3314 0.044 0.098

Pad 0.7328 0.3402 0.044 0.098
Crop 0.7287 0.3188 0.045 0.099

PRP 0.7438 0.3424 0.043 0.097
PRP (SA) 0.7469 0.3551 0.043 0.096

Resize + TA 0.7644 0.7025 0.041 0.088
Pad + TA 0.7633 0.7069 0.041 0.088

Crop + TA 0.7615 0.6993 0.041 0.090
PRP (SA) + TA 0.7736 0.7562 0.039 0.085

of cropped patches cannot be larger than the smallest image
size in the dataset. However, the smallest size in AVA is
only 160 × 160. The input of this size cannot be used in
Inception-V3 because the feature maps in the deep layers
will be smaller than the convolutional kernels. Moreover,
cropping such a small patch from much larger images will
cause a very significant information loss, which leads to unfair
comparisons. To conduct a feasible and convincing ablation
study, we resize images to make the short edges no shorter than
512 while maintaining the aspect ratios. Then, we randomly
crop 512×512 patches from all images to train the network. In
the cropping baseline, only random flipping augmentation is
needed. For simplicity, we choose the SRCC of the mean score
and standard deviation, EMD with r=1 and KL divergence as
the representative metrics.

There are many factors to be validated. To demonstrate
our contributions clearly, we split the experiments into three
groups.

1) PRP and SA Modules: As described before, the proposed
PRP module aims to replace the three traditional image
preprocessing transformations, and the SA module is used to
remedy the shape information loss in RoM pooling. Therefore,
we compare them with the three baseline results to show their
effectiveness. The results are given in Table IV. The table
shows that the PRP module outperforms the three baselines.
With the help of the SA module, the performances are further
improved. For example, the performance gain of the SRCC
(mean) metric is 0.0115 compared with the best baseline result,
indicating the superiority of our method over the traditional
transformations.

2) TA Module: Table IV gives the comparison results be-
tween nontheme models and TA models. The table shows that
the performance improvements are consistent and significant.
For example, after introducing theme information, the PRP
(SA) model improvements the SRCC (mean) metric by 0.0268.
Table IV also shows that compared with the SRCC (mean), the
improvement on the SRCC (std.dev) is very substantial. This
phenomenon proves that the theme-aware model can better
reflect the subjectivity and diversity of the AQA task.

To further show the influences of theme information, we
give some AQA examples with two different theme conditions.
In the first condition, the model predicts image aesthetic
qualities without theme information. Some comprehensive

TABLE V
ABLATION STUDY II.

Models
SRCC↑ SRCC↑

EMD↓ KL↓
(mean) (std.dev)

PRP 0.7438 0.3424 0.043 0.097

SA
Concatenate 0.7433 0.3468 0.043 0.097

Attention 0.7469 0.3551 0.043 0.096

TA
Concatenate 0.7611 0.6918 0.041 0.088

Attention 0.7695 0.7358 0.040 0.086

SA + TA
Concatenate 0.7620 0.7002 0.041 0.088

Attention 0.7736 0.7562 0.039 0.085

examples are shown in Fig. 11. The figure shows that for the
first three images (images in the first row and the left image
in the second row), the model tends to predict lower scores
without theme information. One possible reason is that the
model loses a positive aesthetic factor such that the images
match the corresponding themes well. For example, the third
image that contains many straight lines matches the theme
“straight” well.

In the second condition, the model evaluates images under
false themes, and two examples are shown in Fig. 12. The
first image that belongs to the theme “straight” contains a
building with many rectangular windows. After replacing the
input theme with “circle”, the predicted score becomes lower.
The possible reason is that there are no circles in the image;
thus, it is very different from those high-score images in the
theme “circle”. If we use a more suitable theme of “windows
and doors”, a better result is obtained. The second image
obtains a low average score. However, if it is evaluated with the
theme “yellow”, the predicted score becomes better. A possible
reason is that the dominant color of the image is yellow. In
contrast, using the theme “sadness” results in a lower score.
The two examples show that different themes actually have
different influences on AQA.

3) Fusion Module: We propose an attention-based fusion
module to effectively utilize the extra features including shape
features and theme features. To validate its effectiveness, we
create a simple feature fusion module for comparison. This
module directly concatenates the extra features with globally
pooled visual features. The input dimension of the last fully
connected layer is adjusted correspondingly. We compare the
two different fusion modules using different extra feature com-
binations. From the results shown in Table V, we can obtain
three conclusions. First, the superiority of attention-based fea-
ture fusion is consistent on all three extra feature combinations,
indicating the effectiveness of the proposed method. Second,
although the performances are worse than those of attention-
based fusion, the direct concatenation method is still helpful in
TA models. Third, it is nearly useless to directly concatenate
shape features with visual features.

E. Theme Coding Method Analysis
In our model, we encode the themes into one-hot codes. The

question is whether there are some better choices to encode
the themes. In this section, we discuss and validate some other
coding methods.



IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL.XX, NO.XX, JANUARY, 2021 12

Fig. 11. Examples of the prediction results with and without theme informa-
tion. We only showed the mean score. We can see that the model can predict
a more accurate score with theme information.

TABLE VI
RESULTS OF DIFFERENT THEME CODING METHODS.

Models
SRCC↑ SRCC↑

EMD↓ KL↓
(mean) (std.dev)

PRP (SA) 0.7469 0.3551 0.043 0.096

PRP (SA)
+

TA

Binary 0.7422 0.3460 0.044 0.097
BERT 0.7563 0.6485 0.042 0.091

One-hot 0.7736 0.7562 0.039 0.085

1) Binary Code: In the binary coding method, we sort the
themes in the AVA dataset in random order and turn the order
numbers into binary system codes. The shortest code length is
11 because the number of themes 1,397 is larger than 210 and
smaller than 211. As a result, this method reduces the theme
code dimension from 1,397 to 11 and generates more compact
theme codes.

2) BERT Pretrained Pooled Phrase Embedding: How to
turn words, phrases, and sentences into meaningful embed-
dings has long been a hot research topic in the natural
language processing (NLP) research community. In recent
years, a milestone model called the bidirectional encoder
representation from transformers (BERT) [60] has attracted
much attention. It has achieved promising results in many
NLP downstream tasks. We use the pretrained model from
Huggingface-Transformers [61] package. The 768-dim feature
before the BERT CLS-Head is used for each theme word. We
pool the embeddings of all words in a theme to obtain the
768-dim theme embedding.

We test both types of new coding methods. Unfortunately,
neither provides better results than the one-hot codes. The
binary theme coding method even provides worse results
than models that do not use theme information. The results
are listed in Table VI. Here, we provide some possible
explanations for this phenomenon. The binary code eliminates
the sparseness of the one-hot code; but introduces two extra
weaknesses. First, the distances between different theme codes
are reduced, which may influence the discriminability between
them. Second, the distances between different theme codes are
different, and this distance difference is randomly defined by
the coding order, which may become harmful in some cases.
The phrase embeddings from the pretrained BERT model

Fig. 12. Examples of assessing aesthetic quality with different manually
assigned themes. The assigned themes are selected from existing themes in the
AVA dataset. The green boxes contain the default themes and the ground-truth
average scores. Manually assigned themes and the corresponding predicted
scores are displayed in the blue boxes.

TABLE VII
RESULTS ON DIFFERENT POOLING SIZES.

Pooling SRCC↑ SRCC↑
EMD↓ KL↓

Size (mean) (std.dev)

73 0.7609 0.6994 0.042 0.090
110 0.7688 0.7113 0.041 0.087
146 0.7736 0.7562 0.039 0.085
192 0.7625 0.7014 0.042 0.089

are also more compact than one-hot codes. Furthermore, the
method encodes some meaningful information. For example,
the L2 distance between the theme codes of “landscape” and
“urban landscape” is 2.29, which is much smaller than the
distance of 4.79 between “landscape” and “dog”. However, the
model still obtains worse results when using such semantic
embeddings. The worse performances may be the result of
two factors. First, the BERT codes have lower discriminability
between different themes. Second, our model cannot effec-
tively utilize the semantic information in the BERT codes.
We believe that the semantic information in BERT codes is
valuable. We will further study this coding method in future
works.

F. Analysis of the RoM Pooling Size

In this section, we analyze the influences of different RoM
pooling sizes. Compared with the pooling size 73 × 73 of
the first pooling layer in the original Inception-V3, the RoM
pooling size in our model is increased to 146×146 to keep the
pooling downsampling ratio similar to the original Inception-
V3. To validate the importance of the pooling size, we conduct
experiments to test the performances of different pooling sizes.

Theoretically, any variants of the pooling size may change
the model performances. However, it is impractical to test
all the possibilities. Therefore, we choose 4 representative
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Fig. 13. Examples of an image (a) and one of its cropping augmentations
(b). The mean score of this image is 6.47. The aesthetic differences between
the original and augmented images are slight.

TABLE VIII
RESULTS ON DIFFERENT DATA AUGMENTATIONS.

Augmentation
SRCC↑ SRCC↑

EMD↓ KL↓
(mean) (std.dev)

Flip 0.7601 0.6994 0.0408 0.088
Flip+Crop (0.975) 0.7700 0.7331 0.0409 0.087
Flip+Crop (0.500) 0.7553 0.6973 0.0414 0.088
Flip+Crop (0.875) 0.7736 0.7562 0.0393 0.085

pooling sizes, including 73, 110, 146, and 192 (the pooling
width equals the pooling height). Note that the pooling size
146 is our default model setting. The results are shown in
Table VII. We can clearly see that the performances improve
when the pooling size is increased from 73 to 146. However,
the improvement from 110 to 146 is not large, which means
that the performances may be near saturation. Surprisingly,
when the pooling size reaches 192, the performances become
worse. One possible reason is that the network cannot com-
prehensively capture the global information from such large
feature maps. Specifically, the receptive field of each layer
is fixed. If the feature map sizes of the deep convolutional
layers are too large, the long-range dependencies, which are
important in the AQA task, may not be able to be effectively
captured by the networks.

G. Data Augmentation

Data augmentation is a common process in deep learning
frameworks. The traditional method includes random image
cropping and flipping. As discussed before, cropping fixed-size
patches from images may change the aesthetic information.
Based on this consideration, some previous works in AQA
[17], [15] only employed random flipping to augment images.
However, one recent work [26] used both image cropping
and flipping in data augmentation and reported a performance
improvement. The reason for the different results is the dif-
ferent degrees of cropping. Here, we call the operation that
crops fixed-size patches as preprocessing cropping and call

TABLE IX
PERFORMANCE ON PHOTO.NET DATASET.

Models
SRCC↑ PLCC↑

MSE↓ EMD↓
(mean) (mean)

Zhang et al. [29] 0.5217 0.5464 0.2715 0.070
Ours w/o CropAug 0.5687 0.5774 0.2231 0.066
AVA trained 0.5601 0.5790 0.2235 -
Ours 0.5866 0.5903 0.2179 0.065

the operation in literature [26] that aims to augment images
augmentation cropping.

Specifically, in preprocessing cropping, because both the
size and the aspect ratio differ considerably between images,
the cropped patches from different images need to be small.
Otherwise, it is impossible to keep the size of patches from
different images the same. Small cropped patches result in
significant information loss. However, in augmentation crop-
ping, we do not need to keep the size of cropped patches the
same. We augment images with proportional crops at 1

8 of
the width and height. There is little damage to the aesthetic
information with such a small discarded region near the edges.
We give examples of cropping augmentation in Fig. 13. The
figure shows that the differences between the cropped image
and the original image are slight. In AQA, the assessment
from one person always remains unchanged when there are
only slight changes in the image. Therefore, the model can
capture the consistency of AQA with cropping augmentation.
To further validate our conclusion, we conduct experiments on
different augmentation policies. As seen in Table VIII, very
small and large cropping ratios lead to poor performances.

H. Evaluation on Photo.net

Photo.net is a small dataset. Because there is no theme
information, we only evaluate the model with RoM pooling on
padded images. Analogous to the AVA dataset, we also pad
images to 800 × 800. Personal subjectivity may have more
significant impacts because the number of voters per image
in this dataset is much smaller. This can result in unstable
ground-truth distributions. Predicting distributions is harder
in such a condition. To the best of our knowledge, there is
only one previous work [29] predicting aesthetic distributions
on this dataset. They proposed to combine global and local
image views to learn aesthetic distribution. Since they did not
report the data augmentation strategy, we give results with and
without cropping augmentation for a fair comparison. Table IX
shows that our proposed method outperforms previous work.
We also use this dataset to test the model trained on the AVA
dataset to evaluate the generalization performance. Consider-
ing that the score ranges are different, the distribution metrics
cannot be used. First, we obtain normalized scores between 0
to 1 from the AVA trained model. Then, the normalized scores
are transformed to the range of 1 to 7. Finally, we compute
the SRCC, PLCC, and MSE on the mean scores. The results
are given in Table IX. We can see that the performances are
still better than those of previous works.
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V. CONCLUSION AND FUTURE WORKS

This paper proposes a simple but effective framework that
supports end-to-end batch training on original full-resolution
photos to predict their aesthetic distributions. We achieve this
goal by combining image padding with RoM pooling. Padding
turns the inputs to the same size, and RoM pooling removes
features from the padded region. We also propose a shape-
aware module that fuses aspect ratio information with visual
features to remedy the shape information loss in RoM pooling.
Furthermore, we found that evaluating photo aesthetic quality
solely from images neglects theme criterion bias. Therefore,
we use themes as extra information to learn aesthetic criteria
precisely. Finally, an attention-based feature fusion module is
proposed to effectively utilize shape information and theme
information. The experimental results show that our method
outperforms the state-of-the-art distribution learning and re-
gression AQA models. Although our proposed method has
achieved promising performances, additional work remains.
For example, our method works poorly on skewed distribu-
tions. Therefore, studying how to predict such distributions
more precisely is worth further study.
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Funtowicz, Joe Davison, Sam Shleifer, Patrick von Platen, Clara Ma,
Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger,
Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Transform-
ers: State-of-the-art natural language processing. In Proceedings of
the 2020 Conference on Empirical Methods in Natural Language Pro-
cessing: System Demonstrations, pages 38–45, Online, October 2020.
Association for Computational Linguistics.

Gengyun Jia received the B.E. degree in com-
munication engineering from Shandong University
(SDU), Jinan, China, in 2015, and the M.S. degree
in information and communication engineering from
Beijing University of Posts and Telecommunications
(BUPT), Beijing, China, in 2018. He is currently
pursuing the Ph.D degree in computer application
technology with the University of Chinese Academy
of Sciences (UCAS), Beijing, China, and with the
National Laboratory of Pattern Recognition, Center
for Research on Intelligent Perception and Comput-

ing, Institute of Automation, Chinese Academy of Sciences, Beijing, China.
His research interests include image understanding, media forensics and
machine learning.

Peipei Li received the B.S. degree from the Infor-
mation and Control Engineering of China University
of Petroleum in 2016, and the M.S. and Ph.D.
degree in pattern recognition and intelligent systems
from the Chinese Academy of Sciences, Beijing,
China, in 2021. Since 2021, she has been a Faculty
Member with the School of Artificial Intelligence,
Beijing University of Posts and Telecommunica-
tions, Beijing 100876, China, where she is currently
an Associate Professor. Her current research interests
include deep learning, computer vision, biometrics,

and machine learning.

Ran He received the BE and MS degrees in com-
puter science from the Dalian University of Technol-
ogy, Dalian, China, 2001 and 2004, respectively, and
the PhD degree in pattern recognition and intelligent
systems from the Institute of Automation, Chinese
Academy of Sciences (CASIA), Beijing, China, in
2009. Since September 2010, he has joined NLPR
where he is currently a full professor. He serves as
the editor board member of IEEE TIP and PR, and
serves on the program committee of several confer-
ences. His research interests focus on information

theoretic learning, pattern recognition, and computer vision. He is a senior
member of the IEEE and the Fellow of the IAPR.

https://www.dpchallenge.com/challenge_history.php

	I Introduction
	II RELATED WORK
	II-A Photo Aesthetic Quality Assessment
	II-B Pooling Methods and Multisize Feature Extraction Methods

	III METHODS
	III-A RoM Pooling on Padded Full-Resolution Images
	III-B Encoding Shape Information
	III-C Theme-aware AQA
	III-D Attention-Based Feature Fusion
	III-E Network Architecture and Learning Process

	IV EXPERIMENTS
	IV-A Datasets and Evaluation Metrics
	IV-A1 AVA
	IV-A2 Photo.net

	IV-B Implementation Details
	IV-C Performance Evaluation
	IV-D Ablation Study
	IV-D1 PRP and SA Modules
	IV-D2 TA Module
	IV-D3 Fusion Module

	IV-E Theme Coding Method Analysis
	IV-E1 Binary Code
	IV-E2 BERT Pretrained Pooled Phrase Embedding

	IV-F Analysis of the RoM Pooling Size
	IV-G Data Augmentation
	IV-H Evaluation on Photo.net

	V Conclusion and Future Works
	References
	Biographies
	Gengyun Jia
	Peipei Li
	Ran He


