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Abstract—The exploitation of Deep Neural Networks (DNNs)
as descriptors in feature learning challenges enjoys apparent
popularity over the past few years. The above tendency focuses
on the development of effective loss functions that ensure both
high feature discrimination among different classes, as well as
low geodesic distance between the feature vectors of a given
class. The vast majority of the contemporary works rely their
formulation on an empirical assumption about the feature space
of a network’s last hidden layer, claiming that the weight vector
of a class accounts for its geometrical center in the studied space.
The paper at hand follows a theoretical approach and indicates
that the aforementioned hypothesis is not exclusively met. This
fact raises stability issues regarding the training procedure of
a DNN, as shown in our experimental study. Consequently, a
specific symmetry is proposed and studied both analytically and
empirically that satisfies the above assumption, addressing the
established convergence issues.

Index Terms—Discriminative feature learning, deep neural
networks, symmetrical layer, geometric algebra

I. INTRODUCTION

EFFICIENT data representation into a compact metric
space occupies prominent place in the recent challenges

of Computer Science (CS) [1], [2]. To that end, effort is
concentrated on mapping each pattern of the sensory input
into a space displaying specific and known metric properties
through a suitably designed method. Such a method may
derive either from traditional feature engineering or from
a learning-based algorithm [3], [4]. In the first case, the
output representation is usually obtained via a mathematical
projection rule, like principal component analysis [5] and
linear discriminant analysis [6], or a specific extraction scheme
making use of a set of pre-defined handcrafted rules [7], [8],
[9], [10]. In contrast, the second case employs a machine
learning algorithm, in order to discover salient features from
raw data [11], [12], [13].

Due to the complex nature of real-world sensory inputs
in present problems, the manual definition of descriptive
features becomes increasingly unreliable, leaving no option
but to engage machine learning schemes. Typical algorithms
are Support Vector Machines (SVMs) [11] and Deep Neural
Networks (DNNs) [13], [14], with DNNs forming the leading
choice in feature extraction for cascade [15], [16] and fusion
tasks [17], [18] given their proven efficacy over the past
years. Yet, in order for a learning algorithm to ensure robust
representation capacity, a set of techniques needs to be applied
during its training phase. The above techniques form the main
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research subject of feature or representation learning [1].
The studied assessment criteria for a method are mainly
focused on its capability to map similar patterns into close
geodesic distance in the output metric space, while keeping
high distance between unlike inputs. The above properties are
broadly known as high intra-class compactness and inter-class
discrepancy [19], respectively, where class refers to the set
of all the database instances from a common label category.
Hence, the mutual satisfaction of the above two criteria is
incorporated into the optimization goal of the adopted learning
algorithm [19], [20].

The most prevailing approaches in the field of feature
learning have been developed in image retrieval problems and
more specifically in the challenge of face verification [21]. The
adopted Convolutional Neural Network (CNN) architectures
are trained with an enhanced version of the original Softmax
loss, which embodies the two representation learning criteria,
by shaping a space with specific geometrical properties. Given
a training step, each feature vector, formed by the activations
of the last hidden layer, is forced to approximate the centre
of its target class. Based on this rule, an ample variety of
approaches have been developed outweighing prior works in
the field [19], [20], [22]. However, in order to materialize a
representation for each class into a computationally effective
loss function, the weight vector of each class is utilized,
assuming that it coincides with the respective center. The
above practice shapes a hypothesis which is from now on
referred as H.

The present study sheds light on the empirical supposition
H since it is not exclusively met for arbitrary distributions of
the weight vectors, introducing an implicit error in the training
procedure. Moving further, a specific symmetry regarding
those vectors in the studied feature space is proposed, in
order to satisfy H. Eventually, we proceed with empirical
findings about the impact of the added error during the training
procedure of a DNN.

The remainder of this paper is structured as follows. In
Section II, we discuss typical approaches in the field of
discriminative feature learning that denote the assumption H,
while Section III clearly states the motivation behind the
current work. Then, Sections IV and V theoretically prove
the inconsistency between a class’s weight vector and its
geometrical center for an arbitrary distribution of the weights,
as well as propose a novel symmetrical layout. Section VI
provides a detailed description regarding the implementation
of the above symmetry. Subsequently, Section VII displays
several experiments, proving the efficiency of the proposed
layer and illustrating the way that the implicit error of the
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initial supposition affects the DNN’s convergence. In the last
section, the acquired conclusions are collected, suggesting
concise concepts that can be employed in representation
learning tasks.

II. RELATED WORK

In this section, a comprehensive review is presented, focus-
ing on the exploitation of DNNs in feature learning challenges.
Consequently, individual attention is paid to recent trends in
verification tasks, as well as the theoretical background that
forms the basis of the proposed methods.

A. Neural-based Feature Learning

The original implementation of the Softmax loss has been
progressively proved insufficient for challenging verification
tasks that require high feature discrimination. Motivated by
this fact, a host of methods have been developed, proposing
the enhancement of the common loss with advanced restric-
tive conditions. The initial step, introduced with the concept
of Siamese Networks, suggests the exploitation of two or
more identical configurations of a DNN during the training
procedure [23]. Hence, the extracted feature vectors can be
compared, by feeding two or more samples, respectively,
passing their similarity score to a suitable loss function under a
pairwise learning procedure. In such a procedure, the common
cross-entropy loss can not be implemented, leading to the
utilization of novel objective functions, with triplet [24] and
contrastive loss [25] forming the most typical ones. At each
training step, the objective of triplet loss refers to: i) a distance
minimization component between a specific training sample
and another one of the same class (positive pair), as well
as ii) a distance maximization component between the same
sample and a sample of another class (negative pair) [26].
Aiming at an improved inter-class separation, the contrastive
loss compares for each training sample the similarity score of
a positive pair against a negative one [25].

B. Enhanced-Softmax Loss Functions

Despite their efficiency, Siamese Networks displayed two
main disadvantages, viz., increased training duration, due to
pairwise learning, and opaque outputs since they do not pro-
vide a probabilistic distribution, like the Softmax loss. Thus,
the research community has resorted to alternative solutions
that exploit Softmax loss and enhance its discrimination ca-
pacity. Accordingly, the center loss proposed the penalization
of a feature vector by means of its Euclidean distance from
the center of its target class [27]. During training, the center of
each class was calculated and updated by the respective feature
vectors of the mini-batch, adding a considerable computational
cost in the procedure. Two variations of center loss, viz., the
island and range loss, were developed in order to handle the
above issues [28], [29].

In an effort to reduce the required computational complex-
ity, the idea of applying more rigorous constraints directly
in the Softmax loss, rather than providing complementary
losses, was introduced. On this account, Large margin Softmax

li(j)

(a) Dot product outputs

si(j)

(b) Softmax outputs

Fig. 1: (a) The resulting dot product distribution of li(j) and its
extreme points (continuous lines) training a vanilla CNN with L2-
constrained Softmax on MNIST [33]. (b) The resulting softmax dis-
tribution of si(j) for the same network. Note that, the extreme points
of softmax outputs (dashed lines) diverge from the corresponding dot
product ones (continuous lines).

(L-Softmax) encouraged both discrimination criteria in the
common cross-entropy loss, by adjusting an angular margin
that scales the angle between a feature and the weight vector
of its target class [30]. Thereby, the weight vector comprises
the reference point of a class, or equally, the desired orientation
for the feature vectors. Instead of an angular constraint,
L2-Softmax suggested the feature vectors’ normalization, in
order for them to lie on the surface of a hypersphere with con-
figurable radius, boosting the discrimination performance [31].
Combining both angular and norm constraints, SphereFace
proposed an improved version of the original Softmax loss,
aka. A-Softmax [20]. SphereFace was also the first method
that coped with stability issues, requiring the supervision of
a simple Softmax loss mainly during the initial steps of the
training procedure. CosFace inserted an additive cosine margin
directly to the target logits of the CNN as an attempt to
improve stability [22]. Subsequently, ArcFace succeeded an
even simpler and simultaneously efficient approach that adopts
an additive angular margin [19]. However, all of the above
methods keep the same strategy of applying an angular margin
between the feature and the weight vector of the target class,
assuming that this is its optimal orientation [19], [20], [22].
An entirely different approach constitutes the implementation
of the angular margin astride the decision boundaries between
the classes [32].

III. MOTIVATION

Keeping in mind the stated hypothesis H, we first present
the inspiration behind the current work and formulate our
established concern. For visualization purposes, we proceed
with a typical analysis in a 2-D feature space F2 ⊂ R2,
training a vanilla CNN on the MNIST database [33] using
a two-units hidden layer before the output one. The produced
weight vectors’ layout is assessed in Fig. 1.

More specifically, given the resulting weight vectors
ŵi ∈ F2, i = 1, 2, ..., 10 and the set of possible embeddings
ê(j) = 1 j π

180
, j ∈ N<360 with ê(j) ∈ F2 in polar

coordinates, we calculate the dot product output values:

li(j) = max
i

(ŵi · ê(j)). (1)
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Also ∀j we keep the index i that corresponds to the maximum
value, denoting the prevailing class. As proved in a previous
work of ours [34], each class ends up occupying a convex
angular subspace in F2, while the extreme points of li(j)
calculated by:

dli(j)/dj = 0 (2)

coincide with the orientation of the weight vectors ŵi, as
shown in Fig. 1a. By further applying the common Softmax
activation function and keeping its maximum value, defined
as:

si(j) = max
i

(
eŵi·êj∑10
k eŵk·êj

)
, (3)

we produce the regarding softmax distribution, depicted in
Fig. 1b. By calculating the orientations j that account for the
extreme points of si(j) from:

dsi(j)/dj = 0, (4)

we find out that it diverges from the equivalent dot product
ones. Bearing that in mind, the reader can understand the error
introduced by the use of ŵi as the point of reference in a
loss function, especially considering a space F of increased
dimensionality, as well as the randomness of ŵi during the
initialization of a training procedure.

IV. RULES IN HIGH DIMENSIONAL SPACES

We proceed with several findings that enable the study of
an arbitrary feature space Fd ⊂ Rd+1, d ∈ N>1.

Lemma 1: Given the vectors v̄1, v̄2, ..., v̄n, n ∈ N>1 with
equal norms in the 2-D plane P , such that ̂(v̄i, v̄i+1) = 2π/n,
∀i = 1, ..., n− 1, then:

n∑
i=1

v̄i = 0̄. (5)

Proof : The above is trivial to be shown through the proof by
contradiction. Let us suppose the vectors v̄i = OV i of equal
norm in P , with i = 1, 2, ..., n and their sum

∑n
i=1 v̄i = v̄,

where v̄ also lies in P . If we rotate the plane P – or equally
all vectors v̄i – with respect to their common origin O by an
angle of 2π/n, then their layout does not change, implying
that their sum should also remain unchanged. However, v̄ is
also rotated by 2π/n, indicating that the initial sum changes,
except for the case that v̄ = 0̄.

Lemma 2: Given the equation:

n−1∑
k=0

sin(x− 2kπ/n)ecos(x−2kπ/n) = 0, n ∈ N>1, (6)

xr = 2rπ
n , r ∈ N<n are roots of Eq. 6 in [0, 2π).

Proof : Without loss of generality, let us consider the root
xr0 = 2r0π/n, with r0 ∈ N(1,n/2). It is trivial to show that

the term for k = r0 in Eq. 6 is equal to zero. Then, Eq. 6
becomes:

n−1∑
k=0

sin(2r0π/n− 2kπ/n)ecos(2r0π/n−2kπ/n) = 0 =⇒

=⇒
r0−1∑
k=0

sin(2(r0 − k)π/n)ecos(2(r0−k)π/n)

+

n−1∑
k=r0+1

sin(2(r0 − k)π/n)ecos(2(r0−k)π/n) = 0. (7)

For the values of k astride r0: k±m0
= r0±m0, ∀m0 ∈ N(0,r0],

we have:

sin(2(r0 − (r0 −m0))π/n)ecos(r0−(r0−m0))π/n)

+ sin(2(r0 − (r0 +m0))π/n)ecos(r0−(r0+m0))π/n) =

= sin(2m0π/n)ecos(2m0π/n)+sin(−2m0π/n)ecos(−2m0π/n) =

= sin(2m0π/n)ecos(2m0π/n)−sin(2m0π/n)ecos(2m0π/n) = 0.
(8)

Ergo, the astride 2r0 terms plus the k = r0 itself, i.e., 2r0 +
1 terms of Eq. 6, are eradicated, leading to the remaining
summation terms:

n−1∑
k=2r0+1

sin(2(r0 − k)π/n)ecos(2(r0−k)π/n) = 0. (9)

We further examine the terms I+m1
and I−m1

for k+m1
=

2r0 + 1 + m1 and k−m1
= n − 1 −m1, respectively, ∀m1 ∈

N<(n−2r0−1)/2.

I+m1
: sin(2(r0−2r0−1−m1)π/n)ecos(2(r0−2r0−1−m1)π/n) =

= sin(−2(r0 +m1 + 1)π/n)ecos(−2(r0+m1+1)π/n) =

= − sin(2(r0 +m1 + 1)π/n)ecos(2(r0+m1+1)π/n). (10)

I−m1
: sin(2(r0−n+1+m1)π/n)ecos(2(r0−n+1+m1)π/n) =

= sin(2(r0 +m1 + 1)π/n− 2π)ecos(2(r0+m1+1)π/n−2π) =

= sin(2(r0 +m1 + 1)π/n)ecos(2(r0+m1+1)π/n). (11)

Hence, I+m1
+ I−m1

= 0, ∀m1 ∈ N<(n−2r0−1)/2. We discern
two cases for even and odd values of n−2r0−1, respectively.
In the first case, the total terms of Eq. 6 have been eradicated
and the lemma holds. In case that n− 2r0 − 1 is odd, then a
singular term remains that is the center of [0, n− 2r0− 1), or
equally, for m = (n − 2r0 − 2)/2 = −(r0 + 1) + n/2. Note
that:

k+m : 2r0 + 1 + (−r0 − 1 + n/2) = r0 + n/2

k−m : n− 1− (−r0 − 1 + n/2) = r0 + n/2.
(12)

However, for this term we have:

sin(2(r0 − (r0 + n/2))π/n)ecos(2(r0−(r0+n/2))π/n) =

= sin(−π)ecos(−π) = 0, (13)
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Fig. 2: Geometrical interpretation of Lemma 3.

concluding that our statement holds for the second case, as
well. Finally, following the similar procedure it is trivial to
show that the same conclusion holds for n/2 < r0 < n.

Lemma 3: Let two unit vectors a, b ∈ Fd with a common
origin O, as well as a bivector B that passes through their
summation vector s = a+ b, then the projections of a, b onto
B have equal norms and angular distances from s.
Proof (based on rules of Clifford Algebra [35]): From [36],
a‖B = (a ·B)B−1 and b‖B = (b ·B)B−1. Given that B passes
through s, we know that:

sB = s ·B + s ∧B = s ·B. (14)

For the addition of the collinear with B vectors, we have:

a‖B + b‖B = (a ·B + b ·B)B−1 =

= ((a+ b) ·B)B−1 = (s ·B)B−1 =

= (sB)B−1 = s. (15)

Moreover for the projections of a, b on s, we write:

a‖s = a · s = a · (a+ b) = a · a+ a · b = 1 + a · b
b‖s = b · s = b · (a+ b) = b · a+ b · b = 1 + a · b

}
=⇒

=⇒ a‖s = a · s = b · s = b‖s . (16)

Hence,

a · s = b · s =⇒
=⇒ (a‖B + a⊥B

) · s = (b‖B + b⊥B
) · s =⇒

=⇒ a‖B · s+ a⊥B
· s = b‖B · s+ b⊥B

· s =⇒
=⇒ a‖B · s = b‖B · s =⇒

=⇒ (a‖B − b‖B ) · s = 0, (17)

suggesting perpendicularity between a‖B − b‖B and s. How-
ever, those vectors constitute the diagonals of a parallelogram
P on B with sides a‖B and b‖B . The above perpendicularity
between the diagonals, drops P to the degenerate case of a
rhombus with sides a‖B and b‖B , thus ensuring:

• ̂(a‖B , b‖B ) bisection by s, and
• ‖a‖B‖ = ‖b‖B‖.

An illustration of Lemma 3 is provided in Fig. 2.

V. H AS A NON-EXCLUSIVE CONDITION

In this section, we begin by demonstrating the falsifiability
of H in the input space of the output layer Fd ⊂ Rd+1,
where d ∈ N>1 the dimensionality both of the embeddings
and the weight vectors. Then, we proceed with the definition
of a specific symmetrical layout in Fd that produces proven
consistency with H. In our following analysis, we consider an
arbitrary number of target classes n ∈ N>2.

The studied criterion, which leads to the satisfaction of H,
refers to the maximization of the i-th class’s softmax output:

Si =
ezi∑n−1
j=0 e

zj
, (18)

with zj = w̄j · ē, ē ∈ Fd the embedding and w̄j ∈ Fd the
j-th class’s weight vector. Then, the criterion demands the
maximization of Si for the case that ē coincides with the target
class’s weight vector w̄i. According to [34], the output of the
j-th neuron can be written as zj = ‖w̄j‖‖ cos(θ − φj), where
w̄j‖ denotes the projection of w̄j on the common plane of w̄i
and ē. Then:

dSi
dθ

= 0 =⇒ d

dθ

(
ezi(θ)∑n
j=1 e

zj(θ)

)
= 0 =⇒

=⇒ dezi(θ)

dθ

n−1∑
j=0

ezj(θ) − ezi(θ)
n−1∑
j=0

dezj(θ)

dθ
= 0 =⇒

=⇒
n−1∑
j=0

dzi(θ)

dθ
ezi(θ)ezj(θ)−

n−1∑
j=0

dzj(θ)

dθ
ezi(θ)ezj(θ) = 0 =⇒

=⇒
n−1∑
j=0

[(
dzi(θ)

dθ
− dzj(θ)

dθ

)
ezi(θ)ezj(θ)

]
= 0. (19)

We want Si to maximize for ē = w̄i, where θ = φi and
dzi(θ)/dθ|θ=φi

= −‖w̄i‖ sin(θ−φi)|θ=φi
= 0. Hence, Eq. 19

becomes:

−
n−1∑
j=0

dzj(θ)

dθ
ezi(θ)ezj(θ) = 0 =⇒

n−1∑
j=0

dzj(θ)

dθ
ezj(θ) = 0.

(20)

Eq. 20 shapes the mathematical formulation of the studied
criterion.

A. Refutability of H
At this stage, it is sufficient to determine a layout of the

weight vectors, that leads to the falsification of H. Let us
consider n weight vectors w̄i ∈ Fd, s.t.:
• A.I: all lie in a 2-D plane P ,
• A.II: ‖w̄i‖ = 1, ∀i = 0, 1, ..., n− 1 and
• A.III: ̂(w̄i, w̄i+1) = π/n, ∀i = 0, 1, ..., n− 2.

By working on the common plane P of A.I, as well as
taking into account A.II, we ensure that ‖w̄j‖‖ = ‖w̄j‖ = 1,
∀j ∈ N<n in Eq. 20. Moreover, according to A.III and by con-
sidering the reference vector w̄0, we have ̂(w̄0, w̄j) = jπ/n,
∀j ∈ N[1,n). Elaborating more, we can express the dot product
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of each weight vector w̄j , as a function of the weight of
reference w̄0, as follows:

z0 = w̄0 · ē = cos θ,

zj = w̄j · ē = cos(θ − jπ/n), ∀j ∈ N[1,n).

Hence, Eq. 20 ends up to:

n−1∑
j=0

sin(θ − jπ/n)ecos(θ−jπ/n) = 0. (21)

However, in case that ē and w̄0 coincide, indicating θ = 0, we
have:

n−1∑
j=0

sin(jπ/n)ecos(jπ/n) > 0,∀n ∈ N>2. (22)

The above leads us to the conclusion that H is not satisfied
given an arbitrary distribution of the weight vectors in Fd.

B. Proposed symmetry in Fd
In turn, we define a specific symmetrical layout of the

last layer’s weights in Fd, which ensures that those weights
account for the classes’ centers for any number of target
classes n and feature vectors’ dimension d. More specifically,
we examine the case of n weight vectors w̄i such that:

• B.I: all lie in a 2-D plane P ,
• B.II: ‖w̄i‖ = 1, ∀i ∈ N<n and
• B.III: ̂(w̄i, w̄i+1) = 2π/n, ∀i ∈ N<n−1.

In Fig. 3, the proposed symmetry is displayed in F3 ⊆ R3 for
(a) n = 3 and (b) n = 4.

Considering the above properties, we examine the required
condition to relate class centrality with its weight vector. Given
that ē = w̄i, there is no specific plane defined by ē and w̄i.
Ergo, we are free to work on the common plane P of B.I,
ensuring consistency with B.II since ‖w̄j‖‖ = ‖w̄j‖ = 1, ∀j ∈
N<n in Eq. 20. Moreover, elaborating B.III, we can express
the dot product of each weight vector w̄j , as a function of the
weight of reference w̄0, as follows:

z0 = w̄0 · ē = cos θ,

zj = w̄j · ē = cos(θ − 2jπ/n), ∀j ∈ N[1,n).

Consequently, Eq. 20 ends up to the equation:

n−1∑
j=0

sin(θ − 2jπ/n)ecos(θ−2jπ/n) = 0. (23)

According to Lemma 2, the weight vectors w̄j satisfy Eq. 23,
thus indicating that they constitute extremum points of Si,
∀i ∈ N<n. Following Lemma 1, we can further conclude that:

• B.IV:
∑n−1
i=0 w̄i = 0̄.

At this stage, we check the validity of Eq. 20 on a random
plane P ′ that passes through the weight vector w̄i. Let w̄i−m
and w̄i+m, m ∈ N[1,(n−1)/2), be the weight vectors astride w̄i

(a) n = 3 (b) n = 4

Fig. 3: Illustration of the proposed symmetrical layout in F3 ⊆ R3

for two different numbers of classes: (a) n = 3 and (b) n = 4.

that lie on P . Then, ̂(w̄i, w̄i−m) = −2mπ/n, ̂(w̄i, w̄i+m) =
2mπ/n and:

dzi−m(θ)

dθ
ezi−m(θ) +

dzi+m(θ)

dθ
ezi+m(θ) =

= ‖w̄i−m⊥‖ sin(θ − φi−m)ecos(θ−φi−m)

+ ‖w̄i+m⊥‖ sin(θ − φi+m)ecos(θ−φi+m).

(24)

Moreover, the summation vector w̄i−m + w̄i+m is parallel to
w̄i. According to Lemma 3 the projections of w̄i−m and w̄i+m
on P ′ have equal norms and are also bisected by w̄i. Hence,
‖w̄i−m⊥‖ = ‖w̄i+m⊥‖ = ‖w̄m‖ and φi − φi−m = −(φi −
φi+m) = φm. For θ = φi, Eq. 24 becomes:

‖w̄m‖ sin(φm)ecos(φm) + ‖w̄m‖ sin(−φm)ecos(−φm) =

= ‖w̄m‖ sin(φm)ecos(φm) − ‖w̄m‖ sin(φm)ecos(φm) = 0.
(25)

That is, the vectors that present equal angle astride w̄i eradicate
themselves in the sum of Eq. 20. In case that their total number
is odd, the remaining one is the counterbalancing vector
−w̄i, a term which also equals zero, as shown in Lemma 2.
Eventually, the proposed symmetry secures maximization of
Si at the orientation of w̄i from any possible direction.

VI. IMPLEMENTATION DETAILS

The current section focuses on the implementation of the
proposed symmetry in the last layer of a CNN. The code
has been developed using PyTorch 1.4 [39], supporting GPU-
enabled operations on an NVIDIA GeForce GTX 1060, 6GB.
According to Section V-B, regardless the number of classes
and the feature space dimensionality, the whole symmetry
is placed on a 2-D plane on which all the weights of the
last layer lie. Hence, since the definition of such a plane
requires two orthogonal vectors, the trainable parameters of
the layer are reduced to the vectors v̄1, v̄2 ∈ Fd. The above
two vectors are free in terms of orientation and scale. In
an effort to develop a layer compatible with the supported
operations in DL frameworks, such as PyTorch, we follow
the Gram-Schmidt orthogonalization [40] Hence, we calculate
the orthonormal vectors n̂1, n̂2 ∈ Fd that form the basis of
the rotation plane. More specifically, n̂1 is the l2-normalized
vector of v̄1 and n̂2 is orthonormal to n̂1. Consequently, the
proposed symmetrical layout is produced by rotating the initial



JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, APRIL 2021 6

0 25 50 75 100 125 150
epochs

0.2

0.4

0.6

0.8

1.0

a
cc

u
ra

cy

Proposed Train

Proposed Eval 

Vanilla Train

Vanilla Eval 

(a) Accuracy (σ=8)

0 25 50 75 100 125 150
epochs

0.2

0.4

0.6

0.8

1.0

a
cc
u
ra
cy

(b) Accuracy (σ=16)

0 25 50 75 100 125 150
epochs

0.2

0.4

0.6

0.8

1.0

a
cc
u
ra
cy

(c) Accuracy (σ=32)

0 25 50 75 100 125 150
epochs

0.2

0.4

0.6

0.8

1.0

a
cc
u
ra
cy

(d) Accuracy (σ=64)

0 25 50 75 100 125 150
epochs

0.0

0.5

1.0

1.5

2.0

2.5

3.0

lo
ss

Proposed Train

Proposed Eval 

Vanilla Train

Vanilla Eval 

(e) Loss (σ=8)

0 25 50 75 100 125 150
epochs

0.0

0.5

1.0

1.5

2.0

2.5

3.0

a
cc
u
ra
cy

(f) Loss (σ=16)

0 25 50 75 100 125 150
epochs

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

a
cc
u
ra
cy

(g) Loss (σ=32)

0 25 50 75 100 125 150
epochs

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

a
cc
u
ra
cy

(h) Loss (σ=64)

Fig. 4: Training curves of the introduced layer for the training (blue) and evaluation (orange) sets of C10 [37], as obtained by using
ResNet-18 architecture [38]. Black and gray dashed lines depict the corresponding curves of the vanilla FC layer for the same sets.

vector n̂1 by 2πi/n, ∀i ∈ N<n. The above rotations are
conducted in parallel, shaping a GPU-enabled operation. The
code regarding the implementation of the layer is provided in
Appendix A, while the whole pipeline for training a CNN is
available online1.

Similarly to the most methods in the field of neural-
based feature learning, the introduced layer includes the scaler
parameter σ, which refers to the radius of the hyper-sphere
in Fd. This parameter can be either predefined or it can be
learned during the training procedure of the DNN [41].

VII. EXPERIMENTAL STUDY

In this section, we proceed with the application of the
proposed layer in the broadly known challenge of image
classification, exploiting the benchmark database CIFAR-10
(C10) [37]. Consequently, an empirical study is demon-
strated to highlight the stability inconsistencies observed in
the field’s state-of-the-art methods, viz. SphereFace [20] and
ArcFace [19].

A. Symmetrical layout convergence

In order to evaluate the convergence of the layer, we utilize
the widely known ResNet-18 architecture [38] and conduct
several experiments for different values of σ on C10. To ensure
fairness, the training procedure of all experiments lasts 160
epochs with a batch size of 256. The Stochastic Gradient
Descent (SGD) optimizer is employed, using momentum 0.9,
weight decay 10−4 and initial learning rate at 0.1 that decays
by an order of magnitude at 50% and 75% of the total duration.

In Fig. 4, the training curves of the introduced layer on C10
for σ = 8, 16, 32 and 64 are demonstrated. In addition, the
corresponding curves for the common FC layer are included
to visualize the differences between the two approaches. Note
that the experiments with the FC layer are also conducted

1https://github.com/IoannisKansizoglou/Symmetrical-Feature-Space

TABLE I: Best accuracy percentage (in %) of each method
succeeded in the evaluation set of C10.

Method σ Accuracy (%)
FC layer - 79.77

SphereFace [20] - 79.34

ArcFace [19] 64 73.71

Ours 8 81.53

Ours 16 82.37

Ours 32 82.22

Ours 64 80.74
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Fig. 5: With purple, the variation of the plane’s (P ) angle (in degrees
◦) is illustrated during training the symmetrical layer on C10, while
the corresponding training loss is depicted with magenta. In (a) both
curves are presented in their actual scale, while in (b) they are
normalized to further demonstrate their correlation.

following the same training setup. At first, we highlight the
competitive performance of our layer compared against the
FC one for all the investigated values of σ. In the cases of
σ = 16 and 32, the succeeded evaluation accuracy exceeds by
≈ 2.5% the benchmark one, as shown in Table I. However,
note that the main argument of the current work does not
focus on the enhancement of the classification accuracy, rather
than on showing that the proposed method sustains state-of-
the-art performance. Furthermore, by paying attention to the
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Fig. 6: Training curves of ArcFace [19] (σ=64, m=0.1) for the
training (green) and evaluation (red) sets of C10, as obtained by
using ResNet-18.

TABLE II: Training results under different experimental setups
of ArcFace [19], as obtained by using ResNet-18 on C10.

σ m Acc1 (%) Acc2 (%) Acc3 (%)
4 0.1 x x x
8 0.1 x x x
16 0.1 x x x
32 0.1 x 10.00 x
64 0.1 20.02 73.71 x

training curves in Fig. 4, we understand that the symmetrical
layer converges with a slower rate. The above fact is highly
anticipated, due to the restrictions inserted to the trainable
parameters to ensure the desired layout.

In Fig. 5, the characteristic vector of the plane of symmetry
P is monitored. More specifically, in Fig. 5a we present
the angle between two successive snapshots of the above
vector during the training procedure, thus summarizing the
variation of its orientation in degrees (◦). The curve of the
corresponding training loss is also included. For a more
representative comparison, Fig. 5b demonstrates the above
curves after normalization in [0, 1].

B. Stability issues and comparative study

The aim of this section is to demonstrate in practice the
issues introduced by the common hypothesis H, which is
adopted both in SphereFace [20] and ArcFace [19], as stated in
Section II. Hence, we proceed with a grid search methodology
for the scaler parameter of ArcFace with σ in {4, 8, 16, 32, 64},
which is adopted by the proposed method, as well. SphereFace
is trained only for σ = 1, based on the available implemen-
tation of the layer in PyTorch. Each experiment is conducted
three times under exactly the same setup of parameters. The
training setup follows the one proposed in Section VII-A.

The obtained results for ArcFace are depicted in Table II.
The notation x is employed to represent the cases, where the
training loss diverges from finite values. In any other case,
the best evaluation accuracy (in %) is kept. By examining
Table II, the reader can discover the unstable and simul-
taneously different behavior of such a method even under
identical training and hyper-parameters setup. We argue that
the above fact is due to the error inherited by H. The above
renders in turn the investigated methods highly dependent
upon weights initialization since the higher the asymmetry of
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Fig. 7: Training curves of SphereFace [20] (σ=1) for the training
(green) and evaluation (red) sets of C10, as obtained by using
ResNet-18.

TABLE III: Training results of SphereFace [20], as obtained
by using ResNet-18 on C10.

σ Acc1 (%) Acc2 (%) Acc3 (%)
1 47.31 79.34 x

the initial weight vectors, the higher the divergence between
the orientation of a weight and the actual centre of the
corresponding class.

Paying more attention to the particularly interesting case
of σ = 64, we observe that for two distinct repetitions of
the same experiment, the obtained evaluation accuracy ends
up to different finite values. Hence, we illustrate in Fig. 6
the training curves of those two repetitions, demonstrating the
method’s susceptibility to weights initialization. As a typical
instance, the reader can easily identify in the second case,
depicted with dashed lines, the large delay until the onset of
the convergence.

Eventually, the same experimental procedure is employed
for the case of SphereFace using σ = 1. Again, the obtained
results are displayed in Table III and differ under different
repetitions of the same training setup, empirically confirming
our statement. Then, we further display in Fig. 7 the training
curves of the two repetitions that end up to finite values of
evaluation accuracy. Here, we observe that both training and
evaluation accuracy display a common plateau since they reach
a specific value, which cannot be exceeded by the CNN.

C. Time Complexity

As a final assessment, we focus on time efficiency, ascer-
taining that the proposed implementation adds no particular
complexity as compared against a simple Fully Connected
(FC) solution. In Table IV, the mean and standard deviation
values of the corresponding seconds per epoch are computed
among three repetitions of the same experiment, using an FC
layer, SphereFace, ArcFace and ours. As shown, all methods
require about the same training time, ensuring that the pro-
posed implementation is suitable for large-scale applications.

VIII. CONCLUSION

In drawing to a close, the paper at hand deals with the empir-
ical assumption adopted by the vast majority of recent methods
in the field of neural-based feature learning. The aforemen-
tioned hypothesis (H) claims the coincidence between the
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TABLE IV: Training duration (in sec/epoch) of the introduced
layer compared against ArcFace, SphereFace and the common
FC layer.

Method Duration (sec/epoch)
FC layer 79.79± 0.15

SphereFace [20] 81.66± 2.39

ArcFace [19] 81.62± 3.75

Ours 80.14± 0.08

last FC layer’s weight vector with the geometrical centre of
the corresponding class. Following a theoretical approach, we
prove the refutability of H, given a random distribution of
the weight vectors in the feature space Fd, which refers to
the input space of the output layer. Consequently, a specific
symmetrical layout for the weight vectors is proposed that is
proved to satisfy H for any dimensionality d of space Fd.

Proceeding with our empirical study, the implementation
of the proposed symmetry is described, which can be easily
adopted as a custom layer in widespread deep learning frame-
works, like PyTorch. The code of the layer is openly provided
in Appendix A. Then, several experiments are conducted to
demonstrate the convergence capabilities of the layer. We
further demonstrate that the required training duration is
similar to the one of a common FC layer. At competitive and
occasionally beneficiary levels are also the achieved accuracy
values of the proposed layer compared against the FC one,
as well as two of the most widespread models in the field,
viz., SphereFace and ArcFace. Finally, the impact of the false
supposition in stability issues is empirically demonstrated
within the above methods in the field, by evaluating their
achieved evaluation accuracy between multiple repetitions of
the same training setup .

As part of future work, we aim to exploit the formulation
of the proposed symmetrical layout in a feature learning task,
such as the challenge of face verification. In specific, the
combination of the proposed layer with the rules of state-of-
the-art schemes, such as ArcFace, can be investigated, as an
attempt to enhance the feature learning capacity of a DNN.
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APPENDIX A

# PyTorch code

import torch
import torch.nn as nn
import torch.nn.functional as F

class SymmetricalLayer(nn.Module):
def __init__(self, input_features,

num_classes, scaler, device):
super(SymmetricalLayer, self).__init__()

self.weight = nn.Parameter(
torch.FloatTensor(2,

input_features)
)

nn.init.uniform_(self.weight)
thetas = torch.arange(num_classes,

dtype=torch.float32)
self.thetas = (2*math.pi*thetas /

thetas.shape[0]).to(device)
self.I =

torch.eye(input_features).to(device)
self.input_features = input_features
self.num_classes = num_classes
self.s = scaler

def rotateNd(self, v1, v2):

n1 = v1 / torch.norm(v1)
v2 = v2 - torch.dot(n1,v2) * n1
n2 = v2 / torch.norm(v2)

ger_sub = torch.ger(n2,n1) -
torch.ger(n1,n2)

ger_add = torch.ger(n1,n1) +
torch.ger(n2,n2)

sin_th = torch.unsqueeze(
torch.unsqueeze(

torch.sin(self.thetas),dim=-1),
dim=-1)

cos_th = torch.unsqueeze(
torch.unsqueeze(

torch.cos(self.thetas)-1,dim=-1),
dim=-1)

R = self.I + ger_sub*sin_th +
ger_add*cos_th

return torch.einsum(’bij,j->bi’,R,n1)

def forward(self, input_x):
x = F.normalize(input_x)
W = F.normalize(self.weight)
Ws = self.rotateNd(W[0],W[1])
cosine = F.linear(x, Ws)
output = self.s*cosine

return output
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