
1

RegNet: Self-Regulated Network for Image
Classification

Jing Xu, Yu Pan, Xinglin Pan, Steven Hoi, Fellow, IEEE, Zhang Yi, Fellow, IEEE, and Zenglin Xu∗.

Abstract—The ResNet and its variants have achieved remark-
able successes in various computer vision tasks. Despite its
success in making gradient flow through building blocks, the
simple shortcut connection mechanism limits the ability of re-
exploring new potentially complementary features due to the
additive function. To address this issue, in this paper, we propose
to introduce a regulator module as a memory mechanism to
extract complementary features, which are further fed to the
ResNet. In particular, the regulator module is composed of
convolutional RNNs (e.g., Convolutional LSTMs or Convolutional
GRUs), which are shown to be good at extracting spatio-temporal
information. We named the new regulated networks as RegNet.
The regulator module can be easily implemented and appended
to any ResNet architectures. We also apply the regulator mod-
ule for improving the Squeeze-and-Excitation ResNet to show
the generalization ability of our method. Experimental results
on three image classification datasets have demonstrated the
promising performance of the proposed architecture compared
with the standard ResNet, SE-ResNet, and other state-of-the-art
architectures.

Index Terms—Residue Networks, Convolutional Recurrent
Neural Networks, Convolutional Neural Networks

I. INTRODUCTION

Convolutional neural networks (CNNs) have achieved abun-
dant breakthroughs in a number of computer vision tasks [1].
Since the champion achieved by AlexNet [2] at the ImageNet
competition in 2012, various new architectures have been
proposed, including VGGNet [3], GoogLeNet [4], ResNet [5],
DenseNet [6], and recent NASNet [7].

Among these deep architectures, ResNet and its vari-
ants [8]–[11] have obtained significant attention with out-
standing performances in both low-level and high-level vision
tasks. The remarkable success of ResNets is mainly due to the
shortcut connection mechanism, which makes the training of
a deeper network possible, where gradients can directly flow
through building blocks and the gradient vanishing problem
can be avoided in some sense. However, the shortcut con-
nection mechanism makes each block focus on learning its
respective residual output, where the inner block information
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communication is somehow ignored and some reusable in-
formation learned from previous blocks tends to be forgotten
in later blocks. To illustrate this point, we visualize the
output(residual) feature maps learned by consecutive blocks in
ResNet in Fig. 1(a). It can be see that due to the summation
operation among blocks, the adjacent outputs 𝑂𝑡 , 𝑂𝑡+1 and
𝑂𝑡+2 look very similar to each other, which indicates that less
new information has been learned through consecutive blocks.

A potential solution to address the above problems is to cap-
ture the spatio-temporal dependency between building blocks
while constraining the speed of parameter increasing. To this
end, we introduce a new regulator mechanism in parallel to
the shortcuts in ResNets for controlling the necessary memory
information passing to the next building block. In detail, we
adopt the Convolutional RNNs (“ConvRNNs") [12] as the
regulator to encode the spatio-temporal memory. We name
the new architecture as RNN-Regulated Residual Networks,
or “RegNet" for short. As shown in Fig. 1(a), at the 𝑖𝑡ℎ

building block, a recurrent unit in the convolutional RNN
takes the feature from the current building block as the input
(denoted by 𝐼 𝑖), and then encodes both the input and the serial
information to generate the hidden state (denoted by 𝐻𝑖); the
hidden state will be concatenated with the input for reuse in the
next convolution operation (leading to the output feature 𝑂𝑖),
and will also be transported to the next recurrent unit. To better
understand the role of the regulator, we visualize the feature
maps, as shown in Fig. 1(a). We can see that the 𝐻𝑖 generated
by ConvRNN can complement with the input features 𝐼 𝑖 . After
conducting convolution on the concatenated features of 𝐻𝑖 and
𝐼 𝑖 , the proposed model gets more meaningful features with
rich edge information 𝑂𝑖 than ResNet does. For quantitatively
evaluating the information contained in the feature maps, we
test their classification ability on test data (by adding average
pooling layer and the last fully connected layer to the 𝑂𝑖 of
the last three blocks). As shown in Fig. 1(b), we can find that
the new architecture can get higher prediction accuracy, which
indicates the effectiveness of the regulator from ConvRNNs.

Thanks to the kind of parallel structure of the regulator
module, the RNN-based regulator is easy to implement and
can be applicable to other ResNet-based structures, such as
the SE-ResNet [11], Wide ResNet [8], Inception-ResNet [9],
ResNetXt [10], Dual Path Network(DPN) [13], and so on.
Without loss of generality, as another instance to demonstrate
the effectiveness of the proposed regulator, we also apply the
ConvRNN module for improving the Squeeze-and-Excitation
ResNet (shorted as “SE-RegNet").

For evaluation, we apply our model to the task of image
classification on three highly competitive benchmark datasets,
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Fig. 1. (a):Visualization of feature maps in the ResNet [5] and RegNet. We visualize the outputs 𝑂𝑖 feature maps of the 𝑖𝑡ℎ building blocks, 𝑖 ∈ {𝑡 , 𝑡+1, 𝑡+2}.
In RegNets, 𝐼 𝑖 denotes the input feature maps. 𝐻 𝑖 denotes the hidden states generated by the ConvRNN at step 𝑖. By applying convolution operations over
the concatenation 𝐼 𝑖 with 𝐻 𝑖 , we can get the regulated outputs( denoted by 𝑂𝑖) of the 𝑖𝑡ℎ building block. (b): The prediction on test data based on the
output feature maps of consecutive building blocks. During the test time, we add an average pooling layer and the last fully connected layer to the outputs of
the last three building blocks(𝑖 ∈ {7, 8, 9}) in ResNet-20 and RegNet-20 to get the classification results. It can be seen that the output of each block aided
with the memory information results in higher classification accuracy.

including CIFAR-10, CIFAR-100, and ImageNet. In com-
parison with the ResNet and SE-ResNet, our experimental
results have demonstrated that the proposed architecture can
significantly improve the classification accuracy on all the
datasets. We further show that the regulator can reduce the
required depth of ResNets while reaching the same level of
accuracy.

II. RELATED WORK

Deep neural networks have been achieved empirical break-
throughs in machine learning. However, training networks with
sufficient depths is a very tricky problem. Shortcut connection
has been proposed to address the difficulty in optimization
to some extent [5], [14]. Via the shortcut, information can
flow across layers without attenuation. A pioneering work is
the Highway Network [14], which implements the shortcut
connections by using a gating mechanism. In addition, the
ResNet [5] explicitly requests building blocks fitting a residual
mapping, which is assumed to be easier for optimization.

Due to the powerful capabilities in dealing with vision
tasks of ResNets, a number of variants have been proposed,
including WRN [8], Inception-ResNet [9], ResNetXt [10], ,
WResNet [15], and so on. ResNet and ResNet-based models
have achieved impressive, record-breaking performance in
many challenging tasks. In object detection, 50- and 101-
layered ResNets are usually used as basic feature extractors in
many models: Faster R-CNN [16], RetinaNet [17], Mask R-
CNN [18] and so on. The most recent models aiming at image
super-resolution tasks, such as SRResNet [19], EDSR and
MDSR [20], are all based on ResNets, with a little modifica-
tion. Meanwhile, in [21], the ResNet is introduced to remove
rain streaks and obtains the state-of-the-art performance.

Despite the success in many applications, ResNets still
suffer from the depth issue [22]. DenseNet proposed by [6]
concatenates the input features with the output features using
a densely connected path in order to encourage the network

to reuse all of the feature maps of previous layers. Obviously,
not all feature maps need to be reused in the future layers,
and consequently the densely connected network also leads
to some redundancy with extra computational costs. Recently,
Dual Path Network [13] and Mixed link Network [23] are
the trade-offs between ResNets and DenseNets. In addition,
some module-based architectures are proposed to improve the
performance of the original ResNet. SENet [11] proposes
a lightweight module to get the channel-wise attention of
intermediate feature maps. CBAM [24] and BAM [25] design
modules to infer attention maps along both channel and
spatial dimensions. Despite their success, those modules try to
regulate the intermediate feature maps based on the attention
information learned by the intermediate feature themselves, so
the full utilization of historical spatio-temporal information of
previous features still remains an open problem.

On the other hand, convolutional RNNs (shorted as Con-
vRNN), such as ConvLSTM [12] and ConvGRU [26], have
been used to capture spatio-temporal information in a num-
ber of applications, such as rain removal [27], video super-
resolution [28], video compression [29], video object detection
and segemetation [30], [31]. Most of those works embed Con-
vRNNs into models to capture the dependency information in
a sequence of images. In order to regulate the information flow
of ResNet, we propose to leverage ConvRNNs as a separate
module aiming to extracting spatio-temporal information as
complementary to the original feature maps of ResNets.

III. OUR MODEL

In the section, we first revisit the background of ResNets
and two advanced ConvRNNs: ConvLSTM and ConvGRU.
Then we present the proposed RegNet architectures.

A. ResNet

The degradation problem which makes the traditional net-
work hard to converge, is exposed when the architecture goes
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deeper. The problem can be mitigated by ResNet [5] to some
extent. Building blocks are the basic architecture of ResNet,
as shown in Fig. 2(b), instead of directly fitting a original
underlying mapping, shown in Fig. 2(a). The deep residual
network obtained by stacking building blocks has achieved
excellent performance in image classification, which proves
the competence of the residual mapping.

Conv

Conv

X

(a)

Conv

Conv

X

(b)

Fig. 2. 2(a) shows the original underlying mapping while 2(b) shows the
residual mapping in ResNet [5].

B. ConvRNN and its Variants

RNN and its classical variants LSTM and GRU have
achieved great success in the field of sequence processing.
To tackle the spatio-temporal problems, we adopt the ba-
sic ConvRNN and its variants ConvLSTM and ConvGRU,
which are transformed from the vanilla RNNs by replacing
their fully-connected operators with convolutional operators.
Furthermore, for reducing the computational overhead, we
delicately design the convolutional operation in ConvRNNs.
In our implementation, the ConvRNN can be formulated as

H𝑡 = 𝑡𝑎𝑛ℎ(2𝑁 W𝑁
ℎ ∗ [X𝑡 ,H𝑡−1] + bℎ), (1)

where 𝑋 𝑡 is the input 3D feature map, 𝐻𝑡−1 is the hidden state
obtained from the earlier output of ConvRNN and 𝐻𝑡 is the
output 3D feature map at this state. Both the number of input
𝑋 𝑡 and output 𝐻𝑡 channels in the ConvRNN are N.

Additionally, 2𝑁 W𝑁 ∗ X denotes a convolution operation
between weights W and input X with the input channel 2N and
the output channel N. To make the ConvRNN more efficient,
inspired by [30], [32], given input X with 2N channels, we
conduct the convolution operation in 2 steps:

(1) Divide the input X with 2N channels into N groups,
and use grouped convolutions [33] with 1 × 1 kernel to
process each group separately for fusing input channels.

(2) Divide the feature map obtained by (1) into N groups,
and use grouped convolutions with 3 × 3 kernel to
process each group separately for capturing the spatial
information per input channel.

Directly applying the original convolutions with 3×3 kernels
suffers from high computational complexity. As detailed in
Table I, the new modification reduces the required computation
by 18N/11 times with comparable result. Similarly, all the
convolutions in ConvGRU and ConvLSTM are replaced with
the light-weight modification.

C. RNN-Regulated ResNet

To deal with the CIFAR-10/100 datasets and the Imagenet
dataset, [5] proposed two kinds of ResNet building blocks:
the non-bottleneck building block and the bottleneck building

TABLE I
PERFORMANCE OF REGNET-20 WITH CONVGRU AS REGULATORS ON

CIFAR-10. WE COMPARE THE TEST ERROR RATES BETWEEN
TRADITIONAL 3×3 KERNELS AND OUR NEW MODIFICATION.

kernel type err. Params FLOPs
3×3 7.35 +330K +346M
Ours 7.42 +44K +15M
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Fig. 3. The RegNet module is shown in 3(a). The bottleneck RegNet block
is shown in 3(b). The 𝑇 denotes the number of building blocks as well as the
total time steps of ConvRNN.

block. Based on those, by applying ConvRNNs as regulators,
we get RNN-Regulated ResNet building module and bottle-
neck RNN-Regulated ResNet building module correspond-
ingly.

1) RNN-Regulated ResNet Module (RegNet module): The
illustration of RegNet module is shown in Fig. 3(a). Here, we
choose ConvLSTM for expounding. 𝐻𝑡−1 denotes the earlier
output from ConvLSTM, and 𝐻𝑡 is output of the ConvLSTM
at 𝑡-th module . 𝑋 𝑡

𝑖
denotes the 𝑖-th feature map at the 𝑡-th

module.
The 𝑡-th RegNet(ConvLSTM) module can be expressed as

X𝑡
2 = 𝑅𝑒𝐿𝑈 (𝐵𝑁 (W𝑡

12 ∗ X𝑡
1 + b𝑡

12),
[H𝑡 , C𝑡 ] = 𝑅𝑒𝐿𝑈 (𝐵𝑁 (𝐶𝑜𝑛𝑣𝐿𝑆𝑇𝑀 (X𝑡

2, [H
𝑡−1, C𝑡−1]))),

X𝑡
3 = 𝑅𝑒𝐿𝑈 (𝐵𝑁 (W𝑡

23 ∗ 𝐶𝑜𝑛𝑐𝑎𝑡 [X
𝑡
2, H𝑡 ])),

X𝑡
4 = 𝐵𝑁 (W𝑡

34 ∗ X𝑡
3 + b𝑡

34),
X𝑡+1

1 = 𝑅𝑒𝐿𝑈 (X𝑡
1 + X𝑡

4), (2)

where W𝑡
𝑖 𝑗

denotes the convolutional kernel which mapping
feature map X𝑡

𝑖
to X𝑡

𝑗
and b𝑡

𝑖 𝑗
denotes the correlative bias.

Both W𝑡
12 and W𝑡

34 are 3 × 3 convolutional kernels. The W𝑡
23

is 1×1 kernel. BN(·) indicates batch normalization. 𝐶𝑜𝑛𝑐𝑎𝑡 [·]
refers to the concatenate operation.

Notice that in Eq (2) the input feature X𝑡
2 and the previous

output of ConvLSTM H𝑡 are the inputs of ConvLSTM in 𝑡-th
module. According to the inputs, the ConvLSTM automati-
cally decides whether the information in memory cell will be
propagated to the output hidden feature map H𝑡 .

2) Bottleneck RNN-Regulated ResNet Module (bottleneck
RegNet module): The bottleneck RegNet module based on the
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TABLE II
ARCHITECTURES FOR CIFAR-10/100 DATASETS. BY SETTING

N∈ {3, 5, 7}, WE CAN GET THE {20, 32, 56}-LAYERED REGNET.

name output size (6n+2)-layered RegNet
conv_0 32 × 32 3 × 3, 16

conv_1 32 × 32 ConvRNN1 +
[
3 × 3, 16
3 × 3, 16

]
× 𝑛

conv_2 16 × 16 ConvRNN2 +
[
3 × 3, 32
3 × 3, 32

]
× 𝑛

conv_3 8 × 8 ConvRNN3 +
[
3 × 3, 64
3 × 3, 64

]
× 𝑛

1 × 1 AP, FC, softmax

TABLE III
CLASSIFICATION ERROR RATES ON THE CIFAR-10/100. BEST RESULTS

ARE MARKED IN BOLD.

model C10 C100
ResNet-20 [5] 8.38 31.72
RegNet-20(ConvRNN) 7.60 30.03
RegNet-20(ConvGRU) 7.42 29.69
RegNet-20(ConvLSTM) 7.28 29.81
SE-ResNet-20 8.02 31.14
SE-RegNet-20(ConvRNN) 7.55 29.63
SE-RegNet-20(ConvGRU) 7.25 29.08
SE-RegNet-20(ConvLSTM) 6.98 29.02

bottleneck ResNet building block is shown in Fig. 3(b). The
bottleneck building block introduced in [5] for dealing with
the pictures with large size. Based on that, the 𝑡-th bottleneck
RegNet module can be expressed as

X𝑡
2 = 𝑅𝑒𝐿𝑈 (𝐵𝑁 (W𝑡

12 ∗ X𝑡
1 + b𝑡

12),
[H𝑡 , C𝑡 ] = 𝑅𝑒𝐿𝑈 (𝐵𝑁 (𝐶𝑜𝑛𝑣𝐿𝑆𝑇𝑀 (X𝑡

2, [H
𝑡−1, C𝑡−1]))),

X𝑡
3 = 𝑅𝑒𝐿𝑈 (𝐵𝑁 (W𝑡

23 ∗ X𝑡
2 + b𝑡

23),
X𝑡

4 = 𝑅𝑒𝐿𝑈 (𝐵𝑁 (W𝑡
34 ∗ 𝐶𝑜𝑛𝑐𝑎𝑡 [X

𝑡
3, H𝑡 ])),

X𝑡
5 = 𝐵𝑁 (W𝑡

45 ∗ X𝑡
4 + b𝑡

45),
X𝑡+1

1 = 𝑅𝑒𝐿𝑈 (X𝑡
1 + X𝑡

5), (3)

where W𝑡
12 and W𝑡

45 are the two 1×1 kernels, and W𝑡
23 is the

3 × 3 bottleneck kernel. The W𝑡
34 is a 1 × 1 kernel for fusing

feature in our model.

IV. EXPERIMENTS

In this section, we evaluate the effectiveness of the proposed
convRNN regulator on three benchmark datasets, including
CIFAR-10, CIFAR-100, and ImageNet. We run the algorithms
on pytorch. The small-scaled models for CIFAR are trained on
a single NVIDIA 1080 Ti GPU, and the large-scaled models
for ImageNet are trained on 4 NVIDIA 1080 Ti GPUs.

A. Experiments on CIFAR

The CIFAR datasets [34] consist of RGB image with 32 ×
32 pixels. Each dataset contains 50k training images and 10k
testing images. The images in CIFAR-10 and CIFAR-100 are
drawn from 10 and 100 classes respectively. We train on the
training dataset and evaluate on the test dataset.

By applying ConvRNNs to ResNet and SE-ResNet, we
get the RegNet, and SE-RegNet models separately. Here, we

use 20-layered RegNet and SE-RegNet to prove the wide
applicability of our method. The SE-RegNet building module
in Fig. 3(a) is used to analysis CIFAR datasets. The structural
details of SE-RegNet are shown in Table II. The inputs of the
network are 32×32 images. In each conv_𝑖, 𝑖 ∈ {1, 2, 3} layer,
there are n RegNet building modules stacked sequentially, and
connected together by a ConvRNN. In summary, there are 3
ConvRNNs in our architecture, and each ConvRNN impacts
on the n RegNet building modules. The reduction ratio r in
SE block is 8.

In this experiment, we use SGD with a momentum of 0.9
and a weight decay of 1e-4. We train with a batch size of
64 for 150 epoch. The initial learning rate is 0.1 and divided
by 10 at 80 epochs. Data augmentation in [35] is used in
training. The results of SE-ResNet on CIFAR are based on our
implementation, since the results were not reported in [11].

1) Results on CIFAR: The classification errors on the
CIFAR-10/100 test sets are shown in Table III. We can
see from the results, with the same layer, both RegNet and
SE-RegNet outperform the original models by a significant
margin. Compared with ResNet-20, our RegNet-20 with Con-
vLSTM decreases the error rate by 1.51% on CIFAR-10 and
2.04% on CIFAR-100. At the same time, compared with SE-
ResNet-20, our SE-RegNet-20 with ConvLSTM decreases the
error rate by 1.04% on CIFAR-10 and 2.12% on CIFAR-100.
Using ConvGRU as the regulator can reach the same level of
accuracy as ConvLSTM. Due to the vanilla ConvRNN lacks
gating mechanism, it performs slightly worse but still makes
great progress compared with the baseline model.

2) Parameters Analysis: For a fair comparison, we eval-
uate our model’s ability by regarding the number of models
parameters as the contrast reference. As shown in Table IV,
we list the test accuracy of 20, 32, 56-layered ResNets and
their respective RegNet counterparts on CIFAR-10/100. After
adding minimal additional parameters, both our RegNet with
ConvGRU and ConvLSTM surpass the ResNet by a large
margin. Our 20-layered RegNet with extra 0.04M parameters
even outperforms the 32-layered ResNet on both CIFAR-
10/100: our 20-layered RegNet(ConvLSTM) having 0.32M
parameters reaches 7.28% error rate on CIFAR-10 surpass the
32-layered ResNet with 7.54% error rate which having 0.47M
parameters. Fig. 4 demonstrates the parameter efficiency com-
parisons between RegNet and ResNet. We show our RegNet
are more parameter-efficient than simply stacking layers in
vanilla ResNet. On both CIFAR-10/100, our RegNets(GRU)
get comparable performance with ResNet-56 with nearly 1/2
parameters.

3) Positions of Feature Reuse: In this subsection, we per-
form ablation experiment to further analyze the effect of the
position of feature reuse. We conduct an experiment to analysis
that with ConvRNN which layer has the maximum promotion
to the final outcome. Some previous studies [36] show that
the features in an earlier layer are more general while the
features in later layers exhibit more specific. As shown in
Table II, the conv_1, conv_2, conv_3 layers are separated by
the down sampling operation, which makes the features in
conv_1 are more low-level and in conv_3 are more specific for
classification. The classification results are shown in Table V.
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TABLE IV
TEST ERROR RATES ON CIFAR-10/100. WE USE CONVGRU AND CONVLSTM AS REGULATORS OF RESNET. WE LIST THE INCREASE OF PARAMETER

THE ARCHITECTURES AT THE RIGHT CORNER OF THE ERROR RATES.

C-10 C-100
layer ResNet +ConvGRU +ConvLSTM ResNet +ConvGRU +ConvLSTM
20 8.38 7.42(+0.04𝑀 ) 7.28(+0.04𝑀 ) 31.72 29.69(+0.04𝑀 ) 29.81(+0.04𝑀 )
32 7.54 6.60(+0.06𝑀 ) 6.88(+0.07𝑀 ) 29.86 27.42(+0.07𝑀 ) 28.11(+0.07𝑀 )
56 6.78 6.39(+0.11𝑀 ) 6.45(+0.12𝑀 ) 28.14 27.02(+0.11𝑀 ) 27.26(+0.12𝑀 )
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Fig. 4. Comparison of parameter efficiency on CIFAR-10 between RegNet
and ResNet [5]. In both 4(a) and 4(b), the curves of our RegNet is always
below ResNet [5] which show that with the same parameters, our models have
stronger ability of expression.

TABLE V
TEST ERROR RATES ON CIFAR-10/100. WE USE CONVGRU AND

CONVLSTM AS REGULATORS OF RESNET. WE LIST THE INCREASE OF
PARAMETER THE ARCHITECTURES. IN EACH OF OUR REGNET (𝑖) MODELS,
THERE IS ONLY ONE CONVRNN APPLIED IN LAYER CONV_𝑖, 𝑖 ∈ {1, 2, 3}.

C-10 C-100
model err. Params err. Params
ResNet [5] 8.38 0.273M 31.72 0.278M
RegNet(1) (GRU) 7.52 0.279M 30.40 0.285M
RegNet(2) (GRU) 7.48 0.285M 30.34 0.291M
RegNet(3) (GRU) 7.49 0.306M 30.30 0.312M
RegNet(1) (LSTM) 7.56 0.281M 30.23 0.286M
RegNet(2) (LSTM) 7.49 0.290M 30.28 0.296M
RegNet(3) (LSTM) 7.52 0.325M 29.92 0.331M

In each model, only one ConvRNN is applied. We name
the models RegNet(𝑖) , 𝑖 ∈ {1, 2, 3} which denotes that only
applying a ConvRNN in layer conv_𝑖 and maintaining the
original ResNet structure in the other layers. For a fair compar-
ison, we evaluate the models ability by regarding the number
of models parameters as the contrast reference. We can see
from the results, using ConvRNNs in a lower layer(conv_1) is
more parameter-efficient than higher layer(conv_3). With less
parameter increasing in lower layers, they can bring about
nearly same improvement in accuracy compared with higher
layers. Compared with ResNet, our RegNet(1) (GRU) decrease
the test error from 8.38% to 7.52%(-0.86%) on CIFAR-10 with
additional 0.006M parameters and from 31.72% to 30.40%(-
1.32%) on CIFAR-100 with additional 0.007M parameters.
This significant improvement with minimal additional param-
eters further proves the effectiveness of the proposed method.
The concatenate operation in our model can fuse features
together to explore new features [13], which is more important
for general features in lower layers.

TABLE VI
SINGLE-CROP VALIDATION ERROR RATES ON IMAGENET AND

COMPLEXITY COMPARISONS. BOTH RESNET AND REGNET ARE
50-LAYER. RESNET∗ MEANS WE REPRODUCE THE RESULT BY OURSELF.

model top-1 err. top-5 err. Params FLOPs
ResNet [5] 24.7 7.8 26.6M 4.14GResNet∗ 24.81 7.78
RegNet 23.43(−1.38) 6.93(−0.85) 31.3M 5.12G

TABLE VII
SINGLE-CROP ERROR RATES ON THE IMAGENET VALIDATION SET FOR

STATE-OF-THE-ART MODELS. THE RESNET-50∗ MEANS THAT THE
RE-IMPLEMENTION RESULT BY OUR EXPERIMENTS.

model top-1 top-5 Params(M) FLOPs(G)
WRN-18(widen=2.0) [8] 25.58 8.06 45.6 6.70
DenseNet-169 [6] 23.80 6.85 28.9 7.7
SE-ResNet-50 [11] 23.29 6.62 26.7 4.14
ResNet-50 [5] 24.7 7.8 - -
ResNet-50∗ 24.81 7.78 26.6 4.14
ResNet-101 [5] 23.6 7.1 44.5 7.51
RegNet-50 23.43 6.93 31.3 5.12

B. Experiments on ImageNet

We evaluate our model on ImageNet 2012 dataset [3] which
consists of 1.28 million training images and 50k validation
images from 1000 classes. Following the previous papers, We
report top-1 and top-5 classification errors on the validation
dataset. Due to the limited resources of our GPUs and without
of loss of generality, we run the experiments of ResNets and
RegNets only.

The bottleneck RegNet building modules are applied to Im-
ageNet. We use 4 ConvRNNs in RegNet-50. The ConvRNN𝑖 ,
𝑖 ∈ {1, 2, 3, 4}, controls {3, 4, 6, 3} bottleneck RegNet modules
respectively. In this experiment, we use SGD with a momen-
tum of 0.9 and a weight decay of 1e-4. We train with batch
size 128 for 90 epoch. The initial learning rate is 0.06 and
divided by 10 at 50 and 70 epochs. The input of the network
is 224×224 images, which randomly cropped from the resized
original images or their horizontal flips. Data augmentation in
[27] is used in training. We evaluate our model by applying a
center-crop with 224 × 224.

We evaluate the efficiency of baseline models ResNet-50
and its respectively RegNet counterpart. The comparison is
based on the computational overhead. As shown in Table VI
with additional 4.7M parameters, RegNet outperforms the
baseline model by 1.38% on top-1 accuracy and 0.85% on
top-5 accuracy.

Table VII shows the error rates of some state-of-the-art
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models on the ImageNet validation set. Compared with the
baseline ResNet, our RegNet-50 with 31.3M parameters and
5.12G FLOPs not only surpasses the ResNet-50 but also
outperforms ResNet-101 with 44.6M parameters and 7.9G
FLOPs. Since the proposed regulator module is essentially a
beneficial makeup to the short cut mechanism in ResNets, one
can easily apply the regulator module to other ResNet-based
models, such as SE-ResNet, WRN-18 [8], ResNetXt [10],
Dual Path Network (DPN) [13], etc. Due to computation re-
source limitation, we leave the implementation of the regulator
module in these ResNet extensions as our future work.

V. CONCLUSIONS

In this paper, we proposed to employ a regulator module
with Convolutional RNNs to extract complementary features
for improving the representation power of the ResNets. Ex-
perimental results on three image-classification datasets have
demonstrated the promising performance of the proposed ar-
chitecture in comparison with standard ResNets and Squeeze-
and-Excitation ResNets as well as other state-of-the-art archi-
tectures.

In the future, we intend to further improve the efficiency of
the proposed architecture and to apply the regulator module
to other ResNet-based architectures [8]–[10] to increase their
capacity. Besides, we will further explore RegNets for other
challenging tasks, such as object detection [16], [17], image
super-resolution [19], [20], and so on.
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