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Kernel Proposal Network for Arbitrary Shape
Text Detection
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Abstract—Segmentation-based methods have achieved great
success for arbitrary shape text detection. However, separating
neighboring text instances is still one of the most challenging
problems due to the complexity of texts in scene images. In
this paper, we propose an innovative Kernel Proposal Network
(dubbed KPN) for arbitrary shape text detection. The proposed
KPN can separate neighboring text instances by classifying
different texts into instance-independent feature maps, mean-
while avoiding the complex aggregation process existing in
segmentation-based arbitrary shape text detection methods. To
be concrete, our KPN will predict a Gaussian center map for each
text image, which will be used to extract a series of candidate
kernel proposals (i.e., dynamic convolution kernel) from the em-
bedding feature maps according to their corresponding keypoint
positions. To enforce the independence between kernel proposals,
we propose a novel orthogonal learning loss (OLL) via orthogonal
constraints. Specifically, our kernel proposals contain important
self-information learned by network and location information by
position embedding. Finally, kernel proposals will individually
convolve all embedding feature maps for generating individual
embedded maps of text instances. In this way, our KPN can
effectively separate neighboring text instances and improve the
robustness against unclear boundaries. To our knowledge, our
work is the first to introduce the dynamic convolution kernel
strategy to efficiently and effectively tackle the adhesion problem
of neighboring text instances in text detection. Experimental
results on challenging datasets verify the impressive performance
and efficiency of our method. The code and model are available
at https://github.com/GXYM/KPN.

Index Terms—Arbitrary shape text detection, kernel proposal,
dynamic convolution kernel, deep neural network.

I. INTRODUCTION

SCENE text detection is a fundamental and critical task in
computer vision because it is a key step in various text-

related applications, including translation, text-visual question
answering, text recognition, text mining. With the rapid de-
velopment of deep learning-based object detection [1], [2], [3]
and segmentation [4], [5], scene text detection has witnessed
great progress [6], [7], [8]. Arbitrary shape scene text detec-
tion, as one of the most challenging tasks in text detection,
has attracted ever-increasing interest in both research and
industrial communities. Except for the challenges existing in
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(a) FCN-based (b) KPN

Fig. 1. Comparison with FCN-based methods. (a) shows FCN-based methods
suffer from covering adjacent instances (red contour in the bottom image). (b)
demonstrates that our KPN can successfully disperse texts on feature maps,
thus generating separated yet accurate masks for text instances.

the general scene text detection tasks, arbitrary shape text
detection should address additional challenging problems, such
as varied scales, curved and arbitrary shapes.

Recently, segmentation-based methods [9], [10], [11] have
achieved promising performance in detecting arbitrary shape
text. Benefiting from the adaptability of pixel-level pre-
diction (e.g., pixel-wise text/non-text classification mask),
segmentation-based methods [12], [10], [13] based on fully
convolutional neural networks (FCNs) can easily adapt to
irregular texts. However, segmentation-based text detection
methods always suffer from separating neighboring text in-
stances in complex scene images, as shown at the top of Fig.
1(a), which may be caused by inaccurate annotations or similar
appearances between neighboring text instances. To solve this
problem, many segmentation-based methods [9], [10], [11],
[13], [14] adopt complicated post-processing operations to
group and separate text instances based on their predicted
masks. PSENet [13] adopts kernels with different scales for
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each text instance and gradually expands the minimal scale
kernel to reconstruct individual text instances. The other
methods [9], [10], [11], [14] try to learn pixel-pair embedding
vectors for clustering text pixels into different text instances
during post-processing. Although the adhesion problem can
be alleviated to some extent in [9], [10], [11], [13], [14], they
all suffer from the formidable computational cost in complex
post-processing. To improve model efficiency, DB [12] aban-
dons complex post-processing and shrinks annotated bound-
aries with Vatti clipping algorithm [15] to obtain probability
maps. Then, the probability maps will be used to restore
separated boundaries for text instances by the inverse transfor-
mation of the Vatti clipping algorithm. Unfortunately, the text
boundaries generated by fixed scaling rules in DB [12] tend
to be inaccurate on text with different scales. Besides, some
Mask R-CNN [16] based methods [17], [18], [19] firstly detect
bounding rectangles of candidate texts, followed by pixel-
wisely segmenting text instances in their corresponding boxes.
Although Mask R-CNN based methods can alleviate the false
detection of covering adjacent instances, their performance
greatly relies on the extracted bounding boxes’ quality and
computational-cost RoI operation.

In this paper, we propose an innovative Kernel Proposal
Network (dubbed KPN) for arbitrary shape text detection.
The proposed KPN can separate neighboring text instances
by classifying different texts into instance-independent feature
maps, meanwhile avoiding the complex aggregation process
existing in segmentation-based arbitrary shape text detection
methods. To be concrete, our KPN will predict a Gaussian
center map for each text image, which will be used to extract a
series of candidate kernel proposals (i.e., dynamic convolution
kernel) from the embedding feature maps according to their
corresponding keypoint positions. However, the premise for
accurately separating neighboring text is that these kernel
proposals should be independent. To enforce the independence
between kernel proposals, we propose a novel orthogonal
learning loss (OLL) via orthogonal constraints. Specifically,
our kernel proposals mainly contain important self-information
learned by the network and position information by position
embedding, instead of the shared information of all texts. After
removing the noise kernel proposals via pre-defined rules,
the remaining ones will individually convolve all embedding
feature maps for classifying individual texts into instance-
independent maps. In this way, our KPN can effectively
separate neighboring text instances and improve the robustness
against unclear boundaries. To our knowledge, our work is
the first to introduce the dynamic convolution kernel strategy
to efficiently and effectively tackle the adhesion problem of
neighboring text instances in text detection.

In summary, our main contributions are four-fold:

• We develop a post-processing-free segmentation-based
arbitrary shape text detection framework that cleverly
avoids computational-cost post-processing for achieving
effectiveness and efficiency.

• We propose a novel dynamic convolution kernel strategy
for text detection in which kernel proposals contain
important self-information and position information, re-

sulting in the effectiveness of separating neighboring texts
and improving the robustness against tiny intervals or
unclear boundaries.

• We propose a novel orthogonal learning loss (OLL)
that directly enforces the independence between kernel
proposals via orthogonal constraints.

• Experiments conducted on publicly available datasets
demonstrate the effectiveness and efficiency of the pro-
posed method.

The rest of the paper is organized as follows: Section II
overviews the related work. Section III elaborates our method.
In Section IV, we demonstrate experimental results on several
datasets. Finally, we conclude our work in Section V.

II. RELATED WORK

A. Regression-based Methods

Regression-based methods generally predict text boxes by
regressing offsets of bounding rectangles based on pre-defined
anchors or original pixels, which can be roughly divided
into two categories: anchor-based methods and anchor-free
methods. Most of the Anchor-based methods try to design
or learn appropriate anchors for accurately regressing text
boxes. Both TextBoxes [20] and TextBoxes++ [21] adopt a
series of anchors with different aspect ratios for covering
texts with varied lengths. Specifically, TextBoxes++ regresses
offsets of quadrilateral four points by pre-defined anchors for
adapting to arbitrarily oriented texts. RRPN [7] adopts rotated
anchors (3 scales, 3 ratios, and 6 angles) and Rotated RoI
pooling (RRoI pooling) for arbitrarily oriented text detection.
Anchor-free methods [6], [22] try to regress texts without
pre-defined anchors for improving model adaptability. As a
classical anchor-free method, EAST [6] adopts an FCN [4]
branch for classification, and a regression branch for directly
regressing bounding quadrilateral via IoU loss [23]. HAM
[24] proposes a Hidden Anchor Mechanism to integrate the
advantages of the anchor-based method into the anchor-free
method. However, the regression distance and angle in most
regression-based methods are strictly confined to quadrilateral
text, making it challenging to handle arbitrary shapes.

B. Connected Component-based Methods

Component-based detection [25], [26] is also an important
direction in the field of object detection. In scene text detec-
tion, Connected Component-based (CC-based) methods [26],
[27], [28], [29], [30], [8] usually detect individual text parts or
characters firstly, followed by post-processing of link or group
for generating final texts. CTPN [26] modifies the framework
of Faster R-CNN [1] to extract horizontal text components
of fixed width for connecting dense text components and
generating horizontal text lines. SegLink [27] decomposes
each text into two detectable elements, i.e., segment and
link, where a link indicates that a pair of adjacent segments
belong to the same text. CRAFT [29] detects text regions
by exploring affinities between characters. TextDragon [30]
first detects local bounding boxes of texts and then groups
them into different text instances via their geometric relations.
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Zhang et al. [8] adopted a graph convolution neural net-
work (GCN) to learn and infer linking relationships between
different text components for grouping them into final text
instances. Although CC-based methods can learn a flexible
representation for adapting to arbitrary shape text, the complex
post-processing for grouping text components is always time-
consuming.

C. Contour-based Methods

Contour-based [31], [32], [33], [34], [35], [36], [37] try to
directly model the text boundary for detecting the arbitrary
shape text. ABCNet [33] and FCENet [34] model contours
of text instances with curve modeling (Bezier-Curve and
Fourier-Curve), which can well fit closed contour with pro-
gressive approximation. TextRay [35] formulates text contours
in the polar system and proposes a single-shot anchor-free
framework to predict geometric parameters and output simple
polygon detections. PCR [36] proposes a progressive contour
regression framework to detect arbitrary-shape scene texts.
TextBPN [37] proposes an adaptive boundary deformation
model to perform boundary deformation iteratively. However,
compared with segmentation-based methods, the performance
and efficiency of the contour-based methods are unsatisfactory.

D. Segmentation-based Methods

Segmentation-based methods can get the contours of text in-
stances from segmentation masks. In [17], [38], [19], they first
predict the bounding boxes of texts and then segment the pixel-
wise mask of text in each box. Some other methods [9], [14],
[11] utilize FCN [4] to predict text masks and predict extra
embedding vectors to cluster pixels in text masks. PixelLink
[9] predicts eight linkages to judge the connectivity and then
link pixels using a disjoint-set data structure. TextField [14]
adopts a direction field to group pixels with morphological
post-processing. PSENet [13] shrinks the text region into
various scales for generating more distinct boundaries and
then gradually expands the minimal scale kernel to the text
instance with the complete shape. Tian et al. [11] assumed
each text instance as a cluster and predicted an embedding map
via pixel clustering. Overall, segmentation-based methods can
easily adapt to texts in arbitrary shapes. However, the existing
methods still struggle with high complex post-processing to
cluster pixels into texts instances.

E. Dynamic Kernel Methods

In the instance segmentation task, AdaptIS [39] iteratively
predict point proposals to generate instances. At each iteration,
AdaptIS picks one point proposal and then uses the AdaIN
mechanism [40] to generate a corresponding instance. By
providing different parameters to AdaIN, AdaptIS can vary the
network output for the same input. However, AdaptIS predicts
instances in inference iteratively with low efficiency. Based on
FCOS [41], CondInst [42] use the conditional convolution (i.e.
dynamic convolution) to generate instance-sensitive filters to
encode object instance information. SOLOv2 [43] generates
and separates instances simultaneously. More specifically, it

Fig. 2. Feature extraction sub-network has two output branches: 1 channel
for center map and the other 32 channels for embedding feature maps.

dynamically proposes s × s (the input image is divided into
s×s grids) kernels to convolve the feature maps for generating
s×s instances in s×s channels. So, if we set the “resolution”
(s× s) of kernels in SOLOv2 to w × h (width and height of
feature maps) as the same as the general “resolution” in scene
test detection, the memory cost of SOLOv2 in feature maps
will be (w×h)2 which is computation and memory formidable.
Moreover, CondInst and SOLOv2 still rely on time-consuming
NMS for removing abundant duplicate boxes.

III. OUR METHOD

A. Overwiew

As shown in Fig. 3, our method mainly consists of four
components: feature extraction, kernel proposal, instance-
independent feature map extraction, and contour generation.
We utilize a fully convolutional network (FCN) [4] combined
with a feature pyramid network (FPN) [2] to extract infor-
mative feature maps. The architecture details of our feature
extraction sub-network are elaborated in Fig. 2. To extract
kernel proposals, we first get the connected component of
each text in the predicted center map and select the pixel
with the highest score in each component as the key point.
The embedding feature maps in the corresponding position
of key points are predicted kernel proposals, which will be
convolved by the predicted kernel proposals for generating
instance-independent feature maps. The predicted feature maps
will be binarized by a pre-defined threshold to get the contours
of the detected texts.

B. Kernel Proposal

For segmenting text instances in arbitrary shapes, a major-
ity of existing methods adopted the popular FCN structure.
However, they often suffer from texts with tiny intervals or
unclear boundaries, as shown in Fig. 1 (a). To overcome
these problems, some methods adopt embedding strategies to
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Fig. 3. Framework of our method. The feature extractor Fully Convolutional Network (FCN) is detailed in Fig. 2. The network will dynamically predict N
(N is not fixed) key points and get the corresponding embedding vectors for generating Kernel Proposals. To enforce the independence between kernel
proposals, we propose a novel orthogonal learning loss (OLL) via orthogonal constraints to make S = KKT close to an identity matrix (I). Finally, we
predict text masks for generating contours. Examples of key point generation: (a) predicted heat-maps; (b) connected components (CCs) after thresholding;
(c) key points that with the scores in each connected component.

link [14], [9] or cluster [11], [10] pixels into different text
instances. The success of these methods lies in finding a metric
function F (∗, ∗) to judge if two pixels belong to the same text,
which can be formulated as

F (ei, ej)

{
1, T (pi) = T (pj),

0, T (pi) ̸= T (pj),
(1)

where pi and pj denote the pixels in position i and j, respec-
tively; T (∗) denotes the corresponding text of the pixel; ei and
ej denote the embedding features of pi and pj , respectively;
F (∗, ∗) is a learnable function.

From our observation, if we find an appropriate F (∗, ∗) as
a binary classifier, we can classify the pixels of different text
instances into instance-independent feature maps. Fortunately,
it can be well implemented by a convolution layer together
with a sigmoid function. Specifically, we can find a suitable
convolution kernel (i.e., dynamic kernel) for one text instance,
which can convolve all the embedding feature maps to classify
the pixels belonging to this text instance to an instance-
independent feature map. It can help us segment each text
instance efficiently.

As mentioned above, we try to utilize a group of convolution
kernels for classifying different text instances into instance-
independent feature maps. In traditional convolution methods,
the number of kernels is fixed, making the channels of output
feature maps are also fixed. However, the number of text
instances often varies in different scene images. Thus, the
specified number of instance-independent feature maps may
induce missed or repeated detection. Inspired by dynamic
Kernel methods [39], [43], we propose a dynamic convolution

kernels strategy (kernel proposal) to separate text instances
into different instance-independent feature maps. Specifically,
we firstly predict N key points for N text instances, then
extract the feature maps according to their corresponding
positions to generate kernel proposals (i.e., dynamic convo-
lution kernels). Different from other dynamic kernel methods,
our kernel proposals are orthogonal to each other, which
are a set of orthogonal basis vectors. In this design, each
kernel proposal contains the self-information and position
information of its own text instance, not the information of
other text instances. The kernel proposals will convolve the
embedding feature maps to generate individual feature maps
for each text instance, which is formulated as

O = K ∗ E =


k0
...
ki
...
kN

 ∗ E =


p0
...
pi
...
pN

 (2)

where O represents the output feature maps of, in which each
channel corresponds to prediction (pi) of one text; ki denotes
the i-th kernel proposal. The convolution operation ∗ decom-
pose the high-dimensional vector E onto the orthogonal basis
K. E denotes the embedding feature maps which contains
the shared features extracted by backbone (Fs) and position
embedding feature (Fp) as

E = Fbock2(Fs ⊕ Fp) (3)

where ⊕ donates a concatenate operation, as shown in Fig. 2.
After full training, Fs is mainly contains the features of text
instances, and the non-text features tend to 0.
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Fig. 4. Overview of key points labeling: top lines (green lines), bottom lines
(blue lines), center lines (red lines), and center gaussian heat maps for text
instances.

C. Key Points Generation

If we directly utilize the function F (∗, ∗) in Eq. 1 to classify
all pixel pairs, the computational complexity will be (w×h)2.
To reduce the computational complexity, we only select one
key point from the predicted Gaussian center maps as kernel
proposals for each text instance, where one Gaussian center
may correspond to one text instance. These kernel proposals
contain important self-information learned by the network and
key point location information by position embedding, which
is the basis of our method to efficiently separate neighboring
texts.

Unlike objects in general instance segmentation, text in-
stances do not have a closed boundary, which means that it
contains a lot of regions similar to the background. It may
cause our method to be sensitive to the quality of key points.
To solve this problem, we adopt a broad key point for text
instance. Specifically, we designate the representative center
point of text instance as a center key point. As shown in Fig. 4,
we follow TextSnake [44] to find the top line (green line) and
the bottom line (blue line) of text, then calculate the centerline
(red line) and extract the middle point in the centerline as the
center point. Apparently, it is challenging to predict one single
accurate center point. Thus we adopt the Gaussian heat-map
strategy as in [45], [46], as shown in Fig. 4. The radius is the
minimum distance of the center point to the boundary.

In key point labeling, we will get a heat-map as shown
in Fig. 5 (a). However, there still contain many redundant
points for a text instance. Thus, we compute the connected
component of each center via thresholding (Fig. 5 (b)). We
will select the point with the highest score in each connected
component as the final predicted key point. Kernel proposals
are extracted from the embedding feature maps corresponding
to the selected key points.

D. Position Embedding

Our feature extraction sub-network constructed on the pop-
ular FCN [4] (RestNet-50 [47] as backbone) and FPN [2] in
text detection domain. However, existing segmentation-based
methods via conventional convolutional pixel embeddings

(a) Heat-map. (b) CCs (c) Key points.

Fig. 5. Examples of key point generation: (a) predicted heat-maps; (b)
connected components (CCs) after thresholding; (c) key points that with the
scores in each connected component.

can’t easily distinguish identical copies of an instance [48].
Inspired by [48], [49], [43], [11], we also introduce a posi-
tion embedding strategy in our network for keeping location
information of key points, as shown in Fig. 3. Specifically, we
adopt two channels of feature maps by embedding x-axis and
y-axis position information for every pixel.

In addition, we normalize the value of position embedding
to range [−1, 1], i.e., the pixel in x-axis 0 is set to −1, and
the pixel in x-axis is set to 1. Mathematically, the position
embedding of xi and yi can be formulated as

xi = {−1 +
2i

w − 1
|i ∈ (0, w − 1)} (4)

yi = {−1 +
2i

h− 1
|i ∈ (0, h− 1)} (5)

where w and h respectively represent the width and height of
the output feature maps.

E. Loss Function

We optimize the prediction of the Gaussian center map
and the segmentation of each instance with the following loss
function:

Lc(y, ŷ, α) = α ∗ Ldice(y, ŷ) + Lfocal(y, ŷ)

+ LOHEM (y, ŷ) + LBBCE(y, ŷ)
(6)

where Ldice denotes Dice loss [50]; Lfocal denotes Focal loss
[51]; LOHEM denotes Cross Entry loss with OHEM [52],
in which the ratio between negative and positive pixels is
3:1; LBBCE denotes Balance Binary Cross Entropy loss; y
denotes a prediction and ŷ is its ground-truth; α is used to
select Ldice. For each instance, the loss function of Gaussian
center map (Lgc

c ) and the loss function of the segmentation
(Ls

c) are respectively defined as

Lgc
c = Lc(y, ŷ, 0) (7)
Ls
c = Lc(y, ŷ, 1) (8)

To separate different text instances effectively, we first need
to restrict the kernel proposals to be independent of each other
in one image. In this way, the kernel proposals only include
the main features of their own text, not the shared features of
texts. Consequently, by individually convolving all embedding
feature maps with kernel proposals, our method can generate
unique feature maps for individual text instances.
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(a) Detected contour (b) Gaussian center map

(c) S (d) I

Fig. 6. (a) The detected contours in the image; (b) The prediction of Gaussian
center map; (c) The similarity matrix (S) between kernel proposals; (d) I is
an identity matrix.

In the same image, the similarity matrix between kernel
proposals can be expressed as

S = KKT =


k0
...
ki
...
kN

×


k0
...
ki
...
kN


T

(9)

where K is the set of kernel proposals in one image; S is
a similarity matrix (N × N ) for these kernel proposals, as
shown in Fig. 6(c); N is the number of kernel proposals. To
constrain the kernel proposals to be independent of each other,
we propose an orthogonal learning loss (LOLL) as

LOLL = Ldice(S, I) + LBCE(S, I) (10)

where I is an identity matrix, as shown in Fig. 6(d); Ldice

denotes Dice loss; LBCE denotes Binary Cross Entropy loss.
Dice coefficient is usually used to calculate the similarity of
two samples. LBCE can also be used to constrain the similarity
between samples to approach orthogonal relationships.

Finally, the total loss of our method can be formulated as

L = Lgc
c + Ls

c + λO ∗ LOLL (11)

where λO is set to 0.1.

IV. EXPERIMENTS

A. Datasets

To verify the effectiveness of the proposed KPN, we conduct
experiments on three benchmark datasets: Total-Text [53],
CTW-1500 [54], and ICDAR 2015 [55].

(a) KPN. (b) FCN.

Fig. 7. Representative detecting results of KPN and FCN.

Total-Text [53] consists of 1, 255 training and 300 testing
images. It is collected from various scenes, including text-like
background clutter and low-contrast texts, and are word-level
annotated by polygons for curve text detection task.

CTW-1500 [54] consists of 1, 000 training and 500 testing
images. It contains both English and Chinese texts with text-
line level polygon annotations for curved text detection.

ICDAR 2015 [55] consists of 1, 000 training and 500 testing
images. It is a multi-orientated and street-viewed dataset
collected for the arbitrary-oriented text detection task. The
annotations are word-level with four vertices.

B. Implementation Details
The pre-trained ResNet-50 [47] is adopted as the backbone

of our network. We adopt Adam [56] for optimizing our
method and the initial learning rate is 0.0001 and will be
decayed by 0.9 per 100 epochs. Our network is firstly pre-
trained on the large dataset MLT 2017 [57] and randomly
crop images into 640 × 640, 832 × 832, and 1024 × 1024,
respectively. Then, we will fine-tune our network on the target
benchmark dataset with 832 × 832 crop images. Following
DRRG [8], we also adopt the general augmentation tricks,
including crops, rotations, color variations, and partial flipping.

In the training, we utilize two ways to get the key points
for training kernel proposals: (1) We randomly sample one key
point in each text instance. The sampling probability is com-
puted on a Gaussian heat-map as described in Section III-C;
(2) We pick top-k (k=50) points in Gaussian heat-map for
text instance as in Fig. 5. In testing, we select only one point
of the highest score as kernel proposal for a corresponding
text instance (connected component) as shown in Fig. 5. Our
KPN contains two hyper-parameters: the threshold filtering
center heat-map threshc, and the threshold for filtering final
text instances threshi. All experiments are performed on
CPU (Intel(R) Xeon(R) E5-2620 v4 @ 2.10GHz), GPU (GTX
1080Ti 11G), and PyTorch 1.2.0.
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TABLE I
ABLATION STUDY OF KPN AND FCN ON TOTAL-TEXT.

Method Recall Precision H-means FPS

FCN-640 62.65 66.58 64.55 30.36
KPN-640 65.48 83.19 73.28 23.15

FCN-832 66.56 65.40 65.98 21.43
KPN-832 71.26 84.58 77.35 15.17

FCN-1024 64.16 67.99 66.02 15.27
KPN-1024 74.55 85.00 79.43 10.54

C. Ablation Study

To verify our method, we conduct experiments on images
with different scales. All the images will be resized into the
range of [short, large]. In this section, we only train our
models on Total-Text with 300 epochs and adopt Adam [56]
as optimizer.

1) KPN vs. FCN: To verify the effectiveness of our KPN,
we compare our KPN with an FCN-based method, which
is similar to our feature extraction sub-network in Fig. 2.
The FCN-based method only utilizes the center branch to
learn the masks of texts without the embedding branch. For
fair comparisons, we train and evaluate our KPN and the
FCN-based method both on Total-Text with 300 epochs. As
listed in Table I, our KPN outperforms FCN on Total-Text
nearly without sacrificing efficiency (FPS). The representative
detection results are shown in Fig. 7.

TABLE II
ABLATION STUDY OF CENTER REGION (Cr ), CENTER POINT (Cp),

POSITION EMBEDDING (Ps) AND TEST IMAGE SCALE ON TOTAL-TEXT
(ONLY TRAINED ON TOTAL-TEXT WITH 300 EPOCHS). ‘R’, ‘P’, AND ‘H’

REPRESENT ‘RECALL’, ‘PRECISION’, AND ‘H-MEAN’, RESPECTIVELY.

Scale Cr Cp Pe R P H FPS

KPN-640 ✓ × ✓ 59.36 71.53 64.88 22.15
KPN-640 × ✓ ✓ 65.48 83.19 73.28 23.15
KPN-832 ✓ × ✓ 66.22 71.88 68.93 14.39
KPN-832 × ✓ × 69.64 82.13 75.53 15.84
KPN-832 × ✓ ✓ 71.26 84.58 77.35 15.17

KPN-1024 ✓ × ✓ 68.27 71.76 69.97 9.76
KPN-1024 × ✓ × 73.35 83.54 78.11 10.88
KPN-1024 × ✓ ✓ 74.55 85.00 79.43 10.54

2) Center Point vs. Center Region: The shrinking center
region of text is a popular strategy in segmentation-based
methods [12], [11]. Here, we conduct an ablation study to
compare our center point strategy with the center region
strategy. As listed in Table II, we can find that the center
point strategy outperforms the center region strategy with
a significant margin. For example, at 1024 resolution, our
method outperforms the FCN by 13.41% in terms of H-means
(KPN-1024 79.43% vs. FCN-1024 66.02%). As shown in
Fig. 8, we can find that our center point strategy can accurately
separate adjacent text instances. But center region strategy
tends to suffer from adjacent and overlapping of candidate
text regions.

(a) Center point

(b) Center region

Fig. 8. Left column: detection results; middle column: sum of all the masks
in KPN; right column: center points/regions.

3) Influence of Position Embedding: We conduct ablation
studies on Total-Text to verify the effectiveness of position
embedding (Ps). As listed in Tab. II, without position em-
bedding (Ps), the performance of the proposed KPN will
decrease by about 1% to 2% in terms of H-means. Generally
speaking, location information is a fundamental basis for
separating neighboring text, especially when they have similar
scale and appearance. Equipped with Position Embedding, the
kernel proposal and dynamic convolution kernel generated in
our KPN will contain the central position information of the
corresponding text instance.

TABLE III
ABLATION STUDY OF ORTHOGONAL LEARNING LOSS (OLL)

Scale OLL Recall Precision H-means

KPN-640 × 67.86 73.97 70.78
KPN-640 ✓ 65.48 83.19 73.28
KPN-832 × 71.62 75.20 73.36
KPN-832 ✓ 71.26 84.58 77.35

4) Influence of orthogonal learning loss (OLL): We con-
duct ablation studies on Total-Text to verify the influence
of orthogonal learning loss (OLL). As listed in Tab. III, the
OLL greatly improve the detection performance (by 2.5% in
KPN-640 and 3.99% in KPN-832 in terms of H-means). In
Fig. 9, we also show some visualized results of similarity
matrix (S) with or without orthogonal learning loss in model
training. From Fig. 9, we can find that similarity matrix (S)
approaches an identity matrix (I) with orthogonal learning loss
for training, and the detection contours are more accurate. In
contrast, the false detection and overlap detection apparently
increase without the help of OLL, as shown in the second
row of Fig. 9(d). This is why the Recall (R) of detection
is high without OLL, as listed in Tab. III. In a few cases,
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(a) Detected contour (b) Gaussian center map (c) S (d) Detected contour∗ (e) Gaussian center map∗ (f) S∗

Fig. 9. Representative visual results on Total-Text dataset with or without orthogonal learning loss (OLL). ∗ means OLL is not adopted in training.

there will be one text with multiple kernel proposals. As
shown in the third row of Fig. 9 (b) and (e), there are two
kernel proposals for text instance ”LOSTWORLD” because
two centers are predicted for it. In this case, these two kernel
proposals will have high similarity, as shown in the third
row of Fig. 9 (c) and (f). So, the same text instance will be
predicted if we use these two kernel proposals to convolve
embedding feature maps. With the independence restriction via
orthogonal constraints, the kernel proposals can only contain
important self-information and position information of its text,
guaranteeing the effectiveness of classifying different texts into
instance-independent maps.

D. Comparisons with the State-of-the-arts

Comparisons of the proposed KPN with the state-of-the-
art methods (SOTAs) on Total-Text [53], CTW-1500 [54], and
ICDAR 2015 [55] are listed in Table IV, V, VI. Total-Text and
CTW-1500 consists of images with curve texts, ICDAR 2015
consists of images with quadrilateral texts. Notably, in Table
IV, V, VI, ‘Ext’ denotes extra training data for pretraining,
‘Syn’ represents SynText dataset for pretraining, ‘MLT’ rep-
resents ICDAR2017-MLT dataset for pretraining, and ‘MLT+’
represents ICDAR 2017-MLT dataset and additional datasets
for pretraining.

1) Curve Text: Total-Text mainly contains images with
word-level annotated curve texts. We set the threshold Tc =
0.2, Ti = 0.6, and we test two pairs of size [512, 640],
[512, 832], i.e., KPN-640, KPN-832. The representative visual
results are shown in Fig. 10 (a). As shown in Fig. 10 (a),
we can see that the predicted results of text instances are
well separated. We utilize the official evaluating script in
Total-Text [53], the results are listed in Table IV. Our KPN
outperforms DRRG [8] by 1.38% in terms of H-mean, mean-
while outperforms ContourNet by 11.23 FPS in speed. PAN
proposes a new network that is faster than ResNet-50, while
DB-640 only contains an individual FCN branch. However,

TABLE IV
EXPERIMENTAL RESULTS ON TOTAL-TEXT. ∗ AND ‘MS’ REPRESENTS

MULTI-SCALE TEST AND † DENOTES THE TEXTSPOTTER-BASED
METHODS.

Methods Paper Ext R P H FPS
TextSnake [44] ECCV’18 Syn 74.5 82.7 78.4 -

FTSN [17] ICPR’18 Syn 78.0 84.7 81.3 -
MSR [58] IJCAI’19 Syn 73.0 85.2 78.6 4.3

TextField [14] TIP’19 Syn 79.9 81.2 80.6 6
SegLink++ [28] PR’19 Syn 80.9 82.1 81.5

ATTR [31] CVPR’19 - 76.2 80.9 78.5 -
CSE [59] CVPR’19 MLT 79.1 81.4 80.2 0.42

PSENet-1s [13] CVPR’19 MLT 77.96 84.02 80.87 3.9
LOMO [18] CVPR’19 MLT+ 75.7 88.66 81.6 4.4

LOMO* [18] CVPR’19 MLT+ 79.3 87.6 83.3
CRAFT [29] CVPR’19 Syn 79.9 87.6 83.6 -

TextDragon† [30] ICCV’19 MLT+ 75.7 85.6 80.3 -
PAN-640 [10] ICCV’19 Syn 81.0 89.3 85.0 39.6

DB [12] AAAI’20 Syn 82.5 87.1 84.7 32
ContourNet [60] CVPR’20 - 83.9 86.9 85.4 3.8

DRRG [8] CVPR’20 MLT 84.93 86.54 85.73 -
ABCNet† [33] CVPR’20 MLT+ 81.3 87.9 84.5 -
TextRay[35] MM’20 - 77.9 83.5 80.06 -

KPN-640 - MLT 82.33 88.00 85.07 22.73
KPN-832 - MLT 85.6 88.66 87.11 15.03
KPN MS - MLT 87.04 88.17 87.60 -

our KPN respectively outperforms PAN-640 and DB by 2.11%
and 2.41% in terms of H-means. In addition, KPN achieves
comparable efficiency with PAN and DB-640. Overall, our
KPN achieves state-of-the-art performance on Total-Text.

CTW-1500 mainly contains images with curve texts with
line-level annotations. We set the threshold Tc = 0.2, Ti =
0.625, and and test in the size [512, 640], [512, 832], i.e.,
KPN-640, KPN-832. Since CTW-1500 is annotated with line-
level, it may be difficult to predict the center point of the text
line. Thus our KPN may fail in detecting very long text. The
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(a) Total-Text. (b) CTW-1500. (c) ICDAR 2015.
Fig. 10. The detected results on Total-Text, CTW-1500, and ICDAR 2015. The second row shows the predicted center point maps (in center red boxes), and
the individual text instances in different channels.

TABLE V
EXPERIMENTAL RESULTS ON CTW-1500.

Methods Paper Ext R P H FPS
TextSnake [44] ECCV’18 Syn 85.3 67.9 75.6 -

CTD [61] PR’19 Syn 65.2 74.3 69.5 -
SegLink++ [28] PR’19 Syn 79.8 82.8 81.3 -
TextField∗ [14] TIP’19 Syn 79.8 83.0 81.4 6

MSR[58] IJCAI’19 Syn 79.0 84.1 81.5 4.3
CSE [59] CVPR’19 MLT 76.0 81.1 78.4 0.38

LOMO∗ [18] CVPR’19 MLT+ 89.2 69.6 78.4 4.4
LSAE [11] CVPR’19 Syn 77.8 82.7 80.1 3
ATRR [31] CVPR’19 - 80.2 80.1 80.1 -

PSENet-1s [13] CVPR’19 MLT 79.7 84.8 82.2 3.9
CRAFT [29] CVPR’19 Syn 81.1 86.0 83.5 -

TextDragon†[30] ICCV’19 MLT+ 82.8 84.5 83.6 -
PAN-640 [10] ICCV’19 Syn 81.2 86.4 83.7 39.8

DB [12] AAAI’20 Syn 80.2 86.9 83.4 22
ContourNet [60] CVPR’20 - 84.1 83.7 83.9 4.5
ABCNet† [33] CVPR’20 MLT+ 83.4 84.4 81.4 -

DRRG [8] CVPR’20 MLT 83.02 85.93 84.45 -
KPN-640 - MLT 82.86 84.03 83.44 24.25
KPN-832 - MLT 84.19 84.36 84.27 16.30
KPN MS - MLT 86.44 84.04 85.22 -

detailed experimental results are listed in able V. According
to Table V, our KPN outperforms ContourNet [60] by 1.32%
in terms of H-means, meanwhile surpassing it on efficiency
with a significant margin (KPN 16.30 FPS vs. ContourNet 4.5

TABLE VI
EXPERIMENTAL RESULTS ON ICDAR 2015.

Methods Paper Ext R P H FPS

DDR∗ [22] ICCV’17 - 80.0 88.0 83.8 1.1
MCN [62] CVPR’18 Syn 80 72 76 -
RRPN∗ [7] TMM’18 - 77 84 80 3.3

TextSnake [44] ECCV’18 Syn 84.90 80.40 82.6 1.1
Textboxes++∗†[21] TIP’18 Syn 78.50 87.80 82.90 2.3

PixelLink [9] AAAI’18 Syn 82.0 85.5 83.70 3.
FTSN [17] ICPR’18 Syn 80.0 88.6 84.1 2.5

IncepText [38] IJCAI’18 - 80.6 90.5 85.3
FOTS† [63] CVPR’18 MLT+ 82.04 88.84 85.31 7.8

SegLink++ [28] PR’19 Syn 80.3 83.7 82.0 7.1
TextField∗ [14] TIP’19 Syn 83.9 84.3 84.1 1.8

PAN [10] ICCV’19 Syn 81.9 84.0 82.9 26.1
TextDragon†[30] ICCV’19 MLT+ 84.82 81.82 83.05 -
PSENet-1s [13] CVPR’19 MLT 86.92 84.50 85.69 1.6

LSAE [11] CVPR’19 Syn 85.0 88.3 86.6 3.0
CRAFT [29] CVPR’19 Syn 84.3 89.8 86.9 -
LOMO [18] CVPR’19 MLT+ 83.5 91.3 87.2 3.4
ATRR [31] CVPR’19 - 86.0 89.2 87.6 -
DRRG [8] CVPR’20 MLT 84.69 88.53 86.56 -

ContourNet [60] CVPR’20 - 86.1 87.6 86.9 3.5
DB [12] AAAI’20 Syn 83.2 91.8 87.3 12

KPN-1280 - MLT 83.15 84.08 83.61 12.2
KPN-1920 - MLT 84.83 88.28 86.52 6.28
KPN MS - MLT 86.96 87.84 87.40 -
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(a) PSENet (b) KPN (c) DB

Fig. 11. Some visual comparison results with PSENet [13] and DB [12], where the results of PSENet and DB are reproduced by their official open-source
code and model, where DB uses the ResNet-50 with deformable convolution as Bockone and PSENet uses the ResNet-50 as Bockone.

(a) Detected contour (b) Gaussian center map (c) S

Fig. 12. Visualizing the similarity matrix S for Fig 10(c). Text instances are
tiny and dense in this image

FPS). And our KPN is comparable with DRRG [8] (84.27%
vs. 84.45%). Apparently, our KPN achieves promising perfor-
mance on CTW-1500.

According to the experimental results on Total-Text and
CTW-1500, KPN achieves promising efficiency and supe-
rior performance. The efficiency lies in our post-processing-
free segmentation-based framework that cleverly avoids
computational-cost post-processing. In addition, as shown in
Fig. 10 (a) and (b), KPN effectively separates neighboring
text instances by classifying different texts into instance-
independent feature maps. The effectiveness lies in the orthog-
onality between kernel proposals. When the kernel proposals
are orthogonal between each other, they mainly have important
self-information learned by the network and position informa-
tion by position embedding instead of the shared information
of other texts.

2) Quadrilateral Text: ICDAR 2015 mainly contains
quadrilateral texts annotated with word-level. Let Tc = 0.24,
Ti = 0.8, and we resize the longest side to 1,280 and 1,920
(i.e., KPN-1280, KPN-1920). ICDAR 2015 contains a lot of
small texts, but it may be hard to precisely detect the masks
of small texts, especially utilizing 1/2 scale of feature maps
of the input image. The detailed experimental results are
listed in Table VI. According to Table VI, our KPN outper-
forms PAN [10] by 3.62% in terms of H-means, outperforms
TextDragon [30] by 3.47% in terms of H-means. In addition,
representative visual results are shown in Fig. 10(c). According
to the experimental results on quadrilateral texts of ICDAR
2015, we can find that the predictions of independent text
masks are not very satisfactory on tiny texts, as shown in Fig.
10(c). Hence, we further analyze the similarity matrix S of
Fig. 10 (c) in Fig. 12. From Fig. 12 (c), we can find that the
similarity matrix S is not orthogonal enough, inducing some
neighboring text instances with small response values of center
points. Fortunately, these small response values can be easily
filtered by a threshold (Ti = 0.8). Hence, our method can still
accurately separate adjacent texts in this case.

3) Visual Comparison: As shown in Fig. 11, we give
a more intuitive comparison between the presented method
and the state-of-the-art methods (including PSENet [13] and
DB [12]) by intermediate visual comparison. In Fig. 11, we
visualize the final detections, the Gaussian center in KPN, the
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(a) (b)

Fig. 13. Some visual examples of failure cases. Objects included in green
contours are results of KPN; objects included in red contours are ground-
truths.

min text kernel in PSENet, and the probability map in DB.
PSENet uses the min text kernel to separate neighboring text
and then adopts Scale Expansion Algorithm to reconstruct text
instances, which is not efficient and also fails frequently in
many cases. Therefore, the detection speed and performance
of PSENet are not so satisfactory. DB uses the probability
map which is obtained by shrinking the annotations with Vatti
clipping algorithm [15] to separate neighboring text. Then,
it also uses the inverse transformation of the Vatti clipping
algorithm [15] to get the final detection boundaries. Therefore,
the detection speed of DB is quite fast. However, due to the
manual scaling rules, the final detection boundaries of DB
can not cover the text well in many cases, either too large or
too small, as shown in Fig. 11 (c). Although it does not affect
the performance of evaluation, inaccurate detection boundaries
will lead to various problems in application, such as the
recognition model can not correctly recognize characters in the
OCR system. In comparison, our method can not only separate
neighboring texts well, but also ensure accurate boundary
detection and fast detection speed, as shown in Fig. 11 (b)
and listed in Table IV&V.

E. Weakness

As demonstrated in the previous experiments, KPN achieves
superior performance in detecting texts of arbitrary shapes. But
there is still a chance of failure cases due to the complexity
of scene images, such as object occlusion, large character
spacing. Some failure examples are shown in Fig. 13. As
shown in Fig. 13, KPN has some false detections on some
text-like areas and miss detections for some extremely large

or small complex text. These cases are still very challenging
and nontrivial in the paradigm of text detection. However,
KPN can successfully detect some text instances with missing
annotations, as shown in the bottom image of Fig. 13(a).

V. CONCLUSION

In this paper, we propose an innovative Kernel Proposal
Network for arbitrary shape text detection. The proposed
KPN is the first to introduce the dynamic convolution kernel
strategy to efficiently and effectively separate neighboring
text instances by classifying different texts into instance-
independent feature maps. Our KPN is efficient and does not
rely on complex post-processing. In addition, we also propose
a novel orthogonal learning loss (OLL) that directly enforces
the independence between kernel proposals via orthogonal
constraints. Specifically, our kernel proposals contain impor-
tant self-information and position information, resulting in the
effectiveness of separating neighboring texts and improving
the robustness against tiny intervals or unclear boundaries.
Extensive experiments on challenging datasets verify the im-
pressive performance and efficiency of our method.

ACKNOWLEDGMENT

This research was supported by the National Key Re-
search and Development Program of China (2020AAA09701),
National Science Fund for Distinguished Young Scholars
(62125601), National Natural Science Foundation of China
(62076024, 62172035, 62006018, 61806017).

REFERENCES

[1] S. Ren, K. He, R. B. Girshick, and J. Sun, “Faster R-CNN: Towards
real-time object detection with region proposal networks,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 39, no. 6, pp. 1137–1149, 2017.

[2] T. Lin, P. Dollár, R. B. Girshick, K. He, B. Hariharan, and S. J. Belongie,
“Feature pyramid networks for object detection,” in CVPR, 2017, pp.
936–944.

[3] Q. He, X. Sun, Z. Yan, and K. Fu, “Dabnet: Deformable contextual
and boundary-weighted network for cloud detection in remote sensing
images,” IEEE Transactions on Geoscience and Remote Sensing, pp.
1–16, 2021.

[4] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” in CVPR, 2015, pp. 3431–3440.

[5] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks
for biomedical image segmentation,” in MICCAI, N. Navab, J. Horneg-
ger, W. M. W. III, and A. F. Frangi, Eds., vol. 9351, 2015, pp. 234–241.

[6] X. Zhou, C. Yao, H. Wen, Y. Wang, S. Zhou, W. He, and J. Liang,
“EAST: An efficient and accurate scene text detector,” in CVPR, 2017,
pp. 2642–2651.

[7] J. Ma, W. Shao, H. Ye, L. Wang, H. Wang, and Y. Z. anda Xi-
angyang Xue, “Arbitrary-oriented scene text detection via rotation
proposals,” IEEE Trans. Multimedia, vol. 20, no. 11, pp. 3111–3122,
2018.

[8] S.-X. Zhang, X. Zhu, J. Hou, C. Liu, C. Yang, H. Wang, and X. Yin,
“Deep relational reasoning graph network for arbitrary shape text
detection,” in CVPR, 2020, pp. 9696–9705.

[9] D. Deng, H. Liu, X. Li, and D. Cai, “PixelLink: Detecting scene text
via instance segmentation,” in AAAI, 2018, pp. 6773–6780.

[10] W. Wang, E. Xie, X. Song, Y. Zang, W. Wang, T. Lu, G. Yu, and
C. Shen, “Efficient and accurate arbitrary-shaped text detection with
pixel aggregation network,” in ICCV, 2019, pp. 8439–8448.

[11] Z. Tian, M. Shu, P. Lyu, R. Li, C. Zhou, X. Shen, and J. Jia, “Learning
shape-aware embedding for scene text detection,” in CVPR, 2019, pp.
4234–4243.

[12] M. Liao, Z. Wan, C. Yao, K. Chen, and X. Bai, “Real-time scene text
detection with differentiable binarization,” in AAAI, 2020, pp. 11 474–
11 481.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, JANUARY 2022 12

[13] W. Wang, E. Xie, X. Li, W. Hou, T. Lu, G. Yu, and S. Shao, “Shape
robust text detection with progressive scale expansion network,” in
CVPR, 2019, pp. 9336–9345.

[14] Y. Xu, Y. Wang, W. Zhou, Y. Wang, Z. Yang, and X. Bai, “Textfield:
Learning a deep direction field for irregular scene text detection,” IEEE
Trans. Image Processing, vol. 28, no. 11, pp. 5566–5579, 2019.

[15] B. R. Vatti, “A generic solution to polygon clipping,” Commun. ACM,
vol. 35, no. 7, pp. 56–63, 1992.

[16] K. He, G. Gkioxari, P. Dollár, and R. B. Girshick, “Mask R-CNN,” in
ICCV, 2017, pp. 2980–2988.

[17] Y. Dai, Z. Huang, Y. Gao, Y. Xu, K. Chen, J. Guo, and W. Qiu, “Fused
text segmentation networks for multi-oriented scene text detection,” in
ICPR, 2018, pp. 3604–3609.

[18] C. Zhang, B. Liang, Z. Huang, M. En, J. Han, E. Ding, and X. Ding,
“Look more than once: An accurate detector for text of arbitrary shapes,”
in CVPR, 2019, pp. 10 552–10 561.

[19] M. Liao, G. Pang, J. Huang, T. Hassner, and X. Bai, “Mask textspotter
v3: Segmentation proposal network for robust scene text spotting,”
CoRR, vol. abs/2007.09482, 2020.

[20] M. Liao, B. Shi, X. Bai, X. Wang, and W. Liu, “Textboxes: A fast
text detector with a single deep neural network,” in AAAI, 2017, pp.
4161–4167.

[21] M. Liao, B. Shi, and X. Bai, “Textboxes++: A single-shot oriented scene
text detector,” IEEE Trans. Image Processing, vol. 27, no. 8, pp. 3676–
3690, 2018.

[22] W. He, X.-Y. Zhang, F. Yin, and C.-L. Liu, “Deep direct regression for
multi-oriented scene text detection,” in ICCV, 2017, pp. 745–753.

[23] J. Yu, Y. Jiang, Z. Wang, Z. Cao, and T. S. Huang, “Unitbox: An
advanced object detection network,” in ACM MM, 2016, pp. 516–520.

[24] J. Hou, X. Zhu, C. Liu, K. Sheng, L. Wu, H. Wang, and X. Yin, “HAM:
hidden anchor mechanism for scene text detection,” IEEE Trans. Image
Process., vol. 29, pp. 7904–7916, 2020.

[25] X. Sun, P. Wang, C. Wang, Y. Liu, and K. Fu, “Pbnet: Part-based
convolutional neural network for complex composite object detection in
remote sensing imagery,” ISPRS Journal of Photogrammetry and Remote
Sensing, vol. 173, pp. 50–65, 2021.

[26] Z. Tian, W. Huang, T. He, P. He, and Y. Qiao, “Detecting text in natural
image with connectionist text proposal network,” in ECCV, 2016, pp.
56–72.

[27] B. Shi, X. Bai, and S. J. Belongie, “Detecting oriented text in natural
images by linking segments,” in CVPR, 2017, pp. 3482–3490.

[28] J. Tang, Z. Yang, Y. Wang, Q. Zheng, Y. Xu, and X. Bai, “Seglink++:
Detecting dense and arbitrary-shaped scene text by instance-aware
component grouping,” Pattern Recognition, vol. 96, 2019.

[29] Y. Baek, B. Lee, D. Han, S. Yun, and H. Lee, “Character region
awareness for text detection,” in CVPR, 2019, pp. 9365–9374.

[30] W. Feng, W. He, F. Yin, X. Zhang, and C. Liu, “Textdragon: An end-to-
end framework for arbitrary shaped text spotting,” in ICCV, 2019, pp.
9075–9084.

[31] X. Wang, Y. Jiang, Z. Luo, C.-L. Liu, H. Choi, and S. Kim, “Arbitrary
shape scene text detection with adaptive text region representation,” in
CVPR, 2019, pp. 6449–6458.

[32] Y. Wang, H. Xie, Z.-J. Zha, M. Xing, Z. Fu, and Y. Zhang, “Contour-
net: Taking a further step toward accurate arbitrary-shaped scene text
detection,” in CVPR, 2020, pp. 11 753–11 762.

[33] Y. Liu, H. Chen, C. Shen, T. He, L. Jin, and L. Wang, “Abcnet: Real-
time scene text spotting with adaptive bezier-curve network,” in CVPR,
2020, pp. 9806–9815.

[34] Y. Zhu, J. Chen, L. Liang, Z. Kuang, L. Jin, and W. Zhang, “Fourier
contour embedding for arbitrary-shaped text detection,” in CVPR, 2021,
pp. 3123–3131.

[35] F. Wang, Y. Chen, F. Wu, and X. Li, “Textray: Contour-based geomet-
ric modeling for arbitrary-shaped scene text detection,” in ACM-MM,
C. W. Chen, R. Cucchiara, X. Hua, G. Qi, E. Ricci, Z. Zhang, and
R. Zimmermann, Eds., 2020, pp. 111–119.

[36] P. Dai, S. Zhang, H. Zhang, and X. Cao, “Progressive contour regression
for arbitrary-shape scene text detection,” in CVPR, 2021, pp. 7393–7402.

[37] S.-X. Zhang, X. Zhu, C. Yang, H. Wang, and X.-C. Yin, “Adaptive
boundary proposal network for arbitrary shape text detection,” in ICCV,
October 2021, pp. 1305–1314.

[38] Q. Yang, M. Cheng, W. Zhou, Y. Chen, M. Qiu, and W. Lin, “Inceptext:
A new inception-text module with deformable psroi pooling for multi-
oriented scene text detection,” in IJCAI, 2018, pp. 1071–1077.

[39] K. Sofiiuk, O. Barinova, and A. Konushin, “Adaptis: Adaptive instance
selection network,” in ICCV, 2019, pp. 7354–7362.

[40] T. Karras, S. Laine, and T. Aila, “A style-based generator architecture
for generative adversarial networks,” in CVPR, 2019, pp. 4401–4410.

[41] Z. Tian, C. Shen, H. Chen, and T. He, “Fcos: Fully convolutional one-
stage object detection,” pp. 9626–9635, 2019.

[42] Z. Tian, C. Shen, and H. Chen, “Conditional convolutions for instance
segmentation,” in ECCV, ser. Lecture Notes in Computer Science,
A. Vedaldi, H. Bischof, T. Brox, and J. Frahm, Eds., vol. 12346, 2020,
pp. 282–298.

[43] X. Wang, R. Zhang, T. Kong, L. Li, and C. Shen, “Solov2: Dynamic,
faster and stronger,” arXiv preprint arXiv:2003.10152, 2020.

[44] S. Long, J. Ruan, W. Zhang, X. He, W. Wu, and C. Yao, “Textsnake: A
flexible representation for detecting text of arbitrary shapes,” in ECCV,
2018, pp. 19–35.

[45] H. Law and J. Deng, “Cornernet: Detecting objects as paired keypoints,”
in ECCV, V. Ferrari, M. Hebert, C. Sminchisescu, and Y. Weiss, Eds.,
vol. 11218, 2018, pp. 765–781.

[46] K. Duan, S. Bai, L. Xie, H. Qi, Q. Huang, and Q. Tian, “Centernet:
Keypoint triplets for object detection,” in ICCV, 2019, pp. 6568–6577.

[47] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in CVPR, 2016, pp. 770–778.
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