
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 1

Causal Incremental Graph Convolution for
Recommender System Retraining

Sihao Ding, Fuli Feng, Xiangnan He, Yong Liao, Jun Shi, and Yongdong Zhang

Abstract—Real-world recommender system needs to be reg-
ularly retrained to keep with the new data. In this work, we
consider how to efficiently retrain graph convolution network
(GCN) based recommender models, which are state-of-the-art
techniques for collaborative recommendation. To pursue high
efficiency, we set the target as using only new data for model
updating, meanwhile not sacrificing the recommendation accu-
racy compared with full model retraining. This is non-trivial to
achieve, since the interaction data participates in both the graph
structure for model construction and the loss function for model
learning, whereas the old graph structure is not allowed to use
in model updating.

Towards the goal, we propose a Causal Incremental Graph
Convolution approach, which consists of two new operators
named Incremental Graph Convolution (IGC) and Colliding Effect
Distillation (CED) to estimate the output of full graph convo-
lution. In particular, we devise simple and effective modules
for IGC to ingeniously combine the old representations and
the incremental graph and effectively fuse the long-term and
short-term preference signals. CED aims to avoid the out-of-date
issue of inactive nodes that are not in the incremental graph,
which connects the new data with inactive nodes through causal
inference. In particular, CED estimates the causal effect of new
data on the representation of inactive nodes through the control of
their collider. Extensive experiments on three real-world datasets
demonstrate both accuracy gains and significant speed-ups over
the existing retraining mechanism.

Index Terms—Recommender System, Graph Neural Network,
Incremental Training, Casual Inference, Colliding Effect

I. INTRODUCTION
Recent years have witnessed the success of GCN-based

recommender models such as PinSAGE [2] and LightGCN [3],
which perform node representation learning over the interac-
tion graph and demonstrate promising performance [5]. The
core of them is neighborhood aggregation which enhances a
node’s representation with the information from its neighbors.
In this way, the graph structure can be explicitly integrated into
the embedding space, improving the representations of users
and items. In practical usage, a recommender system needs
to be periodically (e.g., daily) retrained to keep the model
fresh with the new interaction data. In this work, we study the
problem of GCN model retraining for recommendation, which
has received relatively little scrutiny.

Given new interactions for refreshing an old GCN model,
there are three straightforward strategies:

S. Ding, X He, Y Liao, Y Zhang are with University of Science and
Technology of China, Hefei 230026, China (email: Dsihao@mail.ustc.edu.cn,
hexn, ly, zhyd73 @ustc.edu.cn). F Feng is with the National University of
Singapore (email: fulifeng93@gmail.com). J Shi is with Innovation Lab of
CETC (email: junshi@cyberaray.com). Corresponding author: Fuli Feng.

This work is supported by the National Natural Science Foundation of
China (U19A2079, U21B2026, 62121002).

• Full retraining, which simply merges the old data and new
interactions to perform a full model training. This solution
retains the most fidelity since all data is used. However, it is
very costly in both memory and time, since interaction data
is usually of a large scale and keeps increasing with time.

• Fine-tuning with old graph. Interaction data participates in
two parts of a GCN: forming the graph structure to perform
graph convolutions and constituting training examples of the
loss function. This fine-tuning solution constructs training
examples with new interactions only, while still uses the
full graph structure. As such, although this solution costs
fewer resources than the full retraining, it is still costly due
to the usage of the old graph.

• Fine-tuning w/o old graph. This solution uses only the new
interactions for model training and graph convolution. The
old graph is not used in graph convolution, which saves
many computation and storage resources because of the high
sparsity of incremental graph (see Fig. 1). However, the
new interactions contain only users’ short-term preferences,
which can differ much from the long-term performances and
be much sparser. In addition, it cuts off the connection to the
inactive nodes that have no new interactions. It thus suffers
easily from forgetting and over-fitting issues.

Given the pros and cons of the above intuitive strategies, we
distill three considerations for effective and efficient GCN rec-
ommender retraining: 1) detaching the old graph; 2) reserving
the old (long-term) preference signal; and 3) fusing the old
and new preference signals. In short, our target is to achieve
comparable or even better recommendation accuracy as full
retraining, with the use of new interactions only. The key lies
in how to estimate the output of full graph convolution (i.e.,
on the whole graph for full retraining), based on the old node
representations and the incremental graph (i.e., the graph con-
structed from the new interactions, cf. Fig. 1 as an example).
This is however non-trivial to achieve for three reasons: 1) in
the full graph convolution, the new interactions not only bring
new neighbors for a target node, but also participates in the
normalization weighting of old neighbors. It is known that the
normalization weights of neighbors have a large impact on the
GCN performance [3] and need to be carefully considered.
2) The old representations are learned over historical data
and represent long-term preference. Since user interests may
drift, making the new interactions discrepant from long-term
preference, blindly fine-tuning old representations could make
the model forget the long-term preference. 3) The incremental
graph lacks inactive nodes that have no new interactions (e.g.,
node i1 in Fig. 1), which calls for extra effort to refresh the

ar
X

iv
:2

10
8.

06
88

9v
2

 [
cs

.L
G

]
 1

 M
ar

 2
02

2

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2

representation of such nodes.
Towards our target, we first propose Incremental Graph

Convolution, which estimates the full graph convolution of a
target node based on its old representation and the incremental
graph structure. In particular, we design a degree synchronizer
to learn the degree-based node normalization weights, so as to
approach the normalization weights in full graph convolution.
Meanwhile, we devise a representation aggregator to compose
the old representation with the new neighbors for effectively
encoding both long-term and short-term signals. We devise the
two modules as simple convolutional neural networks (CNNs),
which keep the overall complexity of IGC close to fine-tuning
w/o old graph with sufficient fidelity.

Meanwhile, we devise Colliding Effect Distillation to re-
fresh the representation of inactive nodes, which estimates the
effect of new data on the representation of inactive nodes. In
particular, we resort to causal theory [39] and frame the whole
incremental training phase as a causal graph (see Fig. 3). The
key lies in how to connect the d-separated [39] variables: the
representation of inactive nodes and new data. We construct
a collider [39] between them to make them conditionally d-
connected and estimate their colliding effect [52] to update the
representation of inactive nodes. In particular, CED distills the
colliding effect conditioned on the similarity between inactive
and active nodes implied by the old representations.

The proposed IGC and CED are universal operators that
are applicable to most GCN models. In this work, we equip
them on LightGCN [3], a simple GCN model with state-of-the-
art performance on collaborative recommendation. Through
extensive experiments on three real-world datasets, we demon-
strate the effectiveness of the Causal Incremental Graph
Convolution approach, which outperforms full retraining in
recommendation accuracy with overall costs comparable to
fine-tuning w/o old graph. The main contributions of this work
are summarized as follows:

• We study the new task of GCN model retraining for recom-
mendation, and propose a new Causal Incremental Graph
Convolution approach that well supports the efficient and
effective retraining of GCN models.

• We devise two universal operators named Incremental
Graph Convolution and Colliding Effect Distillation, that
can estimate the full graph convolution for both active and
inactive nodes during the incremental training.

• We instantiate IGC and CED on LightGCN and conduct
extensive experiments to demonstrate the effectiveness and
efficiency of our approach.

II. METHODOLOGY

We represent the temporal interaction data as I =
{I0, I1, . . . , It−1, It}, and the corresponding user-item graph
as G = {G0, G1, . . . , Gt−1, Gt}. It means the new inter-
actions collected in stage t; Gt is the bipartite user-item
graph built on the interactions in It, which we also term
as incremental graph. A stage can be of any time period
(e.g., one/multiple hours/days), which depends on the expected
model freshness and the training cost we can afford. Towards

Fig. 1: An illustration of the incremental graph at stage t+ 1
in GCN retraining.

the target of efficient GCN model retraining, we formulate the
task as:

θt−1
(It,Gt)−−−−−→
retrain

θt −−−→
serve

It+1, (1)

where θt denotes the model parameters learned in stage t.
In this formulation, we retrain using only the latest stage’s

interactions It and the incremental graph Gt1. The model with
θt is used to serve for next stage t+1, thus we use the (future)
data It+1 to evaluate the retraining effectiveness.

A. GCN-based Recommender Model

We recap how GCN works for collaborative filtering. Sup-
pose we construct GCN on the full graph up to t, denoted as
G0∼t, the graph convolution commonly used is:

e
(l+1)
i,t = σ

(
1√
di,0∼t

neighborhood aggregation︷ ︸︸ ︷∑
j∈Ni,0∼t

1√
dj,0∼t

e
(l)
j,t

)
, (2)

where e(l)j,t denotes the representation of node j at l-th layer,
Ni,0∼t represents the neighbors of node i in the graph G0∼t,
and di,0∼t (accumulated degree) equals to the number of nodes
in Ni,0∼t. The core of graph convolution is neighborhood
aggregation, which aggregates the representations of neighbor
nodes for the target node i. The node degrees play the
role of normalization, exerting a large impact on the GCN
performance [3]. The feature transformation function σ(·) has
various formats such as linear [5] and bilinear mapping [18].
We focus on the neighborhood aggregation in this work,
omitting the feature transformation function σ(·) for briefness.

The embeddings of the 0-th layer are the model parameters
to learn, which are trained by minimizing the loss function:∑

(u,i)∈I/I−
L
(
yu,i, ŷu,i

)
+ λ‖θ‖2, (3)

where I− are negative samples, yu,i is the interaction label,
and ŷu,i is the corresponding model prediction such as the
inner product of final user and item representations. L(·) spec-
ifies the recommendation loss such as the pairwise BPR [17]
and pointwise cross entropy [4], and λ is the hyper-parameter
for L2 regularization.

1Real-world recommender systems will continually collect new data, so the
whole training data and the full graph will keep growing. Thus, the existing
gap in retraining costs between fine-tuning with old graph (or full-retraining)
and incremental training will continue to widen.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 3

Fig. 2: Incremental Graph Convolution on target node u1 in
stage t. The blurred part is the old graph that is not used in
stage t. Red edges denote the new interactions in stage t. The
yellow region shows the nodes included in graph convolution.
Agg(·), Ini(·) represent the operations to use e(1)u1,t−1 in IGC
and full graph convolution, respectively.

B. Incremental Graph Convolution
The cost of full retraining is high and increasing with

time. Since Ni,0∼t equals to Ni,0∼t−1 ∪ Ni,t, an efficient
retraining means that bypassing Ni,0∼t−1 and using only Ni,t
to estimate the full graph convolution of Eq. (2). Suppose the
old representation e(l+1)

i,t−1 is trained on G0∼t−1, it then can
encode graph convolution experience on Ni,0∼t−12. As such,
a smart integration of it with only new neighbors can well
approximate the result of full graph convolution. To this end,
we propose Incremental Graph Convolution, which estimates
the full graph convolution on target node i as:

e
(l+1)
i,t =

1√
d′i,t

· ϕ
(old representation, constant︷ ︸︸ ︷√

di,0∼t−1 · e(l+1)
i,t−1,

new representations, to learn︷ ︸︸ ︷∑
j∈Ni,t

1√
d′j,t

· e(l)
j,t

)
,

(4)

where d′j,t = f(dj,0∼t−1, dj,t) denotes the normalization
weight estimated by the degree synchronizer. In the next, we
elaborate the core designs of our IGC.

1) Degree Synchronizer: To retain the most fidelity as
the full graph convolution, we carefully set the degree-based
normalization weights in IGC. We first scrutinize the first term
of old representation:√

di,0∼t−1 · e(l+1)
i,t−1 =

∑
j∈Ni,0∼t−1

1√
dj,0∼t−1

e
(l)
j,t−1. (5)

If we replace t − 1 with t, the right side becomes exactly
what we need for full neighborhood aggregation. Since we
are not allowed to use Ni,0∼t−1 in IGC, we use

√
di,0∼t−1 ·

e
(l+1)
i,t−1 instead, which has encoded the signal in Ni,0∼t−1. As

2Iteratively training with our IGC from stage 0 to t − 1 yields the same
effect, so the premise still holds.

updating e(l+1)
i,t−1 in retraining has the risk of losing the signal of

old neighbors, we set it as a constant during stage t retraining.
For this operation, we only need to store one additional integer
for each node — its accumulated degree di,0∼t−1, the cost of
which is negligible.

We next move to the second term for new neighbors
modeling. At the first sight, we can set f(dj,0∼t−1, dj,t) as
dj,0∼t−1+dj,t, which is the one used in full graph convolution.
However, the evolution pattern of node degree may be different
for datasets of different domains. This provides opportunities
to boost the performance of original graph convolution, if
we can strategically learn f(·) towards the recommendation
objective function. To this end, we weighted combine the two
degrees:

f(dj,0∼t−1, dj,t) = β · dj,0∼t−1 + dj,t, (6)

where β is end-to-end trained to control the impact of old
degree. We empirically find this simple function works well,
and the optimal β varies significantly for different datasets (cf.
Section III-C).

2) Representation Aggregator ϕ(·): The full graph convo-
lution updates parameters associated with both old and new
neighbors. However, IGC is only allowed to update parameters
of new neighbors for efficiency concern. This causes signif-
icant discrepancy issues: 1) the old representation is off-the-
shelf while the new representation is iteratively updated to
optimize the loss function on new interactions, and 2) the old
representation is learned over historical data and represents
long-term preference, which may be discrepant from the new
interactions due to interest drift.

To tackle these issues, we devise a parameterized function
ϕ(·), adapting the fusion strategy to the training objective.
An existing solution is the Transfer component in [6], which
adopts a standard CNN network with nonlinear transforma-
tions. However, we find it works poorly in our scenario, par-
tially because of the complexity brought by feature mapping
and nonlinear activation. As such, we further simplify the CNN
design, retaining the minimum operations and parameters.
Specifically, we stack the old and new representations, passing
them into a convolution layer:

p

〈w(l)
f ,

[√
di,0∼t−1 · e(l+1)

i,t−1 ,
∑
j∈Ni,t

1√
d′j,t

· e(l)j,t
]〉 , (7)

where p(·) is a pooling operation, wf ∈ R2×1 denotes the
f -th filter of the CNN layer, and there can be multiple filters
in a layer. In this way, the aggregator adjusts the importance
of long-term and short-term preference and aligns the scale
of the two representations in the training process. We can
stack multiple CNN layers to enhance the expressiveness of
the aggregator, whereas in our experiments using one layer
leads to good performance in most cases (cf. Fig. 9).

To summarize, compared with the vanilla graph convolution,
our IGC demonstrates three main differences:
• Incremental neighborhood aggregation. Instead of aggre-

gating all neighbors, IGC aggregates the new neighbors

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 4

only, combining with the target node’s old representation
e
(l+1)
i,t−1 . Only the parameters associated with new neighbors

are trainable (i.e., the 0-th layer embeddings), which signif-
icantly reduces the retraining cost.

• Degree synchronizer. This module revises the normal-
ization weights for old representation and new neighbors
to boost the model performance. It requires to save the
accumulated degree for each node, which has a negligible
cost equal to increasing the embedding size by 1.

• Representation aggregator ϕ(·). This learnable function
combines the constant e(l+1)

i,t−1 and the trained new represen-
tations, with the ability to handle the discrepancy between
them. It can also compensate some estimation error of the
old representation and improve model capability, by only
introducing a simple CNN with very few parameters.

C. Colliding Effect Distillation

IGC is a universal operator which is applicable to most GCN
models to calculate user and item representations. We apply
IGC to a state-of-the-art collaborative filtering GCN model
LightGCN [3] as I-LightGCN, where we stack L IGC layers
and set the final representations of all nodes as the average of
their representations at all layers. Formally,

ri,t =
1

L

L∑
l=0

e
(l)
i,t . (8)

We denote the nodes occur in It as active nodes and the
remaining as inactive nodes. Accordingly, we denote the
representations of active and inactive nodes as RAc,t and
RIn,t, respectively. Their old representations are organized
into RAc,t−1 and RIn,t−1 with the same criterion.

As we use the new data It to train I-LightGCN, IGC mainly
refreshes the representation of active nodes, which will thus
face the out-of-date issue on the inactive nodes. The reason is
that the parameters correspond to the inactive nodes (e.g., node
embedding) are not involved in the training procedure (e.g.,
back-propagation). In this light, we consider two directions
to properly refresh the representation of inactive nodes: 1)
directly injecting the new preference signal from active nodes
into the representation of inactive nodes; and 2) including
the parameters of inactive nodes into the training objective to
indirectly push their representations to be updated. Apparently,
the key lies in constructing the connection from new data to
the representation of inactive node which is cut off due to
discarding of data replay in the incremental training setting.

Direct update. Towards the target, we devise CED as:

r̃m,t = γ1 · rm,t +
1− γ1
K

·
∑

n∈KNN(RAc,t−1,m,K,δ)

rn,t, (9)

where m is an inactive node in stage t and r̃m,t is the final
representation that connects K active nodes. KNN(·) denotes
the nearest neighbor fetching operation which calculates the
top-K nearest active nodes to node m according to a distance
measure δ (e.g., Euclidean distance) between the old represen-
tations rm,t−1 and RAc,t−1. γ1 ∈ [0, 1] is a hyper-parameter
that controls the influence of active nodes. Intuitively, CED

refreshes the representation of an inactive node with the latest
status of active nodes that have shown similar properties in
previous stages. For instance, we believe that the inactive
user m will exhibit similar short-term preference evolution as
her/his similar users shown in stage t. We will give a rigorous
derivation for the formulation of CED in Section II-D.

Indirect update. While Eq. (9) updates the representations
of inactive nodes, their parameters are still not touched since
we construct the training data from It only. CED thus also
operates the active nodes, which is formulated as:

r̃n,t = γ2 · rn,t +
1− γ2
K

·
∑

m∈KNN(RIn,t−1,n,K,δ)

rm,t. (10)

In this way, the parameters of inactive nodes are attached to
the objective function and updated during the retraining.

Note that CED is also a universal operator applicable to
most GCN models. In this work, we apply both IGC and CED
to LightGCN, which is named CI-LightGCN. Upon the output
of CED, we use the inner product of r̃u,t and r̃i,t to generate
the prediction result of one u, i pair:

ŷu,i =< r̃u,t · r̃i,t > . (11)

Following the original LightGCN paper, we learn the model
parameters θt by optimizing Eq. (3) over the new data It with
the mini-batch Adam [22] optimizer. In particular, the param-
eters to be learned include the embedding of nodes and the
CNN filters and the β in IGC. Note that it is initialized as θt−1
in the beginning of stage t retraining (random initialization
for t = 0). The time complexity is close to the standard fine-
tuning since only the new interactions It are used to construct
graph and training examples. Below illustrates the retraining
procedure of CI-LightGCN.

Algorithm 1: Retraining CI-LightGCN.
Input: Old parameters θt−1, accumulated degree

{di,0∼t−1}, new interactions It
Output: New parameters θt, recommender result Yt

1 θt ← θt−1 . Initialization;
2 Generate incremental graph Gt from It;
3 Calculate KNN(RIn,t−1, n,K, δ) of active nodes;
4 while Stop condition is not reached do
5 Fetch mini-batch data from It;
6 Feed forward active node embeddings by Eq. (7)

and get active node representations by Eq. (8);
7 Generate new active node representations with

inactive nodes by Eq. (10) for indirect update;
8 Update θt by minimizing Eq. (3) with Eq. (11);
9 end

10 Calculate representations of all nodes based on
optimized θt by Eq. (7) and Eq. (8);

11 Calculate KNN(RAc,t−1,m,K, δ) of inactive nodes;
12 Generate final inactive node representations by Eq. (9);

In Algorithm 1, line 6 and 10 refer to IGC, i.e., the
incremental training of the active nodes. Line 3, 7, 11, and
12 refer to CED, where line 7 and 12 correspond to indirect
update and direct update of inactive nodes, respectively.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 5

D. The Casual View of CED

We first conceptually introduce colliding effect [39] with
a real-life example. Supposing a college gives scholarships
to two types of students with unusual musical talents or high
GPA. This corresponds to a causal graph: M → S ← G where
M , S, and G denote musical talents, scholarship, and GPA;
S is a collider between M and G. Ordinarily, musical talent
and GPA are independent, but become dependent given that a
student won a scholarship. In such a case, knowing that the
student lacks musical talent, we can infer that the student is
likely to have high GPA. In other words, M and G become
dependent by conditioning on the value of their common
cause, i.e., the collider S. In this light, we can leverage such
colliding effect to enhance the prediction of M or G.

The design of CED is inspired by [52], which first models
and leverages the colliding effect in class incremental learning.
We use three causal graphs [38] (see Fig. 3) to elaborate
the causal theory behind CED. We model the representation
calculation of I-LightGCN (Fig. 3(A)), then introduce the
collider to make inactive nodes and new data conditionally
d-connected (Fig. 3(B)), followed by the causal graph of CI-
LightGCN (Fig. 3(C)). The nodes in a causal graph denote
variables, and we scrutinize the meaning of each variable as
follow:

• RIn,t and RAc,t denote the node representations of inactive
nodes and active nodes, respectively.

• RIn,t−1 and RAc,t−1 denote the corresponding old node
representations in stage t− 1.

• It is the new interaction data that is collected in stage t.
• St denotes the pair-wise distance between nodes in RIn,t

and RAc,t.

The edges in the causal graph describe the causal relations
between variables, where black arrows correspond to the
operations in I-LightGCN; red dotted arrows correspond to
the calculation of node distance; and double arrows denotes
the causal relations as conditioned on a collider. In particular,

• (RAc,t−1, It) → RAc,t: As to the active nodes, IGC aggre-
gates the old representations RAc,t−1 and the incremental
graph constructed from It.

• RIn,t−1 → RIn,t: As to inactive nodes, IGC only encodes
their old representations RIn,t−1.

• (RAc,t, RIn,t)→ St: The calculation of St is based on the
new representations of active and inactive nodes. Note that
St is a collider between variable pairs RAc,t and RIn,t.

• RAc,t ↔ RIn,t: When conditioned on the collider as
St = st−1, the causal path between its parent nodes is built
up [52].

Recall that the key to refreshing the representation of
inactive nodes is connecting RIn,t to It. As shown in
Fig. 3(C), It has colliding effect (CE) on RIn,t through the
path (It,RAc,t−1) → RAc,t ↔ RIn,t as conditioned on
St = st−1.
st−1 represents the old similarity between active and inac-

tive nodes calculated from RAc,t−1 and RIn,t−1. Condition
on St = st−1 means the updated representations in stage
t maintain a similar relative distance between nodes as the

previous stage. In this light, we additionally consider the
colliding effect CEIt,RAc,t−1

, which equals to,

P (RIn,t|RIn,t−1,RAc,t−1, It,St = st−1) (12)
− P (RIn,t|RIn,t−1,RAc,t−1 = 0, It = Ø,St = st−1) ,

which denotes the change of RIn,t as RAc,t−1 and It changes
from a reference status (RAc,t−1 = 0 and It = Ø) to the
factual status. We omit the second term since it can be treated
as constant. This is because RIn,t will not be updated if the
new data is empty. By extending the first term according to
the total probability formula, we derive CEIt,RAc,t−1

as:∑
RAc,t

P (RIn,t|RIn,t−1,RAc,t−1, It,St = st−1,RAc,t)

P (RAc,t|RAc,t−1, It) (13)

=
∑
RAc,t

P (RIn,t|It,St = st−1,RAc,t)P (RAc,t|RAc,t−1, It)

=
∑
RAc,t

W (It,RIn,t, st−1,RAc,t)P (RAc,t|RAc,t−1, It) .

Note that we can omit the variables RIn,t−1, RAc,t−1 for
briefness (the second step) when conditioned on St =
st−1, which is calculated by RAc,t−1 and RIn,t−1. By
abstracting the underlined term as a weighting function
W (It,RIn,t, st−1,RAc,t), we can understand CEIt,RAc,t−1

as a weighted adjustment of the conditional probability distri-
bution of RAc,t. The value of W reflects the important of an
active node ri,t ∈ RAc,t to maintain its old similarity (st−1)
to an inactive node rm,t ∈ RIn,t.

Considering that RIn,t is directly affected by RIn,t−1
(denoted as DERIn,t−1

), we estimate their total effect to update
the representation of inactive nodes, which is formulated as:
γ1 ·DERIn,t−1

+(1−γ1)·CEIt,RAc,t−1
). Given an inactive node

m, we can infer DERIn,t−1
from the output of I-LightGCN

(i.e., rm,t). As to CEIt,RAc,t−1
, we follow [52] to infer a

representation from the weighted distribution according to the
K-nearest neighbors of m in st−1, which is formulated as:∑

n∈KNN(RAc,t−1,m,K,δ)

W (rm,t, st−1, rn,t) · rn,t. (14)

We omit It since no co-occurrence of node m and n in It.
As the simplest average weighting can achieve competitive
performance [52], we set W as 1/K. We thus obtain the
formulation of CED in Eq. (9). Similarly, by considering the
colliding effect from RIn,t−1 to RAc,t, we obtain Eq. (10).

III. EXPERIMENTS

In this section, we evaluate CI-LightGCN on three real-
world datasets to answer the following questions:
• RQ1: How is the performance of CI-LightGCN compared

with the existing retraining methods?
• RQ2: How do the CED and IGC operators affect the

recommendation performance?
• RQ3: What factors (e.g., hyper-parameters) significantly

affect the recommendation performance of CI-LightGCN?

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 6

Fig. 3: (A) is the causal graph of I-LightGCN to generate
node representations in stage t. (B) adds an auxiliary variable,
the distance St between active and inactive nodes. (C) is the
causal graph of CI-LightGCN conditioned on St = st−1.

TABLE I: Statistics of the three used datasets.
Dataset #Users #Items #Interactions #Train #Validation #Test

Yelp 122,816 59,082 3,014,421 [0-30) stage [30-33) stage [33-39] stage
Gowalla 29,858 40,981 1,027,370 [0-30) stage [30-33) stage [33-39] stage
Adressa 478,612 20,875 3,664,225 [0-48) stage [48-53) stage [53-62] stage

A. Experimental Settings

a) Datasets.: We select three widely used datasets for
recommendation: Yelp, Gowalla, and Adressa. 1) Yelp is
adopted from the 2019 Yelp Challenge, which records the
interactions between customers and local business in a period
of more than 10 years. 2) Gowalla3 includes the check-in
records in one year on go.gowalla.com, where users share
their locations by checking in. 3) Adressa is a news ar-
ticles’ clicks records dataset with historical interactions on
Adressa in three weeks. For Yelp and Adressa, we adopt
the version4 pre-processed by [6], where the interactions are
chronologically split into stages. For Gowalla, we follow the
same pre-processing procedure and split the interactions into
40 stages. We summarize detailed statistics of the datasets
in TABLE I. And the densities of Yelp, Gowalla, Adressa
are 0.042%, 0.084%, and 0.037%, respectively. We evaluate
the effectiveness of top-K recommendation5 by reporting
the average recall@5, 20 (R@5 and R@20) and ndcg@5, 20
(N@5 and N@20) over interactions in the testing stages.

b) Compared methods.: We consider five LightGCN
models with different retraining methods:
• Full-retrain LightGCN. This method retrains LightGCN

with all interactions and full graph. We search the L2-
norm coefficient in [0, 0.001] at a multiplicative ratio of 10x;
training epochs in [400, 1,000] with the step of 100.

• Fine-tune LightGCN. This method updates LightGCN with
new interactions and the incremental graph6. We search the
L2-norm coefficient in [0, 0.001] at a multiplicative ratio of
10x; training epochs in {200, 300, 400, 500}.

• SML+LightGCN-O. This method retrains LightGCN with
SML [6], which firstly trains a LightGCN over the incremen-
tal graph, and then combines the old and new representations
with a Transfer. We search the L2-norm coefficient in
[0, 0.01] at a multiplicative ratio of 10x; training epochs

3http://snap.stanford.edu/data/loc-gowalla.html.
4https://github.com/zyang1580/SML/.
5The code of our method CI-LightGCN is available at https://github.com/

Dingseewhole/CI LightGCN master/
6We omit the version of fine-tuning with old graph, which is less effective

than full retraining and less efficient than fine-tuning w/o old graph.

of LightGCN and Transfer in [50, 600] with the step of 50;
learning rate in [1e-5, 1e-2] at 10x multiplicative ratio.

• SML+LightGCN-E. It also retrains LightGCN with SML,
which combines the parameters (i.e., the 0-th layer’s node
embedding) of the new model and old model. We search the
same hype-parameters as SML+LightGCN-O.

• LightGCN+EWC. This method retrains LightGCN with
Elastic Weight Consolidation (EWC) [41] over the incre-
mental graph and new interactions, which is a regularization-
based method in continual learning. We search the EWC
ratio in [0.01, 1] at a multiplicative ratio of 10x.

We also include some sequential recommendation baselines.
• GRU4Rec [19]. It pioneered the usage of recurrent neural

network (RNN) to serve the session-based recommender
system. By building a RNN for each user’s interaction
sequence, it can capture the interest drift of users. We use the
whole history to construct the user’s interaction sequence,
and retrain the model with full-retrain strategy. We search
the hidden layer size of GRU in {64, 128, 256}.

• Caser [20]. This method uses CNN to capture the interest
evolution of users and the collaboration signal between
items of the most L recent interactions. We tune L in
the range of [1, 5] with step 1, and other hyper-parameters
follow the optimal setting as reported in the paper.

• SPMF [21]. It applies a sample-based retraining method
on Matrix Factorization (MF), which samples some his-
torical interactions to be added into new data to up-
date the old model. We search the best reservoir size in
{7, 000, 15, 000, 30, 000, 70, 000, 150, 000}.

• SML-MF [6]. This method applies SML on MF where the
Transfer combines the old embedding and new embedding.
We quote the result from SML [6].

B. Performance Comparison (RQ1)

TABLE II reports the performance comparison results. From
the table, we have the following observations:
• CI-LightGCN outperforms Full-retrain LightGCN and Fine-

tune LightGCN in all cases. It validates the rationality of
combining the old representation and incremental graph to
approach the full graph convolution. The performance gain
of CI-LightGCN is attributed to the IGC and CED, which
properly fuse the long-term and short-term preference for
all users and items.

• CI-LightGCN also outperforms SML-LightGCN-O and
SML-LightGCN-E, which combine the old and new rep-
resentations with the complex Transfer model. We postulate
the reasons are twofold: 1) the complex Transfer model
hurts the performance of LightGCN due to its feature
transformation and nonlinear activation [3]; and 2) the SML-
based methods use degree within incremental graph only
for normalization weighting, which ignore the accumulated
degree. This result indicates the importance of normalization
weighting in GCN model, and the importance of synchro-
nizing the weights for GCN retraining.

• LightGCN+EWC beats Fine-tune LightGCN since EWC
alleviates the forgetting issue of old preference signal.
Nevertheless, CI-LightGCN further achieves performance

http://snap.stanford.edu/data/loc-gowalla.html
https://github.com/zyang1580/SML/
https://github.com/Dingseewhole/CI_LightGCN_master/
https://github.com/Dingseewhole/CI_LightGCN_master/

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 7

TABLE II: Recommendation performance on Yelp and Gowalla. The best performance and best baseline in each column are
highlighted with bold font and underline, respectively. RI denotes CI-LightGCN’s relative performance gain w.r.t. R@5.

Methods Yelp Gowalla
R@5 R@20 N@5 N@20 RI R@5 R@20 N@5 N@20 RI

GRU4Rec 0.1706 0.4158 0.1080 0.1771 92.5% 0.1016 0.2978 0.0623 0.1169 215.8%
Caser 0.2195 0.4565 0.1440 0.2117 49.6% 0.1143 0.3622 0.1111 0.3585 180.8%
SPMF 0.1725 0.3635 0.1136 0.1677 90.4% 0.1595 0.3759 0.0993 0.1606 101.2%
SML-MF 0.2251 0.4748 0.1485 0.2194 45.9% 0.1761 0.3428 0.1233 0.1701 82.2%
Fine-tune LightGCN 0.2338 0.4320 0.1619 0.2185 40.5% 0.2142 0.3860 0.1505 0.1993 49.8%
Full-retrain LightGCN 0.2923 0.5247 0.2074 0.2727 12.4% 0.3103 0.5276 0.2212 0.2819 3.4%
SML-LightGCN-O 0.1895 0.4197 0.1246 0.1897 73.3% 0.2152 0.4275 0.1505 0.2103 49.1%
SML-LightGCN-E 0.1771 0.3971 0.1159 0.1782 85.4% 0.2153 0.4515 0.1476 0.2144 49.0%
LightGCN+EWC 0.2365 0.4441 0.1736 0.2463 38.9% 0.2117 0.3942 0.1498 0.1987 51.6%
CI-LightGCN 0.3284 0.5695 0.2294 0.2956 - 0.3209 0.5421 0.2272 0.2908 -

Fig. 4: Stage-wise performance on Yelp.

gain over LightGCN+EWC. The reason for this is due to the
IGC and CED operators. IGC transfers old representations
into new representations, whereas EWC just treats it as a
regularizer, and CED updates the representation of inactive
nodes but EWC is unable to do that.

• On all datasets, LightGCN-based methods largely outper-
form the non-LightGCN ones in most cases, including
SML-MF equipped with advanced retraining strategy. It is
consistent with the result in [5], validating the effectiveness
of GCN in recommendation.

a) Stage-wise Performance: Fig. 4 shows the detailed
recommendation performance w.r.t. by R@10 at each testing
stage of Yelp. To save space, we omit the results of other met-
rics and the results on Yelp, which show the same trend. From
the figure, we can see that CI-LightGCN stably outperforms
the baselines across the stages.

b) Speed-up: Recall that our target is the efficient retrain-
ing of GCN model, we compare the time cost of LightGCN-
based methods. Fig. 5 shows their training time on the same
server with one RTX-3090 GPU. From the figure, we can see
that: 1) CI-LightGCN speeds up the retraining with more than
30 times compared with full-retraining; and 2) the running
time of CI-LightGCN is slightly longer than fine-tuning. The
results justify that IGC and CED enable the fast retraining of
GCN model, which is highly valuable in practice.

C. Ablation Study (RQ2)

a) Study on CED: To reveal the effect of CED and
IGC, we further evaluate two variants of CI-LightGCN: 1)
I-LightGCN, which only applies IGC on LightGCN, i.e.,
removing CED; and 2) CI-LightGCN(T), which only uses
CED in training, i.e., removing Step 11 and 12 of Algo-
rithm 1. TABLE III shows their recommendation performance

Fig. 5: Training time of different LightGCN-based methods.
TABLE III: Performance of CI-LightGCN and its variants.

Datasets Methods R@5 R@20 N@5 N@20
I-LightGCN 0.3222 0.5566 0.2261 0.2933

Yelp CI-LightGCN(T) 0.3249 0.5663 0.2262 0.2954
CI-LightGCN 0.3284 0.5695 0.2294 0.2956
I-LightGCN 0.3173 0.5369 0.2248 0.2878

Gowalla CI-LightGCN(T) 0.3179 0.5370 0.2260 0.2890
CI-LightGCN 0.3209 0.5421 0.2272 0.2908

on the two datasets. From the table, we can see that the
recommendation performance of the three methods exhibit
a clear increase trend, which validates the rationality of
updating inactive nodes during incremental training and the
effectiveness of CED. Moreover, I-LightGCN still outperforms
the baselines in TABLE II, which justifies the effectiveness
of IGC. Furthermore, we evaluate the detailed performance
on inactive users as the target of CED is to refresh their
representations. Across TABLE IV and III, we observe that CI-
LightGCN(T) and CI-LightGCN achieve larger improvement
over I-LightGCN on inactive users. It validates that CED can
boost the recommendation accuracy of inactive users.

b) Study on IGC: We study how the components of IGC
influence its effectiveness by comparing two variants of I-
LightGCN without degree synchronizer (I-LightGCN w/o DS),
and without representation aggregator as well (I-LightGCN
w/o RA & DS). Meanwhile, we compare the I-LightGCN
- MLP RA which enables the parameter sharing across di-
mensions in the representation aggregator. Fig. 6 shows the
performance comparison between vanilla I-LightGCN and its
variants. From the figure, we can see that: 1) The performance
of vanilla I-LightGCN (i.e., I-LightGCN - Conv RA), I-
LightGCN w/o DS, and I-LightGCN w/o RA & DS show
a clear decrease trend in most cases, which justifies the
effectiveness and the necessity of the two modules in IGC;
2) I-LightGCN - MLP RA performs much worse than the
one with CNN implementation across the two datasets, which

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 8

TABLE IV: Performance of CI-LightGCN and its variants on
inactive users.

Datasets Methods R@5 R@20 N@5 N@20
I-LightGCN 0.2712 0.4724 0.1925 0.2507

Yelp CI-LightGCN(T) 0.2783 0.4864 0.1945 0.2542
CI-LightGCN 0.2852 0.4959 0.1994 0.2598
I-LightGCN 0.2807 0.4510 0.2026 0.2515

Gowalla CI-LightGCN(T) 0.2839 0.4549 0.2063 0.2543
CI-LightGCN 0.2870 0.4599 0.2091 0.2587

Fig. 6: Performance of I-LightGCN and its variants.

demonstrates the rationality of restricting the complexity of
the representation aggregator.

D. In-depth Analysis (RQ3)

a) Study on CED: We investigate how the hyper-
parameters influence the effectiveness of CED. We select four
hyper-parameters: the value of K and γ (i.e., γ1 and γ2) in Eq.
(10) and (Eq. 9). Fig. 7 and 8 show the performance of CI-
LightGCN as changing the value of K and γ. From Fig. 7, we
can observe a similar trend of performance (increasing then
stable) across the four curves, i.e., CED is insensitive to K and
we can simply set K as a relative small value (e.g., 15). Fig. 8
shows that CI-LightGCN performs worst as γ1 = 1.0, which
reveals the benefit of colliding effect distillation on inactive
nodes. Moreover, the performance largely decreases as setting
γ2 with small values. This is reasonable since smaller γ2 leads
to less update of the active nodes during training.

b) Study on IGC: For IGC, we select two hyper-
parameters in the representation aggregator: the number of
CNN layers and the number of CNN filters, to study the
sensitivity of IGC. Fig. 9 shows the performances of I-
LightGCN with 1-layer CNN and 2-layer CNN on Gowalla
and Yelp as changing the number of filters from 1 to 20. We
can see that: 1) the 1-layer CNN performs better than the
2-layer CNN in most cases; and 2) adding more filters will
hurt the performance of 1-layer CNN. This result suggests to
set the aggregator with only one filter, which means that a
weighted combination is sufficient for combining the old and
new representations in practical usage.

c) Study on Time-sensitivity: As shown in [6], retraining
methods can perform distinctly on datasets with different time-
sensitivity. We thus further test the LightGCN-based methods
on Adressa, which is highly time-sensitive. TABLE V shows
the performance of these methods. Due to the time-sensitivity,
Full-retrain LightGCN and LightGCN + EWC, which high-
light the long-term preference signal, perform much worse
than Fine-tune LightGCN. Nevertheless, I-LightGCN achieves
performance comparable to Fine-tune LightGCN owing to the

Fig. 7: Performance of CI-LightGCN as changing the top-K
in training phase (left) and inference phase (right).

Fig. 8: Performance of CI-LightGCN as changing the value of
γ1 (left) and γ2 (right).

flexibility brought by the representation aggregator and degree
synchronizer in IGC, which enable the model to also approach
Fine-tune LightGCN by down weighting the old representation
and degree. This result demonstrate the robustness of IGC for
different datasets.

TABLE V: Recommendation performance of LightGCN-based
methods on Adressa. The best and runner-up in each column
are highlighted with bold font and underline, respectively.

Methods R@5 R@20 N@5 N@20
I-LightGCN 0.254 0.415 0.181 0.227
Full-retrain LightGCN 0.028 0.094 0.018 0.227
Fine-tune LightGCN 0.253 0.412 0.181 0.227
LightGCN + EWC 0.252 0.393 0.177 0.218
SML-LightGCN-O 0.243 0.411 0.170 0.216
SML-LightGCN-E 0.243 0.412 0.168 0.217

IV. RELATED WORK

GCN-based Recommendation. In recent years, GCN has
become the cutting-edge technique for recommendation [1],
[27]–[30], [66], [69]. A surge of attention has been dedicated
on designing GCN models to learn comprehensive user and
item representations from the interaction graph for collabora-
tive filtering [3], [5], [27]. Beyond the user-item interactions, a
line of research explores GCN models to encode more types of
relations such as item relation, social network [35]–[37], and
knowledge graph [33], [34]. However, the existing researches
focus on model efficacy, largely ignore the efficiency of model
training, which is very important in practical usage. In this
work, we focus on efficient retraining of GCN model, which
is in an orthogonal direction to the existing research.

Dynamic GCN. Graph is a constantly changing data struc-
ture in the real world, such as social network, academic
network, point cloud. In response to this issue, plenty of
previous work explore Dynamic GCN to capture the tem-
poral feature of graph data [10], [12], [24], [32], [67], [68],
which are mainly in two categories according to viewing the
graph evolution in stages or a random process. For instance,
DySAT [9] arranges the snapshots of the graph into a sequence

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 9

Fig. 9: Performance of I-LightGCN as changing the RA.
with the temporal order, and uses two decoupled modules to
encode the structure feature and the temporal feature within
the sequence. DyRep [23] models the occurrence of an edge
as a point process and using a neural network to parameterize
the intensity function.

There are also attempts to use Dynamic GCN for recom-
mendation [11], [36], so as to capture the temporal pattern
of user-item interactions. For instance, JODIE [11] couples
an RNN with GCN to learn the dynamic representation of
users/items from a sequence of interaction graphs. Graph-
SAIL [42] can retrain the graph-based recommender model
with global and local structure distillation. Despite the success
of Dynamic GCN in capturing the short-term and long-term
preference, it requires long interaction history for training,
which is memory and time costly by nature. In this work,
we focus on the efficient retraining of GCN model, where
only the incremental graph is accessible in our setting. The
Dynamic GCN models are thus not applicable here, which
are omitted in the experiments for comparison. Although
GraphSAIL [42] can incremental train the old model, it
performs worse than intuitive full-retraining method (named
named Fu batch in [42] Tab. 3). Since our target is to deign
a retraining method that efficient as fine-tuning but without
sacrificing the performance, and our proposed IGC and CED
always performance better than full-retraining, we omitted this
method in the experiments.

Causal Recommendation. A surge of attention has been
dedicated to incorporating causal inference techniques into
various machine learning applications [50], [51], [61]–[65].
These methods are also successfully adapted to recommenda-
tion systems for resolving bias issues and enhancing model
reliability. For instance, DecRS [54], MACR [55], and KD-
CRec [56] analyze the biases of recommendation from causal
view and use counterfactual learning techniques to debias.
Similarly, intervention techniques are also leveraged to de-
bias [53], [71], [72]. Existing works focus on leveraging
causal inference techniques for debiasing. Our work is in an
orthogonal direction as we focus on model retraining and
colliding effect distillation, which is a new causal inference
technique.

V. CONCLUSION
In this work, we highlighted the importance of GCN model

retraining for recommendation. To achieve effective and ef-
ficient retraining, our analysis enlightens that the key lies
in detaching the old graph from neighborhood aggregation,
meanwhile, reserving the long-term preference signal and
refreshing the inactive nodes. Towards this end, we proposed a
Causal Incremental Graph Convolution method, which consists
of two new operators named Incremental Graph Convolution

(IGC) and Colliding Effect Distillation (CED). We instantiated
IGC and CED based on LightGCN and conducted extensive
experiments on three real-world datasets. The results show
that CI-LightGCN outperforms full retraining with a speed-
up of more than 30 times, validating the effectiveness and the
rationality of our proposal.

This work opens up a new research direction about GCN
model retraining, and highlights a promising perspective about
causal inference. In the future, we are interested in applying
different model parameter updating techniques in IGC such as
meta-learning [6]. In addition, we will test IGC and CED in
more graph learning applications, such as user profiling and
targeted advertising.

REFERENCES

[1] F. Liu, Z. Cheng, L. Zhu, Z. Gao, and L. Nie, “Interest-aware message-
passing GCN for recommendation,” in WWW, 2021, pp. 1296–1305.

[2] R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and
J. Leskovec, “Graph convolutional neural networks for web-scale rec-
ommender systems,” in SIGKDD, 2018, pp. 974–983.

[3] X. He, K. Deng, X. Wang, Y. Li, Y. Zhang, and M. Wang, “Lightgcn:
Simplifying and powering graph convolution network for recommenda-
tion,” in SIGIR, 2020, pp. 639–648.

[4] X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T. Chua, “Neural
collaborative filtering,” in WWW, 2017, pp. 173–182.

[5] X. Wang, X. He, M. Wang, F. Feng, and T. Chua, “Neural graph
collaborative filtering,” in SIGIR, 2019, pp. 165–174.

[6] Y. Zhang, F. Feng, C. Wang, X. He, M. Wang, Y. Li, and Y. Zhang, “How
to retrain recommender system?: A sequential meta-learning method,”
in SIGIR, 2020, pp. 1479–1488.

[7] S. Rendle and L. Schmidt-Thieme, “Online-updating regularized kernel
matrix factorization models for large-scale recommender systems,” in
RecSys, 2008, pp. 251–258.

[8] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in ICLR. OpenReview.net, 2017.

[9] A. Sankar, Y. Wu, L. Gou, W. Zhang, and H. Yang, “Dysat: Deep neural
representation learning on dynamic graphs via self-attention networks,”
in WSDM, 2020, pp. 519–527.

[10] G. H. Nguyen, J. B. Lee, R. A. Rossi, N. K. Ahmed, E. Koh, and S. Kim,
“Continuous-time dynamic network embeddings,” in WWW, 2018, pp.
969–976.

[11] S. Kumar, X. Zhang, and J. Leskovec, “Predicting dynamic embedding
trajectory in temporal interaction networks,” in SIGKDD, 2019, pp.
1269–1278.

[12] A. Pareja, G. Domeniconi, J. Chen, T. Ma, T. Suzumura, H. Kanezashi,
T. Kaler, T. B. Schardl, and C. E. Leiserson, “Evolvegcn: Evolving graph
convolutional networks for dynamic graphs,” in AAAI, 2020, pp. 5363–
5370.

[13] S. Rebuffi, A. Kolesnikov, G. Sperl, and C. H. Lampert, “icarl: Incre-
mental classifier and representation learning,” in CVPR, 2017, pp. 5533–
5542.

[14] S. Chang, Y. Zhang, J. Tang, D. Yin, Y. Chang, M. A. Hasegawa-
Johnson, and T. S. Huang, “Streaming recommender systems,” in WWW,
2017, pp. 381–389.

[15] X. He, H. Zhang, M. Kan, and T. Chua, “Fast matrix factorization for
online recommendation with implicit feedback,” pp. 549–558, 2016.

[16] R. Devooght, N. Kourtellis, and A. Mantrach, “Dynamic matrix factor-
ization with priors on unknown values,” in SIGKDD, 2015, pp. 189–198.

[17] S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme, “BPR:
bayesian personalized ranking from implicit feedback,” in UAI, 2009.

[18] H. Zhu, F. Feng, X. He, X. Wang, Y. Li, K. Zheng, and Y. Zhang,
“Bilinear graph neural network with neighbor interactions,” in IJCAI,
2020, pp. 1452–1458.

[19] B. Hidasi and A. Karatzoglou, “Recurrent neural networks with top-k
gains for session-based recommendations,” in CIKM, 2018, pp. 843–852.

[20] J. Tang and K. Wang, “Personalized top-n sequential recommendation
via convolutional sequence embedding,” in WSDM, 2018, pp. 565–573.

[21] W. Wang, H. Yin, Z. Huang, Q. Wang, X. Du, and Q. V. H. Nguyen,
“Streaming ranking based recommender systems,” in SIGIR, 2018, pp.
525–534.

[22] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in ICLR, 2015.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 10

[23] R. Trivedi, M. Farajtabar, P. Biswal, and H. Zha, “Dyrep: Learning
representations over dynamic graphs,” in ICLR, 2019.

[24] W. Qiu, H. Chen, and B. An, “Dynamic electronic toll collection
via multi-agent deep reinforcement learning with edge-based graph
convolutional networks,” in IJCAI, 2019, pp. 4568–4574.

[25] C. Ma, L. Ma, Y. Zhang, J. Sun, X. Liu, and M. Coates, “Memory
augmented graph neural networks for sequential recommendation,” in
AAAI, 2020, pp. 5045–5052.

[26] F. Wu, A. H. S. Jr., T. Zhang, C. Fifty, T. Yu, and K. Q. Weinberger,
“Simplifying graph convolutional networks,” in ICML, 2019, pp. 6861–
6871.

[27] W. Yu and Z. Qin, “Graph convolutional network for recommendation
with low-pass collaborative filters,” in ICML, 2020, pp. 10 936–10 945.

[28] T. Chen and R. C. Wong, “Handling information loss of graph neural
networks for session-based recommendation,” in KDD, 2020, pp. 72–80.

[29] J. Jin, J. Qin, Y. Fang, K. Du, W. Zhang, Y. Yu, Z. Zhang, and
A. J. Smola, “An efficient neighborhood-based interaction model for
recommendation on heterogeneous graph,” in KDD, 2020, pp. 75–84.

[30] J. Xu, Z. Zhu, J. Zhao, X. Liu, M. Shan, and J. Guo, “Gemini: A novel
and universal heterogeneous graph information fusing framework for
online recommendations,” in KDD, 2020, pp. 3356–3365.

[31] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning for
fast adaptation of deep networks,” in ICML, 2017, pp. 1126–1135.

[32] J. Wang, G. Song, Y. Wu, and L. Wang, “Streaming graph neural
networks via continual learning,” in CIKM, 2020, pp. 1515–1524.

[33] R. Sun, X. Cao, Y. Zhao, J. Wan, K. Zhou, F. Zhang, Z. Wang, and
K. Zheng, “Multi-modal knowledge graphs for recommender systems,”
in CIKM, 2020, pp. 1405–1414.

[34] X. Wang, X. He, Y. Cao, M. Liu, and T. Chua, “KGAT: knowledge
graph attention network for recommendation,” in SIGKDD, 2019, pp.
950–958.

[35] X. Wang, Z. Liu, N. Wang, and W. Fan, “Relational metric learning with
dual graph attention networks for social recommendation,” in PAKDD,
2020, pp. 104–117.

[36] W. Song, Z. Xiao, Y. Wang, L. Charlin, M. Zhang, and J. Tang, “Session-
based social recommendation via dynamic graph attention networks,” in
WSDM, 2019, pp. 555–563.

[37] W. Fan, Y. Ma, Q. Li, Y. He, Y. E. Zhao, J. Tang, and D. Yin, “Graph
neural networks for social recommendation,” in WWW, 2019, pp. 417–
426.

[38] R. Shanmugam, “Causality: Models, reasoning, and inference : Judea
pearl; cambridge university press, cambridge, uk, 2000, pp 384, ISBN
0-521-77362-8,” Neurocomputing, vol. 41, no. 1-4, pp. 189–190, 2001.

[39] J. Pearl, M. Glymour, and N. P. Jewell, Causal inference in statistics:
A primer. John Wiley & Sons, 2016.

[40] J. Pearl, “Interpretation and Identification of Causal Mediation,” Psy-
chological methods, vol. 19, 2014.

[41] J. Kirkpatrick, R. Pascanu, N. C. Rabinowitz, J. Veness, G. Desjardins,
A. A. Rusu, K. Milan, J. Quan, T. Ramalho, A. Grabska-Barwinska,
D. Hassabis, C. Clopath, D. Kumaran, and R. Hadsell, “Overcoming
catastrophic forgetting in neural networks,” CoRR, 2016.

[42] Y. Xu, Y. Zhang, W. Guo, H. Guo, R. Tang, and M. Coates, “Graphsail:
Graph structure aware incremental learning for recommender systems,”
in CIKM, 2020, pp. 2861–2868.

[43] D. P. MacKinnon, A. J. Fairchild, and M. S. Fritz, “Mediation analysis,”
Annu. Rev. Psychol., pp. 593–614, 2007.

[44] L. Richiardi, R. Bellocco, and D. Zugna, “Mediation analysis in epi-
demiology: methods, interpretation and bias,” International journal of
epidemiology, pp. 1511–1519, 2013.

[45] K. Javed, M. White, and Y. Bengio, “Learning causal models online,”
arXiv preprint arXiv:2006.07461, 2020.

[46] B. Schölkopf, F. Locatello, S. Bauer, N. R. Ke, N. Kalchbrenner,
A. Goyal, and Y. Bengio, “Toward causal representation learning,” IEEE
- Advances in Machine Learning and Deep Neural Networks, pp. 612–
634, 2021.

[47] Y. Bengio, T. Deleu, N. Rahaman, R. Ke, S. Lachapelle, O. Bilaniuk,
A. Goyal, and C. Pal, “A meta-transfer objective for learning to disen-
tangle causal mechanisms,” arXiv preprint arXiv:1901.10912, 2019.

[48] K. Yu, L. Liu, and J. Li, “A unified view of causal and non-causal feature
selection,” TKDD, pp. 1–46, 2021.

[49] V. Veitch, D. Sridhar, and D. M. Blei, “Using text embeddings for causal
inference,” arXiv preprint arXiv:1905.12741, 2019.

[50] K. Tang, J. Huang, and H. Zhang, “Long-tailed classification by keeping
the good and removing the bad momentum causal effect,” in NeurIPS,
2020.

[51] T. Wang, J. Huang, H. Zhang, and Q. Sun, “Visual commonsense r-cnn,”
in CVPR, 2020, pp. 10 760–10 770.

[52] X. Hu, K. Tang, C. Miao, X.-S. Hua, and H. Zhang, “Distilling causal
effect of data in class-incremental learning,” in CVPR, 2021, pp. 3957–
3966.

[53] Y. Zhang, F. Feng, X. He, T. Wei, C. Song, G. Ling, and Y. Zhang,
“Causal intervention for leveraging popularity bias in recommendation,”
vol. SIGIR, 2021.

[54] W. Wang, F. Feng, X. He, X. Wang, and T. Chua, “Deconfounded
recommendation for alleviating bias amplification,” KDD, 2021.

[55] T. Wei, F. Feng, J. Chen, C. Shi, Z. Wu, J. Yi, and X. He, “Model-
agnostic counterfactual reasoning for eliminating popularity bias in
recommender system,” KDD, 2021.

[56] D. Liu, P. Cheng, Z. Dong, X. He, W. Pan, and Z. Ming, “A general
knowledge distillation framework for counterfactual recommendation via
uniform data,” in SIGIR, 2020, pp. 831–840.

[57] J. McInerney, B. Brost, P. Chandar, R. Mehrotra, and B. Carterette,
“Counterfactual evaluation of slate recommendations with sequential
reward interactions,” in KDD, 2020, pp. 1779–1788.

[58] Y. Zheng, C. Gao, X. Li, X. He, D. Jin, and Y. Li, “Disentangling user
interest and conformity for recommendation with causal embedding,”
2021.

[59] A. J. Chaney, B. M. Stewart, and B. E. Engelhardt, “How algorithmic
confounding in recommendation systems increases homogeneity and
decreases utility,” in RecSys, 2018, pp. 224–232.

[60] Z. Wang, X. Chen, R. Wen, S.-L. Huang, E. E. Kuruoglu, and
Y. Zheng, “Information theoretic counterfactual learning from missing-
not-at-random feedback,” NeurIPS, 2020.

[61] L. Chen, X. Yan, J. Xiao, H. Zhang, S. Pu, and Y. Zhuang, “Counter-
factual samples synthesizing for robust visual question answering,” in
CVPR, 2020, pp. 10 800–10 809.

[62] Y. Niu, K. Tang, H. Zhang, Z. Lu, X.-S. Hua, and J.-R. Wen, “Counter-
factual vqa: A cause-effect look at language bias,” in CVPR, 2021, pp.
12 700–12 710.

[63] X. Yang, H. Zhang, G. Qi, and J. Cai, “Causal attention for vision-
language tasks,” in CVPR, 2021, pp. 9847–9857.

[64] F. Feng, J. Zhang, X. He, H. Zhang, and T.-S. Chua, “Empowering
language understanding with counterfactual reasoning,” ACL, 2021.

[65] X. Yang, F. Feng, W. Ji, M. Wang, and T.-S. Chua, “Deconfounded video
moment retrieval with causal intervention,” in SIGIR, 2021, p. 1–10.

[66] X. Yang, X. Du, and M. Wang, “Learning to match on graph for fashion
compatibility modeling,” in AAAI, 2020, pp. 287–294.

[67] Z. Liu, P. Qian, X. Wang, Y. Zhuang, L. Qiu, and X. Wang, “Com-
bining graph neural networks with expert knowledge for smart contract
vulnerability detection,” TKDE, pp. 1–1, 2021.

[68] Y. Zhuang, Z. Liu, P. Qian, Q. Liu, X. Wang, and Q. He, “Smart contract
vulnerability detection using graph neural network,” in IJCAI, 2020, pp.
3283–3290.

[69] T. Wei, Z. Wu, R. Li, Z. Hu, F. Feng, X. He, Y. Sun, and W. Wang,
“Fast adaptation for cold-start collaborative filtering with meta-learning,”
in ICDM, 2020, pp. 661–670.

[70] W. Wang, F. Feng, X. He, H. Zhang, and T.-S. Chua, “Clicks can be
cheating: Counterfactual recommendation for mitigating clickbait issue,”
in SIGIR, 2021, pp. 1288–1297.

[71] Y. Wang, D. Liang, L. Charlin, and D. M. Blei, “The deconfounded
recommender: A causal inference approach to recommendation,” CoRR,
2018.

[72] Y. Wang, D. Liang, L. C, and D. M. Blei, “Causal inference for
recommender systems,” in RecSys, 2020, pp. 426–431.

[73] J. Chen, H. Dong, Y. Qiu, X. He, X. Xin, L. Chen, G. Lin, and K. Yang,
“Autodebias: Learning to debias for recommendation,” in SIGIR, 2021,
pp. 21–30.

[74] X. Wang, R. Zhang, Y. Sun, and J. Qi, “Doubly robust joint learning
for recommendation on data missing not at random,” in ICML, 2019,
pp. 6638–6647.

	I INTRODUCTION
	II METHODOLOGY
	II-A GCN-based Recommender Model
	II-B Incremental Graph Convolution
	II-B1 Degree Synchronizer
	II-B2 Representation Aggregator ()

	II-C Colliding Effect Distillation
	II-D The Casual View of CED

	III EXPERIMENTS
	III-A Experimental Settings
	III-B Performance Comparison (RQ1)
	III-C Ablation Study (RQ2)
	III-D In-depth Analysis (RQ3)

	IV RELATED WORK
	V CONCLUSION
	References

