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Abstract—Deep learning has achieved remarkable success in
numerous domains with help from large amounts of big data.
However, the quality of data labels is a concern because of the
lack of high-quality labels in many real-world scenarios. As noisy
labels severely degrade the generalization performance of deep
neural networks, learning from noisy labels (robust training) is
becoming an important task in modern deep learning applica-
tions. In this survey, we first describe the problem of learning with
label noise from a supervised learning perspective. Next, we pro-
vide a comprehensive review of 62 state-of-the-art robust training
methods, all of which are categorized into five groups according
to their methodological difference, followed by a systematic com-
parison of six properties used to evaluate their superiority. Sub-
sequently, we perform an in-depth analysis of noise rate estima-
tion and summarize the typically used evaluation methodology,
including public noisy datasets and evaluation metrics. Finally,
we present several promising research directions that can serve
as a guideline for future studies. All the contents will be available
at https://github.com/songhwanjun/Awesome-Noisy-Labels,

Index Terms—deep learning, noisy label, label noise, robust
optimization, robust deep learning, classification, survey

I. INTRODUCTION

Ith the recent emergence of large-scale datasets, deep
Wneural networks (DNNs) have exhibited impressive
performance in numerous machine learning tasks, such as
computer vision [1], [2], information retrieval [3[|-[5]], and
language processing [[6]—[8]. Their success is dependent on
the availability of massive but carefully labeled data, which
are expensive and time-consuming to obtain. Some non-expert
sources, such as Amazon’s Mechanical Turk and the surround-
ing text of collected data, have been widely used to mitigate
the high labeling cost; however, the use of these source often
results in unreliable labels [9]-[12]]. In addition, data labels
can be extremely complex even for experienced domain
experts [13]], [14]]; they can also be adversarially manipulated
by a label-flipping attack [[15]. Such unreliable labels are
called noisy labels because they may be corrupted from
ground-truth labels. The ratio of corrupted labels in real-world
datasets is reported to range from 8.0% to 38.5% [16]-[19].

In the presence of noisy labels, training DNNs is known
to be susceptible to noisy labels because of the significant
number of model parameters that render DNNs overfit to
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Fig. 1. Convergence curves of training and test accuracy when training

WideResNet-16-8 using a standard training method on the CIFAR-100 dataset
with the symmetric noise of 40%: “Noisy w/o. Reg.” and “Noisy w. Reg.” are
the models trained on noisy data without and with regularization, respectively,
and “Clean w. Reg.” is the model trained on clean data with regularization.

even corrupted labels with the capability of learning any
complex function [20], [21]. Zhang et al. [22]] demonstrated
that DNNs can easily fit an entire training dataset with
any ratio of corrupted labels, which eventually resulted in
poor generalizability on a test dataset. Unfortunately, popular
regularization techniques, such as data augmentation [23],
weight decay [24]], dropout [25], and batch normalization [26]]
have been applied extensively, but they do not completely
overcome the overfitting issue by themselves. As shown in
Figure [I] the gap in test accuracy between models trained
on clean and noisy data remains significant even though all
of the aforementioned regularization techniques are activated.
Additionally, the accuracy drop with label noise is considered
to be more harmful than with other noises, such as input noise
[27]. Hence, achieving a good generalization capability in the
presence of noisy labels is a key challenge.

Several studies have been conducted to investigate super-
vised learning under noisy labels. Beyond conventional ma-
chine learning techniques [[13]], [28]], deep learning techniques
have recently gained significant attention in the machine
learning community. In this survey, we present the advances in
recent deep learning techniques for overcoming noisy labels.
We surveyed recent studies by recursively tracking relevant
bibliographies in papers published at premier research con-
ferences, such as CVPR, ICCV, NeurIPS, ICML, and ICLR.
Although we attempted to comprehensively include all recent
studies at the time of submission, some of them may not be
included because of the quadratic increase in deep learning
papers. The studies included were grouped into five categories,
as shown in Figure [2] (see Section [IT] for details).

A. Related Surveys

Frénay and Verleysen [13]] discussed the potential negative
consequence of learning from noisy labels and provided a
comprehensive survey on noise-robust classification methods,
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Fig. 2. Categorization of recent deep learning methods for overcomming noisy labels.

focusing on conventional supervised approaches such as naive
Bayes and support vector machines. Furthermore, their survey
included the definitions and sources of label noise as well
as the taxonomy of label noise. Zhang et al. [28] discussed
another aspect of label noise in crowdsourced data annotated
by non-experts and provided a thorough review of expectation-
maximization (EM) algorithms that were proposed to improve
the quality of crowdsourced labels. Meanwhile, Nigam et al.
[29] provided a brief introduction to deep learning algorithms
that were proposed to manage noisy labels; however, the scope
of these algorithms was limited to only two categories, i.e.,
the loss function and sample selection in Figure 2] Recently,
Han et al. [30] summarized the essential components of robust
learning with noisy labels, but their categorization is totally
different from ours in philosophy; we mainly focus on system-
atic methodological difference, whereas they rather focused on
more general views, such as input data, objective functions,
and optimization policies. Furthermore, this survey is the first
to present a comprehensive methodological comparison of
existing robust training approaches (see Tables [[I] and [TI).

B. Survey Scope

Robust training with DNNs becomes critical to guarantee
the reliability of machine learning algorithms. In addition to
label noise, two types of flawed training data have been ac-
tively studied by different communities [31]], [|32]]. Adversarial
learning is designed for small, worst-case perturbations of the
inputs, so-called adversarial examples, which are maliciously
constructed to deceive an already trained model into making
errors [33]-[36]. Meanwhile, data imputation primarily deals
with missing inputs in training data, where missing values
are estimated from the observed ones [32], [37]. Adversarial
learning and data imputation are closely related to robust
learning, but handling feature noise is beyond the scope of
this survey—i.e., learning from noisy labels.

II. PRELIMINARIES

In this section, the problem statement for supervised
learning with noisy labels is provided along with the taxonomy
of label noise. Managing noisy labels is a long-standing
issue; therefore, we review the basic conventional approaches
and theoretical foundations underlying robust deep learning.
Table |I| summarizes the notation frequently used in this study.

A. Supervised Learning with Noisy Labels

Classification is a representative supervised learning task
for learning a function that maps an input feature to a label

TABLE I
SUMMARY OF THE NOTATION.
[ Notation [ Description
X the data feature space
.,y the true and noisy label space
D, D the clean and noisy training data
Pp, Pp the joint distributions of clean and noisy data
Bt a set of mini-batch examples at time ¢
O the parameter of a deep neural network at time ¢
7(-;6¢) a deep neural network parameterized by O
l a specific loss function
R an empirical risk
Ep an expectation over D
T, Tj a data example of X’
Y, Yi a true label of Y
Y, Ui a noisy label of )
n a specific learning rate
T a true noise rate
b the number of mini-batch examples in Bt
c the number of classes
T, T the true and estimated noise transition matrix

[38]. In this paper, we consider a c-class classification problem
using a DNN with a softmax output layer. Let X C R be the
feature space and Y = {0, 1}° be the ground-truth label space
in a one-hot manner. In a typical classification problem, we are
provided with a training dataset D = {(z;,v;)}}, obtained
from an unknown joint distribution Pp over X’ X)), where each
(x4,y;) is independent and identically distributed. The goal of
the task is to learn the mapping function f(-;0) : X — [0, 1]°
of the DNN parameterized by © such that the parameter ©
minimizes the empirical risk Rp( f ),

Ro(f) =Ep[t(f(2:0),y

Zé f(z;0),

(%y)eD

)sy), (1)

where / is a certain loss function.

As data labels are corrupted in various real-world scenarios,
we aim to train the DNN from noisy labels. Specifically, we
are provided with a noisy training dataset D = {(z;, 7:)}¥,
obtained from a noisy joint distribution Pz over X’ x Y, where
1y is a noisy label which may not be true. Hence, following the
standard training procedure, a mini-batch B; = {(z;,%:)}2_;
comprising b examples is obtained randomly from the noisy
training dataset D at time . Subsequently, the DNN parameter
O, at time ¢ is updated along the descent direction of the
empirical risk on mini-batch B,

<|Bt

where 7 is a learning rate specified.

Oy1 =6 — (2

> Uf(@:00).9)),

(I’y EBt
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Fig. 3. A high level research overview of robust deep learning for noisy labels
community are categorized into five groups in blue italic.

Here, the risk minimization process is no longer noise-
tolerant because of the loss computed by the noisy labels.
DNNs can easily memorize corrupted labels and correspond-
ingly degenerate their generalizations on unseen data [13],
[28]], [29]. Hence, mitigating the adverse effects of noisy labels
is essential to enable noise-tolerant training for deep learning.

B. Taxonomy of Label Noise

This section presents the types of label noise that have been
adopted to design robust training algorithms. Even if data
labels are corrupted from ground-truth labels without any prior
assumption, in essence, the corruption probability is affected
by the dependency between data features or class labels. A
detailed analysis of the taxonomy of label noise was provided
by Frénay and Verleysen [13]. Most existing algorithms dealt
with instance-independent noise, but instance-dependent noise
has not yet been extensively investigated owing to its complex
modeling.

1) Instance-independent Label Noise: A typical approach
for modeling label noise assumes that the corruption process is
conditionally independent of data features when the true label
is given [22]], [|39]]. That is, the true label is corrupted by a noise
transition matrix T € [0,1]°%¢, where T;; = p(§ = jly = i) is
the probability of the true label 7 being flipped into a corrupted
label j. In this approach, the noise is called a symmetric (or
uniform) noise with a noise rate 7 € [0,1] if V;—;T;; =1 —
T AViz;Tij = I, where a true label is flipped into other
labels with equal probability. In contrast to symmetric noise,
the noise is called an asymmetric (or label-dependent) noise
if Vi:jTij =1—-7A Ei#j,i;ék,j;ékTij > T;r, where a true
label is more likely to be mislabeled into a particular label.
For example, a “dog” is more likely to be confused with a
“cat” than with a “fish.” In a stricter case when V;—;T;; =
1—7A3;%;T;; = 7, the noise is called a pair noise, where a
true label is flipped into only a certain label.

2) Instance-dependent Label Noise: For more realistic
noise modeling, the corruption probability is assumed to be
dependent on both the data features and class labels [16],
[40]. Accordingly, the corruption probability is defined as
pij(x) =p(g=jly=1,z). Unlike the aforementioned noises,
the data feature of an example x also affects the chance of x
being mislabeled.

. The research directions that are actively contributed by the machine learning

C. Non-deep Learning Approaches

For decades, numerous methods have been proposed to
manage noisy labels using conventional machine learning
techniques. These methods can be categorized into four groups
[13]], [29], [41]], as follows:

o Data Cleaning: Training data are cleaned by excluding
examples whose labels are likely to be corrupted. Bagging
and boosting are used to filter out false-labeled examples to
remove examples with higher weights because false-labeled
examples tend to exhibit much higher weights than true-
labeled examples [42], [43]. In addition, various methods,
such as k-nearest neighbor, outlier detection, and anomaly
detection, have been widely exploited to exclude false-
labeled examples from noisy training data [44]-[46]. Nev-
ertheless, this family of methods suffers from over-cleaning
issue that overly removes even the true-labeled examples.

Surrogate Loss: Motivated by the noise-tolerance of the
0-1 loss function [39], many researchers have attempted
to resolve its inherent limitations, such as computational
hardness and non-convexity that render gradient methods
unusable. Hence, several convex surrogate loss functions,
which approximate the 0-1 loss function, have been pro-
posed to train a specified classifier under the binary clas-
sification setting [47]-[51]]. However, these loss functions
cannot support the multi-class classification task.

Probabilistic Method: Under the assumption that the dis-
tribution of features is helpful in solving the problem of
learning from noisy labels [52], the confidence of each label
is estimated by clustering and then used for a weighted
training scheme [53[]. This confidence is also used to convert
hard labels into soft labels to reflect the uncertainty of labels
[54]. In addition to these clustering approaches, several
Bayesian methods have been proposed for graphical models
such that they can benefit from using any type of prior
information in the learning process [55]]. However, this
family of methods may exacerbate the overfitting issue
owing to the increased number of model parameters.

Model-based Method: As conventional models, such as the
SVM and decision tree, are not robust to noisy labels, sig-
nificant effort has been expended to improve the robustness
of them. To develop a robust SVM model, misclassified
examples during learning are penalized in the objective [56],



IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

[57]. In addition, several decision tree models are extended
using new split criteria to solve the overfitting issue when
the training data are not fully reliable [58]], [59]. However, it
is infeasible to apply their design principles to deep learning.

Meanwhile, deep learning is more susceptible to label noises
than traditional machine learning owing to its high expressive
power, as proven by many researchers [21]], [60], [61]. There
has been significant effort to understand why noisy labels
negatively affect the performance of DNNs [22], [61[|-[63].
This theoretical understanding has led to the algorithmic de-
sign which achieves higher robustness than non-deep learning
methods. A detailed analysis of theoretical understanding for
robust deep learning was provided by Han et al. [30].

D. Regression with Noisy Labels

In addition to classification, regression is another main topic
of supervised machine learning, which aims to model the rela-
tionship between a number of features and a continuous target
variable. Unlike the classification task with a discrete label
space, the regression task considers the continuous variable as
its target label [64], and thus it learns the mapping function
fC - 5;0): X = Y, where Y € R is a continuous label
space. Given the input feature = and its ground-truth label y,
two types of label noise are considered in the regression task.
An additive noise [65] is formulated by § := y + ¢ where
€ is drawn from a random distribution independent from the
input feature; an instance-dependent noise [60] is formulated
by § := p(x) where p : X — ) is a noise function dependent
on the input feature.

Although regression predicts continuous values, regression
and classification share the same concept of learning the
mapping function from the input feature x to the output label
y. Thus, many robust approaches for classification are easily
extended to the regression problem with simple modification
[67]. Thus, in this survey, we focus on the classification setting
for which most robust methods are defined.

III. DEEP LEARNING APPROACHES

According to our comprehensive survey, the robustness of
deep learning can be enhanced in numerous approaches [16],
[25], [68[]-[74]]. Figure E] shows an overview of recent research
directions conducted by the machine learning community. All
of them (i.e., - focused on making a supervised
learning process more robust to label noise:

o (§MII-A) Robust architecture: adding a noise adaptation layer
at the top of an underlying DNN to learn label transition
process or developing a dedicated architecture to reliably
support more diverse types of label noise;

« (§II-B) Robust regularization: enforcing a DNN to overfit
less to false-labeled examples explicitly or implicitly;

o (§II-C) Robust loss function: improving the loss function;

o (§II-D) Loss adjustment: adjusting the loss value according
to the confidence of a given loss (or label) by loss correction,
loss reweighting, or label refurbishment;

o (SII-E) Sample selection: identifying true-labeled examples
from noisy training data via multi-network or multi-round
learning.

’ Loss L(f(x;0,W),¥) ‘
A pGle,w)
| Noise Adaptation Layer p(¥|y; W) |
A pGIxe)
‘ ’ Base Model 6 with Softmax Layer ‘

’ Noisy Label 7 € ¥

'I‘ Label Corruption ’T‘
’ True Label y € Y ‘ ’

Input x € X ‘

Fig. 4. Noise modeling process using the noise adaptation layer.

Overall, we categorize all recent deep learning methods into
five groups corresponding to popular research directions, as
shown in Figure [3} In meta learning is also discussed
because it finds the optimal hyperparameters for loss reweight-
ing. In we discuss the recent efforts for combining
sample selection with other orthogonal directions or semi-
supervised learning toward the state-of-the-art performance.

Figure [] illustrates the categorization of robust training
methods using these five groups.

A. Robust Architecture

In numerous studies, architectural changes have been made
to model the noise transition matrix of a noisy dataset [[16],
[75]-182]]. These changes include adding a noise adaptation
layer at the top of the softmax layer and designing a new ded-
icated architecture. The resulting architectures yield improved
generalization through the modification of the DNN output
based on the estimated label transition probability.

1) Noise Adaptation Layer: From the view of training data,
the noise process is modeled by discovering the underlying
label transition pattern (i.e., the noise transition matrix T).
Given an example z, the noisy class posterior probability for
an example x is expressed by

p(i = jlz)=>_ p(ii =gy =ile)=>_ Tiyply = ilz), )
i=1 i=1
where T;; = p(§ = jly =i, z).

In light of this, the noise adaptation layer is intended to
mimic the label transition behavior in learning a DNN. Let
p(y|z; ©) be the output of the base DNN with a softmax output
layer. Then, following Eq. (3), the probability of an example
x being predicted as its noisy label ¢ is parameterized by

p(i = jlw; O, W) = > p(j = j,y=ilz; 0, W)

i=1

= p(i = jly=i;W) p(y=ila; ©) .

=1

“4)

Noise Adaptation Layer Base Model

Here, the noisy label g is assumed to be conditionally
independent of the input x in general. Accordingly, as
shown in Figure ] the noisy adaptation layer is added at the
top of the base DNN to model the noise transition matrix
parameterized by V. This layer should be removed when test
data is to be predicted.

Technical Detail: Webly learning [[75] first trains the base
DNN only for easy examples retrieved by search engines;
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subsequently, the confusion matrix for all training examples is
used as the initial weight W of the noise adaptation layer. It
fine-tunes the entire model in an end-to-end manner for hard
training examples. In contrast, the noise model [77)] initializes
W to an identity matrix and adds a regularizer to force W to
diffuse during DNN training. The dropout noise model [25]]
applies dropout regularization to the adaptation layer, whose
output is normalized by the softmax function to implicitly
diffuse W. The s-model [19]] is similar to the dropout noise
model but dropout is not applied. The c-model [79] is an
extension of the s-model that models the instance-dependent
noise, which is more realistic than the symmetric and
asymmetric noises. Meanwhile, NLNN [76] adopts the EM
algorithm to iterate the E-step to estimate the noise transition
matrix and the M-step to back-propagate the DNN.

Remark: A common drawback of this family is their inability
to identify false-labeled examples, treating all the examples
equally. Thus, the estimation error for the transition matrix
is generally large when only noisy training data is used or
when the noise rate is high [83]. Meanwhile, for the EM-
based method, becoming stuck in local optima is inevitable,
and high computational costs are incurred [[79].

2) Dedicated Architecture: Beyond the label-dependent
label noise, several studies have been conducted to support
more complex noise, leading to the design of dedicated archi-
tectures [[16], [80], [81]. They typically aimed at increasing
the reliability of estimating the label transition probability to
handle more complex and realistic label noise.

Technical Detail: Probabilistic noise modeling [|16] manages
two independent networks, each of which is specialized to
predict the noise type and label transition probability. Be-
cause an EM-based approach with random initialization is
impractical for training the entire network, both networks
are trained with massive noisy labeled data after the pre-
training step with a small amount of clean data. Meanwhile,
masking [80] is a human-assisted approach to convey the
human cognition of invalid label transitions. Considering that
noisy labels are mainly from the interaction between humans
and tasks, the invalid transition investigated by humans was
leveraged to constrain the noise modeling process. Owing to
the difficulty in specifying the explicit constraint, a variant
of generative adversarial networks (GANSs) [84] was employed
in this study. Recently, the contrastive-additive noise network
[81] was proposed to adjust incorrectly estimated label tran-
sition probabilities by introducing a new concept of quality
embedding, which models the trustworthiness of noisy labels.
RoG [_83] builds a simple yet robust generative classifier on
top of any discriminative DNN pre-trained on noisy data.
Remark: Compared with the noise adaptation layer, this family
of methods significantly improves the robustness to more
diverse types of label noise, but it cannot be easily extended
to other architectures in general.

B. Robust Regularization

Regularization methods have been widely studied to im-
prove the generalizability of a learned model in the ma-
chine learning community [23]-[26]. By avoiding overfitting

in model training, the robustness to label noise improves
with widely-used regularization techniques such as data aug-
mentation 23|, weight decay (24|, dropout 25|, and batch
normalization [26]. These canonical regularization methods
operate well on moderately noisy data, but they alone do
not sufficiently improve the test accuracy; poor generalization
could be obtained when the noise is heavy [86]. Thus, more ad-
vanced regularization techniques have been recently proposed,
which further improved robustness to label noise when used
along with the canonical methods. The main advantage of this
family is its flexibility in collaborating with other directions
because it only requires simple modifications.

1) Explicit Regularization: The regularization can be an
explicit form that modifies the expected training loss, e.g.,
weight decay and dropout.

Technical Detail: Bilevel learning [|87]] uses a clean validation
dataset to regularize the overfitting of a model by intro-
ducing a bilevel optimization approach, which differs from
the conventional one in that its regularization constraint is
also an optimization problem. Overfitting is controlled by
adjusting the weights on each mini-batch and selecting their
values such that they minimize the error on the validation
dataset. Meanwhile, annotator confusion [86] assumes the
existence of multiple annotators and introduces a regularized
EM-based approach to model the label transition probability;
its regularizer enables the estimated transition probability to
converge to the true confusion matrix of the annotators. In
contrast, pre-training [88] empirically proves that fine-tuning
on a pre-trained model provides a significant improvement in
robustness compared with models trained from scratch; the
universal representations of pre-training prevent the model
parameters from being updated in the wrong direction by noisy
labels. PHuber [89] proposes a composite loss-based gradient
clipping, which is a variation of standard gradient clipping for
label noise robustness. Robust early-learning [90] classifies
critical parameters and non-critical parameters for fitting clean
and noise labels, respectively. Then, it penalizes only the non-
critical ones with a different update rule. ODLN [91] leverages
open-set auxiliary data and prevents the overfitting to noisy
labels by assigning random labels to the open-set examples,
which are uniformly sampled from the label set.

Remark: The explicit regularization often introduces sensitive
model-dependent hyperparameters or requires deeper architec-
tures to compensate for the reduced capacity, yet it can lead
to significant performance gain if they are optimally tuned.

2) Implicit Regularization: The regularization can also be
an implicit form that gives the effect of stochasticity, e.g., data
augmentation and mini-batch stochastic gradient descent.

Technical Detail: Adversarial training [92] enhances the noise
tolerance by encouraging the DNN to correctly classify both
original inputs and hostilely perturbed ones. Label smoothing
[93], [94]] estimates the marginalized effect of label noise
during training, thereby reducing overfitting by preventing
the DNN from assigning a full probability to noisy training
examples. Instead of the one-hot label, the noisy label is mixed
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with a uniform mixture over all possible labels,

y=(5(1),5(2),...,5(c)),

where §(i) = (1 —«a) - [§ = 1] + a/c and « € [0, 1]. )

Here, [-] is the Iverson bracket and « is the smoothing degree.
In contrast, mixup [95] regularizes the DNN to favor simple
linear behaviors in between training examples. First, the mini-
batch is constructed using virtual training examples, each of
which is formed by the linear interpolation of two noisy
training examples (z;,9;) and (x;,7;) obtained at random
from noisy training data D,

where A € [0,1] is the balance parameter between two
examples. Thus, mixup extends the training distribution by
updating the DNN for the constructed mini-batch.

Remark: The implicit regularization improves the generaliza-
tion capability of the DNN without reducing the represen-
tational capacity. It also does not introduce sensitive model-
dependent hyperparameters because it is applied to the training
data. However, the extended feature or label space slows down
the convergence of training.

C. Robust Loss Function

It was proven that a learned DNN with a suitably modified
loss function ¢’ for noisy data D can approach the Bayes
optimal classifier f*, which achieves the optimal Bayes risk
R* = Rop(f*) for clean data D. Let f = argminfe]_-ﬁe,j)(f)
be the learned classifier with the modified loss ¢ for the noisy
data, where R, 5(f) = E5[¢(f(2;0),7)]. If £ is L-Lipschitz
and classification-calibrated [50], with probability at least
1—4, there exists a non-decreasing function ¢, with (;(0) = 0
[39] such that

Approximation and Estimation Errors

Ro(f) =R" < G (minfefRe,D(f) —min;Rep(f) (7

+4L,RC(F) 42 log(l/é)/QID\),

L, is the Lipschitz constant of ¢’ and RC is the Rademacher
complexity of the hypothesis class F. Then, by the universal
approximation theorem [96], the Bayes optimal classifier f*
is guaranteed to be in the hypothesis class F with DNNs.
Based on this theoretical foundation, researchers have at-
tempted to design robust loss functions such that they achieve
a small risk for unseen clean data even when noisy labels exist
in the training data [[68], [97]-[|1O1].
Technical Detail: Initially, Manwani and Sastry [48] theo-
retically proved a sufficient condition for the loss function
such that risk minimization with that function becomes noise-
tolerant for binary classification. Subsequently, the sufficient
condition was extended for multi-class classification using
deep learning [68]]. Specifically, a loss function is defined to
be noise-tolerant for a c-class classification under symmetric
noise if the function satisfies the noise rate 7 < % and

c

D U(f(@;0),y=j) =C, Yz € X, Vf, ®)

j=1

where C' is a constant. This condition guarantees that the
classifier trained on noisy data has the same misclassification
probability as that trained on noise-free data under
the specified assumption. An extension for multi-label
classification was provided by Kumar et al. [102]. Moreover, if
Rp(f*) =0, then the function is also noise-tolerant under an
asymmetric noise, where f* is a global risk minimizer of Rp.
For the classification task, the categorical cross en-
tropy (CCE) loss is the most widely used loss function owing
to its fast convergence and high generalization capability.
However, in the presence of noisy labels, the robust MAE
[68]] showed that the mean absolute error (MAE) loss achieves
better generalization than the CCE loss because only the MAE
loss satisfies the aforementioned condition. A limitation of
the MAE loss is that its generalization performance degrades
significantly when complicated data are involved. Hence, the
generalized cross entropy (GCE) [97] was proposed to achieve
the advantages of both MAE and CCE losses; the GCE loss
is a more general class of noise-robust loss that encompasses
both of them. Amid et al. [103] extended the GCE loss by
introducing two temperatures based on the Tsallis divergence.
Bi-tempered loss [104] introduces a proper unbiased gener-
alization of the CE loss based on the Bregman divergence.
In addition, inspired by the symmetricity of the Kullback-
Leibler divergence, the symmetric cross entropy (SCE) [9§]]
was proposed by combining a noise tolerance term, namely
reverse cross entropy loss, with the standard CCE loss.
Meanwhile, the curriculum loss (CL) [99] is a surrogate
loss of the 0-1 loss function; it provides a tight upper bound
and can easily be extended to multi-class classification. The
active passive loss (APL) [105] is a combination of two types
of robust loss functions, an active loss that maximizes the
probability of belonging to the given class and a passive loss
that minimizes the probability of belonging to other classes.

Remark: The robustness of these methods is theoretically
supported well. However, they perform well only in simple
cases, when learning is easy or the number of classes is
small [106]. Moreover, the modification of the loss function
increases the training time for convergence [97].

D. Loss Adjustment

Loss adjustment is effective for reducing the negative impact
of noisy labels by adjusting the loss of all training examples
before updating the DNN [19]], [62], [69], [107]-[111]. The
methods associated with it can be categorized into three
groups depending on their adjustment philosophy: 1) loss
correction that estimates the noise transition matrix to correct
the forward or backward loss, 2) loss reweighting that imposes
different importance to each example for a weighted training
scheme, 3) label refurbishment that adjusts the loss using the
refurbished label obtained from a convex combination of noisy
and predicted labels, and 4) meta learning that automatically
infers the optimal rule for loss adjustment. Unlike the robust
loss function newly designed for robustness, this family of
methods aims to make the traditional optimization process
robust to label noise. Hence, in the middle of training, the
update rule is adjusted such that the negative impact of label
noise is minimized.
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In general, loss adjustment allows for a full exploration
of the training data by adjusting the loss of every example.
However, the error incurred by false correction is accumulated,
especially when the number of classes or the number of
mislabeled examples is large [112].

1) Loss Correction: Similar to the noise adaptation layer
presented in Section this approach modifies the loss
of each example by multiplying the estimated label transition
probability by the output of a specified DNN. The main
difference is that the learning of the transition probability is
decoupled from that of the model.

Technical Detail: Backward correction [62] initially approx-
imates the noise transition matrix using the softmax output
of the DNN trained without loss correction. Subsequently, it
retrains the DNN while correcting the original loss based on
the estimated matrix. The corrected loss of a example (z,7)
is computed by a linear combination of its loss values for
observable labels, whose coefficient is the inverse transition
matrix T~' to the observable label y € {1,...,c}, given
its target label y. Therefore, the backward correction 7 is
performed by multiplying the inverse transition matrix to the
prediction for all the observable labels,

T

Z(f(x;@),g):T_1<£(f(x;®),1),..,,£(f(:p;®),c)>, ©)

where T is the estimated noise transition matrix.
Conversely, forward correction [62] uses a linear com-
bination of a DNN’s softmax outputs before applying the
loss function. Hence, the forward correction 7is performed
by multiplying the estimated transition probability with the
softmax outputs during the forward propagation step,

(£ (@:0).9) = £((p@I); .. Blle) ) f(2:©) )

- (10)
=T f(z;0)",79).

Furthermore, gold loss correction [107]] assumes the avail-
ability of clean validation data or anchor points for loss
correction. Thus, a more accurate transition matrix is ob-
tained by using them as additional information, which further
improves the robustness of the loss correction. Recently, 7-
Revision [113] provides a solution that can infer the transition
matrix without anchor points, and Dual T [114] factorizes
the matrix into the product of two easy-to-estimate matrices
to avoid directly estimating the noisy class posterior. Be-
yond the instance-independent noise assumption, Zhang et al.
[115] introduced the instance-confidence embedding to model
instance-dependent noise in estimating the transition matrix.
On the other hand, Yang et al. [116] proposed to use the Bayes
optimal transition matrix estimated from the distilled examples
for the instance-dependent noise transition matrix.

Remark: The robustness of these approaches is highly depen-
dent on how precisely the transition matrix is estimated. To
acquire such a transition matrix, they require prior knowledge
in general, such as anchor points or clean validation data.

2) Loss Reweighting: Inspired by the concept of im-
portance reweighting [117]], loss reweighting aims to assign
smaller weights to the examples with false labels and greater

weights to those with true labels. Accordingly, the reweighted
loss on the mini-batch B; is used to update the DNN,

Reweighted Loss

> wlw pe(f(:0:),9) ), (1)

z,j)EB:

1
Ot11 =06 — UV(@
(

where w(z,§) is the weight of an example x with its noisy
label y. Hence, the examples with smaller weights do not
significantly affect the DNN learning.

Technical Detail: In importance reweighting [108]], the ratio
of two joint data distributions w(z,§) = Pp(z,9)/Pp(x,7)
determines the contribution of the loss of each noisy example.
An approximate solution to estimate the ratio was developed
because the two distributions are difficult to determine from
noisy data. Meanwhile, active bias [[109] emphasizes uncertain
examples with inconsistent label predictions by assigning their
prediction variances as the weights for training. DualGraph
[118] employs graph neural networks and reweights the ex-
amples according to the structural relations among labels,
eliminating the abnormal noise examples.

Remark: These approaches need to manually pre-specify
the weighting function as well as there additional hyper-
parameters, which is fairly hard to be applied in practice due
to the significant variation of appropriate weighting schemes
that rely on the noise type and training data.

3) Label Refurbishment: Refurbishing a noisy label gy
effectively prevents overfitting to false labels. Let ¢ be the
current prediction of the DNN f(xz; ©). Therefore, the refur-
bished label y"¢f“"® can be obtained by a convex combination
of the noisy label y and the DNN prediction g,

refurb

Yy :Oég—F(l—Oé):l), (12)

where « € [0, 1] is the label confidence of §. To mitigate the
damage of incorrect labeling, this approach backpropagates the
loss for the refurbished label instead of the noisy one, thereby
yielding substantial robustness to noisy labels.

Technical Detail: Bootstrapping [69] is the first method that
proposes the concept of label refurbishment to update the
target label of training examples. It develops a more coherent
network that improves its ability to evaluate the consistency
of noisy labels, with the label confidence « obtained via
cross-validation. Dynamic bootstrapping [110] dynamically
adjusts the confidence « of individual training examples. The
confidence « is obtained by fitting a two-component and one-
dimensional beta mixture model to the loss distribution of
all training examples. Self-adaptive training [119] applies the
exponential moving average to alleviate the instability issue of
using instantaneous prediction of the current DNN,

refurb

Yet1

refurb

_ refurb
= Yy

+ (1 — a)g, where y =g (13)

D2L [111]] trains a DNN using a dimensionality-driven
learning strategy to avoid overfitting to false labels. A simple
measure called local intrinsic dimensionality [120] is adopted
to evaluate the confidence « in considering that the overfitting
is exacerbated by dimensional expansion. Hence, refurbished

labels are generated to prevent the dimensionality of the
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representation subspace from expanding at a later stage of
training. Recently, SELFIE [19] introduces a novel concept
of refurbishable examples that can be corrected with high
precision. The key idea is to consider the example with
consistent label predictions as refurbishable because such
consistent predictions correspond to its true label with a
high probability owing to the learner’s perceptual consistency.
Accordingly, the labels of only refurbishable examples are
corrected to minimize the number of falsely corrected cases.
Similarly, AdaCorr |121]] selectively refurbishes the label of
noisy examples, but a theoretical error-bound is provided.
Alternatively, SEAL [122] averages the softmax output of a
DNN on each example over the whole training process, then
re-trains the DNN using the averaged soft labels.

Remark: Differently from loss correction and reweighting, all
the noisy labels are explicitly replaced with other expected
clean labels (or their combination). If there are not many con-
fusing classes in data, these methods work well by refurbishing
the noisy labels with high precision. In the opposite case, the
DNN could overfit to wrongly refurbished labels.

4) Meta Learning: In recent years, meta learning becomes
an important topic in the machine learning community and
is applied to improve noise robustness [123]-[125]]. The key
concept is learning to learn that performs learning at a level
higher than conventional learning, thus achieving data-agnostic
and noise type-agnostic rules for better practical use. It is
similar to loss reweighting and label refurbishment, but the
adjustment is automated in a meta learning manner.

Technical Detail: For the loss reweighting in Eq. (TI)), the
goal is to learn the weight function w(z,§). Specifically,
L2LWS [126] and CWS [127]] are unified neural architectures
composed of a target DNN and a meta-DNN. The meta-DNN
is trained on a small clean validation dataset; it then provides
guidance to evaluate the weight score for the target DNN.
Here, part of the two DNNs are shared and jointly trained
to benefit from each other. Automatic reweighting [100] is a
meta learning algorithm that learns the weights of training
examples based on their gradient directions. It includes a small
clean validation dataset into the training dataset and reweights
the backward loss of the mini-batch examples such that the
updated gradient minimizes the loss of this validation dataset.
Meta-weight-net [124] parameterizes the weighting function as
a multi-layer perceptron network with only one hidden layer.
A meta-objective is defined to update its parameters such that
they minimize the empirical risk of a small clean dataset.
At each iteration, the parameter of the target network is
guided by the weight function updated via the meta-objective.
Likewise, data coefficients (i.e., exemplar weights and true
labels) [128]] are estimated by meta-optimization with a small
clean set, which is only 0.2% of the entire training set, while
refurbishing the examples probably mislabeled.

For the label refurbishment in Eq. (1];2]} knowledge distil-
lation [129] adopts the technique of transferring knowledge
from one expert model to a target model. The prediction from
the expert DNN trained on small clean validation data is used
instead of the prediction ¢ from the target DNN. MLC [130]
updates the target model with corrected labels provided by a

meta model trained on clean validation data. The two models
are trained concurrently via a bi-level optimization.

Remark: By learning the update rule via meta learning, the
trained network easily adapts to various types of data and label
noise. Nevertheless, unbiased clean validation data is essential
to minimize the auxiliary objective, although it may not be
available in real-world data.

E. Sample Selection

To avoid any false corrections, many recent studies [[19],
(701, [99], [112], [131]-[137]] have adopted sample selection
that involves selecting true-labeled examples from a noisy
training dataset. In this case, the update equation in Eq. is
modified to render a DNN more robust for noisy labels. Let
C: C B; be the identified clean examples at time ¢. Then, the
DNN is updated only for the selected clean examples C;,

Oty1 = 6¢ — Tiv(é Z f(f(x§@t)>§))7

(z,9)€Ce

(14)

where the rest mini-batch examples, which are likely to be
false-labeled, are excluded to pursue robust learning.

The memorization nature of DNNs has been explored theo-
retically and empirically to identify clean examples from noisy
training data [138]]-[140]. Specifically, assuming clusterable
data where the clusters are located on the unit Euclidean ball,
Li et al. [61]] proved the distance from the initial weight W)
to the weight W, after ¢ iterations,

Wi = Wollp S (VK + (K2eo/ [|C])2),

where ||-| - is the Frobenius norm, K is the number of clusters,
and C is the set of cluster centers reaching all input examples
within their €y neighborhood. Eq. (I5) demonstrates that the
weights of DNNs start to stray far from the initial weights
when overfitting to corrupted labels, while they are still in the
vicinity of the initial weights at an early stage of training [30],
[61]. In the empirical studies [21], [[141]], the memorization
effect is also observed since DNNs tend to first learn simple
and generalized patterns and then gradually overfit to all noisy
patterns. As such, favoring small-loss training examples as the
clean ones are commonly employed to design robust training
methods [[112]], [131], [134], [[135], [142]].

Learning with sample selection is well motivated and works
well in general, but this approach suffers from accumulated
error caused by incorrect selection, especially when there are
many ambiguous classes in training data. Hence, recent ap-
proaches often leverage multiple DNNs to cooperate with one
another [112] or run multiple training rounds [[133]]. Moreover,
to benefit from even false-labeled examples, loss correction or
semi-supervised learning have been recently combined with
the sample selection strategy [[19], [142].

5)

1) Multi-network Learning: Collaborative learning and
co-training are widely used for the multi-network training.
Consequently, the sample selection process is guided by the
mentor network in the case of collaborative learning or the
peer network in the case of co-training.

Technical Detail: Initially, Decouple [70] proposes the decou-
pling of when to update from how to update. Hence, two
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Fig. 5. Loss distribution of training examples at the training accuracy of 50%
on noisy CIFAR-100. (This figure is adapted from Song et al. [[141].)

(a) Symmetric Noise 40%.

DNNs are maintained simultaneously and updated only the
examples selected based on a disagreement between the two
DNNs. Next, due to the memorization effect of DNNs, many
researchers have adopted another selection criterion, called
a small-loss trick, which treats a certain number of small-
loss training examples as true-labeled examples; many true-
labeled examples tend to exhibit smaller losses than false-
labeled examples, as illustrated in Figure 5(a). In MentorNet
[131], a pre-trained mentor network guides the training of a
student network in a collaborative learning manner. Based on
the small-loss trick, the mentor network provides the student
network with examples whose labels are likely to be correct.
Co-teaching |112]] and Co-teaching+ [|132] also maintain two
DNNs, but each DNN selects a certain number of small-
loss examples and feeds them to its peer DNN for further
training. Co-teaching+ further employs the disagreement strat-
egy of Decouple compared with Co-teaching. In contrast,
JoCoR |[143] reduces the diversity of two networks via co-
regularization, making predictions of the two networks closer.

Remark: The co-training methods help reduce the confirmation
bias [|112]], which is a hazard of favoring the examples selected
at the beginning of training, while the increase in the number
of learnable parameters makes their learning pipeline ineffi-
cient. In addition, the small-loss trick does not work well when
the loss distribution of true-labeled and false-labeled examples
largely overlap, as in the asymmetric noise in Figure [5|b).

2) Multi-round Learning: Without maintaining additional
DNNs, multi-round learning iteratively refines the selected set
of clean examples by repeating the training round. Thus, the
selected set keeps improved as the number of rounds increases.

Technical Detail: ITLM [134] iteratively minimizes the
trimmed loss by alternating between selecting true-labeled
examples at the current moment and retraining the DNN using
them. At each training round, only a fraction of small-loss
examples obtained in the current round are used to retrain the
DNN in the next round. INCV [135] randomly divides noisy
training data and then employs cross-validation to classify
true-labeled examples while removing large-loss examples at
each training round. Here, Co-teaching is adopted to train the
DNN on the identified examples in the final round of training.
Similarly, O2U-Net [144] repeats the whole training process
with the cyclical learning rate until enough loss statistics of
every examples are gathered. Next, the DNN is re-trained
from scratch only for the clean data where false-labeled
examples have been detected and removed based on statistics.

A number of variations have been proposed to achieve
high performance using iterative refinement only in a single
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Fig. 6. Procedures for semi-supervised learning under label noise.

training round. Beyond the small-loss trick, iterative detec-
tion [133] detects false-labeled examples by employing the
local outlier factor algorithm [[145]. With a Siamese network,
it gradually pulls away false-labeled examples from true-
labeled samples in the deep feature space. MORPH [137]]
introduces the concept of memorized examples which is used
to iteratively expand an initial safe set into a maximal safe
set via self-transitional learning. TopoFilter [140] utilizes the
spatial topological pattern of learned representations to detect
true-labeled examples, not relying on the prediction of the
noisy classifier. NGC [147] iteratively constructs the near-
est neighbor graph using latent representations and performs
geometry-based sample selection by aggregating information
from neighborhoods. Soft pesudo-labels are assigned to the
examples not selected.

Remark: The selected clean set keeps expanded and purified
with iterative refinement, mainly through multi-round learning.
As a side effect, the computational cost for training increases
linearly for the number of training rounds.

3) Hybrid Approach: An inherent limitation of sample
selection is to discard all the umselected training examples,
thus resulting in a partial exploration of training data. To
exploit all the noisy examples, researchers have attempted to
combine sample selection with other orthogonal ideas.

Technical Detail: The most prominent method in this direction
is combining a specific sample selection strategy with a spe-
cific semi-supervised learning model. As illustrated in Figure
@ selected examples are treated as labeled clean data, whereas
the remaining examples are treated as unlabeled. Subsequently,
semi-supervised learning is performed using the transformed
data. SELF [136] is combined with a semi-supervised learning
approach to progressively filter out false-labeled examples
from noisy data. By maintaining the running average model
called the mean-teacher [[148] as the backbone, it obtains the
self-ensemble predictions of all training examples and then
progressively removes examples whose ensemble predictions
do not agree with their annotated labels. This method further
leverages unsupervised loss from the examples not included in
the selected clean set. DivideMix [142] uses two-component
and one-dimensional Gaussian mixture models to transform
noisy data into labeled (clean) and unlabeled (noisy) sets.
Then, it applies a semi-supervised technique MixMatch [149].
Recently, RoCL [150] employs two-phase learning strategies:
supervised training on selected clean examples and then semi-
supervised learning on relabeled noisy examples with self-
supervision. For selection and relabeling, it computes the ex-
ponential moving average of the loss over training iterations.
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TABLE I

COMPARISON OF PROPOSED ROBUST DEEP LEARNING METHODS WITH RESPECT TO THE FOLLOWING SIX PROPERTIES: (P1) FLEXIBILITY, (P2) NO
PRE-TRAINING, (P3) FULL EXPLORATION, (P4) NO SUPERVISION, (P5) HEAVY NOISE, AND (P6) COMPLEX NOISE.

Category Method P1 P2 P6 Implementation
Webly Learning [75] X X Official (Caffe)!
o Noise Model [77) O X Unofficial (Keras)?
é Noisy Adaptation Dropout Noise Model |18 O X Official MATLAB)?
£ Layer S-model [19] @) X Official (Keras)”
S :F C-model [79] O O Official (Keras)?
< NLNN [76] @) X Unofficial (Chainer)’
-§ Probablistic Noise Model [16] X Official (Caffe)®
[~ Dedicated Masking [80] O Official (TensorFlow)”
Architecture Contrastive-Additive Noise Network [81] O N/A
RoG [85] ] X Official (PyTorch)®
Bilevel Learning (87| Official (TensorFlow)®
£ Annotator Confusion [86] Official (TensorFlow)™
g Explicit Pre-training [88] Official (PyTorch)!!
E Regularization PHuber [89] Unofficial (PyTorch)™>
Robust Early-learning [90] Official (PyTorch)™
e ODLN [91] Official (PyTorch)™
E Implici Adversarial Training [92]] Unofficial (PyTorch)!?
° mplicit . - 6
~ Regularization La.bel Smoothing 93] Unofﬁmal (PyTorch)
Mixup 95| Official (PyTorch)I
Robust MAE (68| N/A

Robust Loss Function

Riies|

Generalized Cross Entropy [97]

Symmetric Cross Entropy [98]]

Bi-tempered Loss [|104]

Curriculum Learning [99]

Unofficial (PyTorch)™®

Official (Keras)™

Official (TensorFlow)?®

N/A

Data Coefficients [128]]

Knowledge Distillation [129]

MLC [130]

Active Passive Loss [[103] Official (PyTorch)?!
Backward Correction [62] Official (Keras)?
Forward Correction [62] Official (Keras)?>
Loss Correction Gold Loss Correction 107 Official (PyTorch)>
T-revision [113] Official (PyTorch)?*
Dual T [114] N/A
Importance Reweighting [108]] Unofficial (PyTorch)®
Loss Reweigting Active Bias [109] Unofficial (TensorFlow)Z®
= DualGraph |118] N/A
E Bootstrapping [69] Unofficial (Keras)?’
3 E Dynamic Bootstrapping [110] Official (PyTorch)?®
2 Label Refurbishment Self-adaptive Training [[119] Official (PyTorch)?
o D2L [111] Official (Keras)>
S AdaCorr [121] Official (PyTorch)?!
SEAL [122] Official (PyTorch)>*
L2LWS [126] Unofficial (TensorFlow)3?
CWS [127] N/A
_ Automatic Reweighting [[106] Official (TensorFlow)>*
Meta Learning Meta-weight-net [124] Official (PyTorch)®

Official (TensorFlow)3°

N/A

Official (PyTorch)®’

Multi-Network

Decouple [70]

MentorNet [131]

Official (TensorFlow)38

Official (TensorFlow)>’

Sample Selection
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Learning Co-teaching |112] Official (PyTorch)*
Co-teaching+ [132] Official (PyTorch)™!
JoCoR [143] Official (PyTorch)®
ITLM [134] Official (GluonCV)*
INCV [135] Official (Keras)™
Multi-Round O2U-Net [144] Unofficial (PyTorch)®
Learning Iterative Detection [133| Official (Keras)*®
MORPH [137] N/A
TopoFilter [146] Official (PyTorch)*’
NGC [147] N/A
SELFIE (19] Official (TensorFlow)*
Hybrid Approach SEL.F “36] N/ A _
DivideMix [142] Official (PyTorch)®
RoCL [150] N/A
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Meanwhile, SELFIE [19] is a hybrid approach of sample
selection and loss correction. The loss of refurbishable exam-
ples is corrected (i.e., loss correction) and then used together
with that of small-loss examples (i.e., sample selection). Con-
sequently, more training examples are considered for updating
the DNN. The curriculum loss (CL) [99] is combined with the
robust loss function approach and used to extract the true-
labeled examples from noisy data.

Remark: Noise robustness is significantly improved by com-
bining with other techniques. However, the hyperparameters
introduced by these techniques render a DNN more suscep-
tible to changes in data and noise types, and an increase in
computational cost is inevitable

IV. METHODOLOGICAL COMPARISON

In this section, we compare the 62 deep learning methods
for overcoming noisy labels introduced in Section [[TI] with
respect to the following six properties. When selecting the
properties, we refer to the properties that are typically used
to compare the performance of robust deep learning methods
[19], [112]. To the best of our knowledge, this survey is the
first to provide a systematic comparison of robust training
methods. This comprehensive comparison will provide useful
insights that can enlighten new future directions.

« (P1) Flexibility: With the rapid evolution of deep learning
research, a number of new network architectures are con-
stantly emerging and becoming available. Hence, the ability
to support any type of architecture is important. “Flexibility”
ensures that the proposed method can quickly adapt to the
state-of-the-art architecture.

e (P2) No Pre-training: A typical approach to improve noise
robustness is to use a pre-trained network; however, this
incurs an additional computational cost to the learning
process. “No Pre-training” ensures that the proposed method
can be trained from scratch without any pre-training.

Uhttps://github.com/endernewton/webly-supervised
Zhttps://github.com/delchiaro/training-cnn-noisy-labels-keras
3https://github.com/ijindal/Noisy_Dropout_regularization
4https://github.com/udibr/noisy_labels
Shttps://github.com/Ryo-Ito/Noisy- Labels-Neural-Network
Shttps://github.com/Cysu/noisy_label
"https://github.com/bhanML/Masking
8https://github.com/pokaxpoka/RoGNoisyLabel
9https://github.com/sjenni/DeepBilevel
10https://rt416.github.io/pdf/trace_codes.pdf
github.com/hendrycks/pre-training
Zhttps://github.com/dmizr/phuber
Bhttps://github.com/xiaoboxia/CDR
https://github.com/hongxin001/ODNL?ref=pythonrepo.com
Bhttps://https://github.com/sarathknv/adversarial-examples-pytorch
16https://github.com/CoinCheung/pytorch-loss
Thttps://github.com/facebookresearch/mixup-cifar10
18https://github.com/AlanChou/Truncated-Loss
https://github.com/YisenWang/symmetric_cross_entropy
20https://github.com/google/bi-tempered-loss
2lhttps://github.com/HanxunH/Active-Passive-Losses
22https://github.com/giorgiop/loss-correction
Zhttps://github.com/mmazeika/glc
24https://github.com/xiaoboxia/T-Revision
Zhttps://github.com/xiaoboxia/Classification-with-noisy-labels

o (P3) Full Exploration: Excluding unreliable examples from
the update is an effective method for robust deep learning;
however, it eliminates hard but useful training examples as
well. “Full Exploration” ensures that the proposed methods
can use all training examples without severe overfitting to
false-labeled examples by adjusting their training losses or
applying semi-supervised learning.

e (P4)No Supervision: Learning with supervision, such as
a clean validation set or a known noise rate, is often
impractical because they are difficult to obtain. Hence, such
supervision had better be avoided to increase practicality
in real-world scenarios. “No Supervision” ensures that the
proposed methods can be trained without any supervision.

o (P5)Heavy Noise: In real-world noisy data, the noise rate
can vary from light to heavy. Hence, learning methods
should achieve consistent noise robustness with respect to
the noise rate. “Heavy Noise” ensures that the proposed
methods can combat even the heavy noise.

o (P6) Complex Noise: The type of label noise significantly
affects the performance of a learning method. To manage
real-world noisy data, diverse types of label noise should
be considered when designing a robust training method.
“Complex Noise” ensures that the proposed method can
combat even the complex label noise.

Table [[I] shows a comparison of all robust deep learning
methods, which are grouped according to the most appropriate
category. In the first row, the aforementioned six properties
are labeled as P1-P6, and the availability of open-source
implementation is added in the last column. For each property,
we assign “()” if it is completely supported, “X” if it is not
supported, and “A” if it is supported but not completely. More
specifically, “A” is assigned to P1 if the method can be flexible
but requires additional effort, to P5 if the method can combat
only moderate label noise, and to P6 if the method does not
make a strict assumption about the noise type but without
explicitly modeling instance-dependent noise. Thus, for P6,

26https://github.com/songhwanjun/ActiveBias
2Thttps://github.com/dr-darryl-wright/Noisy- Labels- with- Bootstrapping
28https://github.com/Paul Albert3 1/LabelNoiseCorrection
2https://github.com/LayneH/self-adaptive- training
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TABLE III
COMPARISON OF ROBUST DEEP LEARNING CATEGORIES FOR OVERCOMING NOISY LABELS.
Categor P1 P2 P3 P4 Ps P6
gory Flexibility No Pre-train | Full Exploration | No Supervision | Heavy Noise | Complex Noise
Robust Architecture | Noise Adaptation Layer A O O O X X
(§III—A) Dedicated Architecture X A O A A O
Robust Regularization| Implicit Regularization O O O O A A
(§III-B) Explicit Regularization O O O O X A
Robust Loss Function (§I1-C) \ O \ O \ O \ O \ X \ X
Loss Correction O X O X X X
Loss Adjustment Loss Reweighting O O O @) X A
(§UI-D) Label Refurbishment O O O O A A
Meta Learning O O O X A A
) . Multi-Network Learning O O X X O A
Sdm;()ctlon Multi-Round Learning O O X O O A
1 Hybrid Approach O O O O O A

the method marked with “X” only deals with the instance-
independent noise, while the method marked with “()” deals
with both instance-independent and -dependent noises. The
remaining properties (i.e., P2, P3, and P4) are only assigned

” or “X”. Regarding the implementation, we assign “N/A”
if a publicly available source code is not available.

No existing method supports all the properties. Each method
achieves noise robustness by supporting a different combina-
tion of the properties. The supported properties are similar
among the methods of the same (sub-)category because those
methods share the same methodological philosophy; how-
ever, they differ significantly depending on the (sub-)category.
Therefore, we investigate the properties generally supported in
each (sub-)category and summarize them in Table Here,
the property of a (sub-)category is marked as the majority of
the belonging methods. If no clear trend is observed among
those methods, then the property is marked “A”.

V. NOISE RATE ESTIMATION

The estimation of a noise rate is an imperative part of
utilizing robust methods for better practical use, especially
with the approaches belonging to the loss adjustment and
sample selection. The estimated noise rate is widely used to
reweight examples for a robust classifier [97]], [114]], [117] or
to determine how many examples should be selected as clean
ones [19], [112], [[135]. However, detailed analysis has yet to
be performed properly, though many robust approaches highly
rely on the accuracy of noise rate estimation. The noise rate
can be estimated by exploiting the inferred noise transition
matrix [113]], [114], [151]], the Gaussian mixture model [110],
[137], [[152], or the cross-validation [19], [[135]].

A. Noise Transition Matrix

The noise transition matrix has been used to build a sta-
tistically consistent robust classifier because it represents the
class posterior probabilities for noisy and clean data, as in
Eq. (3). The first method to estimate the noise rate is exploiting
this noise transition matrix, which can be inferred or trained
accurately by using perfectly clean examples, i.e., anchor
points [[117], [153]]; an example x with its label ¢ is defined
as an anchor point if p(y = i|z) = 1 and p(y = k|z) = 0 for

k # i. Thus, let A; be the set of anchor points with label 4, then
the element of the noise transition matrix 7;; is estimated by

. 1 °
T = 1 >N (i =jly = k)ply = klz)
v z€A; k=1 (16)
1
= y = 1’7(—) s
A Z p(§ = jlz; ©)

rEA;
where p(j = j|x;©) is the noisy class posterior probability
of the classifier trained on noisy training data for the anchor
point x (see the detailed proof in [[107], [113]], [[114]]). Next,
based on the inferred noise transition matrix, the noise rate
of a balanced training data is obtained by averaging the label
transition probabilities between classes,

1 c c 1 c c .
F=-d > pa=ily=i=2) > Ty
i=1 j#i i=1 j#i

However, since the anchor points are typically unknown in
real-world data, they are identified from noisy training data
by either theoretical derivations [[117] or heuristics [[62f]. In
addition, there have been recent efforts to learn the noise
transition matrix without anchor points. T-Revision [[113]] ini-
tializes a transition matrix by exploiting the examples with
high noisy class posterior probabilities and then refines the
matrix by adding a slack variable. Dual-T [|114] introduces
an intermediate class that factorizes the transition matrix into
two easy-to-estimate matrices for better accuracy. VolMinNet
[151] realizes an end-to-end framework and relaxes the need
for anchor points under the sufficiently scattered assumption.

B. Gaussian Mixture Model (GMM)

The second method is exploiting a one-dimensional and
two-component GMM to model the loss distribution of
true-labeled and false-labeled examples [110], [152]. As
shown in Figure since the loss distribution tends to be
bi-modal, the two Gaussian components are fitted to the
training loss by using the EM algorithm; the probability of
an example being a false-labeled one is obtained through its
posterior probability. Hence, the noise rate is estimated at
each epoch t by computing the expectation of the posterior
probability for all training examples,

T=Eqgep {p(g |€(£(:04),9)) }’

a7)

(18)



IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

TABLE IV
SUMMARY OF PUBLICLY AVAILABLE DATASETS USED FOR STUDYING LABEL NOISE.

Dataset # Training # Validation # Testing # Classes Noise Rate (%)
MNIST [154[] 60K N/A 10K 10 ~ 0.0
Fashion-MNIST [155]] 60K N/A 10K 10 ~ 0.0
CIFAR-10 [156[ ] 50K N/A 0K 10 ~ 0.0

Clean Data " CIFAR-100 [156] ] 50K N/A 0K 100 ~ 0.0
SVHN (157 73K N/A 26K 10 ~ 0.0
Tiny-ImageNet [158"] 100K T0K 10K 200 ~ 0.0
ImageNet [1]] 1.3M 50K 50K 1000 ~ 0.0
ANIMAL-10N [19f] 50K N/A 5K 10 ~ 8.0
CIFAR-10N [159P7 50K N/A 10K 10 ~ 9.0/18.0/40.2

Real-world CIFAR-100N [159] 50K N/A T0K 100 ~ 25.6/40.2

Noisy Data  ["Fo0d-101N [18] 310K 5K 25K 101 ~ 184
ClothingIM [16[] M 14K 10K 14 ~ 385
WebVision [17] 2.4M 50K 50K 1000 ~ 20.0

True-labeled (Ground Truth)
True-labeled (GMM)

False-labeled (Ground Truth)
- - - False-labeled (GMM)

0.021 0.036
> 0.014 J 0.024
g /N pld . P@l®
2 0.007 v Y 0.012 N4
0.000 0000 L=
0 90 180 270 360 0 40 80 120 160

Training Loss (AUL)

(a) Symmetric Noise.

Training Loss (AUL)
(b) Asymmetric Noise.

Fig. 7. Training loss distributions of true-labeled and false-labeled examples
using the ground-truth label and the GMM on CIFAR-100 data with two
synthetic noises of 40%.

where ¢ is the Gaussian component with a larger loss.
However, Pleiss et al. [152] recently pointed out that the
training loss becomes less separable by the GMM as the
training progresses, and thus proposed the area under the
loss (AUL) curve, which is the sum of the example’s training
losses obtained from all previous training epochs. Even after
the loss signal decays in later epochs, the distributions remain
separable. Therefore, the noise rate is finally estimated by

? =B gen | p(0] AUL(x. 7)) |,
: (19)
where AUL(x, ) = Zg(f(x; 0.),7)-
=1

C. Cross Validation

The third method is estimating the noise rate by applying
cross validation, which typically requires clean validation data
[19], [112], [[132]. However, such clean validation data is hard
to acquire in real-world applications. Thus, Chen et al. [[135]]
leveraged two randomly divided noisy training datasets for
cross validation. Under the assumption that the two datasets
share exactly the same noise transition matrix, the noise rate
quantifies the test accuracy of DNNs that are respectively
trained and tested on the two divided sets,

(1 —7)2+72/(c—1) if symmetric

(1—-7)2 472 20)

Test Accuracy = { if asymmetric

Therefore, the noise rate is estimated from the test accuracy
obtained by cross validation.

VI. EXPERIMENTAL DESIGN

This section describes the typically used experimental de-
sign for comparing robust training methods in the presence
of label noise. We introduce publicly available image datasets
and then describe widely-used evaluation metrics.

A. Publicly Available Datasets

To validate the robustness of the proposed algorithms, an
image classification task was widely conducted on numerous
image benchmark datasets. Table summarizes popularly-
used public benchmark datasets, which are classified into two
categories: /) a “clean dataset” that consists of mostly true-
labeled examples annotated by human experts and 2) a “real-
world noisy dataset” that comprises real-world noisy examples
with varying numbers of false labels.

1) Clean Datasets: According to the literature [[19], [[133]],
[142], seven clean datasets are widely used: MNISTPY] classi-
fication of handwritten digits [154]; Fashion-MNISTP'| classi-
fication of various clothing [155]; CIFAR—](FE] and CIFAR-
10072, classification of a subset of 80 million categorical
images [156]; SVH classification of house numbers in
Google Street view images [157]; ImageNe and Tiny-
ImageNetF_g], image database organized according to the Word-
Net hierarchy and its small subset [1]], [158]]. Because the
labels in these datasets are almost all true-labeled, their labels
in the training data should be artificially corrupted for the
evaluation of synthetic noises, namely symmetric noise and
asymmetric noise.

2) Real-world Noisy Datasets: Unlike the clean datasets,
real-world noisy datasets inherently contain many mislabeled
examples annotated by non-experts. According to the literature
[16]-[19]], six real-world noisy datasets are widely used:

SOhttp://yann.lecun.com/exdb/mnist
SThttps://github.com/zalandoresearch/fashion-mnist
S2https://www.cs.toronto.edu/~kriz/cifar.html
S3http://ufldl.stanford.edu/housenumbers
S4http://www.image-net.org
SShttps://www.kaggle.com/c/tiny-imagenet
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ANIMAL-10N*® real-world noisy data of human-labeled
online images for 10 confusing animals [19]; CIFAR—]O
and CIFAR-100N>7, variations of CIFAR-10 and CIFAR-100
with human-annotated real-world noisy labels collected from
Amazon’s Mechanical Turk [[159]]. They provide human labels
with different noise rates, as shown in Table Food-lOlNF_s’rl,
real-world noisy data of crawled food images annotated by
their search keywords in the Food-101 taxonomy [18], [160];
ClothinglMFj real-world noisy data of large-scale crawled
clothing images from several online shopping websites
[16]; WebVisioxF_G], real-world noisy data of large-scale web
images crawled from Flickr and Google Images search [17].
To support sophisticated evaluation, most real-world noisy
datasets contain their own clean validation set and provide
the estimated noise rate of their training set.

B. Evaluation Metrics

A typical metric to assess the robustness of a particular
method is the prediction accuracy for unbiased and clean
examples that are not used in training. The prediction accuracy
degrades significantly if the DNN overfits to false-labeled ex-
amples [22]]. Hence, fest accuracy has generally been adopted
for evaluation [13]. For a test set 7 = {(:vl,yi)}y:—‘1 let g
be the predicted label of the i-th example in 7. Subsequently,
the test accuracy is formalized by

{(@i,vi) €T : 9 = yi}|

|| '
If the test data are not available, validation accuracy can be
used by replacing 7 in Eq.(2I) with validation data V =
{(z4, yl)}p;ll as an alternative,

{(zi,y:) €V i = yi}
VI '
Furthermore, if the specified method belongs to the “sample
selection” category, label precision and label recall [112],
[135] can be used as the metrics,
H(zi,9:) € St : §i = yi}|
|5t ’
(i, 9:) € St 2 90 = yi}|
(@i, 9:) € By = i = yi}l
where S; is the set of selected clean examples in a mini-batch
B;. The two metrics are performance indicators for the exam-
ples selected from the mini-batch as true-labeled ones [112].
Meanwhile, if the specified method belongs to the “label
refurbishment” category, correction error [|19]] can be used as
an indicator of how many examples are incorrectly refurbished,

Test Accuracy =

1)

Validation Accuracy = 22)

Label Precision =

(23)
Label Recall =

refurb

[ €R : angmax(u ") £y
IR|

where R is the set of examples whose labels are refurbished

by Eq. and y:ef urb is the refurbished label of the i-th

examples in R.

Correction Error =

SOhttps://dm.Kkaist.ac.kr/datasets/animal- 10n
SThttp:/noisylabels.com/
S8https://kuanghuei.github.io/Food- 101N
https://www.floydhub.com/lukasmyth/datasets/clothing I m
Ohttps://data.vision.ee.ethz.ch/cvl/webvision/download.html

VII. FUTURE RESEARCH DIRECTIONS

With recent efforts in the machine learning community, the
robustness of DNNs becomes evolving in several directions.
Thus, the existing approaches covered in our survey face a
variety of future challenges. This section provides discussion
for future research that can facilitate and envision the
development of deep learning in the label noise area.

A. Instance-dependent Label Noise

Existing theoretical and empirical studies for robust loss
function and loss correction are largely built upon the instance-
independent noise assumption that the label noise is indepen-
dent of input features [[76], [77], [113], [114]]. However, this
assumption may not be a good approximation of the real-world
label noise. In particular, Chen et al. [[122] conducted a theo-
retical hypothesis testinég_r] using a popular real-world dataset,
ClothinglM, and proved that its label noise is statistically
different from the instance-independent noise. This testing
confirms that the label noise should depend on the instance.

Conversely, most methods for the other direction (espe-
cially, sample selection) work well even under the instance-
dependent label noise in general since they do not rely on the
assumption. Nevertheless, Song et al. [141] pointed out that
their performance could considerably worsen in the instance-
dependent (or real-world) noise compared to symmetric noise
due to the confusion between true-labeled and false-labeled ex-
amples. The loss distribution of true-labeled examples heavily
overlaps that of false-labeled samples in the asymmetric noise,
which is similar to the real-world noise, in Figure Ekb). Thus,
identifying clean examples becomes more challenging when
dealing with the instance-dependent label noise.

Beyond the instance-independent label noise, there have
been a few recent studies for the instance-dependent label
noise. Mostly, they only focus on a binary classification task
[66], [161] or a restricted small-scale machine learning model
such as logistic regression [63]]. Therefore, learning with
the instance-dependent label noise is an important topic that
deserves more research attention.

B. Multi-label Data with Label Noise

Most of the existing methods are applicable only for a
single-label multi-class classification problem, where each
data example is assumed to have only one true label. However,
in the case of multi-label learning, each data example can be
associated with a set of multiple true class labels. In music
categorization, each music can belong to multiple categories
[162]. In semantic scene classification, each scene may belong
to multiple scene classes [163]]. Thus, contrary to the single-
label setup, the multi-label classifier aims to predict a set
of target objects simultaneously. In this setup, a multi-label
dataset of millions of examples are reported to contain over
26.6% false-positive labels as well as a significant number of
omitted labels [164].

Even worse, the difference in occurrence between classes
makes this problem more challenging; some minor class labels

%Tn Clothing1M, the result showed that the instance-independent noise
happens with probability lower than 1021250, which is statistically impos-
sible.
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occur less in training data than other major class labels. Con-
sidering such aspects that can arise in multi-label classification,
the simple extension of existing methods may not learn the
proper correlations among multiple labels. Therefore, learning
from noisy labels with multi-label data is another important
topic for future research. We refer the readers to a recent study
[165] that discusses the evaluation of multi-label classifiers
trained with noisy labels.

C. Class Imbalance Data with Label Noise

The class imbalance in training data is commonly observed,
where a few classes account for most of the data. Especially
when working with large data in many real-world applications,
this problem becomes more severe and is often associated
with the problem of noisy labels [[166]. Nevertheless, to ease
the label noise problem, it is commonly assumed that training
examples are equally distributed over all class labels in the
training data. This assumption is quite strong when collecting
large-scale data, and thus we need to consider a more realistic
scenario in which the two problems coexist.

Most of the existing robust methods may not work well with
the class imbalance, especially when they rely on the learning
dynamics of DNNs, e.g., the small-loss trick or memorization
effect. Under the existence of the class imbalance, the training
model converges to major classes faster than minor classes
such that most examples in the major class exhibit small
losses (i.e., early memorization). That is, there is a risk of
discarding most examples in the minor class. Furthermore,
in terms of example importance, high-loss examples are com-
monly favored for the class imbalance problem [124], while
small-loss examples are favored for the label noise problem.
This conceptual contradiction hinders the applicability of the
existing methods that neglect the class imbalance. Therefore,
these two problems should be considered simultaneously to
deal with more general situations.

D. Robust and Fair Training

Machine learning classifiers can perpetuate and amplify the
existing systemic injustices in society [[167]. Hence, fairness
is becoming another important topic. Traditionally, robust
training and fair training have been studied by separate com-
munities; robust training with noisy labels has mostly focused
on combating label noise without regarding data bias [13]],
[30], whereas fair training has focused on dealing with data
bias, not necessarily noise [[167]], [[168]]. However, noisy labels
and data bias, in fact, coexist in real-world data. Satisfying
both robustness and fairness is more realistic but challenging
because the bias in data is pertinent to label noise.

In general, many fairness criteria are group-based, where
a target metric is equalized or enforced over subpopulations
in the data, also known as protected groups such as race
or gender [167]. Accordingly, the goal of fair training is
building a model that satisfies such fairness criteria for the
true protected groups. However, if the noisy protection group
is involved, such fairness criteria cannot be directly applied.
Recently, mostly after 2020, a few pioneering studies have
emerged to consider both robustness and fairness objectives

at the same time under the binary classification setting [[169],
[170]. Therefore, more research attention is needed for the
convergence of robust training and fair training.

E. Connection with Input Perturbation

There has been a lot of research on the robustness of
deep learning under input perturbation, mainly in the field
of adversarial training where the input feature is maliciously
perturbed to distort the output of the DNN [34], [36]]. Although
learning with noisy labels and learning with noisy inputs
have been regarded as separate research fields, their goals
are similar in that they learn noise-robust representations from
noisy data. Based on this common point of view, a few recent
studies have investigated the interaction of adversarial training
with noisy labels [171]-[173].

Interestingly, it was turned out that adversarial training
makes DNNs robust to label noise [[171]]. Based on this finding,
Damodaran et al. [[172] proposed a new regularization term,
called Wasserstein adversarial regularization, to address the
problem of learning with noisy labels. Zhu et al. [[173] pro-
posed to use the number of projected gradient descent steps as
a new criterion for sample selection such that clean examples
are filtered out from noisy data. These approaches are regarded
as a new perspective on label noise compared to traditional
work. Therefore, understanding the connection between input
perturbation and label noise could be another future topic for
better representation learning toward robustness.

F. Efficient Learning Pipeline

The efficiency of the learning pipeline is another important
aspect to design deep learning approaches. However, for robust
deep learning, most studies have neglected the efficiency of the
algorithm because their main goal is to improve the robustness
to label noise. For example, maintaining multiple DNNs or
training a DNN in multiple rounds is frequently used, but
these approaches significantly degrade the efficiency of the
learning pipeline. On ther other hand, the need for more
efficient algorithms is increasing owing to the rapid increase
in the amount of available data [|174].

According to our literature survey, most work did not even
report the efficiency (or time complexity) of their approaches.
However, it is evident that saving the training time is helpful
under the restricted budget for computation. Therefore, en-
hancing the efficiency will significantly increase the usability
of robust deep learning in the big data era.

VIII. CONCLUSION

DNNs easily overfit to false labels owing to their high
capacity in totally memorizing all noisy training samples. This
overfitting issue still remains even with various conventional
regularization techniques, such as dropout and batch normal-
ization, thereby significantly decreasing their generalization
performance. Even worse, in real-world applications, the dif-
ficulty in labeling renders the overfitting issue more severe.
Therefore, learning from noisy labels has recently become one
of the most active research topics.
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In this survey, we presented a comprehensive understanding
of modern deep learning methods to address the negative
consequences of learning from noisy labels. All the methods
were grouped into five categories according to their underlying
strategies and described along with their methodological weak-
nesses. Furthermore, a systematic comparison was conducted
using six popular properties used for evaluation in the recent
literature. According to the comparison results, there is no
ideal method that supports all the required properties; the
supported properties varied depending on the category to
which each method belonged. Several experimental guidelines
were also discussed, including noise rate estimation, publicly
available datasets, and evaluation metrics. Finally, we provided
insights and directions for future research in this domain.
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