
1

DAIS: Automatic Channel Pruning via
Differentiable Annealing Indicator Search

Yushuo Guan, Ning Liu, Member, IEEE, Pengyu Zhao, Zhengping Che, Member, IEEE,
Kaigui Bian, Senior Member, IEEE, Yanzhi Wang, Member, IEEE, and Jian Tang, Fellow, IEEE

Abstract—The convolutional neural network has achieved
great success in fulfilling computer vision tasks despite large
computation overhead against efficient deployment. Channel
pruning is usually applied to reduce the model redundancy
while preserving the network structure, such that the pruned
network can be easily deployed in practice. However, existing
channel pruning methods require hand-crafted rules, which can
result in a degraded model performance with respect to the
tremendous potential pruning space given large neural networks.
In this paper, we introduce Differentiable Annealing Indicator
Search (DAIS) that leverages the strength of neural architecture
search in the channel pruning and automatically searches for
the effective pruned model with given constraints on computa-
tion overhead. Specifically, DAIS relaxes the binarized channel
indicators to be continuous and then jointly learns both indicators
and model parameters via bi-level optimization. To bridge the
non-negligible discrepancy between the continuous model and
the target binarized model, DAIS proposes an annealing-based
procedure to steer the indicator convergence towards binarized
states. Moreover, DAIS designs various regularizations based on
a priori structural knowledge to control the pruning sparsity
and to improve model performance. Experimental results show
that DAIS outperforms state-of-the-art pruning methods on
CIFAR-10, CIFAR-100, and ImageNet.

I. INTRODUCTION

In recent years, the community has achieved great success
on various computer vision tasks [1], [2], [3], [4] by designing
deeper and wider convolutional neural networks (CNNs).
Despite the superior performance of these networks, the com-
putation cost is burdensome. Hence, it is difficult to directly
deploy such “expensive” networks over computation-limited
applications such as robotics, self-driving vehicles, and most
of the mobile devices. A straightforward solution to tackle
the problem is channel pruning. Channel pruning methods
target at compressing the networks in terms of parameters,
computation cost, and inference latency, while maintaining the
performance of the unpruned networks [5], [6], [7]. Channel
pruning methods could reduce the computation cost of the
network by eliminating redundant channels in CNNs, which

Yushuo Guan and Pengyu Zhao are with the School of Computer
Science, Peking University, Beijing, China 100871. E-mail: {david.guan,
pengyuzhao}@pku.edu.cn

Ning Liu, Zhengping Che, and Jian Tang are with Midea Group, Beijing,
China 100102. E-mail: {liuning22, chezp, tangjian22}@midea.com

Kaigui Bian is with the School of Computer Science, National Engineering
Laboratory for Big Data Analysis and Applications, Peking University,
Beijing, China 100871. E-mail: bkg@pku.edu.cn

Yanzhi Wang is with the Department of Electrical & Computer En-
gineering, Northeastern University, Boston, MA, USA 02115. E-mail:
yanz.wang@northeastern.edu

Corresponding author: Kaigui Bian.

require no extra hardware support and is perfectly compatible
with representative deep learning acceleration frameworks,
such as TVM [8], TFLite [9], and Alibaba MNN [10].

Earlier channel pruning methods leverage hand-crafted cri-
teria, such as lasso regression [6] and geometric median-
based criterion [11], to filter out unimportant channels. Recent
research on pruning [12] implies that the pruning process is
equivalent to searching a compact network structure, suggest-
ing the possibility of automatic channel pruning. Since the
pruning search space increases exponentially with original
networks being deeper and wider, a potential approach to
address this problem is through the idea of automatic channel
pruning [13], [7]. These methods search for the appropriate
pruned models automatically, but the search efficiency might
be low [13] and there might be architecture discrepancies
between the search process and the final pruned model [7].

To address these problems in the automatic pruning ap-
proaches, we propose DAIS, a Differentiable Annealing In-
dicator Search method for channel pruning, taking advantage
of differentiable neural architecture search [14]. In general,
DAIS first searches for a pruned model in an automatic
manner with computational constraints and then fine-tunes
the derived model. Specifically, DAIS introduces binarized
channel indicators and utilizes continuous auxiliary parame-
ters to relax the indicators for optimization. Then it jointly
learns model parameters and auxiliary parameters via bi-level
optimization, to simultaneously obtain the accurate model and
identify the importance of each channel. An annealing-relaxed
function is incorporated into the channel indicators to mitigate
the discrepancy between the derived pruned model and the
pretrained supernet for the search procedure. The indicators are
initialized to be gently continuous at high temperatures, and
gradually converge to binarized states as the training proceeds
and temperature anneals. Furthermore, to provide the structural
constraints on the pruned model, we design dedicated regular-
izers in DAIS: 1) A continuous FLOPs estimator regularizer
that controls the computational cost of the pruned model,
and 2) a symmetry regularizer which optimizes the gradient
propagation on the pruned ultra-deep neural networks with
residual connections. Additionally, DAIS is more efficient,
since it is a one-shot solution that does not require multi-
round pruning compared with most existing methods [6], [15],
[16]. Experimental results show that DAIS outperforms state-
of-the-art pruning methods on representative datasets such as
CIFAR-10 [17], CIFAR-100 [17], and ImageNet [18], as well
as having the great transfer ability to other vision tasks such
as semantic segmentation and scene text recognition.

ar
X

iv
:2

01
1.

02
16

6v
2

 [
cs

.C
V

]
 7

 A
pr

 2
02

2

2

The main contributions of this paper are as follows. 1) We
propose DAIS, a differentiable annealing indicator search
framework for channel pruning, which leverages the gradient-
based bi-level optimization to search for appropriate pruned
models with sparsity requirements. 2) We design an annealing-
relaxed channel indicator function for the differentiable search
process. This function is initialized to be continuous to relax
the search process to be differentiable and then gradually con-
verges into binarization to produce the pruned model. 3) We
design different regularizers to constrain the computational
cost of the pruned model. 4) DAIS achieves state-of-the-art
performance on different datasets and models, and extensive
experiments and ablation studies demonstrate its effectiveness.

II. RELATED WORKS

Channel pruning. The recent advances of network pruning
mainly fall into two categories: unstructured pruning and
channel pruning. Unstructured pruning [19], [20] removes
weights at arbitrary locations to reduce the storage and com-
putation. However, the resulted sparse matrix and indexing
scheme derived by unstructured pruning methods requires spe-
cial sparse matrix operation libraries and/or hardware, which
limit the practical acceleration in general CNN acceleration
frameworks. To avoid these limitations, recent works [15],
[21], [22], [23], [11], [24] focus on channel pruning, which
filter out redundant channels of the convolutional networks.
The pruned model would maintain the network structure and
take full advantage of Basic Linear Algebra Subprograms
(BLAS) operations [25]. Thus it can be perfectly supported by
the prevalent CNN acceleration frameworks such as TVM [8],
TensorFlow-Lite (TFLite) [9], and Alibaba Mobile Neural
Network (MNN) [10].

Early works [26], [27], [28] heuristically evaluate the im-
portance by the magnitude of the weights. Wen et al. [26]
adopt group lasso to force groups of weights to be smaller and
filter out the channels with zero weights. PFEC [27] identifies
the importance of each channel by L1 norm, and prunes the
channels which are identified to have small impact on the
network performance. SFP [28] first selects the filters based
on L2 norm and then prunes them softly. All these works
use simple criteria like L1 and L2 norm to determine the
significance of channels and filter out channels with smaller
norms.

Recent methods [11], [29], [16], [30], [31], [32], [33] design
various criteria or utilize additional optimization tools for
channel pruning. FPGM [11] filters out redundant channels
with a criterion of the geometric median. It proves that pruning
the channels near the geometric median has a substantial
impact on the network accuracy. CNN-FCF [29] learns binary
scalars associated with filters to determine the target filters to
prune. The binary scalars are not differentiable, and additional
optimization tools (such as ADMM) are needed for addressing
the binary constraints. GBN [16] introduces the gate decorator
into the network and estimates the performance of candidate
pruned models based on Taylor expansion. LFPC [30] learns
different criteria for each convolutional layer, considering
that different layers have various distributions. HRank [31]

discovers that the low-rank feature maps contain less infor-
mation, therefore it prunes filters with low-rank feature maps.
ABCPruner [32] leverages the artificial bee colony (ABC)
algorithm to search for appropriate pruned models. SCP [33]
jointly considers the effect of batch normalization (BN) [34]
and ReLU activation, and filters out the channels where the
BN and ReLU operations are likely to deactivate each feature
map.

Besides, some channel pruning approaches [35], [36], [37]
target at the efficiency of the pruning process. Dong et al. [35]
propose the low-cost collaborative layer (LCCL) to speed up
the inference of CNNs. SSS [36] prunes the networks in one
training pass with the help of a modified stochastic Accelerated
Proximal Gradient (APG) method. Lin et al. [37] optimizes
the channel pruning by generative adversarial learning (GAL),
which replaces the traditional multi-stage pruning into the end-
to-end optimization.
Neural architecture search (NAS). Recently, there has
been a growing interest in neural architecture search (NAS),
which automatically designs neural network architecture with
no human effort. The neural architecture search approaches
could be classified according to the search space and search
strategy.

The search space of NAS is the network topology, and
could be categorized into the macro search space and micro
search space. The methods [38], [39] search for the entire
CNN architecture in the macro search space, including kernel
sizes, skip connections and number of filters. Since the cost of
the macro space search is too large, more methods focus on
the micro space search, where they only search for a certain
module structure in the network [14], [40]. The derived module
will be stacked to form a complete network. Early works
leverage reinforcement learning [38], [41], [40], [42] or the
evolutionary algorithm [43], [44] as the search strategy. These
works mainly sample a large number of networks from search
space, then train them from scratch to obtain a supervision
signal, and optimize the sampling agent with different search
strategies. PGNAS [45] models the NAS task from Bayesian
perspective and needs a posterior-guided sampling process. It
reduces the computational complexity compared with earlier
approaches [38], [40], but still needs 11 GPU days to search
for appropriate networks. Recent attempts [46], [47], [48],
[49], [50], [51] introduce weight-sharing paradigm in NAS
to boost search efficiency, where all candidate sub-networks
share the weights in a single one-shot model that contains
every possible architecture in the search space. Among weight-
sharing methods, DARTS [14] has attracted much attention. It
relaxes the search space to be continuous with architecture
parameters and then efficiently optimizes model parameters
and architecture parameters together via gradient descent.
Automatic channel pruning. The channel pruning could
be thought of searching for appropriate pruned models as
suggested by Liu et al. [12], which implies the possibil-
ity of automatic channel pruning. The automatic channel
pruning [13], [7] leverages the idea of NAS, which spends
less search cost compared with the complete NAS. NetSlim-
ming [6] automatically selects filters by associating scaling
factors from BN layers and prunes filters with smaller scaling

3

factors. AMC [13] leverages deep reinforcement learning to
determine the pruning rate of each layer. It uses a sampling,
estimating, and learning process, which is time-consuming,
especially for deep networks. Besides, AMC only prunes the
middle channels of the blocks with shortcut (like ResNet),
which limits the optimal upper bound of the pruning ratio.
TAS [7] directly searches the width and depth of a network
with a novel transformable architecture search procedure, but
there are architecture discrepancies between the supernet in
the search procedure and the pruned model, which may result
in performance degradation in terms of pruning ratio and
accuracy.
Comparisons to related works. DAIS leverages the auto-
matic differentiable search procedure to replace heuristic rules
in traditional pruning methods [15], [21], [22], [23], [11],
[24]. DAIS is one-shot, which is more efficient compared
with multi-round pruning approaches [6], [15], [16]. The
heuristic annealing idea of DAIS could efficiently support
the convergence of the bi-level pruning process. DAIS has
different optimization targets compared with general NAS
works like PGNAS [45]. General NAS works focus on neural
architectures with high accuracy, while DAIS targets at auto-
matic channel pruning and searches for a small and fast pruned
model for the original model. DAIS also breaks the limitations
of automatic channel pruning methods like AMC [13] and
TAS [7]. DAIS is built on top of the differentiable indicator
search procedure for faster search efficiency, and leverages
the annealing-relaxed channel indicator to fill the architecture
discrepancies. DAIS also uses different regularizers to satisfy
structural restrictions.

III. METHODOLOGY

In this section, we firstly formulate the channel pruning
task and then introduce the Differentiable Annealing Indicator
Search (DAIS) method for channel pruning. Specifically, we
demonstrate the differentiable channel indicator search proce-
dure of DAIS, propose the annealing-relaxed channel indicator,
and introduce three regularizers for structural restrictions. The
overview of DAIS is illustrated in Fig. 1.

A. Problem Definition

A general CNN model is built with a stack of convolutional
layers. Suppose the model has L layers, and we define Ol as
the output feature tensor of the l-th convolutional layer. The
computation process of Ol can be commonly depicted as:

Ol = Fl(Wl, Ol−1), (1)

where Wl ∈ Rkl×kl×cl−1×cl denotes the convolutional kernel
of the l-th layer with input channel of cl−1 and output channel
of cl, and Fl(·) represents the convolution function. The
optimization target of model pruning is to derive the network
architecture with the minimum number of convolutional filters
from the original model while maintaining accuracy. The
channel pruning further preserves the structural information
of CNN and only reduces the number of channels, i.e., cl for
each layer.

A popular channel pruning approach [6] introduces channel
indicators, which are binarized vectors generating sparsity for
each convolutional layer, i.e.:

O
′

l = Fl(Wl, O
′

l−1)⊗ Il, (2)

where Il ∈ {0, 1}cl denotes the indicator vector, ⊗ represents
the tensor product, and O

′

l denotes the masked (pruned) output
tensor by Il. With channel indicator, the optimization target
of channel pruning can be represented by:

min
W,I

L(W, I) + λR(I), (3)

where W = [W1,W2, ...,WL] and I = [I1, I2, ...IL] denote
respectively the parameter and indicator sets, L(·) denotes the
loss function, and R(·) denotes the regularizer that induces
the structural restrictions. The details of regularizers will be
discussed in Sec. III-D.

As the channel indicator is binarized and non-differentiable,
it could not be learned directly by conventional gradi-
ent descent methods. Therefore, some channel pruning ap-
proaches [6], [16] associate the channel indicator with dif-
ferentiable metrics, e.g., leverage the weights in BN as an
indirect indicator, and zero out the channels with small BN
weights [6]. Instead of building up these indirect associations,
we deal with the channel indicator from another perspective
which is more effective and flexible, i.e., relax the channel
indicators to be continuous, and then jointly learn the model
parameters and relaxed channel indicators via a differentiable
search procedure.

B. Differentiable Indicator Search

The differentiable search procedure is widely used in
NAS [52], [14], [50] but seldom explored towards solving
the channel pruning problem. In this section, we incorporate
the idea of differentiable search into channel pruning and
introduce the differentiable indicator search.

To make the search space continuous, we relax each bi-
narized channel indicator Iil , i ∈ [1, cl], into a relaxed
channel indicator Ĩil parameterized by an auxiliary parameter
αil (discussed in Sec. III-C). After the relaxation, the goal of
the indicator search is to jointly learn model parametersW and
auxiliary parameters α. An intuitive option of optimization
is to update W and α simultaneously on the training set,
but the simultaneous optimization will cause α to overfit
on the training set, which might derive the pruned result
with poor generalization. Therefore, we leverage the bi-level
optimization in the differentiable indicator search procedure,
with α as the upper-level variable and W as the lower-level
variable. Specifically, it searches for α∗ that minimizes the
combination of validation loss Lval(W∗(α), α) and regular-
izers R(α), where the values of model parameters W∗ are
obtained by minimizing the training loss Ltrain(W, α):

min
α

Lval(W∗(α), α) + λR(α), (4)

s.t. W∗(α) = argmin
W
Ltrain(W, α). (5)

To solve the bi-level optimization problem, W and α are
updated in a multi-step scheme by gradient descent on training

4

Training proceeds with annealing temperatures.

(a) Channel Indicator
Relaxation

(b) Differentiable Annealing Indicator Search (c) Pruned Model
Derivation

T = 1

𝐼"#$ 𝐼"%$ 𝐼"&$ 𝐼"'$ 𝐼"($ 𝐼")$
𝐻+

T = 0.02

𝐼"#$ 𝐼"%$ 𝐼"&$ 𝐼"'$ 𝐼"($ 𝐼")$

T = 0.002

𝐼"#$ 𝐼"%$ 𝐼"&$ 𝐼"'$ 𝐼"($ 𝐼")$

Layer 𝑙

Layer 𝑙 + 1

Layer 𝑙

Layer 𝑙 + 1𝐻+ 𝐻+

1.0

0.5

0.0

1.0

0.5

0.0
-5 0 5

1.0

0.5

0.0
-5 0 5

1.0

0.5

0.0
-5 0 5

Fig. 1. Overview of the Differentiable Annealing Indicator Search (DAIS) framework. (a) Channel indicator relaxation. We build annealing-relaxed channel
indicators for each convolutional layer. (b) Differentiable annealing indicator search. As the training proceeds, the annealing-relaxed indicator Ĩil will converge
to binarization with annealing temperatures, as illustrated in the histograms. HT (∗) is an annealing function, which approximates the binarized state when
the temperature anneals. (c) Pruned model derivation. After the differentiable annealing indicator search, the pruned model will be derived by filtering out the
output channels with Ĩil = 0 from the original model.

and validation sets, and finally reach the local minima. The
alternating gradient updating process resembles [14] with more
details provided in the reference paper.

C. Annealing-Relaxed Channel Indicator

To make the relaxed channel indicator a better approxi-
mation of binarized channel indicator, the value range for
each entry Ĩil should be limited between 0 and 1. Hence,
a straightforward solution is to use a sigmoid function over
auxiliary parameters, formally:

Ĩil =
1

1 + e−α
i
l

. (6)

However, the above approximation has two inevitable prob-
lems. (1) The resulting Ĩil might not converge to sparse values,
i.e., close to 0 or 1, as there is no guarantee for sparsity based
on the continuous auxiliary parameters. Hence, a hand-crafted
threshold is still required to binarize the final pruning result,
which limits the robustness of this method and violates the idea
of automatic channel pruning. (2) Moreover, the discretization
brings the non-negligible discrepancy between the continuous
search result and binarized model [53], [52], [14]. This could
deteriorate the accuracy of the pruned model when joint
parameters of W and α are stuck in sharp local minima where
a small perturbation can lead to large performance degradation.

We propose an annealing-relaxed channel indicator to fill the
discrepancy. Concretely, we add a temperature variable T on
the sigmoid function, which is set to be high at the beginning
and gradually anneals to zero at the end of training. As a result,
the indicator is initially continuous to support the gradient
update of the auxiliary parameters, and finally converges to
the binarized state that leads to the pruned model:

Ĩil = HT (α
i
l) =

1

1 + e−α
i
l/T

, Iil = lim
T→0

HT (α
i
l), (7)

where αil represents the auxiliary parameter. The annealing-
relaxed function HT (·) is initialized with a high temperature
T = T0. When the training proceeds into n-th epoch, the
temperature of HT anneals to T0/ψ(n), where ψ(·) denotes
the temperature annealing scheme. Finally, the discrete Iil can
be approached with T → 0 at the end of the search.

D. Structural Restrictions by Regularizers

The vanilla cross-entropy loss itself is infeasible to induce a
priori structural restrictions, e.g., the number of floating point
operations (FLOPs), which play a critical role in pruning.
Therefore, we introduce three regularizers into the search
procedure when updating the auxiliary parameters.
Lasso regularizer. A naturally used sparsity regularizer is
the lasso regularizer:

Rlasso =

L∑
l=1

cl∑
i=1

∣∣∣∣HT (α
i
l)
∣∣∣∣
1
. (8)

Rlasso uses the lasso/L1 regularization and can effectively
zero out some channel indicators, but the pruning rate resulted
from Rlasso is not controllable and heavily dependent on its
weight on the whole loss function.
Continuous FLOPs estimator regularizer. The value of the
annealing-relaxed channel indicator HT (α

i
l) can be viewed as

the probability of preserving the corresponding channel in the
final pruned model. With the annealing-relaxed indicator of
all output channels, we can estimate the expectation of overall
FLOPs of the pruned model by accumulating FLOPs of each
channel. In the l-th convolutional layer, the continuous FLOPs
estimator could be represented as:

EFLOPs(α) =

L∑
l=1

(
pl ·
(cl−1∑
i=1

HT

(
αil−1

))
·
(cl∑
i=1

HT

(
αil
)))

(9)

5

where pl = hl × wl × k2l , and kl denotes the kernel size, hl
and wl denote the spatial size of the output feature maps.

Inspired by Dong et al. [7], we build up the regularizer
given the continuous FLOPs estimator:

RFLOPs(α) =

 log(EFLOPs(α)),
EFLOPs(α)

F > 1

− log(EFLOPs(α)),
EFLOPs(α)

F < 1− ε
0, otherwise

(10)
where F denotes the expected FLOPs and ε � 1. The
continuous FLOPs estimator regularizer guides DAIS to search
for the optimized pruned model with FLOPs in range of
[(1− ε) ∗ F, F].
Symmetry regularizer. Residual blocks are widely inte-
grated in recent network designs, which greatly improve the
capability of gradient propagation across multiple layers. The
residual block is realized by adding a shortcut connection
of non-parameterized identity mapping from input to output
when the numbers of input and output channels are equal.
However, the existing channel pruning methods [50], [7]
cannot guarantee the equality between the numbers of input
and output channels of a residual block, and they either
drop the shortcut [50] or replace the identity function with
a 1 × 1 convolutional layer [7] for dimension matching.
These replacements might increase the difficulty of gradient
propagation across multiple layers and lead to the problem of
vanishing and exploding gradients [54].

Therefore, we propose a symmetry regularizer for channel
pruning on networks with residual connections, which keeps
the consistency between the input and output channels within
a residual block and reserves the identity mapping. The
symmetry regularizer is defined as:

Rsym =
∑
(l,l′)

∣∣∣∣(cl∑
i=1

HT (α
i
l)
)
−
(cl′∑
i=1

HT (α
i
l′)
)∣∣∣∣, (11)

where (l, l′) denotes a residual block with cl input channels
and cl′ output channels. We also explore the importance of the
identity mapping on deep residual networks in Sec. IV-C.

IV. EXPERIMENTS

A. Experiment Setup

Datasets. We evaluated the effectiveness of DAIS on CIFAR-
10 [17], CIFAR-100 [17], and ImageNet ILSVRC-12 [18].
CIFAR-10 and CIFAR-100 both consist of 50K training im-
ages and 10K test images, and they have 10 and 100 classes,
respectively. ImageNet ILSVRC-12 contains 1280K training
images and 50K test images for 1000 classes.
Channel indicator setting. We implemented the annealing-
relaxed channel indicator to each convolutional layer except
for the first layer, conforming to baselines [35]. The imple-
mentation details of the annealing-relaxed indicator are as
follows. On ResNet, there are two kinds of residual blocks:
normal block and reduction block. Most residual blocks in
the network are normal blocks, and the reduction block is
employed to down-sample the spatial size of the feature map
while doubling the number of the output channel. We adopted
the same implementation for these two types of blocks: the

Normal Block Reduction Block

ResNet MobileNet

Channel Indicator

1×1 conv

3×3 conv

Block
b+1

Block
b

Shared auxiliary
parameters

3×3 DWconv

Fig. 2. The channel indicator setup for ResNet and MobileNet networks.

first annealing channel indicator is used right behind the first
3 × 3 convolution, and the second indicator is implemented
after the addition of two paths. On MobileNet, we built up the
annealing-relaxed channel indicator for each 1×1 convolution
and 3× 3 depth-wise convolution (DWconv). As the DWconv
requires the same number of input and output channels, the
annealing-relaxed indicator is shared before and after the
DWconv. The implementation details are shown in Fig. 2.
Differentiable annealing indicator search. In the search
process, we used RFLOPs and Rsym as the default regu-
larizers. For the update of the auxiliary parameters, DAIS
adopted Adam [59] as the optimizer with the momentum of
(0.5, 0.999), where the learning rate and weight decay rate
were both set to 1E-3. For the update of the network parame-
ters, DAIS leveraged the SGD optimizer with 0.9 momentum,
and the learning rate was initialized with 0.1 and reduced
by the cosine scheduler [60]. On the CIFAR experiments, we
implemented the differentiable annealing indicator search for
100 epochs. The original training images were divided into
the training set and validation set with the 7 : 3 ratio. On the
ImageNet experiments, we searched 7508 iterations with batch
size 256.

For all experiments, the auxiliary parameters were ini-
tialized with a normal distribution α ∈ N (1, 0.12). The
initialization temperature was T0 = 1, and the temperature
annealing scheme was ψ(n) = 49× n/Nmax + 1, where Nmax
denotes the total number of training epochs. The batch size
of the search procedure was 256. The weights of RFLOPs
was 2 and ε = 0.05. The weights of Rsym was 0.01 for
ResNet-56/110 and 0 otherwise. The weight decay of the SGD
optimizer on the CIFAR and ImageNet experiments were 5E-5
and 1E-5 respectively.
Fine-tuning. For all experiments, we used SGD as the
optimizer with a momentum of 0.9. The batch size was 256,
and the learning rate was initialized with 0.1. For the CIFAR
experiments, we trained each model for 300 epochs. The
learning rate was warmed up with 5 epochs and then reduced
with the cosine scheduler. We adopted random crop, random
horizontal flipping and random erasing [61] as default augmen-
tations. We trained all models with a single NVIDIA P40 GPU
in the CIFAR experiments. For the ImageNet experiments, we
trained 120 epochs for each model, and the learning rate was
decayed by 10 every 30 epochs. We used the random resized
crop and random horizontal flipping for data augmentation.
Besides, conforming to the methods [11], [7] that use original
models to implicitly-or-explicitly transfer the knowledge to

6

TABLE I
COMPARISON ON CHANNEL PRUNING APPROACHES USING RESNET ON THE CIFAR-10 AND CIFAR-100 DATASETS. “PRUNING ACC” = ACCURACY OF

THE PRUNED MODEL, “ACC DROP” = ACCURACY DROP, “FLOPS” = FLOPS (PRUNING RATIO). WE DISPLAY TWO PRUNING RESULT OF DAIS FOR EACH
MODEL, WHERE THE FIRST RESULT IS FOR BEST ACCURACY AND THE LATTER ONE IS FOR BEST PRUNING RATE.

Depth Method CIFAR-10 CIFAR-100
Pruning Acc Acc Drop FLOPs Pruning Acc Acc Drop FLOPs

32

LCCL [35] 90.74% 1.59% 4.76E7 (31.2%) 67.39% 2.69% 4.32E7 (37.5%)
SFP [28] 92.08% 0.55% 4.03E7 (41.5%) 68.37% 1.40% 4.03E7 (41.5%)

FPGM [11] 92.31% 0.32% 4.03E7 (41.5%) 68.52% 1.25% 4.03E7 (41.5%)
CNN-FCF [29] 92.18% 1.07% 3.99E7 (42.2%) - - -

TAS [7] 93.16% 0.73% 3.50E7 (49.4%) 72.41% -1.80% 4.25E7 (38.5%)
LFPC [30] 92.12% 0.51% 3.27E7 (49.4%) - - -

DAIS 93.49% 0.57% 3.19E7 (53.9%) 72.20% -1.04% 3.94E7 (42.9%)

56

LCCL [35] 92.81% 1.54% 7.81E7 (37.9%) 68.37% 2.96% 7.63E7 (39.3%)
AMC [13] 91.90% 0.90% 6.29E7 (50.0%) - - -
SFP [28] 93.35% 0.56% 5.94E7 (52.6%) 68.79% 2.61% 5.94E7 (52.6%)

FPGM [11] 93.49% 0.42% 5.94E7 (52.6%) 69.66% 1.75% 5.94E7 (52.6%)
CNN-FCF [29] 93.38% -0.24% 7.20E7 (42.8%) - - -

TAS [7] 93.69% 0.77% 5.95E7 (52.7%) 72.25% 0.93% 6.12E7 (51.3%)
GBN [16] 93.07% 0.03% 3.72E7 (70.3%) - - -
GAL [37] 93.38% 0.12% 7.83E7 (37.6%) - - -
LFPC [30] 93.24% 0.35% 5.91E7 (52.9%) 70.83% 0.58% 6.08E7 (51.6%)
HRank [31] 93.17% 0.35% 6.27E7 (50.0%) - - -

ABCPruner [32] 93.23% 0.03% 5.84E7 (54.1%) - - -
SCP [33] 93.23% 0.46% 6.10E7 (51.5%) - - -

DAIS 93.53% 1.00% 3.64E7 (70.9%) 72.57% 0.81% 5.84E7 (53.6%)

110

LCCL [35] 93.44% 0.19% 1.68E8 (34.2%) 70.78% 2.01% 1.73E8 (31.3%)
SFP [28] 92.97% 0.70% 1.21E8 (52.3%) 71.28% 2.86% 1.21E8 (52.3%)

FPGM [11] 93.85% -0.17% 1.21E8 (52.3%) 72.55% 1.59% 1.21E8 (52.3%)
CNN-FCF [29] 93.67% -0.09% 1.44E8 (43.1%) - - -

TAS [7] 94.33% 0.64% 1.19E8 (53.0%) 73.16% 1.90% 1.20E8 (52.6%)
GAL [37] 92.74% 0.76% 1.30E8 (48.5%) - - -
LFPC [30] 93.07% 0.61% 1.01E8 (60.0%) - - -
HRank [31] 93.36% 0.87% 1.06E8 (58.2%) - - -

DAIS 95.02% -0.60% 1.01E8 (60.0%) 74.69% -0.65% 1.14E8 (56.7%)

TABLE II
RESULTS OF LIGHT-WEIGHTED NETWORKS ON CIFAR-10. “M.NET” AND

“R-20” DENOTE THE RESNET-20 AND MOBILENET RESPECTIVELY.

Pruning Acc Acc Drop FLOPs

M.Net
M.Net-0.75 91.65% 1.22% 1.95E8 (43.3%)
CGNet [55] 87.56% 0.29% 1.19E8 (65.3%)

DAIS 91.87% 1.00% 1.15E8 (66.6%)

R-20

LCCL [35] 91.68% 1.06% 2.61E7 (36.0%)
SFP [28] 90.83% 1.37% 2.43E7 (42.2%)

FPGM [11] 91.09% 1.11% 2.43E7 (42.2%)
CNN-FCF [29] 91.13% 1.07% 2.38E7 (41.6%)

TAS [7] 92.88% 0.00% 2.24E7 (45.0%)

DAIS 92.89% -0.36% 1.91E7 (51.1%)

pruned models, we used the feature distillation method [62]
on the ImageNet experiments. We leveraged 4 NVIDIA P40
GPUs in the ImageNet experiments.

B. Comparisons with State-of-the-Art Methods

Results on CIFAR. We first evaluated the performance of
DAIS on ResNet-32/56/110 with CIFAR-10 and CIFAR-100.

As illustrated in TABLE I, DAIS consistently outperformed
various state-of-the-art pruning approaches on CIFAR. For
ResNet-32 on CIFAR-100, DAIS reduced 42.9% FLOPs and
increased accuracy by 1.04% compared with the original
network. Besides, the differentiable annealing indicator search
was efficient: DAIS only spent 95 minutes on the search
procedure, while TAS finished the search in 228 minutes.
For ResNet-56 on CIFAR-10 and CIFAR-100, DAIS obtained
fewer FLOPs than other pruning methods. Furthermore, since
DAIS was a one-shot solution, it required less training effort
than the iterative pruning approaches like GBN [16]. In the
case of deeper architecture ResNet-110, on both CIFAR-10
and CIFAR-100, our DAIS obtained the best FLOPs reduction
ratio, accuracy drop, and accuracy, indicating that the proposed
symmetry regularizer perfectly improved the capability of
gradient propagation in the deeper layers.

We also evaluated the performance of DAIS on light-
weighted networks like MobileNet [63] and ResNet-20. For
MobileNet, DAIS got better accuracy with fewer FLOPs
compared with MobileNet-0.75 and CGNet [55], as shown in
TABLE II. For ResNet-20 on CIFAR-10, DAIS reduced 51.1%
FLOPs and increased accuracy by 0.36% compared with the

7

TABLE III
COMPARISON WITH BASELINE METHODS ON IMAGENET WITH RESNET-18/34/50. “LATENCY” = LATENCY (SPEEDUP).

Depth Method Top-1 Top-5 FLOPs LatencyPrune Acc Acc Drop Prune Acc Acc Drop

18

Uniform 66.12% 3.64% 87.25% 1.83% 1.06E9 (41.8%) 0.21s (1.52×)
LCCL [35] 66.33% 3.65% 86.94% 2.29% 1.19E9 (34.6%) -
SFP [28] 67.10% 3.18% 87.78% 1.85% 1.06E9 (41.8%) -

ABCPruner [32] 67.28% 2.38% - - 1.01E9 (44.9%) -

DAIS 67.56% 2.20% 87.90% 1.18% 1.03E9 (43.3%) 0.19s (1.68×)

34

Uniform 71.38% 1.93% 90.52% 0.90% 2.13E9 (41.9%) 0.33s (1.83×)
PFEC [27] 72.17% 1.06% - - 2.78E9 (24.2%) -
SFP [28] 71.83% 2.09% 90.33% 1.29% 2.16E9 (41.1%) -

FPGM [11] 72.54% 1.38% 91.13% 0.49% 2.16E9 (41.1%) -
ABCPruner [32] 70.98% 2.30% - - 2.17E9 (41.0%) -

DAIS 72.77% 0.54% 90.99% 0.43% 2.13E9 (41.9%) 0.31s (1.93×)

50

SFP [28] 62.14% 14.0% 84.60% 8.27% 2.38E9 (41.8%) -
SSS [36] 71.82% 4.30% 90.79% 2.07% 2.33E9 (43.0%) -

FPGM [11] 74.13% 2.02% 91.94% 0.93% 1.90E9 (53.5%) -
ABCPruner [32] 73.86% 2.15% 91.69% 1.27% 1.89E9 (54.1%) -

SCP [33] 74.20% 1.69% 92.00% 0.98% 1.87E9 (54.3%) -

DAIS 74.45% 1.70% 92.21% 0.66% 1.83E9 (55.3%) 0.31s (1.77×)

TABLE IV
COMPARISON WITH BASELINE METHODS ON IMAGENET WITH VGG-16.

THE PRUNING RESULTS OF 2×, 4× SPEEDUP RATIO ARE REPORTED.

Method
2× 4×

Top-1
Acc Drop

Top-5
Acc Drop

Top-1
Acc Drop

Top-5
Acc Drop

Jaderberg et al. [56] - - - 9.70%
Zhang et al. [57] - - - 3.84%

Li et al. [27] - - - 8.60%
SSS [36] - - 3.93% 2.64%

CC-GAP [58] 2.78% 1.68% - -

DAIS 1.64% 0.79% 2.91% 1.48%

original network. It also outperformed state-of-the-art methods
like SFP [28] and FPGM [11], which revealed that the simple
intuitive pruning rates design (evenly pruning for each layer)
could not surpass the automatic search-based pruning approach
in DAIS.
Results on ImageNet. To evaluate the effectiveness of
DAIS, extensive experiments were performed on ResNet-
18/34/50 [54] and VGG-16 with the ImageNet dataset. TA-
BLE III reports the accuracy, pruning rate and latency of
the pruned models on ResNet-18/34/50. The latency is cal-
culated by the implementation on Galaxy S9 with PyTorch
Mobile1. For ResNet-18, the derived model got 1.68× speedup
on Galaxy S9, and it exceeded the uniform pruning model
by 1.44% accuracy with fewer FLOPs. For ResNet-34, the
searched model by DAIS got minimized accuracy drop and
maximized pruning ratio compared with baseline methods.
On deep models like ResNet-50, DAIS still outperformed
other methods. The pruning results of VGG-16 are shown in
TABLE IV. DAIS got less Top-1/5 accuracy drop compared
with other methods on 2×, 4× speedup ratio of FLOPs. These

1https://pytorch.org/mobile/home/

A
cc
ur
ac
y
(%
)

FLOPs
1.2E8 1.4E8 1.6E8

75

85

95

Random
Constrained

Fig. 3. Statistics of 100 network instances generated from the “Random” and
“Constrained” design spaces.

experimental results verified the generality of DAIS on large-
scale datasets.

C. Importance of Identity Mapping on Deep Residual Network
To verify the importance of identity mapping in the shortcut

connection, we built up two network design spaces [64],
where multiple network instances were randomly generated
with 110 layers, simulating channel pruning results of ResNet-
110. All these network instances were trained 300 epochs
on the CIFAR-10 dataset. Specifically, the “Random” design
space had no constraint on the number of output channels,
while in “Constrained” design space, every residual block
was restricted to have the same number of input and output
channels. The details of the two network design spaces are as
follows:
• “Random”. For each pruned model instance, we ran-

domly sampled the number of output channels cRandom
l =

cl ∗ U(0.5, 1), where cl denotes the number of output
channels in the l-th layer of the original ResNet-110, and
U(0.5, 1) denotes a uniform sampling function ranging
from 0.5 to 1.

https://pytorch.org/mobile/home/

8

TABLE V
RESULTS OF ABLATION STUDY WITH RESNET-110 ON CIFAR-10.

“FLOPS” = FLOPS (PRUNING RATIO).

Pruning Acc Acc Drop FLOPs

Slimming 84.94% 9.48% 1.15E8 (54.46%)
Random 86.56% 7.86% 1.46E8 (42.15%)

Constrained 94.18% 0.24% 1.51E8 (40.17%)
DAIS 95.02% -0.60% 1.01E8 (60.00%)

w/o Rsym 88.97% 5.45% 1.20E8 (52.62%)
w/o RFLOPs 89.15% 5.27% 1.45E8 (42.92%)

DAIS 95.02% -0.60% 1.01E8 (60.00%)

w/o annealing 93.57% 0.85% 1.54E8 (39.17%)
DAIS 95.02% -0.60% 1.01E8 (60.00%)

w/o bi-level 94.73% -0.31% 1.04E8 (59.07%)
DAIS 95.02% -0.60% 1.01E8 (60.00%)

• “Constrained”. For the model instances in the “Con-
strained” design space, we hope to reserve most of the
identity functions in the shortcut path of the residual
block, which requires the same number of input and
output channels in each residual block. Therefore, we
designed the sampling procedure as follows. For all
residual blocks in the first stage (output feature map size:
32×32), we set the output channels to be 16∗U(0.5, 1).
For all residual blocks in the second stage (output feature
map size: 16 × 16), we set the output channels to be
32 ∗ U(0.5, 1). For all residual blocks in the third stage
(output feature map size: 8 × 8), we set the output
channels to be 64 ∗ U(0.5, 1). The rest convolutional
layers were randomly sampled in the same pattern as
“Random”: cConstrained

l = cl ∗ U(0.5, 1).
As shown in Fig. 3, With similar FLOPs F ∈

[1.1E8, 1.5E8], the model instances generated from the “Con-
strained” design space obtained a consistent performance im-
provement (in terms of accuracy and pruning ratio) compared
with the “Random” design space, indicating the importance
of consistency between the input and output channels within
a residual block.

D. Ablation Study

Comparison with other search methods. To verify the
effectiveness of the search procedure of DAIS, we compared
the differentiable search with three other search methods.
“Slimming” denoted the method [6] in which the channel
indicator was represented by the weights of BN layers, and
the channels with small BN weights would be filtered out.
“Random” and “Constrained” are the methods mentioned in
Sec. IV-C, where 50 model instances were randomly generated
by each method and the instances with the best accuracy were
collected in TABLE V. DAIS outperformed these three meth-
ods on both the accuracy and the pruning rate, verifying the
effectiveness of the differentiable annealing indicator search.
Effectiveness of RFLOPs and Rsym. We conducted additional
experiments to verify the advantages of RFLOPs and Rsym. In
TABLE V, “w/oRFLOPs” denotes a model variant that replaced
RFLOPs by Rlasso. The replacement led to a huge accuracy drop

Layers

N
um
be
ro
fc
ha
nn
el
s DAIS

w/o 𝑅"#$

Fig. 4. The pruned model for ResNet-110 on CIFAR-10.

with less pruning rate, which indicated the effectiveness of
RFLOPs. The second variant “w/oRsym” removed the symmetry
regularizer from DAIS and suffered a 6.05% accuracy reduc-
tion. The comparison revealed the importance of the symmetry
regularizer on the ultra-deep residual networks.

Furthermore, we visualized the pruning result of DAIS and
“w/o Rsym” in Fig. 4. Compared to the pruned model derived
from “w/o Rsym”, in each residual block, the pruned model
derived from DAIS was intended to prune more channels in
the first 3 × 3 convolution, and reserved most channels in
the second 3 × 3 convolution. Therefore, the pruned model
could reserve most identity functions in the shortcut path,
which improved the capability of gradient propagation across
multiple layers.
Effectiveness of the annealing-relaxed function. With
the help of the annealing-relaxed function, the channel in-
dicators converge to the binarization automatically with no
hand-crafted threshold. In this experiment, we explored the
influences of removing the annealing-relaxed function. We
designed a variant “w/o annealing” which kept the channel
indicator in Eq. (6) fixed without any temperature annealing.
Without temperature annealing, the Ĩil could not converge
to the binarization automatically, and therefore we manually
filtered out the channels with Ĩil < 0.55. Results showed
that DAIS performed better in terms of both accuracy and
pruning ratios, verifying the necessity of the annealing-relaxed
function.
Effectiveness of the bi-level optimization. We implemented
the bi-level optimization on the differentiable annealing in-
dicator search, which updated the model parameters on the
training set and updated the channel indicator on the validation
set. To verify the necessity of the bi-level optimization, we
designed the variant “w/o bi-level” in TABLE V, which jointly
optimized the model parameters and channel indicators on the
training set. The pruned model searched by “w/o bi-level”
might overfit the training data, and results showed that it
performed worse on both accuracy and pruning ratio than
DAIS, verifying the effectiveness of the bi-level optimization.

E. Case Study

Recoverability. According to Guo et al. [20], over-pruning
or incorrect pruning might happen in the pruning process and
lead to degraded performance, and therefore the recoverability

9

TABLE VI
THE INDICATOR SEARCH PROCEDURE ON RESNET-20 ON CIFAR-10 DATASET. THE NUMBER OF OUTPUT CHANNELS WITH Ĩil > 0.5 ARE COLLECTED.

SOME CHANNELS WILL BE FIRSTLY PRUNED AND THEN RECOVERED IN THE SEARCH PROCEDURE.

Epochs Number of Output Channels with Ĩil > 0.5 (From Layer 1 to Layer 19).

0 16 16 16 16 16 16 16 32 32 32 32 32 32 64 64 64 64 64 64
20 16 3 15 2 16 0 16 26 32 13 32 12 32 61 64 61 62 46 64
40 16 3 15 4 16 2 15 26 30 17 30 14 32 53 64 54 60 42 58
60 16 3 14 4 16 5 16 25 30 17 29 14 31 52 64 51 57 39 57
80 16 4 14 5 16 6 15 24 31 17 29 16 31 52 63 48 56 37 57

100 16 7 14 4 16 7 15 24 30 17 29 13 31 52 63 47 56 34 57

TABLE VII
COMPARISONS ON TRAINING SCHEMES AND TEMPERATURE DECAY
SCHEMES WITH RESNET-110 ON CIFAR-10. “FLOPS” = FLOPS

(PRUNING RATIO).

Pruning Acc Acc Drop FLOPs

DAIS.e50 94.40% 0.02% 1.02E8 (59.69%)

DAIS.cosine 95.00% -0.58% 1.04E8 (59.06%)
DAIS.smallT 94.61% -0.19% 1.05E8 (58.70%)

DAIS 95.02% -0.60% 1.01E8 (60.00%)

is necessary for a good pruning algorithm. Therefore, we visu-
alized the differentiable annealing indicator search procedure
on ResNet-20 in TABLE VI. For every 20 epochs, we collected
the number of output channels with Ĩil > 0.5. We observed that
the number of output channels did not decrease monotonically,
and some channels were recovered as the training proceeded.
For example, in the second convolutional layer, the number
of output channels was decreased to 3, and then recovered
to 7. The recoverability revealed that DAIS could rectify the
mistakes of over-pruning or incorrect pruning, which might
also explain the effectiveness of DAIS.
Robustness of DAIS. We first explored the impact of a
shorter training scheme. The “DAIS.e50” trained 50 epochs for
the differentiable annealing indicator search procedure and got
similar performance with the original DAIS, indicating the effi-
ciency of DAIS. The second experiment explored the impact of
different temperature decay schemes. “DAIS.cosine” leveraged
a consine decay scheme ψ(n) = 49×(1−cos(π2n/Nmax))+1,
while “DAIS.smallT” adopted a smaller termination tempera-
ture by ψ(n) = 99×n/Nmax+1. All the corresponding results
were shown in TABLE VII. We also explored the effect of
the α initialization in TABLE VIII. All variants got similar
performance, which verified the robustness of DAIS to the
normal temperature decay schemes and α initialization.
One-shot capability of DAIS. We conducted an iterative
pruning scheme on MobileNet, denoted by “Iterative-i” in
Table IX. Similar to most iterative pruning schemes [24],
[65], the pruning rate was set to be large (45%) in the
first round and gradually increased 10% in latter rounds.
The experimental result showed that the original one-shot
DAIS obtained slightly better performance than “Iterative-3”,
indicating the differentiable search procedure could effectively
search the pruned models in a one-shot manner.

TABLE VIII
COMPARISONS ON DIFFERENT α INITIALIZATION WITH RESNET-56 ON

CIFAR-10. “FLOPS” = FLOPS (PRUNING RATIO).

Pruning Acc Acc Drop FLOPs

DAIS.N (0, 0.12) 93.11% 1.42% 5.41E7 (57.01%)
DAIS.N (0, 0.052) 93.36% 1.17% 5.34E7 (57.54%)
DAIS.N (1, 0.052) 92.97% 1.56% 5.55E7 (55.89%)

DAIS 93.71% 0.82% 5.61E7 (55.40%)

TABLE IX
RESULTS OF ITERATIVE PRUNING OF DAIS ON CIFAR-10. “ITERATIVE-i”

DENOTES THE i-TH ROUND PRUNING RESULT BY DAIS.

Pruning Acc Acc Drop FLOPs

MobileNet 92.87% − 3.44E8

Iterative-1 91.66% 1.21% 1.88E8 (45.34%)
Iterative-2 91.76% 1.11% 1.50E8 (56.40%)
Iterative-3 91.77% 1.10% 1.18E8 (65.70%)

DAIS 91.87% 1.00% 1.15E8 (66.60%)

Trade-off between accuracy and FLOPs. DAIS can
perform fine-grained search on the pruned model with a
target FLOPs F by RFLOPs, which controls the trade-off
between FLOPs and accuracy. We derived models with dif-
ferent pruning rates on ResNet-56 formatted by (pruning
rate, accuracy): (27.43%,94.91%), (48.85%,94.24%), (55.36%,
93.71%), (70.92%, 93.53%).

F. Transfer Learning

We have demonstrated the effectiveness of DAIS in classi-
fication tasks, and we explored its performance on some other
computer vision tasks like semantic segmentation and scene
text recognition.
Semantic segmentation. We selected DeepLabV3+ [66]
with ResNet-34 as the baseline model and performed ex-
periments on PASCAL VOC 2012 [67]. As suggested by
Liu et al. [12], we first pruned the ResNet-34 backbone
with DAIS on ImageNet, and then finetuned a DeepLabV3+
with the pruned ResNet-34 as its backbone on PASCAL
VOC 2012. In the finetuning process on PASCAL VOC
2012 dataset, we followed the same training strategies as the
original DeepLabV3+ paper. All models were trained for 50
epochs with the training set of PASCAL VOC 2012 and an

10

TABLE X
SEMANTIC SEGMENTATION RESULTS BASED ON DEEPLABV3+ ON

PASCAL VOC 2012.

PA MPA MIoU FWIoU FLOPs

DeepLabV3+ 92.87% 81.71% 72.52% 87.16% 5.67E10

Uniform 91.39% 73.63% 68.42% 84.22% 4.94E10 (12.78%)
DAIS 92.51% 79.23% 71.29% 86.48% 4.80E10 (15.39%)

TABLE XI
SCENE TEXT RECOGNITION ACCURACIES BASED ON STN ACROSS 7 REAL

WORLD DATASETS.

IIIT5k SVT IC03 IC13 IC15 SVTP CUTE

STN 92.9% 88.4% 91.9% 89.5% 78.3% 78.9% 78.5%

Uniform 93.4% 88.9% 91.7% 89.3% 79.0% 78.6% 76.4%
DAIS 93.2% 89.8% 93.2% 89.3% 78.8% 78.8% 79.2%

augmentation dataset [68]. The performance was measured in
terms of Pixel Accuracy (PA), Mean Pixel Accuracy (MPA),
Mean Interaction over Union (MIoU) and Frequency Weighted
Interaction over Union (FWIoU). As illustrated in TABLE X,
DAIS reduced 15.39% FLOPs on DeepLabV3+ with small
pixel accuracy drop (92.87% → 92.51%), indicating that
the pruned model derived by DAIS could be transferred into
another task without major performance changes.
Scene text recognition. We also explored the performance of
DAIS on scene text recognition tasks. We adopted STN [69],
[70] with ResNet-34 as the baseline model. Similar to the
segmentation experiments in Sec. 4.5, we replaced the original
ResNet-34 with the pruned model searched by DAIS on
ImageNet [18]. All models were trained on SynthText [71]
and Synth90K [72] and evaluated on 7 real-world datasets:
IIIT5k [73], SVT [74], IC03 [75], IC13 [76], IC15 [77],
SVTP [78] and CUTE [79]. We adopted the same training
hyperparameters as Aster [80]. DAIS had the pruning rate
of 17.06% and the uniform pruning method prunes 16.98%
FLOPs. As illustrated in TABLE XI, DAIS outperformed the
uniform pruning on 4 datasets with less FLOPs. These experi-
ments indicated the generality of our method on several vision
tasks including image classification, semantic segmentation
and scene text recognition.

V. DISCUSSIONS

DAIS focuses on the automatic channel pruning, which
also implicitly decreases the latency, memory footprint, and
energy consumption of the original models. Specifically, DAIS
reduces the FLOPs, model parameters, and the memory foot-
print. As shown in TABLE III, the pruned models also have
lower latency on mobile devices. In terms of energy con-
sumption, DAIS has a shorter search time compared to other
methods [13], [7], which implies lower CO2 marginal emission
costs and cloud computing costs according to APQ [81].
Besides, DAIS has lower calculation cost and calculation
delay as shown in TABLE III, which also decrease the CO2
emissions following [82].

VI. CONCLUSION

In this paper, we propose Differentiable Annealing Indicator
Search (DAIS), which leverages the channel indicator to repre-
sent the sparsity and searches for an appropriate pruned model
with the computation cost constraints. Specifically, DAIS ap-
proximates the binarized channel indicator with the annealing-
relaxed indicator and then jointly optimizes the indicator and
model parameters with gradient-based bi-level optimization.
The annealing-relaxed indicator will automatically converge to
the binarized state as the optimization proceeds and tempera-
ture anneals. Furthermore, DAIS proposes a continuous FLOPs
estimator regularizer to precisely constrain model sizes and
a symmetry regularizer to optimize the gradient propagation
on very deep residual networks. Experimental results show
that DAIS outperforms state-of-the-art methods on CIFAR-10,
CIFAR-100, and ImageNet on different architectures, verifying
the effectiveness of the differentiable search.

ACKNOWLEDGMENT

This work is partially supported by National Key R&D
Program of China (2020YFB2103801), Beijing Academy of
Artificial Intelligence (BAAI), NSFC (National Natural Sci-
ence Foundation of China) 62032003, and BJNSF (Beijing
Municipal Natural Science Foundation) L192004.

REFERENCES

[1] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in
Advances in Neural Information Processing Systems, 2014, pp. 2672–
2680.

[2] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf, “Deepface: Closing
the gap to human-level performance in face verification,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
2014, pp. 1701–1708.

[3] A. Newell, K. Yang, and J. Deng, “Stacked hourglass networks for
human pose estimation,” in ECCV. Springer, 2016, pp. 483–499.

[4] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” in
Proceedings of the IEEE International Conference on Computer Vision,
2017, pp. 2961–2969.

[5] T. Liang, J. Glossner, L. Wang, S. Shi, and X. Zhang, “Pruning
and quantization for deep neural network acceleration: A survey,”
Neurocomputing, vol. 461, pp. 370–403, 2021. [Online]. Available:
https://doi.org/10.1016/j.neucom.2021.07.045

[6] Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, and C. Zhang, “Learning effi-
cient convolutional networks through network slimming,” in Proceedings
of the IEEE International Conference on Computer Vision, 2017, pp.
2736–2744.

[7] X. Dong and Y. Yang, “Network pruning via transformable architecture
search,” in Advances in Neural Information Processing Systems, 2019,
pp. 760–771.

[8] T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Yan, H. Shen, M. Cowan,
L. Wang, Y. Hu, L. Ceze et al., “TVM: An automated end-to-end
optimizing compiler for deep learning,” in OSDI, 2018.

[9] “Tensorflow lite,” https://www.tensorflow.org/lite, 2017.
[10] X. Jiang, H. Wang, Y. Chen, Z. Wu, L. Wang, B. Zou, Y. Yang, Z. Cui,

Y. Cai, T. Yu, C. Lv, and Z. Wu, “Mnn: A universal and efficient
inference engine,” https://github.com/alibaba/MNN, 2020.

[11] Y. He, P. Liu, Z. Wang, Z. Hu, and Y. Yang, “Filter pruning via
geometric median for deep convolutional neural networks acceleration,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2019, pp. 4340–4349.

[12] Z. Liu, M. Sun, T. Zhou, G. Huang, and T. Darrell, “Rethinking the
value of network pruning,” in ICLR, 2018.

[13] Y. He, J. Lin, Z. Liu, H. Wang, L.-J. Li, and S. Han, “Amc: Automl
for model compression and acceleration on mobile devices,” in ECCV.
Springer, 2018, pp. 815–832.

https://doi.org/10.1016/j.neucom.2021.07.045
https://www.tensorflow.org/lite
https://github.com/alibaba/MNN

11

[14] H. Liu, K. Simonyan, and Y. Yang, “Darts: Differentiable architecture
search,” in ICLR, 2019.

[15] J.-H. Luo, J. Wu, and W. Lin, “Thinet: A filter level pruning method
for deep neural network compression,” in Proceedings of the IEEE
International Conference on Computer Vision, 2017.

[16] Z. You, K. Yan, J. Ye, M. Ma, and P. Wang, “Gate decorator: Global filter
pruning method for accelerating deep convolutional neural networks,” in
Advances in Neural Information Processing Systems, 2019, pp. 2130–
2141.

[17] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features
from tiny images,” Master’s thesis, Department of Computer Science,
University of Toronto, 2009.

[18] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. IEEE, 2009,
pp. 248–255.

[19] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and
connections for efficient neural network,” in NIPS, 2015, pp. 1135–1143.

[20] Y. Guo, A. Yao, and Y. Chen, “Dynamic network surgery for efficient
dnns,” in Advances in Neural Information Processing Systems, 2016.

[21] Y. He, X. Zhang, and J. Sun, “Channel pruning for accelerating
very deep neural networks,” in Proceedings of the IEEE International
Conference on Computer Vision, 2017, pp. 1398–1406.

[22] R. Yu, A. Li, C.-F. Chen, J.-H. Lai, V. I. Morariu, X. Han, M. Gao, C.-Y.
Lin, and L. S. Davis, “Nisp: Pruning networks using neuron importance
score propagation,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2018, pp. 9194–9203.

[23] Z. Zhuang, M. Tan, B. Zhuang, J. Liu, Y. Guo, Q. Wu, J. Huang,
and J. Zhu, “Discrimination-aware channel pruning for deep neural
networks,” in Advances in Neural Information Processing Systems, 2018,
pp. 875–886.

[24] N. Liu, X. Ma, Z. Xu, Y. Wang, J. Tang, and J. Ye, “Autocompress: An
automatic dnn structured pruning framework for ultra-high compression
rates,” in Proceedings of the AAAI Conference on Artificial Intelligence,
2020, pp. 4876–4883.

[25] L. S. Blackford, A. Petitet, R. Pozo, K. Remington, R. C. Whaley,
J. Demmel, J. Dongarra, I. Duff, S. Hammarling, G. Henry et al.,
“An updated set of basic linear algebra subprograms (blas),” ACM
Transactions on Mathematical Software, vol. 28, no. 2, pp. 135–151,
2002.

[26] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, “Learning structured
sparsity in deep neural networks,” in Advances in Neural Information
Processing Systems, 2016.

[27] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, “Pruning
filters for efficient convnets,” ICLR, 2017.

[28] Y. He, G. Kang, X. Dong, Y. Fu, and Y. Yang, “Soft filter pruning
for accelerating deep convolutional neural networks,” in Proceedings of
the Twenty-Seventh International Joint Conference on Artificial Intelli-
gence, IJCAI 2018, July 13-19, 2018, Stockholm, Sweden, J. Lang, Ed.
ijcai.org, 2018, pp. 2234–2240.

[29] T. Li, B. Wu, Y. Yang, Y. Fan, Y. Zhang, and W. Liu, “Compressing
convolutional neural networks via factorized convolutional filters,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2019, pp. 3977–3986.

[30] Y. He, Y. Ding, P. Liu, L. Zhu, H. Zhang, and Y. Yang, “Learning filter
pruning criteria for deep convolutional neural networks acceleration,”
in IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), June 2020.

[31] M. Lin, R. Ji, Y. Wang, Y. Zhang, B. Zhang, Y. Tian, and L. Shao,
“Hrank: Filter pruning using high-rank feature map,” in IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), June
2020.

[32] M. Lin, R. Ji, Y. Zhang, B. Zhang, Y. Wu, and Y. Tian, “Channel
pruning via automatic structure search,” in Proceedings of the Twenty-
Ninth International Joint Conference on Artificial Intelligence, IJCAI
2020, C. Bessiere, Ed., 2020, pp. 673–679.

[33] M. Kang and B. Han, “Operation-aware soft channel pruning using
differentiable masks,” in Proceedings of Machine Learning and Systems
2020, 2020, pp. 2505–2514.

[34] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in Proceedings of
the 32nd International Conference on Machine Learning, ICML 2015,
Lille, France, 6-11 July 2015, ser. JMLR Workshop and Conference
Proceedings, F. R. Bach and D. M. Blei, Eds., vol. 37. JMLR.org,
2015, pp. 448–456.

[35] X. Dong, J. Huang, Y. Yang, and S. Yan, “More is less: A more
complicated network with less inference complexity,” in Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition,
2017, pp. 5840–5848.

[36] Z. Huang and N. Wang, “Data-driven sparse structure selection for
deep neural networks,” in Proceedings of the European Conference on
Computer Vision (ECCV), 2018.

[37] S. Lin, R. Ji, C. Yan, B. Zhang, L. Cao, Q. Ye, F. Huang, and
D. Doermann, “Towards optimal structured cnn pruning via generative
adversarial learning,” in Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, 2019, pp. 2790–2799.

[38] B. Zoph and Q. V. Le, “Neural architecture search with reinforcement
learning,” in ICLR, 2017.

[39] H. Cai, L. Zhu, and S. Han, “Proxylessnas: Direct neural architecture
search on target task and hardware,” in ICLR, 2019.

[40] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning transferable
architectures for scalable image recognition,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2018, pp.
8697–8710.

[41] B. Baker, O. Gupta, N. Naik, and R. Raskar, “Designing neural network
architectures using reinforcement learning,” in ICLR, 2017.

[42] M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler, A. Howard,
and Q. V. Le, “Mnasnet: Platform-aware neural architecture search for
mobile,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2019, pp. 2820–2828.

[43] E. Real, S. Moore, A. Selle, S. Saxena, Y. L. Suematsu, J. Tan, Q. V.
Le, and A. Kurakin, “Large-scale evolution of image classifiers,” in
International Conference on Machine Learning. JMLR. org, 2017,
pp. 2902–2911.

[44] E. Real, A. Aggarwal, Y. Huang, and Q. V. Le, “Regularized evolution
for image classifier architecture search,” in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 33, 2019, pp. 4780–4789.

[45] Y. Zhou, X. Sun, C. Luo, Z. Zha, and W. Zeng, “Posterior-guided neural
architecture search,” in The Thirty-Fourth AAAI Conference on Artificial
Intelligence. AAAI Press, 2020, pp. 6973–6980.

[46] G. Bender, P.-J. Kindermans, B. Zoph, V. Vasudevan, and Q. Le, “Under-
standing and simplifying one-shot architecture search,” in International
Conference on Machine Learning, 2018, pp. 550–559.

[47] H. Pham, M. Guan, B. Zoph, Q. Le, and J. Dean, “Efficient neural
architecture search via parameters sharing,” in International Conference
on Machine Learning, 2018, pp. 4095–4104.

[48] Y. Chen, T. Yang, X. Zhang, G. Meng, X. Xiao, and J. Sun, “Detnas:
Backbone search for object detection,” in Advances in Neural Informa-
tion Processing Systems, 2019, pp. 6638–6648.

[49] L. Li and A. Talwalkar, “Random search and reproducibility for neural
architecture search,” in Proceedings of the Thirty-Fifth Conference on
Uncertainty in Artificial Intelligence, UAI, 2019.

[50] B. Wu, X. Dai, P. Zhang, Y. Wang, F. Sun, Y. Wu, Y. Tian, P. Vajda,
Y. Jia, and K. Keutzer, “Fbnet: Hardware-aware efficient convnet design
via differentiable neural architecture search,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2019, pp.
10 734–10 742.

[51] S. Xie, H. Zheng, C. Liu, and L. Lin, “Snas: stochastic neural architec-
ture search,” in ICLR, 2019.

[52] X. Chu, T. Zhou, B. Zhang, and J. Li, “Fair DARTS: eliminating
unfair advantages in differentiable architecture search,” in ECCV, ser.
Lecture Notes in Computer Science, A. Vedaldi, H. Bischof, T. Brox,
and J. Frahm, Eds., vol. 12360. Springer, 2020, pp. 465–480.

[53] A. Zela, T. Elsken, T. Saikia, Y. Marrakchi, T. Brox, and F. Hutter,
“Understanding and robustifying differentiable architecture search,” in
ICLR, 2020.

[54] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2016, pp. 770–778.

[55] W. Hua, Y. Zhou, C. M. De Sa, Z. Zhang, and G. E. Suh, “Channel
gating neural networks,” in Advances in Neural Information Processing
Systems, 2019, pp. 1884–1894.

[56] M. Jaderberg, A. Vedaldi, and A. Zisserman, “Speeding up convolutional
neural networks with low rank expansions,” in British Machine Vision
Conference, BMVC 2014, Nottingham, UK, September 1-5, 2014, M. F.
Valstar, A. P. French, and T. P. Pridmore, Eds. BMVA Press, 2014.

[57] X. Zhang, J. Zou, K. He, and J. Sun, “Accelerating very deep convo-
lutional networks for classification and detection,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 38, no. 10, pp. 1943–1955, 2016.

[58] Y. Li, S. Lin, J. Liu, Q. Ye, M. Wang, F. Chao, F. Yang, J. Ma, Q. Tian,
and R. Ji, “Towards compact cnns via collaborative compression,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), June 2021, pp. 6438–6447.

12

[59] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in ICLR, Y. Bengio and Y. LeCun, Eds., 2015.

[60] I. Loshchilov and F. Hutter, “SGDR: stochastic gradient descent with
warm restarts,” in ICLR, 2017.

[61] Z. Zhong, L. Zheng, G. Kang, S. Li, and Y. Yang, “Random erasing
data augmentation,” in AAAI. AAAI Press, 2020, pp. 13 001–13 008.

[62] B. Heo, J. Kim, S. Yun, H. Park, N. Kwak, and J. Y. Choi, “A compre-
hensive overhaul of feature distillation,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV), October 2019.

[63] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient convo-
lutional neural networks for mobile vision applications,” arXiv preprint
arXiv:1704.04861, 2017.

[64] I. Radosavovic, R. P. Kosaraju, R. B. Girshick, K. He, and P. Dollár,
“Designing network design spaces,” in 2020 IEEE/CVF Conference on
Computer Vision and Pattern Recognition. Computer Vision Foundation
/ IEEE, 2020, pp. 10 425–10 433.

[65] M. Zhu and S. Gupta, “To prune, or not to prune: Exploring the efficacy
of pruning for model compression,” in ICLR Workshop, 2018.

[66] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam, “Encoder-
decoder with atrous separable convolution for semantic image segmen-
tation,” in Proceedings of the European conference on computer vision
(ECCV), 2018, pp. 801–818.

[67] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn,
and A. Zisserman, “The PASCAL Visual Object Classes
Challenge 2012 (VOC2012) Results,” http://www.pascal-
network.org/challenges/VOC/voc2012/workshop/index.html.

[68] B. Hariharan, P. Arbeláez, L. Bourdev, S. Maji, and J. Malik, “Semantic
contours from inverse detectors,” in 2011 International Conference on
Computer Vision. IEEE, 2011, pp. 991–998.

[69] M. Jaderberg, K. Simonyan, A. Zisserman et al., “Spatial transformer
networks,” in Advances in neural information processing systems, 2015,
pp. 2017–2025.

[70] S. Long, Y. Guan, B. Wang, K. Bian, and C. Yao, “Rethinking irregular
scene text recognition,” arXiv, pp. arXiv–1908, 2019.

[71] A. Gupta, A. Vedaldi, and A. Zisserman, “Synthetic data for text
localisation in natural images,” in IEEE Conference on Computer Vision
and Pattern Recognition, 2016.

[72] M. Jaderberg, K. Simonyan, A. Vedaldi, and A. Zisserman, “Synthetic
data and artificial neural networks for natural scene text recognition,” in
Workshop on Deep Learning, NIPS, 2014.

[73] A. Mishra, K. Alahari, and C. Jawahar, “Scene text recognition using
higher order language priors,” in BMVC-British Machine Vision Confer-
ence. BMVA, 2012.

[74] K. Wang, B. Babenko, and S. Belongie, “End-to-end scene text recog-
nition,” in 2011 International Conference on Computer Vision. IEEE,
2011, pp. 1457–1464.

[75] S. M. Lucas, A. Panaretos, L. Sosa, A. Tang, S. Wong, and R. Young,
“Icdar 2003 robust reading competitions,” in Seventh International
Conference on Document Analysis and Recognition, 2003. Proceedings.
Citeseer, 2003, pp. 682–687.

[76] D. Karatzas, F. Shafait, S. Uchida, M. Iwamura, L. G. i Bigorda, S. R.
Mestre, J. Mas, D. F. Mota, J. A. Almazan, and L. P. De Las Heras,
“Icdar 2013 robust reading competition,” in 2013 12th International
Conference on Document Analysis and Recognition. IEEE, 2013, pp.
1484–1493.

[77] D. Karatzas, L. Gomez-Bigorda, A. Nicolaou, S. Ghosh, A. Bagdanov,
M. Iwamura, J. Matas, L. Neumann, V. R. Chandrasekhar, S. Lu et al.,
“Icdar 2015 competition on robust reading,” in 2015 13th International
Conference on Document Analysis and Recognition (ICDAR). IEEE,
2015, pp. 1156–1160.

[78] T. Quy Phan, P. Shivakumara, S. Tian, and C. Lim Tan, “Recognizing
text with perspective distortion in natural scenes,” in Proceedings of the
IEEE International Conference on Computer Vision, 2013, pp. 569–576.

[79] A. Risnumawan, P. Shivakumara, C. S. Chan, and C. L. Tan, “A robust
arbitrary text detection system for natural scene images,” Expert Systems
with Applications, vol. 41, no. 18, pp. 8027–8048, 2014.

[80] B. Shi, M. Yang, X. Wang, P. Lyu, C. Yao, and X. Bai, “Aster:
An attentional scene text recognizer with flexible rectification,” IEEE
transactions on pattern analysis and machine intelligence, vol. 41, no. 9,
pp. 2035–2048, 2018.

[81] T. Wang, K. Wang, H. Cai, J. Lin, Z. Liu, H. Wang, Y. Lin, and S. Han,
“APQ: joint search for network architecture, pruning and quantization
policy,” in 2020 IEEE/CVF Conference on Computer Vision and Pattern
Recognition, CVPR 2020, Seattle, WA, USA, June 13-19, 2020. IEEE,
2020, pp. 2075–2084.

[82] A. Fu, M. S. Hosseini, and K. N. Plataniotis, “Reconsidering CO2
emissions from computer vision,” in IEEE Conference on Computer
Vision and Pattern Recognition Workshops, CVPR Workshops 2021,
virtual, June 19-25, 2021. Computer Vision Foundation / IEEE, 2021,
pp. 2311–2317. [Online]. Available: https://openaccess.thecvf.com/
content/CVPR2021W/RCV/html/Fu Reconsidering CO2 Emissions
From Computer Vision CVPRW 2021 paper.html

Yushuo Guan received the Master degree at the
School of Electronics Engineering and Computer
Science in Peking University, China, in 2021. He
received his Bachelor degree from Peking University
in 2018. His research focuses on model compression,
scene text recognition and other machine learning
applications.

Ning Liu received the Ph.D. degree in computer en-
gineering from the Northeastern University, Boston,
MA, USA, in 2019. He is a researcher at Midea
Group. His current research interests lie in deep
learning, deep model compression and acceleration,
deep reinforcement learning, and edge computing.

Pengyu Zhao received his Bachelor and Master
degrees, both at the School of Electronics Engineer-
ing and Computer Science from Peking University,
China, in 2017 and 2020 respectively. His research
focuses on model compression, neural architecture
search and other machine learning applications.

Zhengping Che received the Ph.D. degree in Com-
puter Science from the University of Southern Cal-
ifornia, Los Angeles, CA, USA, in 2018, and the
B.Eng. degree in Computer Science from Tsinghua
University, Beijing, China, in 2013. He is now with
AI Innovation Center, Midea Group. His current
research interests lie in the areas of machine learn-
ing, deep learning, computer vision, and time series
analysis with applications to robot learning.

https://openaccess.thecvf.com/content/CVPR2021W/RCV/html/Fu_Reconsidering_CO2_Emissions_From_Computer_Vision_CVPRW_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021W/RCV/html/Fu_Reconsidering_CO2_Emissions_From_Computer_Vision_CVPRW_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021W/RCV/html/Fu_Reconsidering_CO2_Emissions_From_Computer_Vision_CVPRW_2021_paper.html

13

Kaigui Bian received the PhD degree in computer
engineering from Virginia Tech, Blacksburg, USA
in 2011. He is currently an associate professor in
the Institute of Network Computing and Information
Systems, School of EECS, Peking University. His re-
search interests include mobile computing, cognitive
radio networks, network security, and privacy.

Yanzhi Wang received the B.S. degree in elec-
tronic engineering from Tsinghua University, Bei-
jing, China, in 2009, and the Ph.D. degree in com-
puter engineering from the University of South-
ern California, Los Angeles, CA, USA, in 2014.
His research interests include energy-efficient and
high-performance implementations of deep learning
and artificial intelligence systems, emerging deep
learning algorithms/systems, generative adversarial
networks, and deep reinforcement learning.

Jian Tang received his Ph.D degree in Computer
Science from Arizona State University in 2006. He
is an IEEE Fellow and an ACM Distinguished Mem-
ber. He is with Midea Group. His research interests
lie in the areas of AI, IoT, Wireless Networking,
Mobile Computing and Big Data Systems. Dr. Tang
has published over 160 papers in premier journals
and conferences. He received an NSF CAREER
award in 2009. He also received several best pa-
per awards, including the 2019 William R. Bennett
Prize and the 2019 TCBD (Technical Committee on

Big Data) Best Journal Paper Award from IEEE Communications Society
(ComSoc), the 2016 Best Vehicular Electronics Paper Award from IEEE
Vehicular Technology Society (VTS), and Best Paper Awards from the 2014
IEEE International Conference on Communications (ICC) and the 2015 IEEE
Global Communications Conference (Globecom) respectively. He has served
as an editor for several IEEE journals, including IEEE Transactions on Big
Data, IEEE Transactions on Mobile Computing, etc. In addition, he served as
a TPC co-chair for a few international conferences, including the IEEE/ACM
IWQoS’2019, MobiQuitous’2018, IEEE iThings’2015. etc.; as the TPC vice
chair for the INFOCOM’2019; and as an area TPC chair for INFOCOM 2017-
2018. He is also an IEEE VTS Distinguished Lecturer, and the Chair of the
Communications Switching and Routing Committee of IEEE ComSoc.

	I Introduction
	II Related Works
	III Methodology
	III-A Problem Definition
	III-B Differentiable Indicator Search
	III-C Annealing-Relaxed Channel Indicator
	III-D Structural Restrictions by Regularizers

	IV Experiments
	IV-A Experiment Setup
	IV-B Comparisons with State-of-the-Art Methods
	IV-C Importance of Identity Mapping on Deep Residual Network
	IV-D Ablation Study
	IV-E Case Study
	IV-F Transfer Learning

	V Discussions
	VI Conclusion
	References
	Biographies
	Yushuo Guan
	Ning Liu
	Pengyu Zhao
	Zhengping Che
	Kaigui Bian
	Yanzhi Wang
	Jian Tang

