
TO APPEAR IN IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 1

Generalized Key-Value Memory to Flexibly Adjust
Redundancy in Memory-Augmented Networks

Denis Kleyko, Geethan Karunaratne, Jan M. Rabaey, Abu Sebastian, and Abbas Rahimi

Abstract—Memory-augmented neural networks enhance a
neural network with an external key-value memory whose
complexity is typically dominated by the number of support
vectors in the key memory. We propose a generalized key-
value memory that decouples its dimension from the number
of support vectors by introducing a free parameter that can
arbitrarily add or remove redundancy to the key memory
representation. In effect, it provides an additional degree of
freedom to flexibly control the trade-off between robustness and
the resources required to store and compute the generalized key-
value memory. This is particularly useful for realizing the key
memory on in-memory computing hardware where it exploits
nonideal, but extremely efficient non-volatile memory devices for
dense storage and computation. Experimental results show that
adapting this parameter on demand effectively mitigates up to
44% nonidealities, at equal accuracy and number of devices,
without any need for neural network retraining.

Index Terms—memory-augmented neural networks, key-value
memory, linear distributed memories with associations, hyper-
dimensional computing, vector symbolic architectures, phase-
change memory, in-memory computing, non-volatile memory

I. INTRODUCTION

The idea of using memory for the neural networks has
been widely used since the formulation of long short-term
memory [1]. Recent approaches to memory-augmented neural
networks (MANNs) incorporate an explicit memory into the
neural networks as an end-to-end differentiable module [2]–
[5]. These MANNs are typically applied in knowledge-based
reasoning [2]–[4], sequential prediction [5], unsupervised
learning [6], [7], and few-shot learning tasks [8], [9]. All these
MANN models commonly expand the explicit memory to be
able to handle various tasks and datasets with an increased
complexity. For instance, the size of explicit memory grows
linearly with the number of available samples and classes in

Manuscript received August 6, 2021; revised December 17, 2021; accepted
March 10, 2022.
The work of DK was supported by the European Union’s Horizon 2020
Programme under the Marie Skłodowska-Curie Individual Fellowship Grant
(839179). The work was supported in part by the DARPA’s AIE HyDDENN
Project (DK and JMR) program and by AFOSR FA9550-19-1-0241 (DK). GK
and AS were partially supported by the European Research Council (ERC)
under the European Unions Horizon 2020 research and innovation program
(grant agreement number 682675).

D. Kleyko is with the Redwood Center for Theoretical Neuroscience
at the University of California, Berkeley, CA 94720, USA and also with
the Intelligent Systems Lab at Research Institutes of Sweden, 16440 Kista,
Sweden. E-mail: denkle@berkeley.edu

G. Karunaratne, A. Sebastian, and A. Rahimi are with
IBM Research - Zurich, 8803 Rüschlikon, Switzerland. E-mail:
{kar, ase, abr}@zurich.ibm.com

J. M. Rabaey is with the Department of Electrical Engineering and
Computer Sciences at the University of California, Berkeley, CA 94720, USA.
E-mail: jan rabaey@berkeley.edu

the few-shot learning tasks [8], [9], or with the total number
of training samples in the unsupervised learning [6], [7].

In the supervised learning tasks, the explicit memory is
composed of a key memory for storing and comparing learned
patterns, and a value memory for storing labels, that are jointly
referred to as a key-value (KV) memory [4]. The entries in
the key memory are not accessed by stating a hard address,
but by comparing a query with all the entries, forming soft
read and write operations, which involve every individual
memory entry. These extremely memory intensive operations
cause a bottleneck when implemented in conventional von
Neumann architectures (e.g., CPUs and GPUs), especially for
tasks demanding a large number of memory entries.

To address the aforementioned bottleneck, one viable option
is to implement the KV memory with emerging non-volatile
memory (NVM) devices that offer dense storage as well as
in-memory computing capability to efficiently execute the
comparison operations at constant time. For instance, in [10]
the NVM devices have been arranged as a ternary content
addressable memory to perform comparisons inside the key
memory. This structure, however, cannot support widely-used
metrics such as cosine similarity. Furthermore, practical in-
memory computing is challenging due to low computational
precision resulting from various sources of nonidealities in
the NVM devices such as intrinsic randomness, noise, and
variability [11]. A recent methodology [12] addresses these
issues by enhancing the key memory representations with
robust properties of hyperdimensional computing [13], such
that the representations can be readily transformed to low-
precision (i.e., bipolar or binary) vectors in the key memory
while exhibiting robustness against the nonidealities in the
NVM-based in-memory computing hardware.

In the few-shot learning tasks, for a given m-way n-shot
problem, the methodology in [12] sets the size of the key
memory to [d × mn] where m is the number of classes
in the problem, n denotes the number of training samples
per class, and d is the dimensionality of support vectors.
Specifically, the controller neural network in [12] assigns a d-
dimensional support vector to every training sample such that
the support vectors for different classes are quasi-orthogonal.
The dimensionality of support vector is typically set to thou-
sands [13] to generate a holographic distributed representation
that is extremely robust against nonidealities in in-memory
computing [14]. Therefore, the dimensionality of support
vectors could be changed to maintain a desired accuracy in
the presence of the nonidealities for a fixed m-way n-shot
problem. However, every time d is changed, the controller
neural network should be retrained. This is impractical as

ar
X

iv
:2

20
3.

06
22

3v
1 

 [
cs

.L
G

] 
 1

1 
M

ar
 2

02
2



TO APPEAR IN IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2

retraining the controller neural network is a costly process.
Therefore, it is important to consider alternative approaches
for regulating the robustness of the KV memory. To address
this limitation, we propose a generalization of the KV memory
that can be dynamically adapted in the inference phase to deal
with any amount of nonidealities.

Thus, the generalization of the KV memory is the main
contribution of this brief. The proposed generalization de-
couples the dimension of the key memory from mn by
introducing a free parameter r for controlling the redundancy
such that the dimension becomes [d× r] instead of [d×mn].
During the inference phase, this new parameter r can add or
remove redundancy in the representations of the key memory,
on demand, without any retraining of the controller neural
network. This results in a fully distributed version of the key
memory, which is obtained, by the linear superposition of the
outer products between the support vectors and randomized
distributed representations of their corresponding class labels.
The empirical investigation of the generalized KV memory
demonstrates its flexibility and robustness against noise and
NVM nonidealities, e.g., it maintains the noiseless accuracy
(obtained in software) of the original KV memory when
exposed up to 44% NVM device nonidealities by adjusting r
such that it demands no more NVM devices than the original
KV memory.

The rest of this brief is structured as follows. Section II
provides an overview of the original MANN architecture.
The organization of the proposed generalized KV memory is
presented in Section III. Section IV presents performance eval-
uation of the generalized KV memory. Section V concludes
the brief.

II. MANNS OVERVIEW

The MANN architectures combine neural networks with
an explicit memory [2]–[9], [12]. Such an approach exploits
meta-learning for performing few-shot learning tasks [8], [9],
[12]. The trained neural network can produce representations
of new previously unseen data, which are then written to
the explicit memory, so that the memory can be used to,
e.g., classify new queries with only a few examples per
each class. The distinctive feature of the MANN architecture
in [12] is that the neural network is guided to produce
support vectors in the form of d-dimensional vectors with
the properties suitable for hyperdimensional computing [13],
[15] (also known as vector symbolic architectures [16], [17]).1

The architecture shows that the support vectors produced by
the trained neural network can be directed towards robust
bipolar or binary representations. It was shown to solve the
Omniglot [20] problems, as large as 100-way 5-shot using the
in-memory computing hardware. Specifically, this architecture
allows implementation of the binary key memory on 256,000
(5× 100× 512) noisy phase-change memory (PCM) devices,
performing highly efficient analog in-memory computation,
with less than 2.7% accuracy drop compared to the 32-bit real-
valued memory in software for the largest problem ever-tried
on Omniglot [12].

1Please consult [18], [19] for a comprehensive survey of hyperdimensional
computing/vector symbolic architectures.

As follows from the above, conceptually the architecture
can be divided into two parts: the controller (i.e., the neural
network) and the explicit memory. This brief is devoted to
the organization of the explicit memory during the inference
phase.2 The explicit memory is split into two parts: the key
memory and the value memory (hence, the KV memory).
In the original formulation, the key memory (denoted as
K) stores mn d-dimensional3 support vectors produced by
the controller for a given m-way n-shot problem so K ∈
[d×mn]. For the inference phase with PCM devices, every d-
dimensional support vector is quantized to a binary or bipolar
vector. The value memory (denoted as V) stores one-hot
encodings of the class labels corresponding to the support
vectors in K, so V ∈ [m × mn]. Here, it is important to
emphasize that despite the fact that the KV memory contains
the holographic distributed representations (i.e., the support
vectors), the organization of the memory is local because the
vectors Ki and Vi in the corresponding parts of the KV
memory can be identified with a particular sample of the
training data.

During the inference phase, the query vector q ∈ [d× 1] is
used as an input to the key memory where the main step is to
compute the similarity between q and the support vectors Ki

using the dot product (denoted as α) as the similarity measure:

α = K>q, (1)

where αi contains the similarity between the query and ith
support vector. Note that when the support vectors in the key
memory are normalized to the same norm, the dot products in
α are proportional to the corresponding cosine similarities.

Next, the dot products can be modified with some sharpen-
ing function (denoted as σ(·)):

γ = σ(α). (2)

The sharpened similarity scores are used to compute the
accumulated scores for each class as:

s = Vγ, (3)

where sj contains the score for jth class (1 ≤ j ≤ m).
The prediction is chosen to be the class with the highest
accumulated score: argmax

j
sj .

It is worth noting that the above inference procedure is a
special case of the k-nearest neighbor classifier with distance-
weighted voting where k = mn and the weight for ith
training sample (i.e., neighbor) corresponds to γi. This obser-
vation suggests that it is worth exploring a fully distributed
organization of the KV memory where there is no local
correspondence between the entries of the key memory and the
support vectors. Such a fully distributed organization can be
achieved using, e.g., a linear distributed memory with the outer
product learning rule [21], [22]. The distributed organization
of the KV memory allows achieving similar functionality for
the inference phase while providing an additional degree of
freedom, which plays an important role in controlling the

2It is important to note that the proposed approach does not require any
modification of the training of the controller described in [12].

3Following [12], d is set to 512 for the experiments in this brief.



TO APPEAR IN IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 3

trade-off between the robustness of the key memory and the
resources required to store it.

III. GENERALIZED KEY-VALUE MEMORY

As highlighted in [12], an important advantage of the
architecture is that the key memory can be mapped to PCM
devices for analog in-memory computing, which has shown
to significantly improve the energy efficiency of the inference
procedure compared to a digital design. Note, however, that
in the original formulation, the dimension of the key memory
is K ∈ [d×mn], i.e., assuming that d is fixed, the dimension
of the key memory is determined by the number of support
vectors in a given m-way n-shot problem. This dependency
makes the key memory rigid in the sense that there is no
possibility to control the dimension of the key memory other
than changing d, which demands retraining the controller
neural network, once m and n are fixed. Therefore, it is
important to consider a generalization of the KV memory
allowing to decouple the dimension of the key memory from
m and n by using a free parameter r so the dimension becomes
[d× r] instead of [d×mn].

The decoupling is achieved by changing the organization of
the KV memory from the local one to a fully distributed one
using the principles of forming context-dependent associations
in linear distributed associative memories [21], [23], [24].
To reformulate the KV memory in terms of the context-
dependent associations, we need to first define a new value
memory (d)L ∈ [r × m], where (d)Lj is an r-dimensional
vector representing the label of jth class (1 ≤ j ≤ m). We will
discuss the options for choosing (d)Lj in the next section. Once
the class labels’ representations are defined, the real-valued
support vectors Ki and their corresponding (d)Lj are used to
create the distributed version of the key memory (denoted as
(d)K) using the outer product learning rule:

(d)K =

mn∑
i=1

(d)Lc(i)K
>
i , (4)

where c(i) denotes the class index of ith support vector. Thus,
the distributed version of the key memory is the linear super-
position of the outer products of the support vectors and the
representations of their class labels,4 therefore, (d)K ∈ [r×d].
Since the distributed version of the key memory in (4) does
not strictly depend on mn, we refer to (d)K and (d)L as the
generalized KV memory.

The inference procedure with the generalized KV memory
is very similar to the original one. For a given query, q, the
dot product between (d)K and q, which is computed as:

γ = α = (d)Kq, (5)

4While here we do not go into the details of comparing the computational
costs of the two considered approaches to the organization of the KV memory,
it is worth noting that both of them incur certain computation costs when it
comes to adding new support vectors to the key memory. In the case of the
original KV memory, the cost is in the allocation of space for a new support
vector and writing the new vector to the key memory; while in the case of the
generalized KV memory, the cost is in computing the outer product between
the support vector and its label vector as well as in incrementing the key
memory with the outer product result.

produces an r-dimensional vector, which is the weighted
superposition of class labels’ representations. This vector α
can be seen as a sharpened vector γ assuming that an identity
function is used as the sharpening function. Finally, the value
memory is used to measure the scores of each class as:

s = (d)L>γ. (6)

As in the original KV memory, the result is an m-dimensional
vector where jth component contains the accumulated score
for the corresponding class so the prediction is chosen as
before: argmax

j
sj .

Similar to the original key memory K, (d)K can be bipo-
larized using the component-wise sign(·) function:

(d)
K̂ = sign((d)K). (7)

Obviously, the bipolar version
(d)
K̂ can be transformed to the

binary version.

IV. EVALUATION OF THE GENERALIZED KEY-VALUE
MEMORY

Here, we discuss when would it be beneficial to use the
generalized key-memory instead of the original KV memory.
We suggest the following two modes:

1) For compression when there is a little or no noise. For
the problems where n > 1, the generalized KV memory
effectively removes the redundancy, and can achieve
the classification accuracy on a par to the original KV
memory for r << mn.

2) For increasing robustness at very low signal-to-noise
ratio (SNR) conditions. The generalized KV memory
flexibly increases the redundancy by allocating more
resources to the key memory so that r > mn that
results in improved robustness to noise and nonidealities
compared to the original KV memory, which does not
have a mechanism to regulate the redundancy of the key
memory.

Both of the aforementioned modes are related to each other
since usually it is necessary to tradeoff between the achieved
accuracy and required resources in the presence of noise and
nonidealities but to make the points clear, we isolate the
two. In the following, we present the results of three sets
of experiments to illustrate these modes. The first mode is
investigated in Section IV-A while the second one is studied
in Sections IV-B and IV-C.

We use the data from [12] in the form of 512-dimensional
real-valued vectors obtained from the trained controller using
the images in the test set of the Omniglot dataset. It includes
659 classes with 20 samples per each class. These data were
used to perform the experiments below.

Recall, that the first step in the generalized KV memory is
to populate the value memory (d)L ∈ [r×m]. There are several
options to do so. The most obvious choice is to generate
(d)L randomly so that each class label is represented by a
random vector (d)Lj . This, however, is not the best choice since
the random vectors are only approximately orthogonal, hence,
there will be some cross-talk noise between different (d)Lj in



TO APPEAR IN IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 4

Fig. 1. Average classification accuracy against the dimensionality of representations of the class labels (r). The results are shown for the real, bipolar, and
binary variants of the key memory and query vectors, in software without any noise. The results are averaged over 1, 000 problems randomly chosen from
the test data.

Fig. 2. Average classification accuracy against SNR of α. The 20-way 5-shot problem is used with fixed nm = 100 while r < nm or r ≥ nm. Panels
correspond to real, bipolar, and binary variants of the key memory and query vectors in software. The results are averaged over 100 problems randomly
chosen from the test data.

(d)K, which would negatively affect the classification accuracy
and robustness to noise and nonidealities. Therefore, in the
experiments below we use random orthogonal matrices to form
the value memory (d)L when r ≥ m, or whitened random
matrices when r < m. In the former case, an orthogonal matrix
can be formed by applying the QR decomposition to a random
matrix generated from the standard normal distribution. The
fact that values of (d)L are real-valued should not be discour-
aging as it is meant to be implemented in software. In case if
(d)L is also desired to be binary/bipolar, one could use, e.g.,
Walsh codes to form (d)L.

A. Compression in Noiseless Condition

In the first experiment, we evaluate the trade-off between
the classification accuracy of the generalized KV memory and
its dimension, which is controlled by r. Fig. 1 presents the
average classification accuracy against r for two problems:
20-way 5-shot (left panel) and 100-way 5-shot (right panel).
The markers depict the baselines obtained with the original
KV memories5 Recall, that the dimension of the original key
memory is mn, i.e., 100 and 500 for the considered problems,
respectively. The dashed lines correspond to the results of the

5All the experimental results for the original KV memory were obtained
using the identity function as the sharpening function in (3).

generalized KV memories. For both problems, to provide the
intuition for the dimensions of the original key memories, r
was limited to mn. It is clear that for both problems, the
accuracy of the generalized KV memories approached the
accuracy of the original KV memories with values of r being
smaller than mn. For example, for the 20-way 5-shot problem,
the generalized KV memory reached 95% of the accuracy of
the original KV memory by using r of 10, 12, and 14 for real,
bipolar, and binary key memory, respectively; these correspond
to mn/r ratio, hence, memory saving of 10.0×, 8.3×, and
7.1×. For the 100-way 5-shot problem, the corresponding
values of r were 60, 70, and 80, with memory savings of 8.3×,
7.1×, and 6.3×, respectively. These results demonstrate the
possibility of compressing the KV memory without sacrificing
most of the classification accuracy.

B. Robustness in the Presence of White Noise

The previous experiment did not take into account the fact
that a hardware implementation of the key memory might
return a noisy version of γ as the result of computing the dot
products. Therefore, in the second experiment, we measure
the classification accuracy against the white noise added to
γ. The experiment is conducted with 20-way 5-shot problem
using all three variants of the key memory: real, bipolar, and



TO APPEAR IN IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 5

Fig. 3. Average classification accuracy against the conductance variations in the PCM model for 20-way 5-shot problem. Panels correspond to the bipolar
and the binary variants of the key memory mapped to PCM devices. The results were averaged over 1, 000 problems randomly chosen from the test data.

Fig. 4. Average classification accuracy against the conductance variations in the PCM model for 100-way 5-shot problems. Panels correspond to the bipolar
and the binary variants of the key memory mapped to PCM devices. The results were averaged over 1, 000 problems randomly chosen from the test data.

binary. The dimension of the original key memory was fixed
to nm = 100, while for the generalized KV memory flexibly
sets four different values with r ∈ {50, 100, 150, 200} without
any need to retrain the controller.

Fig. 2 presents the results. As expected, the low SNR values
reduced the classification accuracy. At the same time, it is
clear that the dimension of the key memory has an effect on
the robustness to noise. The generalized KV memory with
the lowest r (r = 50) demonstrated the worst performance
for the low SNR values. When r = mn, both memory
types performed very close to each other independent of the
SNR values. However, since the generalized KV memory can
control r, it can be set to r > mn. Thus, the generalized
KV memory can be flexibly switched to the second mode
with a larger amount of redundancy to provide robustness to
extremely low SNR values. For example, r = 400 exhibits
a very graceful accuracy degradation (e.g., an accuracy of
> 90% at SNR=-10 dB). These results provide the evidence
that subject to sufficient dimensionality of r, the generalized
KV memory can be designed to operate at very low SNR.

C. Robustness in the Presence of PCM Nonidealities
It is important to note that the noise and nonidealities

present in the PCM devices are not well-described by white

noise. It has been shown that there are three major com-
ponents to PCM noise. These include a) a programming
noise component which is modeled as multiplicative Gaussian
noise, b) drift noise component which models 1/f noise as a
Gaussian random exponent with respect to time c) read noise
component which is modeled as additive Gaussian noise (see
Supplementary notes in [12]). Of these, the programming noise
variability can be directly controlled by employing an iterative
programming scheme whereas drift and noise components are
controlled by external conditions such as temperature or the
internal conductance state, over which there is less controlla-
bility. Therefore, we perform the last set of experiments using
the model of a temporal evolution of conductance G(t) of a
single PCM device [12]:

G(t) = N (0, G̃2
r) + (G0 · N (1, G̃2

p)) · t−ν·N (1,ν̃2)), (8)

where N (µ, σ2) denotes a normal distribution; t is the time
since programming (assumed to be 20s), G0 is the mean
conductance at t = 1s (measured: G0 = 22.8 × 10−6S), ν
is the mean drift exponent (measured: ν = 0.0598); G̃2

r , G̃2
p,

and ν̃2 represent the variation in additive read noise (measured:
G̃r = 0.496 × 10−6S), conductance variation (programming
noise; measured: G̃p = 31.7%), and drift variation (measured:
ν̃ = 9.07%), respectively. Please refer to “PCM model and



TO APPEAR IN IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 6

Fig. 5. Average dimensionality of r against the conductance variation in the PCM model required to maintain iso-accuracies of the corresponding variants
of the original noiseless KV memory. Panels correspond to 20-way 5-shot and 100-way 5-shot problems, respectively. The results are averaged over 1, 000
problems randomly chosen from the test data.

simulations” subsection in “Method” section in [12] for the
additional details of the model. We perform the experiments
by varying the relative conductance variation (i.e., G̃p) while
keeping all other parameters fixed.

Fig. 3 and 4 present the average classification accuracy
against the conductance variation in the PCM model for 20-
way 5-shot and 100-way 5-shot problems, respectively.6 The
dimension of the original key memories are fixed to nm,
while for the generalized KV memories different values of
r are used: {50, 100, 150, 200} and {250, 500, 1000, 2000},
respectively. Note that the PCM implementation of the bipolar
variants requires two devices per dimension.

The results for the original KV memory are consistent with
the ones reported in [12] in the sense that the bipolar variant is
more robust against the conductance variations. Also, similar
to the results in Fig. 2, for both problems the generalized KV
memory with the lowest r (r = 50 and r = 250, respectively)
consistently demonstrates the lowest accuracy amongst all
depicted. Importantly, the generalized KV memory performs
better than the original one for high conductance variations (>
80%) when r = nm (i.e., having the same number of devices).
This can be attributed to the fact that the local organization is
more brittle to errors than the distributed one, which is a well-
known advantage of distributed representations [25]. Finally,
the robustness to the conductance variation can be increased
further by increasing r, and naturally, the largest values of
r (r = 400 and r = 2, 000, respectively) demonstrate the
least accuracy degradation even at the very high conductance
variation. In particular, for G̃p = 200% compared to G̃p = 0%
the accuracy decreases by only 0.26% (r = 400) & 0.90%
(r = 2, 000) and 0.64% (r = 400) & 1.97% (r = 2, 000) for
the bipolar and binary variants, respectively.

Iso-accuracy Generalized KV Memory at Conductance Vari-
ations: In the previous experiment, the generalized KV mem-
ory improves the robustness to conductance variations by
increasing r. Hence, the next step is to investigate whether
the generalized KV memory can achieve the iso-accuracy of

6The diligent readers are kindly referred to the Supplementary Material that
provides an additional experimental evaluation to further justify the proposed
approach.

the original KV memory without any noise and nonidealities
as in Fig. 1. The average values of r providing the iso-accuracy
for a range of conductance variations are depicted in Fig. 5.

Considering the 20-way 5-shot problem with the binary
vectors, the generalized KV memory can maintain the original
accuracy of its noiseless software variant when experiencing
up to 44% variations in the PCM hardware, yet using the
same number of devices (r = mn). Since in the hardware
implementation, the “set” conductance was fixed at 38 µS,
44% conductance variation translates into a standard devia-
tion of the “set” conductance distribution of 16 µS. For the
larger amount of variations, increased r can guarantee the
iso-accuracy; as expected, for the bipolar KV memories r
grows slower than that of the binary ones. Similar trend is
observed for the large 100-way 5-shot problem. As shown, it
is possible to achieve the iso-accuracy even for extremely high
conductance variations, which confirms the general nature of
the proposed KV memory, which allows trading-off additional
hardware resources for the robustness of the classification
accuracy.

V. CONCLUSION

This brief presented the generalized KV memory for
MANNs. The proposed approach is based on the two key
ideas. First, the fact that it is not necessary to use one-
hot encodings for the value memory; randomized distributed
representations can be used instead. Second, the organization
of the key memory can be changed from the local one (storing
individual support vectors) to the distributed one with the outer
product learning rule.

The empirical evaluation demonstrated the flexibility of
the generalized KV memory. In the noiseless conditions, it
achieves the classification accuracy on a par with the original
KV memory using a fraction of dimensions required by the
original key memory. Alternatively, for very harsh conditions
the generalized KV memory can easily adjust the memory
redundancy to tolerate extreme amounts of noise and nonide-
alities, which is an attractive feature for implementing the KV
memory on emerging computational NVM devices.



TO APPEAR IN IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 7

Supplementary Materials: Additional Evaluation

Fig. S.1. Average dimensionality of r against the conductance variation in the PCM model required to maintain iso-accuracies of the corresponding variants
of the original noiseless KV memory. Panels correspond to binary and bipolar variants of the generalized KV memory, respectively. The number of ways was
fixed to m = 20 while the number of shots was n ∈ {2, 4, 6, 8, 10}. The results are averaged over 3, 000 problems randomly chosen from the test data.

Fig. S.2. Average dimensionality of r against the conductance variation in the PCM model required to maintain iso-accuracies of the corresponding variants
of the original noiseless KV memory. Panels correspond to binary and bipolar variants of the generalized KV memory, respectively. The number of shots was
fixed to n = 5 while the number of ways was m ∈ {20, 50, 100, 150, 200}. The results are averaged over 1, 000 problems randomly chosen from the test
data except for the 200-way 5-shot problems that are much more computationally demanding so only 200 and 700 problems were simulated for binary and
bipolar variants, respectively.

The goal of this Supplementary materials is to provide the reader with the additional experimental evaluation to further justify
the goodness of the proposed generalized key-value (KV) memory. Due to the space limitation, in the main text we have
not provided the experiments to demonstrate how the proposed approach scales with respect to the size of the problems –
determined by mn. In order to make such a demonstration we have run the experiments for fixed m and varying n (see Fig. S.1)
and then for fixed n and varying m (see Fig. S.2). In both experiments, we can see that the proposed approach is able to
achieve the iso-accuracies at the expense of the increased r, which was the main feature of interest for these experiments. We
also see that for a fixed conductance variation, larger problems (for either increased n or m) require larger r. This is expected,
in both cases since in both cases mn is increasing and it is natural to expect that the required r would have increased as well.



TO APPEAR IN IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 8

REFERENCES

[1] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural Computation, vol. 9, no. 8, pp. 1735–1780, 1997.
[2] A. Graves, G. Wayne, and I. Danihelka, “Neural Turing Machines,” arXiv:1410.5401, pp. 1–26, 2014.
[3] A. Graves, G. Wayne, M. Reynolds, T. Harley, I. Danihelka, A. Grabska-Barwińska, S. G. Colmenarejo, E. Grefenstette, T. Ramalho, J. Agapiou, A. P.

Badia, K. M. Hermann, Y. Zwols, G. Ostrovski, A. Cain, H. King, C. Summerfield, P. Blunsom, K. Kavukcuoglu, and D. Hassabis, “Hybrid Computing
Using a Neural Network with Dynamic External Memory,” Nature, vol. 538, no. 7626, pp. 471–476, 2016.

[4] J. Weston, S. Chopra, and A. Bordes, “Memory Networks,” in International Conference on Learning Representations (ICLR), 2015, pp. 1–15.
[5] S. Sukhbaatar, A. Szlam, J. Weston, and R. Fergus, “End-To-End Memory Networks,” in Advances in Neural Information Processing Systems (NIPS),

2015, pp. 1–9.
[6] Z. Wu, Y. Xiong, S. X. Yu, and D. Lin, “Unsupervised Feature Learning via Non-Parametric Instance Discrimination,” in IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), 2018, pp. 3733–3742.
[7] Z. Wu, A. A. Efros, and S. X. Yu, “Improving Generalization via Scalable Neighborhood Component Analysis,” in European Conference on Computer

Vision (ECCV), 2018, pp. 1–17.
[8] A. Santoro, S. Bartunov, M. Botvinick, D. Wierstra, and T. P. Lillicrap, “Meta-Learning with Memory-Augmented Neural Networks,” in International

Conference on Machine Learning (ICML), 2016, pp. 1–9.
[9] O. Vinyals, C. Blundell, T. Lillicrap, K. Kavukcuoglu, and D. Wierstra, “Matching Networks for One Shot Learning,” in Advances in Neural Information

Processing Systems (NIPS), 2016, p. 3637–3645.
[10] K. Ni, X. Yin, A. F. Laguna, S. Joshi, S. Dünkel, M. Trentzsch, J. Müller, S. Beyer, M. Niemier, X. S. Hu, and S. Datta, “Ferroelectric Ternary

Content-Addressable Memory for One-Shot Learning,” Nature Electronics, vol. 2, no. 11, pp. 521–529, 2019.
[11] A. Sebastian, M. Le Gallo, R. Khaddam-Aljameh, and E. Eleftheriou, “Memory Devices and Applications for In-memory Computing,” Nature

Nanotechnology, vol. 15, pp. 529–544, 2020.
[12] G. Karunaratne, M. Schmuck, M. L. Gallo, G. Cherubini, L. Benini, A. Sebastian, and A. Rahimi, “Robust High-dimensional Memory-augmented Neural

Networks,” Nature Communications, vol. 12, no. 1, pp. 1–12, 2021.
[13] P. Kanerva, “Hyperdimensional computing: An introduction to computing in distributed representation with high-dimensional random vectors,” Cognitive

Computation, vol. 1, no. 2, pp. 139–159, 2009.
[14] G. Karunaratne, M. Le Gallo, G. Cherubini, L. Benini, A. Rahimi, and A. Sebastian, “In-memory Hyperdimensional Computing,” Nature Electronics,

vol. 3, no. 6, pp. 327–337, 2020.
[15] A. Rahimi, S. Datta, D. Kleyko, E. P. Frady, B. Olshausen, P. Kanerva, and J. M. Rabaey, “High-dimensional Computing as a Nanoscalable Paradigm,”

IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 64, no. 9, pp. 2508–2521, 2017.
[16] R. W. Gayler, “Vector Symbolic Architectures Answer Jackendoff’s Challenges for Cognitive Neuroscience,” in Joint International Conference on

Cognitive Science (ICCS/ASCS), 2003, pp. 133–138.
[17] D. Kleyko, M. Davies, E. P. Frady, P. Kanerva, S. J. Kent, B. A. Olshausen, E. Osipov, J. M. Rabaey, D. A. Rachkovskij, A. Rahimi, and F. T. Sommer,

“Vector Symbolic Architectures as a Computing Framework for Nanoscale Hardware,” arXiv:2106.05268, pp. 1–28, 2021.
[18] D. Kleyko, D. A. Rachkovskij, E. Osipov, and A. Rahimi, “A Survey on Hyperdimensional Computing aka Vector Symbolic Architectures, Part I: Models

and Data Transformations,” arXiv:2111.06077, pp. 1–27, 2021.
[19] ——, “A Survey on Hyperdimensional Computing aka Vector Symbolic Architectures, Part II: Applications, Cognitive Models, and Challenges,”

arXiv:2112.15424, pp. 1–36, 2021.
[20] B. M. Lake, R. Salakhutdinov, and J. B. Tenenbaum, “Human-level Concept Learning Through Probabilistic Program Induction,” Science, vol. 350, pp.

1332–1338, 2015.
[21] E. Mizraji, “Context-Dependent Associations in Linear Distributed Memories,” Bulletin of Mathematical Biology, vol. 51, pp. 195–205, 1989.
[22] E. P. Frady and F. T. Sommer, “Robust Computation with Rhythmic Spike Patterns,” Proceedings of the National Academy of Sciences, vol. 116, no. 36,

pp. 18 050–18 059, 2019.
[23] A. A. Frolov, D. Husek, and D. A. Rachkovskij, “Time of Searching for Similar Binary Vectors in Associative Memory,” Cybernetics and Systems

Analysis, vol. 42, no. 5, pp. 615–623, 2006.
[24] V. I. Gritsenko, D. A. Rachkovskij, A. A. Frolov, R. W. Gayler, D. Kleyko, and E. Osipov, “Neural Distributed Autoassociative Memories: A Survey,”

Cybernetics and Computer Engineering, vol. 2, no. 188, pp. 5–35, 2017.
[25] E. P. Frady, D. Kleyko, and F. T. Sommer, “A Theory of Sequence Indexing and Working Memory in Recurrent Neural Networks,” Neural Computation,

vol. 30, pp. 1449–1513, 2018.


	I Introduction
	II MANNs overview
	III Generalized key-value memory
	IV Evaluation of the generalized key-value memory
	IV-A Compression in Noiseless Condition
	IV-B Robustness in the Presence of White Noise
	IV-C Robustness in the Presence of PCM Nonidealities

	V Conclusion
	References

