
1

Catastrophic Interference in Reinforcement
Learning: A Solution Based on Context Division

and Knowledge Distillation
Tiantian Zhang, Xueqian Wang, Member, IEEE,

Bin Liang, Senior Member, IEEE, and Bo Yuan∗, Senior Member, IEEE

Abstract—The powerful learning ability of deep neural
networks enables reinforcement learning agents to learn com-
petent control policies directly from continuous environments. In
theory, to achieve stable performance, neural networks assume
i.i.d. inputs, which unfortunately does no hold in the general
reinforcement learning paradigm where the training data is
temporally correlated and non-stationary. This issue may lead to
the phenomenon of “catastrophic interference” and the collapse
in performance. In this paper, we present IQ, i.e., interference-
aware deep Q-learning, to mitigate catastrophic interference in
single-task deep reinforcement learning. Specifically, we resort to
online clustering to achieve on-the-fly context division, together
with a multi-head network and a knowledge distillation regu-
larization term for preserving the policy of learned contexts.
Built upon deep Q networks, IQ consistently boosts the stability
and performance when compared to existing methods, verified
with extensive experiments on classic control and Atari tasks.
The code is publicly available at: https://github.com/Sweety-dm/
Interference-aware-Deep-Q-learning.

Index Terms—Reinforcement Learning, Catastrophic Interfer-
ence, Context Division, Knowledge Distillation.

I. INTRODUCTION

IN recent years, the successful application of deep neural
networks (DNNs) in reinforcement learning (RL) [2] has

provided a new perspective to boost its performance on high-
dimensional continuous problems. With the powerful func-
tion approximation and representation learning capabilities of
DNNs, deep RL is regarded as a milestone towards con-
structing autonomous systems with a higher level of under-
standing of the physical world [3]. Currently, deep RL has
demonstrated great potential on complex tasks, from learning
to play video games directly from pixels [4], [5] to making
immediate decisions on robot behavior from camera inputs
[6]–[8]. However, these successes are limited and prone to
catastrophic interference1 due to the inherent issue of DNNs

Tiantian Zhang, and Bo Yuan are with the Intelligent Computing Lab, Shen-
zhen International Graduate School, Tsinghua University, 518055 Shenzhen,
P.R. China (e-mail: ztt19@mails.tsinghua.edu.cn; boyuan@ieee.org).

Xueqian Wang is with the Center for Artificial Intelligence and Robotics,
Shenzhen International Graduate School, Tsinghua University, 518055 Shen-
zhen, P.R. China (e-mail: wang.xq@sz.tsinghua.edu.cn).

Bin Liang is with the Research Center for Navigation and Control,
Department of Automation, Tsinghua University, 100084 Beijing, P.R. China
(e-mail: liangbin@mail.tsinghua.edu.cn).
∗Corresponding Author.
1A phenomenon observed in neural networks where later training is likely to

overwrite and interfere with previously learned good policies and significantly
degrades the performance on previous tasks.

(a) Data distribution drift (b) Stability-plasticity trade-off [1]

T
ra

in
 E

p
is

o
d

ic
 R

et
u

rn
s

learning

learning

learning

forgetting: retrain

forgetting: retrain

Time

T1 T2 T3 T4 T5T0

Data distribution

Performance

①

②
③ ④

𝑃1

𝑃2

𝑃3

(c) Learning curves under the influence of interference

𝑃2 𝑃1 𝑃3𝑓
𝑥

𝑥

①

②

③

④

transfer

sharing

interference

old learning
(e.g., training on 𝑃1)

current learning
(e.g., training on 𝑃2)

Fig. 1. An illustration of the catastrophic interference in the single-task
RL. (a) The drift of data distributions during learning, where P1–P3
are different data distributions and À–Ã represent distribution transitions.
The agent experiences the following data distribution transitions during

learning:P1
À−→ P2

Á−→ P3
Â−→ P1

Ã−→ P3. (b) The stability-plasticity
trade-off in DNNs [1]. Sharing: both learning phases train the same model;
Transfer: the current learning phase continues training on the model derived
from the old learning phase; Interference: after the model is trained on P2,
the weights in green are changed in the right network, affecting the model
performance on P1. (c) The learning curves where the solid line corresponds
to the data distribution transitions in (a) and the dashed line shows the training
performance. Before T3, the data distribution is gradually drifted from P1 to
P2 and to P3. When the model fits to P3, the learned policies on P1 and
P2 are interfered, resulting in catastrophically degraded performance when
the agent encounters states from P1 again. Therefore, the model needs to be
retrained on P1 (in the time period T3→ T4). The same problem occurs in
the time period T4→ T5.

in face of the non-stationary data distributions, and they rely
heavily on a combination of various subtle strategies, such
as experience replay [4] and fixed target networks [5], or
distributed training architecture [9]–[11].

Catastrophic interference is the primary challenge for many
neural-network-based machine learning systems when learning
over a non-stationary stream of data [12]. It is normally investi-
gated in multi-task continual learning (CL), mainly including
supervised continual learning (SCL) for classification tasks
[13]–[18] and continual reinforcement learning (CRL) [1],
[13], [14], [19], [20] for decision tasks. In the multi-task CL,

ar
X

iv
:2

10
9.

00
52

5v
2

 [
cs

.L
G

]
 1

 S
ep

 2
02

2

https://github.com/Sweety-dm/Interference-aware-Deep-Q-learning
https://github.com/Sweety-dm/Interference-aware-Deep-Q-learning

2

the agent continually faces new tasks and the neural network
may quickly fit to the data distribution of the current task,
while potentially overwriting the information related to learned
tasks, leading to catastrophic forgetting of the solutions of
old tasks. The underlying reason behind this phenomenon is
the global generalization and overlapping representation of
neural networks [21], [22]. Neural networks training normally
assumes that the inputs are identically and independently
distributed (i.i.d.) from a fixed data distribution and the output
targets are sampled from a fixed conditional distribution. Only
when this assumption is satisfied, can positive generalization
be ensured among different batches of stochastic gradient
descent. However, when the data distribution is drifted during
training, the information learned from old tasks may be
negatively interfered or even overwritten by the newly updated
weights, resulting in catastrophic interference.

Deep RL is essentially a CL problem due to its learning
mode of exploring while learning [20], and it is particularly
vulnerable to catastrophic interference, even within many
single-task settings where the environment is stationary (such
as Atari 2600 games, or even simpler classic control tasks
in OpenAI Gym) [23]–[26]. The non-stationarity of data
distributions in the single-task RL is mainly attributed to
the following properties of RL. Firstly, the inputs of RL
are sequential observations received from the environment,
which are temporally correlated. Secondly, in the progress of
learning, the agent’s decision making policy changes gradually,
which makes the observations non-stationary. Thirdly, RL
methods rely heavily on bootstrapping, where the RL agent
uses its own estimated value function as the target, making
the target outputs also non-stationary. In addition, as noted
in [24], replay buffers with prioritized experience replay [27]
that preferentially sample experiences with higher temporal-
difference (TD) errors will also exasperate the non-stationarity
of training data. Once the distribution of training data encoun-
ters notable drift, catastrophic interference and a chain reaction
are likely to occur, resulting in a sudden deterioration of the
training performance, as shown in Fig. 1.

Currently, there are two major strategies for dealing with
catastrophic interference in the single-task RL training: ex-
perience replay [4], [5] and local optimization [25], [26]. The
former usually exhibits high-level sensitivity to key parameters
(e.g., replay buffer capacity) and often requires maintaining a
large experience storage memory. Furthermore, the sufficiently
large memory may increase the degree of off-policyness of
transitions in the buffer [28], violating the requirement of
current state-of-the-art algorithms that the data should be close
to the on-policy distribution, even for off-policy algorithms
like DQN. The latter advocates local network updating for
the data with a specific distribution instead of global gener-
alization to reduce the representation overlap among different
data distributions. The major issues are that some methods are
limited in the capability of model transfer among differently
distributed data [25], [26], or require pretraining and may not
be suitable for the online settings [26].

In this paper, we focus on the catastrophic interference
problem caused by state distribution drift in the single-task
RL. We propose a interference-aware scheme with low buffer-

size sensitivity called Interference-aware Deep Q-learning
(IQ2) that estimates the value function online for each state
distribution by minimizing the weighted sum of the original
loss function of RL algorithms and the regularization term
regarding the interference among different groups of states.
The schematic architecture is shown in Fig. 3.

In order to mitigate the interference among different state
distributions during model training, we introduce the concept
of “context” into the single-task RL, and propose a context
division strategy based on online clustering. We show that
it is essential to decouple the correlations among different
state distributions with this strategy to divide the state space
into a series of independent contexts (each context is a set
of states distributed close to each other, conceptually similar
to “task” in the multi-task CRL). To achieve efficient and
adaptive partition, we employ Sequential K-Means Clustering
[29] to process the states encountered during training in real
time. Then, we parameterize the value function by a neural
network with multiple output heads commonly used in multi-
task learning [19], [30], [31] in which each output head
specializes on a specific context, and the feature extractor is
shared across all contexts. In addition, we apply knowledge
distillation as a regularization term in the objective function
for value function estimation, which can preserve the learned
policies while the RL agent is trained on states guided by the
current policy, to further avoid the interference caused by the
shared low-level representation. Furthermore, to ease the curse
of dimensionality in high-dimensional state spaces, we employ
a random encoder as its low-dimensional representation space
can effectively capture the information about the similarity
among states without any representation learning [32]. Clus-
tering is then performed in the low-dimensional representation
space of the randomly initialized convolutional encoder.

The contributions of this paper are summarized as follows:

1) A novel context division strategy is proposed for the
single-task RL. It is essential as the widely studied multi-
task CRL methods cannot be used directly to reduce
interference in the single-task RL due to the lack of pre-
defined task boundaries. This strategy can detect contexts
adaptively online, so that each context can be regarded
as a task in multi-task settings. In this way, the strategies
designed for the multi-task CRL can be used in the single-
task RL to mitigate catastrophic interference.

2) A novel RL training scheme called IQ based on multi-
head neural networks is proposed following the context
division strategy. By incorporating the knowledge dis-
tillation loss into the objective function, IQ can better
alleviate the interference suffered in the single-task RL
than existing methods in a fully online manner.

3) A fixed random encoder is introduced into the context
division of high-dimensional state spaces, which further
stabilizes the performance of IQ on complex RL tasks
(e.g., image-level inputs) compared with the underlying
RL trained encoder.

2So named because it uses Deep Q-learning and features interference
awareness. IQ also implies a smarter agent in the sense that it is the
abbreviation of intelligence quotient.

3

4) Extensive experiments on a suite of OpenAI Gym stan-
dard benchmark environments ranging from classic con-
trol tasks to high-dimensional complex Arcade Learning
Environments (ALE) [33] under various replay buffer
capacity settings are conducted to validate that the overall
superiority of our method over baselines in terms of the
stability and the maximum achieved cumulative reward.

The rest of this paper is organized as follows. Section II
reviews the relevant strategies for alleviating catastrophic inter-
ference as well as context detection and identification. Section
III introduces the nature of RL in terms of continual learning
and gives an example analysis of catastrophic interference in
the single-task RL. The details of IQ are shown in Section IV,
and experimental results and analyses are presented in Section
V. Finally, this paper is concluded in Section VI with some
discussions and directions for future work.

II. RELATED WORK

Catastrophic interference within the single-task RL is a
special case of CRL, which involves not only the strategies
to mitigate interference but also the context detection and
identification techniques.

A. Multi-task Continual Reinforcement Learning

Multi-task CRL has been an active research area with
the development of RL architectures [34]. Existing methods
mainly consist of three categories: experience replay-based,
regularization-based, and parameter isolation-based methods.

The core idea of experience replay is to store samples of
previous tasks in raw format (e.g., Selective Experience Replay
(SER) [35], Meta Experience Replay (MER) [1], Continual
Learning with Experience And Replay (CLEAR) [36]) or
generate pseudo-samples from a generative model (e.g., Re-
inforcement Pseudo Rehearsal (RePR) [37]) to maintain the
knowledge about the past in the model. These previous task
samples are replayed while learning a new task to alleviate
interference, in the form of either being reused as model inputs
for rehearsal [35], [37] or constraining the optimization of the
new task loss [1], [36]. Experience replay has become a very
successful approach to tackling interference in CRL. However,
the raw format may result in significant storage requirements
for complex CRL settings. Although the generative model can
be exempted from a replay buffer, it is still difficult to capture
the overall distribution of previous tasks.

Regularization-based methods avoid storing raw inputs by
introducing an extra regularization term into the loss function
to consolidate previous knowledge while learning on new
tasks. The regularization term includes penalty computing and
knowledge distillation. The former focuses on reducing the
chance of weights being modified. For example, Elastic Weight
Consolidation (EWC) [13] and UNcertainty guided Continual
LEARning (UNCLEAR) [19] use Fisher matrix to measure
the importance of weights and protect important weights on
new tasks. The latter is a form of knowledge transfer [38],
which expects that the model trained on a new task can still
perform well on the old ones. It is often used for policy
transfer from one model to another (e.g., Policy Distillation

[39], Genetic Policy Optimization (GPO) [40], Distillation
for Continual Reinforcement learning (DisCoRL) [41]). This
family of solutions is easy to implement and tends to perform
well on a small number of tasks, but still faces challenges as
the number of tasks increases.

Parameter isolation-based methods dedicate different model
parameters to each task, to prevent any possible interference
among tasks. Without the constraints on the size of neural
networks, one can grow new branches for new tasks, while
freezing previous task parameters (e.g., Progressive Natural
Networks (PNN) [42]). Alternatively, the architecture remains
static, with fixed parts being allocated to each task. For
instance, PathNet [14] uses a genetic algorithm to find a path
from input to output for each task in the neural network and
isolates the used network parts in parameter level from the
new task training. These methods typically require networks
with enormous capacity, especially when the number of tasks
is large, and there is often unnecessary redundancy in the
network structure, bringing a great challenge to model storage
and efficiency.

B. Single-task Reinforcement Learning

Compared with the multi-task CRL, catastrophic interfer-
ence in the single-task RL remains an emerging research
area, which has been relatively under-explored. There are two
primary aspects of previous studies: one is finding supporting
evidence to confirm that catastrophic interference is indeed
prevalent within a specific RL task, and the other is proposing
effective strategies for dealing with it.

Researchers in DeepMind studied the learning dynamics
of the single-task RL and developed a hypothesis that the
characteristic coupling between learning and data generation
is the main cause of interference and performance plateaus in
deep RL systems [23]. Recent studies further confirmed this
hypothesis and its universality in the single-task RL through
large-scale empirical studies (called Memento experiments) in
Atari 2600 games [24]. However, none of these studies has
suggested any practical solution for tackling the interference.

In order to mitigate interference, many deep RL algorithms
such as DQN [5] and its variants (e.g., Double DQN [43],
Rainbow [44]) employ experience replay and fixed target
networks to produce approximately i.i.d. training data, which
may quickly become intractable in terms of memory require-
ment as task complexity increases. Furthermore, even with
sufficient memory, it is still possible to suffer from catastrophic
interference due to the imbalanced distribution of experiences.

In recent studies [21], [25], [26], researchers proposed
some methods based on local representation and optimization
of neural networks, which showed that interference can be
reduced by promoting the local updating of weights while
avoiding global generalization. Sparse Representation Neural
Network (SRNN) [26] induces sparse representations in neural
networks by introducing a distributional regularizer, which
requires a large batch of data generated by a fixed policy that
covers the space for pretraining and have not been extended
to the online setting. Dynamic Self-Organizing Map (DSOM)
[25] with neural networks introduces a DSOM module to

4

induce such locality updates. These methods can reduce in-
terference to some extent, but they may inevitably suffer from
the lack of positive transfer in the representation layer and
require larger network capacity, which is not desirable in
complex tasks. Recently, discretizing (D-NN) and tile coding
(TC-NN) were used to remap the input observations to a
high-dimensional space to sparsify input features, reducing
the activation overlap [21]. However, tile coding increases the
dimension of inputs to a neural network, which can lead to
scalability issues for spaces with high dimensionality.

C. Context Detection and Identification

Context detection and identification is a fundamental step
for learning task relatedness in CL. Most multi-task CL
methods aforementioned rely on well-defined task boundaries,
and are usually trained on a sequence of tasks with known
labels or boundaries. Existing context detection approaches
commonly leverage statistics or Bayesian inference to identify
task boundaries.

On the one hand, some methods tend to be reactive to a
changing distribution by finding change points in the pattern
of state-reward tuples (e.g., Context QL [45]), or tracking
the difference between the short-term and long-term moving
average rewards (e.g., CRL-Unsup [46]), or splitting a game
into contexts using the undiscounted accumulated game score
as a task contextualization [47]. These methods can be agile in
responding to scenarios with abrupt changes among contexts
or tasks, but are insensitive to smooth transitions from one
context to another.

On the other hand, some more ambitious approaches try
to learn a belief of the unobserved context state directly from
the history of environment interactions, such as Forget-me-not
Process (FMN) [48] for piecewise-repeating data generating
sources, and Continual Unsupervised Representation Learning
(CURL) [49] for task inference without any knowledge about
task identity. However, they both need to be pretrained with the
complete data before applied to CL problems, and CURL itself
also needs additional techniques to deal with the interference.

Furthermore, Ghosh et al. [50] proposed to partition the
initial state space into a finite set of contexts by performing
a K-Means clustering procedure, which can decompose more
complex tasks, but cannot completely decouple the correla-
tions among different state distributions from the perspective
of interference prevention.

III. PRELIMINARIES AND PROBLEM STATEMENT

To better characterize the problem studied in this paper,
some key definitions and glossaries of CRL problems are
introduced in this section.

A. Definitions and Glossaries

Some important definitions of RL relevant to this paper are
presented as follows.

Definition 1 (RL Paradigm [2]). A RL problem is regarded
as a Markov Decision Process (MDP), which is defined as a
tuple M = 〈S,A,P,R, γ〉, where S is the set of states; A is

the set of actions; P : S ×A×S → [0, 1] is the environment
transition probability function; R : S × A × S → R is the
reward function, and γ ∈ [0, 1] is the discount factor.

According to Definition 1, at each time step t ∈ N, the agent
moves from St to St+1 with probability P (St+1|St, At) after
taking action At, and receives reward R(St, At). Based on
this definition, the optimization objective of value-based RL
models is defined as follow:

Definition 2 (RL Optimization Objective [20]). The optimiza-
tion objective of the value-based RL is to learn a policy π(a|s)
with internal parameter θ ∈ Θ that maximizes the expected
long-term discounted returns for each (s, a) in time, also
known as the value function:

J(π) = Qπ(s, a) = EP,π
[∞∑
k=0

γkR(St+k, At+k)

∣∣∣∣St = s,At = a

]
. (1)

Here, the expectation is over the process that generates a
history using P and decides actions from π until the end of
the agent’s lifetime.

The optimization objective in Definition 2 does not just
concern itself with the current state, but also the full expected
future distribution of states. As such, it is possible to overcome
the catastrophic interference for RL over non-stationary data
distributions. However, much of the recent work in RL has
been in the so called episodic environments, which optimizes
the episodic RL objective:

Definition 3 (Episodic RL Optimization Objective [20]).
Given some future horizon H , find a policy π(a|s), optimizing
the expected discounted returns:

Jepisodic(π) = Qπ(s, a) = EP,π
[H−1∑
k=0

γkR(St+k, At+k)

∣∣∣∣St = s,At = a

]
. (2)

Here, to ensure the feasibility and ease of implementation
of optimization, the objective is only optimized over a future
horizon H until the current episode terminates.

It is clear that the episodic objective in Definition 3 is biased
towards the current episode distribution while ignoring the
possibly far more important future episode distributions over
the agent’s lifetime. Plugging in such an objective directly into
the non-stationary RL settings leads to biased optimization,
which is likely to cause catastrophic interference effects.

For large scale domains, the value function is often ap-
proximated with a member of the parametric function class,
such as a neural network with parameter θ ∈ Θ, expressed as
Q(s, a; θ), which is fit online using experience samples of the
form (s, a, r, s′). This experience is typically collected into a
buffer B from which batches are later drawn at random to
form a stochastic estimate of the loss:

L(θ) = Eµ
[
L
(
r + γ max

a′∈A
Q(s′, a′; θ−)−Q(s, a; θ)

)]
, (3)

where L : R→ R is the agent’s loss function, and µ ∈ P(B)
is the distribution that defines its sampling strategy. In general,
the parameter θ− used to compute the target Q(s′, a′; θ−) is
a prior copy of that used for action selection (as the settings
of DQN [5]).

5

Additionally, it is necessary to clarify some important
glossaries in relation to CL.

1) Non-stationary [51]: a process whose state or probability
distribution changes with time.

2) Interference [22]: a type of influence between two
gradient-based processes with objectives J1, J2, sharing pa-
rameter θ. Interference is often characterized in the first order
by the inner product of their gradients:

ρ1,2 = OθJ
T
1 OθJ2, (4)

and can be seen as being constructive (ρ > 0, transfer) or
destructive (ρ < 0, interference), when applying a gradient
update using OθJ1 on the value of J2.

3) Catastrophic Interference [12], [51]: a phenomenon ob-
served in neural networks training where learning a new task
significantly degrades the performance on previous tasks.

B. Problem Statement

The interference within the single-task RL can be approx-
imately measured by the difference in TD errors before and
after model update under the current policy, referred to as
Approximate Expected Interference (AEI) [52]:

AEI = Ed̂

[
δ(s, a, r, s′; θt)

2 − δ(s, a, r, s′; θt−1)2

]
, (5)

where d̂ is the distribution of (s, a, r, s′) under the current
policy and δ(s, a, r, s′; θ) = r + γmaxa′∈AQ(s′, a′; θ) −
Q(s, a; θ) is the TD error.

To illustrate the interaction between interference and the
agent’s performance during the single-task RL training, we
run an experiment on CartPole using the DQN implemented
in OpenAI Baselines3, and set the replay buffer size N to
100, a small capacity to trigger interference to highlight its
effect. We trained the agent for 300K environment steps and
approximated d̂ with a buffer containing recent transitions
of capacity 10K to evaluate the AEI value according to Eq.
(5) after each update. Fig. 2 shows two segments of the
interference and performance curves during training from
which we can see that the performance started to oscillate
when AEI started to increase (e.g., t ≈ 118K, t ≈ 143K, and
t ≈ 175K in Fig. 2(a), and t ≈ 230K in Fig. 2(b)). In general,
the performance of the agent tends to drop significantly in
the presence of increasing interference. This result provides
direct evidence that interference is correlated closely with the
stability of the single-task RL model.

From the analysis above, we state the problem investigated
in this paper as: proposing a novel and effective training
scheme for the single-task RL, to reduce catastrophic interfer-
ence and performance oscillation during training, improving
the stability and overall performance simultaneously.

IV. THE PROPOSED METHOD

In this section, we give a detailed description of our IQ
scheme whose architecture is shown in Fig. 3. IQ consists of

3OpenAI Baselines is a set of high-quality implementations of RL algo-
rithms implemented by OpenAI: https://github.com/openai/baselines.

1000 1200 1400 1600 1800 2000
Environment Steps (×102)

0.2

0.1

0.0

0.1

AE
I AEI

0

50

100

150

200

Pe
rfo

rm
an

ce

Performance

(a) Phase I

2000 2200 2400 2600 2800 3000
Environment Steps (×102)

0.5

0.0

0.5

1.0

AE
I

AEI

0

50

100

150

200

Pe
rfo

rm
an

ce

Performance

(b) Phase II

Fig. 2. The interference (green) and training performance (yellow) curve
segments of a DQN agent on CartPole (N = 100). The interference is
measured as the expectation in Eq. (5) and the performance is evaluated by the
sum of discounted reward per episode. (a) Phase I with t = 100K ∼ 200K;
(b) Phase II with t = 200K ∼ 300K.

three main components, which are jointly optimized to mit-
igate catastrophic interference in the single-task RL: context
division, knowledge distillation, and the collaborative training
of the multi-head neural network. On the basis of IQ, we
further propose IQ-RE with a random encoder for the efficient
contextualization of high-dimensional state spaces.

As mentioned before, catastrophic interference is an un-
desirable byproduct of global updates to the neural network
weights on data whose distribution changes over time. A
rational solution to this issue is to estimate an individual value
function for each distribution, instead of using a single value
function for all distributions. When an agent updates its value
estimation of a state, the update should only affect the states
within the same distribution. With this intuition in mind, we
adopt a multi-head neural network with shared representation
layers to parameterize the distribution specific value functions.

The IQ scheme proposed in this paper can be incorporated
into any existing value-based RL methods to train a piecewise
Q-function for the single-task RL. The neural network is
parameterized by a shared feature extractor and a set of linear
output heads, corresponding to each context. As shown in
Fig. 3, the set of weights of the Q-function is denoted by
θ = {θS , θT , θF}, where θS is a set of shared parameters
while θT and θF are both context specific parameters: θT is
for the context that corresponds to the current input state s, and
θF is for others. In this section, we take the combination of IQ
and the basic RL algorithm DQN as an illustrative example.

A. Context Division

In MDPs, states (or “observations”) represent the most com-
prehensive information regarding the environment. To better

6

Replay Buffer 𝓡
sampling

𝑠

{𝑠, 𝑎, 𝑟, 𝑑𝑜𝑛𝑒}

𝜔(𝑠)

Context Division

State Assignment

𝑐𝑘

𝑐1

𝑐𝑖
update 𝑐𝑖

return

centroids

𝑠

𝑐𝑘

𝑐1

𝑐𝑖

Centroid Update

s

context 𝜔1
context 𝜔𝑖
context 𝜔𝑘

𝒔: the current state 𝝎(𝒔): the context that 𝑠 belongs to 𝓒 = {𝒄𝟏, … , 𝒄𝒌}: the set of all context centroids 𝜴 = {𝝎𝟏, … ,𝝎𝒌}: the set of all contexts

𝜽𝓢: feature extractor parameters 𝜽𝓣: output layer parameters for context that fits current 𝑠 𝜽𝓕: output layer parameters for other contexts

𝜱𝑹: shared feature extractor 𝜱𝑨: action scorer 𝓛𝒐𝒓𝒊: original loss 𝓛𝓓: distillation loss 𝓛: joint optimization loss ⊕: concatenation

Mini-batch Samples

𝑠1

𝑠𝑚

𝜔(𝑠1)

𝜔(𝑠𝑚)

𝑠1
′𝑟1𝑎1

𝑎𝑚 𝑟𝑚 𝑠𝑚
′

𝜔(𝑠1
′)

𝜔(𝑠𝑚
′)

Head 1

Head 𝑖

Head 𝑘

𝜱𝑹
ℒ𝒟1

ℒ𝒟𝑘

Knowledge Distillation & Joint Optimization

ℒ𝑜𝑟𝑖
𝜃𝒮

𝜃𝒯

𝜃ℱ

𝜃ℱ

𝜃ℱ

𝜃ℱ

𝜱𝑨

⊕ 𝓛

RL Encoder

Fig. 3. An overview of the IQ scheme. This framework consists of three components: 1) Context division, including state assignment and centroid update.
Adaptive context division is achieved using Sequential K-Means Clustering online; 2) Knowledge distillation. The knowledge distillation loss (LD) is
incorporated into the objective function (Lori) to avoid interference among contexts due to the shared feature extractor; 3) Joint optimization with a multi-
head neural network, which aims to estimate the value for each (s, a, ω(s)) with the joint optimization loss (L = Lori + λLD). Here, to keep consistency
with the random encoder introduced later, we also call the representation module of the neural network as ”RL Encoder”. In summary, our method can improve
the performance by decoupling the correlations among differently distributed states and intentionally preserving the learned policies.

understand the states of different distributions, we define a
variable ω for a set of states that are close to each other in
the state space, referred to as “context”. Formally,

Ω = (ωi)
k
i=1,

S = ∪ki=1Si,
(6)

where Ω is a finite set of contexts and k is the number of
contexts. For an arbitrary MDP, we partition its state space
into k contexts, and all states within each context follow ap-
proximately the same distribution, to decouple the correlations
among states against distribution drift. More precisely, for a
partition of S in Eq. (6), we associate a context ωi with each
set Si, so that for s ∈ Si, ω(s) = ωi, where ω(s) can be
thought of as a function of state s.

The inherent learning-while-exploring feature of RL agents
leads to the fact that the agent generally does not experience
all possible states of the environment while searching for the
optimal policy. Thus, it is unnecessary to process the entire
state space. Based on this fact, in IQ, we only perform context
division on states experienced during training. In this paper, we
employ Sequential K-Means Clustering [29] (See Appendix
A-A) to achieve context detection adaptively.

In Fig. 3, k centroids C = {c1, c2, . . . , ck} are initialized at
random in the entire state space. In each subsequent time step
t, we execute State Assignment and Centroid Update steps for
each incoming state received from the environment4, and store
its corresponding transition {st, ω(st), at, rt, st+1, ω(st+1)}
into the replay buffer B. Accordingly, in the training phase, we

4Note that it is suggested to normalize the state in different dimensions
before performing these two steps for more reasonable context division results.

randomly sample a batch of transitions from B and train the
shared feature extractor ΦR and the specific output head ΦA
corresponding to the input state simultaneously, while conduct-
ing fine-tuning of other output heads to avoid interference on
learned policies. Since we store the context label of each state
in the replay buffer, there are no additional state assignments
required at every update step5.

Note that it is also possible to conduct context division
based on the initial state distribution [50]. By contrast, we
show that the partition of all states experienced during training
can produce more accurate and effective context division
results, as the trajectories starting from the initial states within
different contexts have a high likelihood of overlapping in
subsequent time steps (See Appendix A-B for more details).

Interference Among Contexts: We investigate the interfer-
ence among contexts obtained by our context division method
in details. Specifically, we measure the Huber loss of TD
errors in different contexts of the game as the agent learns
in other contexts, and then record the relative changes in loss
before and after the agent’s learning, as shown in Fig. 4.
The results show that, long-term training on any context may
lead to negative generalization on all other contexts, even in
such simple RL task CartPole-v0. The results on Pendulum-v0
shown in Appendix A-C also support the same conclusion.

Computational Complexity: Assuming a d-dimensional
environment of k contexts, the time and space complexities
of our proposed context division module to process T envi-
ronment steps are O(Tkd) and O(kd), respectively.

5In IQ, we only need to perform state assignment once for each state.

7

0 1 2
Evaluated Context

102

101

100
0

100

101

102
Re

la
tiv

e
Ch

an
ge

 in
 L

os
s (

%
) Trained on Context 0

0 1 2
Evaluated Context

102

101

100
0

100

101

102

Re
la

tiv
e

Ch
an

ge
 in

 L
os

s (
%

) Trained on Context 1

0 1 2
Evaluated Context

102

101

100
0

100

101

102

Re
la

tiv
e

Ch
an

ge
 in

 L
os

s (
%

) Trained on Context 2

0 1 2
Context Evaluated On

0
1

2Co
nt

ex
t T

ra
in

ed
 O

n

Relative Change in Loss

-100%

0

>100%

Fig. 4. Measuring the interference among contexts by clustering all experienced states when the agent is trained on CartPole-v0 for 400K environment steps
(k = 3). We record the relative changes in Huber loss for all contexts when the agent is trained on a particular context. It is clear that training on a particular
context generally reduces the loss on itself and increases the losses on all other contexts.

B. Knowledge Distillation
The shared low-level representation can cause the learning

in new contexts to interfere with previous learning results,
leading to catastrophic interference. A relevant technique
to address this issue is knowledge distillation [38], which
works well for encouraging the outputs of one network to
approximate the outputs of another. The concept of distillation
was originally used to transfer knowledge from a complex
ensemble of networks to a relatively simpler network to reduce
model complexity and facilitate deployment. In IQ, we use
it as a regularization term in value function estimation to
preserve the previously learned information.

When training the model on a specific context, we need to
consider two aspects of the loss function: the general loss
of the current training context (denoted by Lori), and the
distillation loss of other contexts (denoted by LD). The former
encourages the model to adapt to the current context to ensure
plasticity, while the latter encourages the model to keep the
memory of other contexts, preventing interference.

To incorporate IQ into the DQN framework, we rewrite the
original loss function of DQN in Eq. (3) with the context
variable ω as:

Lori(θS , θT) = Eµ
[
L
(
Qτ −Q(s, a, ω(s); θS , θT)

)]
, (7)

where

Qτ = r + γ max
a′∈A

Q(s′, a′, ω(s′); θ−S , θ
−
T) (8)

is the estimated target value of Q(s, a, ω(s); θS , θT) and µ is
the distribution of samples, i.e., {s, ω(s), a, r, s′, ω(s′)} ∼ µ,
and L refers to the Huber loss.

For each of the other contexts that the environment contains,
we expect the output value for each pair of (s, a) to be close
to the recorded output from the original network. In knowl-
edge distillation, we regard the learned Q-function before the
current update step as the teacher network, expressed as Qit =
Q(s, a, ωi; θ

−
S , θ

−
F), and the current network to be trained as

the student network, expressed as Qis = Q(s, a, ωi; θS , θF),
where ωi ∈ Ω except the current context ω(s). Thus, the
distillation loss is defined as:

LD(θS , θF) = Eµ
∑

ωi 6=ω(s),ωi∈Ω

Lωi
(θS , θF), (9)

where
Lωi

(θS , θF) = L(Qit −Qis). (10)

Algorithm 1 IQ: Interference-aware Deep Q-learning
Input: Initial replay buffer B with capacity |B| = N ;

Initial Q-function fθ with random weights θ;
Initial target Q̂-function fθ− with weights θ− = θ;
Initial context centroids C = {c1, c2, . . . , ck};
Initial target context centroids Ĉ = C.

Parameter: Total training steps T , the number of contexts k,
target update period C, learning rate α.

Output: Updated C and fθ.
1: Initial state s;
2: for t = 1, T do
3: Interact with environment to obtain {st, at, rt, st+1}.
4: States assignment: ω(st)

Ĉ←− st, ω(st+1)
Ĉ←− st+1.

5: Store transition {st, ω(st), at, rt, st+1, ω(st+1)} in B.
6: Context centroids update: C ← SKM(st, C).
7: Joint optimization:

Sample mini-batch {si, ω(si), ai, ri, s
′
i, ω(s′i)}mi=1;

Calculate Lori, LD according to Eqs. (7) and (9);
Perform a gradient descent step on Eq. (11) w.r.t. θ:

θ ← θ − α∇θ(Lori + λLD).
8: Reset θ− = θ and Ĉ = C every C training steps.
9: end for

is the distillation loss function of the output head correspond-
ing to context ωi.

C. Joint Optimization Procedure

To optimize a Q-function that can guide the agent to make
proper decisions on each context without being adversely
affected by catastrophic interference, we combine Eqs. (7)
and (9) to form a joint optimization framework. Namely, we
solve the catastrophic interference problem by the following
optimization objective:

min
θS ,θT ,θF

Lori(θS , θT) + λLD(θS , θF), (11)

where λ ∈ [0, 1] is a coefficient to control the trade-off
between the stability and plasticity of the neural network.

The complete procedure is described in Algorithm 1. The
proposed method performs the context division in parallel
to the training process without requiring additional data. For
network training, to reduce the correlations with the target
and ensure the stability of model training, the target network

8

Context
Division

MLP 𝑄(𝑠, 𝑎, 𝜔(𝑠))Input 𝑠

Random Encoder

RL Encoder

Representation Space 𝜔(𝑠)

Fig. 5. Illustration of IQ-RE. The context division is performed in the low-
dimensional representation space of a random encoder. A separate RL encoder
is used to work with the MLP layers to estimate the value function.

parameter θ− is only updated by the Q-network parameter θ
every C steps and is held fixed between individual updates,
as in DQN [5]. Similarly, we also adopt fixed target context
centroids (Ĉ) to avoid a small amount of instability of states
assignment step introduced by constantly updated context
centroids (C). To simplify the model implementation, we set
the updating frequency of the target context centroids to be
consistent with the target network.

D. Random Encoders for High-dimensional State Space

For high-dimensional state spaces, we propose to use ran-
dom encoders for efficient context division, which can map
high-dimensional inputs into low-dimensional representation
spaces, overcoming the “curse of dimensionality”. Although
the original RL model already contains an encoder module,
it is constantly updated and directly performing clustering in
its representation space may introduce extra instability into
context division. Therefore, on the basis of IQ, we exploit a
dedicated random encoder module for dimension reduction.
Fig. 5 gives an illustration of this updated framework called
IQ-RE in which the structure of the random encoder fθre is
consistent with the underlying RL encoder, but its parameter
θre is randomly initialized and fixed throughout training. We
provide the full procedure of IQ-RE in Appendix B-B.

The main motivation of using random encoders arises from
the observation that distances in the representation space
of random encoder are adequate for finding similar states
without any representation learning [32]. That is, the repre-
sentation space of a random encoder can effectively capture
the information about the similarity among states without
any representation learning (See Appendix B-A). Additional
comparative experiments of IQ with the random encoder and
the underlying RL trained encoder in Appendix B-B further
highlight the superiority of random encoders.

V. EXPERIMENTS AND EVALUATIONS

In this section, we conduct comprehensive experiments on
several standard benchmarks from OpenAI Gym6 containing
4 classic control tasks and 6 high-dimensional complex Atari
games to demonstrate the effectiveness of our method.

6OpenAI Gym is a publicly available released implementation repository
of RL environments: https://github.com/openai/gym.

A. Datasets

Classic Control [53] contains 4 classic control tasks:
CartPole-v0, Pendulum-v0, CartPole-v1, Acrobot-v1, where
the dimensions of state spaces are in the range of 3 to 6. The
maximum time steps are 200 for CartPole-v0 and Pendulum-
v0, and 500 for CartPole-v1 and Acrobot-v1. Meanwhile,
the reward thresholds used to determine tasks solved are
195.0, 475.0 and −100.0 for CartPole-v0, CartPole-v1 and
Acrobot-v1, respectively, while that for Pendulum-v0 is not
yet specified. We choose these commonly used domains as
they are well-understood and relatively simple, suitable for
highlighting the mechanism and verifying the effectiveness of
our method in a straightforward manner.

Atari Games [33] contain 6 image-level complex tasks:
Pong, Breakout, Carnival, Freeway, Tennis, FishingDerby,
where the observation is the screenshot represented by an RGB
image of size 210 × 160 × 3. We choose these domains to
further demonstrate the scalability of our method on high-
dimensional complex tasks that present significant challenges
for existing baseline methods.

B. Implementation

Network Structure. For the 4 classic control tasks, we
employ a fully-connected layer as the feature extractor and
a fully-connected layer as the multi-head action scorer, fol-
lowing the network configuration for this type of tasks in
OpenAI Baseline. For the 6 Atari games, we employ the
similar convolution neural network as [44], [54] for feature
extracting and two fully-connected layers as the multi-head
action scorer. More details can be found in Appendix C.

Parameter Setting. In IQ, there are two key parameters: λ
and k. To simplify parameter setting, we set λ in accordance
with the exploration proportion ε in all experiments: λ = 1−ε,
due to the inverse relationship between them in training. In the
early training, ε is close to 1, and the model is normally inac-
curate with little interference, and a small λ (close to 0) can
promote plasticity construction of the model. Then, ε gradually
approaches 0 during the subsequent training, and the model
has learned more useful information, while interference is also
likely to occur. Consequently, smoothly increasing λ is needed
to ensure plasticity while avoiding interference. Meanwhile,
we set k to 3 for all classic control tasks, and 4 for all Atari
games. In IQ-RE, we set the extra parameter d to 50 as in [32],
which has been shown to be both efficient and effective. Other
parameter settings can be found in Appendix C. For classic
control tasks, we evaluate the training performance using the
average episode returns every 10K time steps for CartPole-v0,
Pendulum-v0, and 20K time steps for CartPole-v1, Acrobot-
v1. For Atari games, the time step range for performance
evaluation is 200K. All experiment results reported are the
average episode returns over 5 independent runs.

C. Baselines

We evaluate our method in comparison to following state-
of-the-art baseline methods for single-task RL:
• DQN [5] is a representative algorithm of Deep RL,

which reduces catastrophic interference using experience

https://github.com/openai/gym

9

replay and fixed target networks. We use the DQN agent
implemented in OpenAI Baselines.

• Rainbow [44] is the upgraded version of DQN containing
six extensions, including a prioritized replay buffer [27],
n-step returns [2], Adam optimizer [55] and distributional
learning [10] for stable RL training. The Rainbow agent
is implemented in Google’s Dopamine framework7 [54].

• SRNN [26] employs a distributional regularizer to in-
duce sparse representations in neural networks to avert
catastrophic interference in the single-task RL. Here, we
implement it in the form of fully online training.

• DSOM [25] introduces a DSOM module to control the
activation of the representation output layer to achieve
local optimization. We reproduce it with reference to the
original DSOM implementation8.

• TCNN [21] aims to remap the inputs to a higher-
dimensional space using tile coding to sparsify the input
features, reducing activation overlap. We adopt its imple-
mentation in [56].

In the experiments, we firstly use DQN as the underlying
RL method to evaluate the effectiveness of IQ in comparison
to all baselines on classic control tasks. We then extend
them to high-dimensional Atari games to further validate the
scalability of IQ. Note that TCNN suffers from scalability
issues for benchmarks with high dimensionality as it increases
the dimension of input to the neural network, and DSOM
has not been applied to solve any high-dimensional RL tasks
in [25], whose implementation details are unclear. Therefore,
we evaluate IQ-RE only in comparison to DQN and SRNN
on the Atari games. Additionally, we also implement IQ-RE
with Rainbow, to illustrate that our method is highly flexible
and can be incorporated into various existing value-based RL
models.

D. Evaluation Metrics

Following the convention in previous studies [9]–[11], [24],
[44], we employ the average training episode returns RT to
evaluate our method during training:

RT =
1

M

M∑
i=1

Ji∑
j=0

Rij (12)

where M is the number of episodes experienced within each
evaluation period; Ji is the total time steps in episode i; Rij
is the reward received at time step j in episode i.

E. Results

To address the effectiveness of our proposed method, we
present primary results of IQ incorporated with DQN and
all baselines implemented on 4 control tasks. Fig. 6 shows
the learning curves of average episodic return during training
for each task with three levels of replay buffer capacity,
and Table I reports the numerical results in terms of the
highest cumulative return achieved in corresponding curves.

7Dopamine is a research framework developed by Google for fast prototyp-
ing of reinforcement learning algorithms: https://github.com/google/dopamine.

8Dynamic Self-Organized maps: https://github.com/rougier/dynamic-som.

In general, IQ is clearly superior to all baselines both in
terms of the stability and the maximum achieved cumulative
reward, especially when the replay buffer capacity is small
(e.g., N = 100) or even without experience replay (i.e.,
N = 1). In most tasks, IQ achieves near optimal performance
as well as good stability even without any experience replay.
For Pendulum-v0 and Acrobot-v1, a large replay buffer (e.g.,
N = 50, 000) can help DQN, SRNN and TCNN escape from
catastrophic interference. However, this is not the case for two
CartPole tasks where the agents exhibit fast initial learning
but then encounter collapse in performance. DSOM performs
comparably to IQ with large replay buffers, but is significantly
inferior to IQ with the other two smaller capacities. We
also conduct experimental comparisons with all baselines in
terms of the degree of interference (according to Eq. (5)),
corresponding to all task settings in Fig. 6. The experimental
results are presented in Appendix D-A, from which we can
further confirm that IQ can substantially reduce the negative
interference encountered by the base RL agents during the
learning progress.

Moreover, from a macro perspective, Fig. 6 shows that: 1)
DQN, SRNN and TCNN agents exhibit high sensitivity to the
replay buffer capacity. They generally perform well with a
large buffer (except on CartPole-v1), but their performance
deteriorates significantly when the buffer capacity is reduced.
The reason for this phenomenon is that DQN primarily relies
on experience replay to obtain approximately i.i.d. training
data to avoid possible interference in training, which cannot
be guaranteed when the replay buffer capacity is small. Since
SRNN just reshapes the constraint term on the basis of DQN
loss, while TCNN only increases the input dimension of DQN,
both techniques can only alleviate interference to a certain
extent. 2) The overall performance of DSOM is better than
the above three baselines, as it optimizes the data distribution-
specific representation modules to circumvent the interference
caused by the shared representation layer. Nevertheless, since
DSOM shares the same output layer, it still suffers from
interference on most tasks. 3) By contrast, IQ features a
shared representation module and multiple data distribution-
specific output heads, and employs the knowledge distillation
technique to prevent interference caused by shared represen-
tation layers, achieving significantly better performance than
baselines. Note that in some cases (e.g., CartPole-v1 settings),
IQ learns more slowly than baselines during the early stages
of training. A possible explanation is that IQ learns context
division in a fully online manner and the partitions may not
be accurate enough back then, but it can quickly surpass the
baselines as the training progress.

Additionally, to demonstrate the scalability and flexibility
of our method, we also provide the results of IQ-RE with
DQN and Rainbow separately, on 6 Atari games. The learning
curves are shown in Fig. 7 and the highest cumulative returns
achieved during training are summarized in Table II. Overall,
for high-dimensional image inputs, the training performance of
the underlying RL algorithms can be noticeably improved with
our IQ-RE scheme, while SRNN provides little contribution to
both underlying RL methods. Specifically, in Fig. 7, with DQN
as the underlying RL method, IQ-RE significantly outperforms

10

0.0 0.1 0.2 0.3 0.4
Environment Steps (×106)

0

50

100

150

200
Tr

ai
n

Ep
iso

de
 R

et
ur

ns
CartPole-v0

DQN
DQN + SRNN
DQN + DSOM
DQN + TCNN
DQN + IQ (ours)

0.0 0.1 0.2 0.3 0.4
Environment Steps (×106)

1600

1400

1200

1000

800

600

400

200

Tr
ai

n
Ep

iso
de

 R
et

ur
ns

Pendulum-v0

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×106)

0

100

200

300

400

500

Tr
ai

n
Ep

iso
de

 R
et

ur
ns

CartPole-v1

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×106)

500

400

300

200

100

Tr
ai

n
Ep

iso
de

 R
et

ur
ns

Acrobot-v1

(a) N = 50, 000

0.0 0.1 0.2 0.3 0.4
Environment Steps (×106)

0

50

100

150

200

Tr
ai

n
Ep

iso
de

 R
et

ur
ns

CartPole-v0

0.0 0.1 0.2 0.3 0.4
Environment Steps (×106)

1600

1400

1200

1000

800

600

400

200
Tr

ai
n

Ep
iso

de
 R

et
ur

ns

Pendulum-v0

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×106)

0

100

200

300

400

500

Tr
ai

n
Ep

iso
de

 R
et

ur
ns

CartPole-v1

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×106)

500

400

300

200

100

Tr
ai

n
Ep

iso
de

 R
et

ur
ns

Acrobot-v1

(b) N = 100

0.0 0.1 0.2 0.3 0.4
Environment Steps (×106)

0

50

100

150

200

Tr
ai

n
Ep

iso
de

 R
et

ur
ns

CartPole-v0

0.0 0.1 0.2 0.3 0.4
Environment Steps (×106)

1600

1400

1200

1000

800

600

400

200

Tr
ai

n
Ep

iso
de

 R
et

ur
ns

Pendulum-v0

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×106)

0

100

200

300

400

500

Tr
ai

n
Ep

iso
de

 R
et

ur
ns

CartPole-v1

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×106)

500

400

300

200

100

Tr
ai

n
Ep

iso
de

 R
et

ur
ns

Acrobot-v1

(c) N = 1

Fig. 6. Learning curves on classic control tasks with different replay buffer capacities N . Here and in related figures below, the solid lines and shaded regions
denote the means and standard deviations of rewards, respectively, across five runs.

TABLE I
NUMERICAL RESULTS IN TERMS OF THE HIGHEST CUMULATIVE RETURN ACHIEVED DURING TRAINING OF ALL METHODS IMPLEMENTED

IN THE CLASSIC CONTROL TASKS (BASED ON THE PERFORMANCE OF FIVE RUNS IN FIG. 6. HERE AND IN
RELATED TABLES BELOW, THE BEST PERFORMANCE IS MARKED IN BOLDFACE.)

Method DQN DQN + SRNN DQN + DSOM DQN + TCNN DQN + IQ (ours)
N 1 100 50,000 1 100 50,000 1 100 50,000 1 100 50,000 1 100 50,000

CartPole-v0 106.0 185.4 200.0 112.9 182.9 200.0 173.0 200.0 200.0 102.3 174.1 200.0 200.0 200.0 200.0
Pendulum-v0 −1165.3 −375.2 −134.9 −1160.3 −567.1 −144.2 −1122.1 −834.7 −146.2 −1204.8 −438.0 −142.0 −1018.1 −209.1 −140.0
CartPole-v1 188.4 421.5 497.7 250.1 445.6 498.6 295.5 490.0 500.0 136.8 341.1 494.2 489.3 498.5 500.0
Acrobot-v1 −222.1 −89.2 −85.4 −204.7 −89.4 −83.2 −110.0 −218.2 −91.4 −491.5 −426.5 −89.8 −91.7 −85.7 −82.9

DQN and SRNN on 7 out of 12 tasks, being comparable with
DQN and SRNN on the rest 5 tasks. Similarly, with Rainbow
as the underlying RL method, IQ-RE outperforms baselines on
8 out of 12 tasks, while being comparable with baselines on
the rest 4 tasks. The two-sample Kolmogorov-Smirnov test in
Appendix D-C further confirms that the improvement brought
by IQ-RE is statistically significant. Furthermore, as shown
in Table II, IQ-RE achieves higher maximum cumulative
scores in most tasks than its counterparts. Among the 24
training settings, the maximum cumulative scores achieved by
IQ-RE are slightly lower than those of baselines in only 4
cases and 2 cases when combined with DQN and Rainbow,
respectively. It is worth noting that, even with a large memory
(N = 1, 000, 000), IQ-RE still shows certain advantages over
the baselines.

In summary, the proposed techniques containing context
division based on the clustering of all experienced states,

and knowledge distillation in multi-head neural networks can
effectively eliminate catastrophic interference caused by data
drift in the single-task RL, whilst reduce the requirement
of the replay buffer capacity for off-policy RL. In addition,
our method leverages a fixed randomly initialized encoder to
characterize the similarity among states in the low-dimensional
representation space, which can be used to partition contexts
effectively for high-dimensional environments.

F. Analysis

1) Ablation Study: Since our method can be regarded as an
extension to existing RL methods (e.g., DQN [5]), with three
novel components (i.e., adaptive context division by online
clustering, knowledge distillation, and the multi-head neural
network), the ablation experiments are designed as follows:
• No clustering means using a random partition of the raw

state space before learning instead of adaptive context

11

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×107)

20

10

0

10

20

Tr
ai

n
Ep

iso
de

 R
et

ur
ns

Pong

DQN
DQN + SRNN
DQN + IQ-RE (ours)
Rainbow
Rainbow + SRNN
Rainbow + IQ-RE (ours)

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×107)

0

20

40

60

80

100

Tr
ai

n
Ep

iso
de

 R
et

ur
ns

Breakout

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×107)

0

1

2

3

4

5

6

Tr
ai

n
Ep

iso
de

 R
et

ur
ns

1e3 Carnival

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×107)

0

10

20

30

40

Tr
ai

n
Ep

iso
de

 R
et

ur
ns

Freeway

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×107)

25

20

15

10

5

0

5

Tr
ai

n
Ep

iso
de

 R
et

ur
ns

Tennis

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×107)

100

80

60

40

20

0

20

40

Tr
ai

n
Ep

iso
de

 R
et

ur
ns

FishingDerby

(a) N = 1, 000, 000

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×107)

20

10

0

10

20

Tr
ai

n
Ep

iso
de

 R
et

ur
ns

Pong

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×107)

0

20

40

60

80

100

Tr
ai

n
Ep

iso
de

 R
et

ur
ns

Breakout

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×107)

0

1

2

3

4

5

6

Tr
ai

n
Ep

iso
de

 R
et

ur
ns

1e3 Carnival

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×107)

0

10

20

30

40

Tr
ai

n
Ep

iso
de

 R
et

ur
ns

Freeway

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×107)

25

20

15

10

5

0

5

Tr
ai

n
Ep

iso
de

 R
et

ur
ns

Tennis

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×107)

100

80

60

40

20

0

Tr
ai

n
Ep

iso
de

 R
et

ur
ns

FishingDerby

(b) N = 10, 000

Fig. 7. Learning curves on Atari games with different replay buffer capacities N . It is worth noting that the green line and the red line of Freeway in (a)
and the purple, orange and pink lines of Freeway in (b) are overlapping, respectively.

TABLE II
NUMERICAL RESULTS IN TERMS OF THE HIGHEST CUMULATIVE RETURN ACHIEVED DURING TRAINING OF ALL METHODS

IMPLEMENTED IN THE ATARI GAMES (BASED ON THE PERFORMANCE OF FIVE RUNS IN FIG. 7.)

Method DQN DQN + SRNN DQN + IQ-RE (ours) Rainbow Rainbow + SRNN Rainbow + IQ-RE (ours)
N 10,000 1,000,000 10,000 1,000,000 10,000 1,000,000 10,000 1,000,000 10,000 1,000,000 10,000 1,000,000

Pong 16.2 15.0 17.3 15.2 16.7 16.3 17.1 19.1 17.9 19.3 17.7 19.0
Breakout 71.6 80.9 78.0 86.4 90.5 97.4 59.3 62.1 61.1 66.2 67.6 66.7
Carnival 4327.0 4589.0 4273.6 4758.0 5073.1 4639.8 4529.7 4788.0 3599.6 4662.2 4928.2 5289.0
Freeway 0.5 19.5 0.5 13.2 0.5 25.8 25.7 33.2 32.3 33.3 32.3 33.3
Tennis −13.2 −1.3 −10.5 −1.0 −10.7 −0.4 0.0 0.0 −0.7 0.0 0.0 0.0

FishingDerby −23.8 9.7 −24.0 11.0 −23.5 7.5 −2.7 29.4 −7.0 27.0 −2.4 30.8

division by online clustering.
• No distillation means removing the distillation loss func-

tion LD(θS , θF) from Eq. (11) (i.e., λ = 0).
• No multi-head means removing the context division

module and optimize the neural network with a single-
head output (i.e., k = 1). Here, the distillation term is
represented as the distillation of the network before each
update of the output head.

The results of ablation experiments are shown in Fig. 8,
using classic control tasks for the convenience of validation.
From Fig. 8, the following facts can be observed: 1) Across
all settings, the overall performance of DQN is the worst,
showing the effectiveness of the three components introduced
for coping with catastrophic interference in the single-task
RL, although the contribution of each component varies sub-
stantially per task; 2) Removing online clustering from the
context division module is likely to damage the performance
in most cases; 3) Removing knowledge distillation makes the

performance deteriorate on almost all tasks, indicating that
knowledge distillation is a key element in our method; 4)
Without the multi-head component, our model is equivalent to
a DQN with an extra distillation loss, which performs better
than DQN alone but worse than our proposed IQ in general.
Note that, on Pendulum-v0, the single-head network performs
better than our method during training, which means that
the additional distillation constraint is sufficient to mitigate
the interference faced by the base RL under this setting,
without the need of further context division. By contrast, our
method learns context division in a fully online manner and the
partitions may not be accurate enough on this task. However,
this is not the case in other settings (See Appendix D-E for
more experimental results).

2) Context Division Strategy: By introducing the context
variables during learning, IQ bears a resemblance to some
existing settings [47], [50] that partition contexts using game
score and initial states. Therefore, we further compare our

12

0.0 0.1 0.2 0.3 0.4
Environment Steps (×106)

0

50

100

150

200

Tr
ai

n
Ep

iso
de

 R
et

ur
ns

CartPole-v0

DQN
no clustering
no distillation
no multi-head
DQN + IQ (ours)

0.0 0.1 0.2 0.3 0.4
Environment Steps (×106)

1600

1400

1200

1000

800

600

400

200

Tr
ai

n
Ep

iso
de

 R
et

ur
ns

Pendulum-v0

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×106)

0

100

200

300

400

500

Tr
ai

n
Ep

iso
de

 R
et

ur
ns

CartPole-v1

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×106)

500

400

300

200

100

Tr
ai

n
Ep

iso
de

 R
et

ur
ns

Acrobot-v1

Fig. 8. Comparisons of IQ (red) with DQN (green) and its three different ablations (other colors), on each individual task (N = 100).

0.0 0.1 0.2 0.3 0.4
Environment Steps (×106)

0

50

100

150

200

Tr
ai

n
Ep

iso
de

 R
et

ur
ns

CartPole-v0

Game Score
Initial States
Experienced States

0.0 0.1 0.2 0.3 0.4
Environment Steps (×106)

1600

1400

1200

1000

800

600

400

200
Tr

ai
n

Ep
iso

de
 R

et
ur

ns
Pendulum-v0

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×106)

0

100

200

300

400

500

Tr
ai

n
Ep

iso
de

 R
et

ur
ns

CartPole-v1

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×106)

500

400

300

200

100

Tr
ai

n
Ep

iso
de

 R
et

ur
ns

Acrobot-v1

Fig. 9. Comparisons of IQ (red, performs context division on all experienced states) with other two context division strategies (other colors) (N = 100).

context division based on all experienced states with the
following context division strategies:

• Game Score [47] splits a game into contexts based on
the undiscounted cumulative game score.

• Initial States [50] partitions the initial state space into
“slices” by the k-means clustering procedure.

From the experimental results in Fig. 9, we can observe that
our method is distinctly superior to the above two strategies in
general, although it performs slightly worse on Pendulum-v0.
This is due to the fact that, on Pendulum-v0, the game scores
or initial states have a perfect correspondence to different
state distributions. However, these two baselines are primarily
designed to decompose complex tasks, rather than mitigating
catastrophic interference in the single-task RL settings and
cannot guarantee the complete decoupling among different
state distributions. This conclusion is further confirmed by the
additional experimental results in Appendix D-F.

3) Parameter Analysis: There are two critical parameters
in IQ: λ and k. By its nature, λ is related to the training
progress. Since we need to preserve the learned good policies
during training, it is intuitive to gradually increase λ until its
value reaches 1. The reason is that, in early-stage training, the
model has not learned any sufficiently useful information, so
the distillation constraint can be ignored. With the progress of
training, the model starts to acquire more and more valuable
information and needs to pay serious attention to interference
to protect the learned good policies while learning further.
In our experiments, we recommend to set λ to be inversely
proportional to the exploration proportion ε, and the results in
Figs. 6 and 7 have demonstrated the simplicity and effective-
ness of this setting.

For the parameter k, it needs to be specified before training,
which may be suboptimal without a good knowledge of the
state space structure of the environment. To investigate the
effect of k, we conduct experiments with different k values
(k ∈ {1, 2, 3, 4, 5}) and the results are shown in Fig. 10. In our
experiments, k = 3 is a reasonably good choice for CartPole-

0.0 0.1 0.2 0.3 0.4
Environment Steps (×106)

0

50

100

150

200

Tr
ai

n
Ep

iso
de

 R
et

ur
ns

CartPole-v0

0.0 0.1 0.2 0.3 0.4
Environment Steps (×106)

1600

1400

1200

1000

800

600

400

200

Tr
ai

n
Ep

iso
de

 R
et

ur
ns

Pendulum-v0
DQN
DQN + IQ(k=1)
DQN + IQ(k=2)
DQN + IQ(k=3)
DQN + IQ(k=4)
DQN + IQ(k=5)

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×106)

0

100

200

300

400

500

Tr
ai

n
Ep

iso
de

 R
et

ur
ns

CartPole-v1

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×106)

500

400

300

200

100

Tr
ai

n
Ep

iso
de

 R
et

ur
ns

Acrobot-v1

Fig. 10. Parameter sensitivity analysis w.r.t the number of contexts k.
Experiments are conducted with different k values (N = 1).

v0 and CartPole-v1, while k = 5 is best for IQ on Acrobot-v1.
It is worth noting that, on Pendulum-v0, our method achieves
similar performance with k set to 2, 3, 4, and 5, respectively,
but without any satisfactory result. A possible explanation is
that the agents failed to learn any useful information due to the
limited exploration in the early training, leading to the failure
of further learning.

In summary, we can make the following statements: 1) The
performance of our method is obviously better than the base
RL baseline regardless of the specific k value, confirming
the effectiveness of IQ even with inaccurate k estimation;
2) For k > 1, better performance of IQ can be expected.
However, large k values are not always desirable as it will
result in more fine-grained context divisions and more complex
neural networks with a large amount of output heads, making
the model unlikely to converge satisfactorily within a limited
number of training steps. Thus, we recommend to set the value
of k by taking into consideration the state-space structure
of specific tasks. In practice, we recommend to explore the

13

0.0 0.1 0.2 0.3 0.4
Environment Steps (×106)

0.0

0.2

0.4

0.6

0.8
Av

er
ag

e
Lo

ss
 V

al
ue

DQN
DQN + IQ

(a)

0.0 0.1 0.2 0.3 0.4
Environment Steps (×106)

90

60

30

0

30

Av
er

ag
e

Ac
tio

n
Va

lu
e

(Q
)

DQN
DQN + IQ

(b)

0.0 0.1 0.2 0.3 0.4
Environment Steps (×106)

8

4

0

4

8

Av
er

ag
e

Ac
tio

n
Va

lu
e

(Q
)

Head 1
Head 2
Head 3

(c)

Fig. 11. Training curves tracking the agent’s average loss and average predicted action-value for 400K environment steps in Pendulum-v0 (N = 100 and
k = 3, see Fig. 6(b) for corresponding curves). (a) Each point is the average loss achieved per training iteration; (b) Average maximum predicted action-value
of agents on a held-out set of states; (c) Average maximum predicted action-value of each output head in IQ.

DQN DQN+
SRNN

DQN+
TCNN

DQN+
DSOM

DQN+
IQ

Methods

0

2

4

6

Tr
ai

ni
ng

 T
im

e
(s

)

4.87 4.90 4.99
5.75 6.04

1e2 Pendulum

(a) Training time

DQN DQN+
SRNN

DQN+
IQ-RE

Rainbow Rainbow
+SRNN

Rainbow+
IQ-RE

Methods

0

4

8

12

16

FL
OP

s

10.493 10.493

13.962

10.561 10.561

14.232
1e15 Breakout

(b) Computational complexity

Fig. 12. Comparison of computational efficiency: (a) Training time of each
agent to achieve its performance for 400K environment steps in Pendulum-v0
(N = 100, see Fig. 6(b) for corresponding learning curves); (b) Number of
FLOPs used by each agent at 10M environment steps in Breakout. Here, we
only take into account forward and backward passes through neural network
layers (See Fig. 7 for corresponding learning curves).

environment using an appropriate random policy and conduct
initial density-based clustering for the obtained states before
training. Thereafter, the initial centroids of SKM and k value
can be estimated according to this initial clustering result.

4) Convergence Analysis: To analyze convergence, we track
the agent’s average loss and average predicted action-value
during training progress. According to Fig. 11, we can con-
clude that: 1) Our method has better convergence and stability
in face of interference compared with original RL algorithms
(See Figs. 11(a) and 11(b)); 2) For a held-out set of states9,
the average maximum predicted action-value of each output
head reflects the difference as expected (See Fig. 11(c)), and
the final output of IQ is synthesised based on all of them.

5) Computational Efficiency: Our methods greatly improve
training performance of the existing RL algorithms, which are
computationally efficient in that: 1) In each time step, the extra
context division module only needs to compute the distances
between the current state and k context centroids, which is
computationally negligible w.r.t. the SGD complexity of the
large parameter vector updated in each iteration of RL itself; 2)
Only k−1 extra output heads are added to the neural network,
in which the increased computation is acceptable w.r.t. the
representation complexity; 3) There are no gradient updates
through the random encoder; 4) There is no unnecessary

9It refers to a fixed set of states [4], [5] of the environment, which can be
obtained by performing exploration in the environment and then used to track
the average predicted action value changes during training.

distance computation for finding the corresponding context at
every update step as the context label for each state is stored
in the replay buffer. Fig. 12 shows the training time of each
agent on Pendulum and the floating point operations (FLOPs)
executed by agents on Breakout, respectively.

VI. CONCLUSION AND FUTURE WORK

In this paper, we propose a competent scheme IQ to
tackle the inherent challenge of catastrophic interference in
the single-task RL. The core idea is to partition all states
experienced during training into a set of contexts using online
clustering techniques and simultaneously estimate the context-
specific value function with a multi-head neural network as
well as a knowledge distillation loss to mitigate the interfer-
ence across contexts. Furthermore, we introduced a random
encoder to enhance the context division for high-dimensional
complex tasks. Our method can effectively decouple the cor-
relations among differently distributed states and can be easily
incorporated into various value-based RL models. Experiments
on several benchmarks show that our method can significantly
outperform state-of-the-art RL methods and dramatically re-
duce the memory requirement of existing RL methods.

In the future, we aim to incorporate our method into policy-
based RL models to reduce the interference during training
by applying weight or functional regularization on policies.
Furthermore, we will investigate a more challenging setting
called continual RL in non-stationary environments [46]. This
setting is a more realistic representation of the real-world
scenarios and includes abrupt changes or smooth transitions
on dynamics, or even the dynamics itself is shuffled.

ACKNOWLEDGMENT

The work presented in this paper was supported by the
National Natural Science Foundation of China (U1713214).

REFERENCES

[1] M. Riemer, I. Cases, R. Ajemian, M. Liu, I. Rish et al., “Learning
to learn without forgetting by maximizing transfer and minimizing
interference,” in Proceedings of the 7th International Conference on
Learning Representations, 2019.

[2] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

14

[3] H. Li, Q. Zhang, and D. Zhao, “Deep reinforcement learning-based
automatic exploration for navigation in unknown environment,” IEEE
Transactions on Neural Networks and Learning Systems, vol. 31, no. 6,
pp. 2064–2076, 2019.

[4] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. Riedmiller, “Playing atari with deep reinforcement learn-
ing,” in Proceedings of the 27th Conference on Neural Information
Processing Systems, 2013.

[5] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[6] A. Faust, K. Oslund, O. Ramirez, A. Francis, L. Tapia, M. Fiser,
and J. Davidson, “PRM-RL: Long-range robotic navigation tasks by
combining reinforcement learning and sampling-based planning,” in Pro-
ceedings of the International Conference on Robotics and Automation,
2018, pp. 5113–5120.

[7] H.-T. L. Chiang, A. Faust, M. Fiser, and A. Francis, “Learning navigation
behaviors end-to-end with autorl,” IEEE Robotics and Automation
Letters, vol. 4, no. 2, pp. 2007–2014, 2019.

[8] A. Francis, A. Faust, H.-T. L. Chiang, J. Hsu, J. C. Kew, M. Fiser,
and T.-W. E. Lee, “Long-range indoor navigation with prm-rl,” IEEE
Transactions on Robotics, vol. 36, no. 4, pp. 1115–1134, 2020.

[9] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep
reinforcement learning,” in Proceedings of the 33rd International Con-
ference on Machine Learning, vol. 48, 2016, pp. 1928–1937.

[10] M. G. Bellemare, W. Dabney, and R. Munos, “A distributional perspec-
tive on reinforcement learning,” in Proceedings of the 34nd International
Conference on Machine Learning, 2017, pp. 449–458.

[11] L. Espeholt, H. Soyer, R. Munos, K. Simonyan, V. Mnih, T. Ward,
Y. Doron, V. Firoiu, T. Harley, I. Dunning et al., “IMPALA: Scalable dis-
tributed deep-rl with importance weighted actor-learner architectures,” in
Proceedings of the 35th International Conference on Machine Learning.
PMLR, 2018, pp. 1407–1416.

[12] M. McCloskey and N. J. Cohen, “Catastrophic interference in connec-
tionist networks: The sequential learning problem,” in Psychology of
learning and motivation. Elsevier, 1989, vol. 24, pp. 109–165.

[13] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins,
A. A. Rusu et al., “Overcoming catastrophic forgetting in neural
networks,” in Proceedings of the National Academy of Sciences, vol.
114, no. 13, 2017, pp. 3521–3526.

[14] C. Fernando, D. Banarse, C. Blundell, Y. Zwols, D. Ha, A. A. Rusu,
A. Pritzel, and D. Wierstra, “Pathnet: Evolution channels gradient
descent in super neural networks,” arXiv preprint arXiv:1701.08734,
2017.

[15] D. Lopez-Paz and M. Ranzato, “Gradient episodic memory for continual
learning,” in Proceedings of the 31st Conference on Neural Information
Processing Systems, 2017, pp. 6467–6476.

[16] S.-A. Rebuffi, A. Kolesnikov, G. Sperl, and C. H. Lampert, “icarl:
Incremental classifier and representation learning,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2017,
pp. 2001–2010.

[17] A. Mallya and S. Lazebnik, “Packnet: Adding multiple tasks to a single
network by iterative pruning,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2018, pp. 7765–7773.

[18] M. Delange, R. Aljundi, M. Masana, S. Parisot, X. Jia, A. Leonardis,
G. Slabaugh, and T. Tuytelaars, “A continual learning survey: Defying
forgetting in classification tasks,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2021.

[19] S. Kessler, J. Parker-Holder, P. Ball, S. Zohren, and S. J. Roberts,
“UNCLEAR: A straightforward method for continual reinforcement
learning,” in Proceedings of the 37th International Conference on
Machine Learning, 2020.

[20] K. Khetarpal, M. Riemer, I. Rish, and D. Precup, “Towards continual
reinforcement learning: A review and perspectives,” arXiv preprint
arXiv:2012.13490, 2020.

[21] S. Ghiassian, B. Rafiee, Y. L. Lo, and A. White, “Improving perfor-
mance in reinforcement learning by breaking generalization in neural
networks,” in Proceedings of the 19th International Conference on
Autonomous Agents and Multiagent Systems, 2020.

[22] E. Bengio, J. Pineau, and D. Precup, “Interference and generalization in
temporal difference learning,” in Proceedings of the 37th International
Conference on Machine Learning, 2020, pp. 767–777.

[23] T. Schaul, D. Borsa, J. Modayil, and R. Pascanu, “Ray interference:
a source of plateaus in deep reinforcement learning,” arXiv preprint
arXiv:1904.11455, 2019.

[24] W. Fedus, D. Ghosh, J. D. Martin, M. G. Bellemare, Y. Bengio, and
H. Larochelle, “On catastrophic interference in atari 2600 games,” arXiv
preprint arXiv:2002.12499, 2020.

[25] Y. L. Lo and S. Ghiassian, “Overcoming catastrophic interference in
online reinforcement learning with dynamic self-organizing maps,” in
Proceedings of the 33rd Conference on Neural Information Processing
Systems, 2019.

[26] V. Liu, R. Kumaraswamy, L. Le, and M. White, “The utility of sparse
representations for control in reinforcement learning,” in Proceedings
of the 33rd AAAI Conference on Artificial Intelligence, vol. 33, no. 01,
2019, pp. 4384–4391.

[27] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized experience
replay,” in Proceedings of the 4th International Conference on Learning
Representations, 2016.

[28] W. Fedus, P. Ramachandran, R. Agarwal, Y. Bengio, H. Larochelle,
M. Rowland, and W. Dabney, “Revisiting fundamentals of experience
replay,” in Proceedings of the 37th International Conference on Machine
Learning, 2020, pp. 3061–3071.

[29] J. G. Dias and M. J. Cortinhal, “The skm algorithm: A k-means
algorithm for clustering sequential data,” in Proceedings of the Ibero-
American Conference on Artificial Intelligence, 2008, pp. 173–182.

[30] F. Zenke, B. Poole, and S. Ganguli, “Continual learning through synaptic
intelligence,” in Proceedings of the 34th International Conference on
Machine Learning, 2017, pp. 3987–3995.

[31] S. Golkar, M. Kagan, and K. Cho, “Continual learning via neural
pruning,” arXiv preprint arXiv:1903.04476, 2019.

[32] Y. Seo, L. Chen, J. Shin, H. Lee, P. Abbeel, and K. Lee, “State entropy
maximization with random encoders for efficient exploration,” arXiv
preprint arXiv:2102.09430, 2021.

[33] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling, “The arcade
learning environment: An evaluation platform for general agents,” Jour-
nal of Artificial Intelligence Research, vol. 47, pp. 253–279, 2013.

[34] T. Lesort, V. Lomonaco, A. Stoian, D. Maltoni, D. Filliat, and N. Dı́az-
Rodrı́guez, “Continual learning for robotics: Definition, framework,
learning strategies, opportunities and challenges,” Information Fusion,
vol. 58, pp. 52–68, 2020.

[35] D. Isele and A. Cosgun, “Selective experience replay for lifelong
learning,” in Proceedings of the 32nd AAAI Conference on Artificial
Intelligence, vol. 32, no. 1, 2018.

[36] D. Rolnick, A. Ahuja, J. Schwarz, T. P. Lillicrap, and G. Wayne,
“Experience replay for continual learning,” in Proceedings of the 33th
Conference on Neural Information Processing Systems, 2019.

[37] C. Atkinson, B. McCane, L. Szymanski, and A. Robins, “Pseudo-
rehearsal: Achieving deep reinforcement learning without catastrophic
forgetting,” Neurocomputing, vol. 428, pp. 291–307, 2021.

[38] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a
neural network,” in Workshop of the Conference on Neural Information
Processing Systems, 2015.

[39] A. A. Rusu, S. G. Colmenarejo, C. Gulcehre, G. Desjardins, J. Kirk-
patrick, R. Pascanu et al., “Policy distillation,” in Proceedings of the
5th International Conference on Learning Representations, 2016.

[40] T. Gangwani and J. Peng, “Policy optimization by genetic distillation,”
in Proceedings of the 7th International Conference on Learning Repre-
sentations, 2018.

[41] R. Traoré, H. Caselles-Dupré, T. Lesort, T. Sun, G. Cai et al., “Discorl:
Continual reinforcement learning via policy distillation,” in Workshop
of the Conference on Neural Information Processing Systems, 2019.

[42] A. A. Rusu, N. C. Rabinowitz, G. Desjardins, H. Soyer, J. Kirkpatrick,
K. Kavukcuoglu, R. Pascanu, and R. Hadsell, “Progressive neural
networks,” arXiv preprint arXiv:1606.04671, 2016.

[43] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double q-learning,” in Proceedings of the 30th AAAI Conference
on Artificial Intelligence, vol. 30, no. 1, 2016.

[44] M. Hessel, J. Modayil, H. Van Hasselt, T. Schaul, G. Ostrovski, W. Dab-
ney, D. Horgan, B. Piot, M. Azar, and D. Silver, “Rainbow: Combining
improvements in deep reinforcement learning,” in Proceedings of the
32nd AAAI Conference on Artificial Intelligence, vol. 32, no. 1, 2018.

[45] S. Padakandla, K. Prabuchandran, and S. Bhatnagar, “Reinforcement
learning algorithm for non-stationary environments,” Applied Intelli-
gence, vol. 50, no. 11, pp. 3590–3606, 2020.

[46] V. Lomonaco, K. Desai, E. Culurciello, and D. Maltoni, “Continual
reinforcement learning in 3d non-stationary environments,” in Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops, 2020, pp. 248–249.

[47] V. Jain, W. Fedus, H. Larochelle, D. Precup, and M. G. Bellemare,
“Algorithmic improvements for deep reinforcement learning applied to

15

interactive fiction,” in Proceedings of the 34th AAAI Conference on
Artificial Intelligence, vol. 34, no. 04, 2020, pp. 4328–4336.

[48] K. Milan, J. Veness, J. Kirkpatrick, M. Bowling, A. Koop, and
D. Hassabis, “The forget-me-not process,” in Proceedings of the 30th
Conference on Neural Information Processing Systems, vol. 29, 2016,
pp. 3702–3710.

[49] D. Rao, F. Visin, A. A. Rusu, Y. W. Teh, R. Pascanu, and R. Hadsell,
“Continual unsupervised representation learning,” in Proceedings of the
33th Conference on Neural Information Processing Systems, 2019.

[50] D. Ghosh, A. Singh, A. Rajeswaran, V. Kumar, and S. Levine, “Divide-
and-conquer reinforcement learning,” in Proceedings of the 7th Inter-
national Conference on Learning Representations, 2018.

[51] R. Hadsell, D. Rao, A. A. Rusu, and R. Pascanu, “Embracing change:
Continual learning in deep neural networks,” Trends in Cognitive Sci-
ences, 2020.

[52] V. Liu, A. White, H. Yao, and M. White, “Towards a practical
measure of interference for reinforcement learning,” arXiv preprint
arXiv:2007.03807, 2020.

[53] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schul-
man, J. Tang, and W. Zaremba, “Openai gym,” arXiv preprint
arXiv:1606.01540, 2016.

[54] P. S. Castro, S. Moitra, C. Gelada, S. Kumar, and M. G. Bellemare,
“Dopamine: A Research Framework for Deep Reinforcement Learning,”
arXiv preprint arXiv:1812.06110, 2018.

[55] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” in Proceedings of the 3rd International Conference on Learning
Representations, 2014.

[56] Y. Pan, K. Banman, and M. White, “Fuzzy tiling activations: A simple
approach to learning sparse representations online,” in Proceedings of
the 9th International Conference on Learning Representations, 2021.

Tiantian Zhang is currently working toward her
Ph.D. degree in control science and engineering with
the Department of Automation, Tsinghua University,
Beijing, China. She received her B.Sc. degree in
automation from the Department of Information
Science and Technology, Central South University,
Changsha, China, in 2015, and the M.Sc. degree in
control engineering with the Department of Automa-
tion, Tsinghua University, Beijing, China, in 2018.
Her research interests include data science, decision
making, and reinforcement learning.

Xueqian Wang (Member, IEEE) received his M.Sc
and Ph.D. degrees in control science and engineering
from Harbin Institute of Technology (HIT), Harbin,
China, in 2005 and 2010, respectively. From June
2010 to February 2014, he was a Postdoctoral Re-
searcher at HIT. From March 2014 to November
2019, he was an Associate Professor with the Divi-
sion of Informatics, Shenzhen International Graduate
School, Tsinghua University, Shenzhen, China. He is
currently a Professor and the leader of the Center for
Artificial Intelligence and Robotics, Shenzhen Inter-

national Graduate School, Tsinghua University. His Research interests include
Robot dynamics and control, teleoperation, intelligent decision-making and
game-playing, and fault diagnosis.

Bin Liang (Senior Member, IEEE) is currently a
Professor with the Research Center for Navigation
and Control, Department of Automation, Tsinghua
University, Beijing, China. He received his B.Sc.
and M.Sc. degrees in control engineering from the
Honors College of Northwestern Polytechnical Uni-
versity, Xi’an, China, in 1989 and 1991, respectively,
and Ph.D. degree in control engineering from the
Department of Precision Instrument, Tsinghua Uni-
versity, Beijing, China, in 1994. From 1994 to 2003,
he held his positions as a Postdoctoral Researcher,

an Associate Researcher, and a Researcher with China Academy of Space
Technology (CAST), Beijing, China. From 2003 to 2007, he held his positions
as a researcher and an Assistant Chief Engineer with the China Aerospace
Science and Technology Corporation, Beijing. His research interests include
modeling and control of intelligent robotic systems, teleoperation, intelligent
sensing technology.

Bo Yuan (Senior Member, IEEE) received the B.E.
degree in computer science from the Nanjing Uni-
versity of Science and Technology, Nanjing, China,
in 1998, and the M.Sc. and Ph.D. degrees in com-
puter science from The University of Queensland
(UQ), St Lucia, QLD, Australia, in 2002 and 2006,
respectively. From 2006 to 2007, he was a Research
Officer on a project funded by the Australian Re-
search Council, UQ. He is currently an Associate
Professor with the Division of Informatics, Shenzhen
International Graduate School, Tsinghua University,

Shenzhen, China. He has authored or coauthored more than 110 articles in
refereed international conferences and journals. His research interests include
data science, evolutionary computation, and reinforcement learning.

16

APPENDIX A
ILLUSTRATION OF CONTEXT DIVISION

A. Sequential K-Means Clustering

The process of Sequential K-Means Clustering for the
current state s is shown in Algorithm 2. Each context centroid
ci is the average of all of the states s closest to ci. In order to
get a better initialization of C, we can perform offline K-Means
clustering on all states experienced before training starts and
set the results of centroids as the initial C. Then, Sequential
K-Means Clustering is performed in subsequent time steps.

Algorithm 2 SKM: Sequential K-Means Clustering
Input: Current state s;

Initial context centroids C = {c1, c2, . . . , ck}.
Output: Updated centroids C.

1: Count the number of samples in each context:
N = {n1, n2, . . . , nk}

2: if s is closest to centroid ci then
3: Increment ni: ni = ni + 1;
4: Update ci: ci = ci + (1/ni) ∗ (s− ci);
5: end if
6: return C.

(a) ISC (b) ESC

Fig. 13. Two-dimensional t-SNE results of context division according to
different kinds of clustering objects on CartPole-v0: (a) ISC vs (b) ESC.
Here, the colors represent different contexts of which the points represent the
states within the corresponding context.

B. Initial States vs All Experienced States

We compare the effects of two kinds of context division
techniques:
• ISC (Initial States Clustering) means performing context

division using K-Means on the samples sampled from the
initial states distribution, referring to [50];

• ESC (Experienced States Clustering) is our proposed
method that performs context division using Sequential
K-Means Clustering on all states experienced during
training process.

We run the DQN agent incorporated with IQ with the above
two clustering techniques on CartPole-v0, respectively, and
visualize the two-dimensional t-SNE results of context division
in Fig. 13. It can be clearly observed that the contexts divided
by ESC are relatively independent and there is almost no over-
lapping area among contexts, achieving effective decoupling
among states with different distributions. By contrast, there
are obvious overlapping areas among the contexts divided by

Algorithm 3 IQ-RE: Interference-aware Deep Q-learning with
Random Encoder
Input: Initial replay buffer B with capacity N ;

Initial Q-function fθ with random weights θ;
Initial target Q̂-function fθ− with weights θ− = θ;
Initial random encoder fθre with weights θre;
Initial context centroids C = {c1, c2, . . . , ck};
Initial target context centroids Ĉ = C.

Parameter: Total training steps T , the number of contexts k,
the output dimension of random encoder d, target
update period C, learning rate α.

Output: Updated C and fθ.
1: Initial state s;
2: for t = 1, T do
3: Interact with environment to obtain {st, at, rt, st+1}.
4: State encoding: get the fixed representation for st and

st+1, yt = fθre(st), yt+1 = fθre(st+1).

5: States assignment: ω(st)
Ĉ←− yt, ω(st+1)

Ĉ←− yt+1.
6: Store transition {st, ω(st), at, rt, st+1, ω(st+1)} in B.
7: Context centroids update: C ← SKM(yt, C).
8: Joint optimization:

Sample mini-batch {si, ω(si), ai, ri, s
′
i, ω(s′i)}mi=1;

Calculate Lori, LD according to Eqs. (7) and (9);
Update parameter: θ ← θ − α∇θ(Lori + λLD).

9: if t mod C == 0 then
10: θ− = θ, Ĉ = C
11: end if
12: end for

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×107)

0

20

40

60

80

100

Tr
ai

n
Ep

iso
de

 R
et

ur
ns

Breakout
Trained Encoder
Random Encoder

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×107)

0

1

2

3

4

5

6

Tr
ai

n
Ep

iso
de

 R
et

ur
ns

1e3 Carnival

(a) base RL: DQN

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×107)

0

20

40

60

80

100

Tr
ai

n
Ep

iso
de

 R
et

ur
ns

Breakout
Trained Encoder
Random Encoder

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×107)

0

1

2

3

4

5

6

Tr
ai

n
Ep

iso
de

 R
et

ur
ns

1e3 Carnival

(b) base RL: Rainbow

Fig. 14. Learning curves for IQ with different encoders. Here, N is set to
10, 000. The solid lines and shaded regions represent the mean and standard
deviation, respectively, across five runs. In summary, the performance of IQ
with the random encoder is significantly better than that of IQ with the
underlying RL trained encoder.

ISC, since the trajectories starting from the initial states within
different contexts have a high likelihood of overlapping in
subsequent time steps, which is not desirable for reducing
interference on neural network training among differently
distributed states.

17

0 1 2
Evaluated Context

102

101

100
0

100

101

102
Re

la
tiv

e
Ch

an
ge

 in
 L

os
s (

%
) Trained on Context 0

0 1 2
Evaluated Context

102

101

100
0

100

101

102

Re
la

tiv
e

Ch
an

ge
 in

 L
os

s (
%

) Trained on Context 1

0 1 2
Evaluated Context

102

101

100
0

100

101

102

Re
la

tiv
e

Ch
an

ge
 in

 L
os

s (
%

) Trained on Context 2

0 1 2
Context Evaluated On

0
1

2Co
nt

ex
t T

ra
in

ed
 O

n

Relative Change in Loss

-100%

0

>100%

Fig. 15. Measuring the interference among contexts by clustering all experienced states when the agent is trained on Pendulum-v0 for 400K environment
steps (k = 3). This result is obtained using the same experimental setup and method as for CartPole-v0 in Fig. 4, and we can draw a completely consistent
conclusion with that in Fig. 4.

Representation Space of RE

Source K=1

K=2 K=3

Source K=1 K=2 K=3

Source K=1

K=2 K=3

Fig. 16. Two-dimensional t-SNE visualization of K-nearest neighbors of states found by measuring distances in the representation space of a Random Encoder
on Breakout. We observe that the representation space of a randomly initialized encoder effectively captures information about similarity between states.

C. Interference Among Contexts on Pendulum-v0

Similar to Fig. 4, we further investigate the interference
among contexts obtained by our context division method
on Pendulum-v0, and the result is shown in Fig. 15. The
conclusion obtained from this additional experimental result
is consistent with that in Fig. 4.

APPENDIX B
RANDOM ENCODER

A. Representation Space Visualization of Random Encoder

To verify the feature that the random encoder can preserve
the distance similarity of input samples, We find the K-nearest
neighbors of some specific states by measuring the distances
in the low-dimensional representation space produced by a
randomly initialized encoder (Random Encoder) on Breakout.
The results are shown in Fig. 16 from which we can observe
that the raw images corresponding to the K-nearest neighbors
of the source image in the representation space of the random
encoder demonstrate significant similarities.

TABLE III
NUMBER OF FLOPS USED BY EACH AGENT AT 10M

ENVIRONMENT STEPS IN Breakout (SEE
FIG. 14 FOR CORRESPONDING

LEARNING CURVES.)

Base RL Method DQN Rainbow
Encoder TE RE TE RE
PFOLPs 13.676 13.962 13.946 14.232

B. Random Encoder vs. RL Trained Encoder

For high-dimensional complex state spaces, a simple and
intuitive idea is to perform clustering on the low-dimensional
representation space of the underlying RL trained encoder di-
rectly. However, the RL trained encoder is constantly updated
during learning, which means that the low-dimensional output
results corresponding to the same input may be different with
the progress of learning. Therefore, clustering based on the
RL trained encoder is likely to bring extra inaccuracy and
instability into context division. To complement the above

18

TABLE IV
THE NEURAL NETWORKS ARCHITECTURE OF THE UNDERLYING RL MODELS (i.e., DQN

AND RAINBOW) USED IN OUR EXPERIMENTS

Tasks Layer Input Filter size Stride Num filters Activation Output

Classic Control Tasks FC1 Dimension of state space - - 64 Tanh 64
FC2 64 - - Number of actions Linear Number of actions

Atari Games

Conv1 84× 84× 4 8× 8 4 32 ReLU 20× 20× 32
Conv2 20× 20× 32 4× 4 2 64 ReLU 9× 9× 64
Conv3 9× 9× 64 3× 3 1 64 ReLU 7× 7× 64
FC4 7× 7× 64 - - 512 ReLU 512
FC5 512 - - 18 Linear 18

TABLE V
THE COMMON HYPERPARAMETERS OF THE UNDERLYING RL MODELS (i.e., DQN

AND RAINBOW) USED IN OUR EXPERIMENTS

Hyperparameter Classic Control Tasks Atari Games

Training time step 400, 000 steps for CartPole-v0 and Pendulum-v0
1, 000, 000 steps for CartPole-v1 and Acrobot-v1 10, 000, 000 steps

Training ε 0.02 0.01

ε decay schedule 40, 000 steps for CartPole-v0 and Pendulum-v0
100, 000 steps for CartPole-v1 and Acrobot-v1 250, 000 steps

Min. history to start learning 1, 000 steps 20, 000 steps
Target network update frequency 1, 000 steps 8, 000 steps

Batch size 32 32

Learning rate α 0.0005
0.00025 for DQN

0.0000625 for Rainbow

analysis, additional experiments are conducted on two Atari
games Breakout and Carnival. With the underlying RL trained
encoder and the randomly initialized encoder respectively
using two base RL algorithms (i.e., DQN and Rainbow), and
the results are shown in Fig. 14. Furthermore, the numbers
of FLOPs executed by both agents on Breakout are reported
in Table III. Compared with the RL trained encoder, IQ
with the randomly initialized encoder achieves distinctly better
performance with only about 2% overhead. The full procedure
of IQ with random encoder (named IQ-RE) is shown in
Algorithm 3.

APPENDIX C
IMPLEMENTATION DETAILS

A. Implementation Details for the Underlying RL Model

To ensure the fairness of comparison, our results compare
the agents based on the underlying RL model with the same
hyperparameters and neural network architecture. We provide
a full list of neural networks architecture of the underlying RL
models in Table IV and summarize our choices for common
key hyperparameters in Table V.

B. Implementation Details for All Other Methods

In our method and all baseline methods, the part of the
underlying RL model follows the aforementioned network
architecture and hyperparameter settings, and the method-
specific parameter settings are summarized as follows:
• SRNN: the sparsity level β is set to 0.1, and the coeffi-

cient λKL of distributional regularizes is also set to 0.1
for all tasks;

• DSOM: the DSOM learning rate ε is set to 0.25, the
elasticity η is set to 1.0, κ is set to 0.5, and the number

of DSOM weight vectors is set to 64 for all classic control
tasks;

• TCNN: it uses binning operation to turn each raw input
variable to 20 binary variables, and the results of all
classic control tasks are generated with a single tiling;

• IQ: the coefficient λ of distillation loss term is set in
accordance with the exploration proportion ε of the agent
in all tasks: λ = 1 − ε, the number k of context to be
divided is set to 3 for all classic control tasks and 4 for all
Atari games, and the output dimension of random encoder
d is set to 50 for all Atari games.

APPENDIX D
ADDITIONAL EXPERIMENTAL RESULTS

A. Measuring Interference

We show a comparison in terms of Approximate Expected
Interference (AEI, referring to Eq. (5)) in this section. Fig. 17
records the negative interference generated after each iteration
during the training process of each agent, where all curves
correspond to the learning curves in Fig. 6, respectively. In
our experiments, we approximate d̂ in Eq. (5) with a buffer
containing recent transitions of capacity 10K, keeping the
settings being same as that in Fig. 2. It should be noted that,
to demonstrate the interference caused by each model iteration
more clearly and intuitively, we only show the negative inter-
ference in each update step, that is, all update steps in which
the losses on recent 10K transitions increase after updating the
model.

From Fig. 17, we can see that the interference curves corre-
sponding to IQ (red curves) are are below those corresponding
to all other baselines in almost all task settings. Therefore, we
can further confirm that our proposed scheme IQ does indeed

19

0.0 0.1 0.2 0.3 0.4
Environment Steps (×106)

0.00

0.01

0.02

0.03

0.04

0.05
Tr

ai
n

In
te

rfe
re

nc
e

CartPole-v0
DQN
DQN + SRNN
DQN + DSOM
DQN + TCNN
DQN + IQ (ours)

0.0 0.1 0.2 0.3 0.4
Environment Steps (×106)

0.0000

0.0005

0.0010

0.0015

0.0020

Tr
ai

n
In

te
rfe

re
nc

e

Pendulum-v0

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×106)

0.00

0.05

0.10

0.15

0.20

Tr
ai

n
In

te
rfe

re
nc

e

CartPole-v1

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×106)

0.00

0.02

0.04

0.06

0.08

Tr
ai

n
In

te
rfe

re
nc

e

Acrobot-v1

(a) N = 50, 000

0.0 0.1 0.2 0.3 0.4
Environment Steps (×106)

0.00

0.02

0.04

0.06

0.08

0.10

Tr
ai

n
In

te
rfe

re
nc

e

CartPole-v0

0.0 0.1 0.2 0.3 0.4
Environment Steps (×106)

0.000

0.003

0.006

0.009

0.012

Tr
ai

n
In

te
rfe

re
nc

e

Pendulum-v0

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×106)

0.00

0.05

0.10

0.15

0.20

Tr
ai

n
In

te
rfe

re
nc

e

CartPole-v1

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×106)

0.00

0.01

0.02

0.03

0.04

Tr
ai

n
In

te
rfe

re
nc

e

Acrobot-v1

(b) N = 100

0.0 0.1 0.2 0.3 0.4
Environment Steps (×106)

0.00

0.05

0.10

0.15

0.20

0.25

Tr
ai

n
In

te
rfe

re
nc

e

CartPole-v0

0.0 0.1 0.2 0.3 0.4
Environment Steps (×106)

0.000

0.003

0.006

0.009

0.012

Tr
ai

n
In

te
rfe

re
nc

e

Pendulum-v0

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×106)

0.00

0.10

0.20

0.30

0.40

Tr
ai

n
In

te
rfe

re
nc

e

CartPole-v1

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×106)

0.000

0.005

0.010

0.015

0.020

Tr
ai

n
In

te
rfe

re
nc

e

Acrobot-v1

(c) N = 1

Fig. 17. Interference analysis on classic control tasks with different replay buffer capacities N (See Fig. 6 for corresponding learning performance curves).
In principle, IQ does indeed significantly alleviates the negative interference encountered by the base RL agents during learning progress.

dramatically reduce the catastrophic interference commonly
encountered by the existing basic RL methods, and outperform
to other baselines for interference mitigation during learning
in the single RL task settings.

B. Additional Experimental Results on MountainCar

We conduct additional performance evaluation experiments
on MountainCar with sparse reward. The reward threshold
used to determine the success of MountainCar is −110.0.
In our experiments, the episode terminates if it takes more
than 1000 steps. All implementation details, including network
architecture and parameter settings, are exactly the same
as those in CartPole-v1 and Acrobot-v1, except additional
reward shaping. We reshape the reward for each time step
based on potentials by referring to the solution10 on the task
leadboard11. In addition, we add an extra bonus of 100 when
the car reaches the target position. The results in Fig. 18
demonstrate the consistent superiority of IQ over the baseline
methods as shown in Fig. 6.

C. Two-Sample Kolmogorov-Smirnov Test Results for Fig. 7

We performed a two-sample Kolmogorov-Smirnov test on
the area under the learning curves reported in Fig. 7. Table

10https://github.com/Pechckin/MountainCar/blob/master/MountainCar-
v0.py.

11https://github.com/openai/gym/wiki/Leaderboard.

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×106)

1000

800

600

400

200

Tr
ai

n
Ep

iso
de

 R
et

ur
ns

MountainCar-v0

DQN
DQN + SRNN
DQN + DSOM
DQN + TCNN
DQN + IQ (ours)

(a) N = 50, 000

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×106)

1000

800

600

400

200
Tr

ai
n

Ep
iso

de
 R

et
ur

ns

MountainCar-v0

(b) N = 100

Fig. 18. Learning curves on MountainCar with different replay buffer sizes.

VI summarizes the p-values of the test, where each cell in the
table reports the p-value from the two-sample Kolmogorov-
Smirnov test comparing the 5 AUC (one for each run) values
of the corresponding learning curve in Fig. 7. At the 1%
significant level, we mark the values with significant difference
in boldface in which the two values with asterisk indicate
that IQ-RE is worse than SRNN, while in all other cases
IQ-RE produces statistically significant improvement over
corresponding baselines. The values not in boldface represent
the cases where the performance of IQ-RE is comparable to
baselines.

D. Statistics of the Maximum Deterioration Ratios
In order to further investigate the maximum degradation de-

gree of the performance during model training, the maximum

20

TABLE VI
P -VALUES OF THE AUC OF THE LEARNING CURVES IN FIG. 7 (THE SETTINGS WHERE THE DIFFERENCE BETWEEN

THE AUC OF THE LEARNING CURVES IS SIGNIFICANT ARE MARKED IN BOLDFACE, WHICH MEANS
THAT THE SIGNIFICANCE TEST REJECTS THE NULL HYPOTHESIS THAT THE AREA

UNDER THE LEARNING CURVES COME FROM NORMAL DISTRIBUTION
WITH EQUAL MEANS AT THE 1% LEVEL)

Base RL DQN Rainbow
Method IQ-RE vs DQN IQ-RE vs SRNN IQ-RE vs Rainbow IQ-RE vs SRNN

N 1,000,000 10,000 1,000,000 10,000 1,000,000 10,000 1,000,000 10,000
Pong 1.62× 10−06 1.32× 10−07 4.09× 10−04 1.91× 10−04 8.69× 10−02 5.90× 10−04 5.75× 10−05 1.62× 10−04

Breakout 1.21× 10−01 1.37× 10−12 2.19× 10−01 6.03× 10−04 6.61× 10−18 3.96× 10−05 5.19× 10−08 4.87× 10−05

Carnival 2.00× 10−01 1.62× 10−06 2.56× 10−02 8.45× 10−04 1.56× 10−20 2.22× 10−07 2.25× 10−19 7.96× 10−28

Freeway 2.60× 10−05 1.00× 10−00 1.02× 10−11 1.00× 10−00 2.00× 10−01 2.60× 10−06 1.34× 10−01 ∗1.20× 10−03

Tennis 2.00× 10−01 2.48× 10−05 7.60× 10−01 ∗7.14× 10−11 2.00× 10−01 2.03× 10−03 4.01× 10−01 2.80× 10−06

FishingDerby 4.67× 10−01 8.69× 10−02 6.91× 10−02 2.88× 10−01 9.69× 10−01 8.30× 10−03 7.96× 10−14 6.09× 10−07

TABLE VII
STATISTICS OF THE MAXIMUM DETERIORATION RATIOS SUFFERED DURING TRAINING ON

ATARI GAMES (BASED ON THE PERFORMANCE OF FIVE RUNS IN FIG. 7, AND
THE BEST PERFORMANCE IS MARKED IN BOLDFACE.)

Method DQN DQN + SRNN DQN + IQ-RE (ours) Rainbow Rainbow + SRNN Rainbow + IQ-RE (ours)
N 10,000 1,000,000 10,000 1,000,000 10,000 1,000,000 10,000 1,000,000 10,000 1,000,000 10,000 1,000,000

Pong 0.041 0.017 0.029 0.022 0.016 0.016 0.026 0.005 0.014 0.005 0.013 0.005
Breakout 0.009 0.084 0.008 0.111 0.035 0.094 0.071 0.256 0.057 0.298 0.071 0.250
Carnival 0.012 0.007 0.021 0.004 0.009 0.013 0.041 0.080 0.019 0.019 0.045 0.076
Freeway 1.000 0.176 1.000 0.095 1.000 0.046 0.010 0.002 0.524 0.140 0.067 0.003
Tennis 0.586 0.118 0.400 0.106 0.370 0.181 0.493 0.176 0.527 0.136 0.325 0.188

FishingDerby 0.096 0.107 0.152 0.100 0.113 0.082 0.042 0.019 0.061 0.018 0.030 0.014
Average 0.291 0.085 0.268 0.073 0.257 0.072 0.114 0.090 0.200 0.103 0.092 0.089

0.0 0.1 0.2 0.3 0.4
Environment Steps (×106)

0

50

100

150

200

Tr
ai

n
Ep

iso
de

 R
et

ur
ns

CartPole-v0

0.0 0.1 0.2 0.3 0.4
Environment Steps (×106)

1600

1400

1200

1000

800

600

400

200

Tr
ai

n
Ep

iso
de

 R
et

ur
ns

Pendulum-v0

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×106)

0

100

200

300

400

500

Tr
ai

n
Ep

iso
de

 R
et

ur
ns

CartPole-v1

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×106)

500

400

300

200

100

Tr
ai

n
Ep

iso
de

 R
et

ur
ns

Acrobot-v1

DQN
no clustering
no distillation
no multi-head
DQN + IQ (ours)

Fig. 19. Additional experimental results of IQ incorporated with DQN and three different ablations, on each individual task (N = 1).

deterioration ratios compared to the previous maximal episode
returns are given in Table VII. From which, we can see that
IQ-RE achieves less performance degradation in most tasks
compared to its counterparts. Under a small buffer setting
(N = 10, 000), DQN and Rainbow incorporated with IQ-
RE surpass the original RL methods by 3.4% and 2.2%,
respectively, and exceed that combined with SRNN by 1.1%
and 10.8%, respectively. Note that, even with a large memory
(N = 1, 000, 000), IQ-RE still shows certain advantages over
the baselines.

E. Additional Results of Ablation Experiments

We provide additional experimental results of IQ incorpo-
rated with DQN and three different ablations on four classic
control tasks with N = 1 in Fig. 19. Overall, all three
ablations do improve the performance of DQN, but are still
not comparable to IQ that combines all components. Those
results are consistent with the analysis about ablation study in
Section V-F.

F. Additional Results of Context Division Strategy

We show additional experimental results of the comparison
to other two context division strategies (i.e., context division
based on game score or initial state space) under N = 50, 000
and N = 1 settings in Fig. 20, which further confirm the
effectiveness of our proposed context division strategy based
on all experienced states during learning.

APPENDIX E
CALCULATION OF MODEL COMPLEXITY

Computational Complexity of Context Division. At each
time step, SKM only needs to calculate the distances be-
tween the current state and k context centroids. Given a d-
dimensional state space and T -step environment interactions,
the time complexity of context division is O(Tkd). At the
same time, since only k additional context centroids need to
be stored for clustering, the space complexity is O(kd).

Calculation of Floating Point Operations. We obtain the
number of operations per forward pass for all layers in the

21

0.0 0.1 0.2 0.3 0.4
Environment Steps (×106)

0

50

100

150

200
Tr

ai
n

Ep
iso

de
 R

et
ur

ns
CartPole-v0

Game Score
Initial States
Experienced States

0.0 0.1 0.2 0.3 0.4
Environment Steps (×106)

1600

1400

1200

1000

800

600

400

200

Tr
ai

n
Ep

iso
de

 R
et

ur
ns

Pendulum-v0

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×106)

0

100

200

300

400

500

Tr
ai

n
Ep

iso
de

 R
et

ur
ns

CartPole-v1

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×106)

500

400

300

200

100

Tr
ai

n
Ep

iso
de

 R
et

ur
ns

Acrobot-v1

(a) N = 50, 000

0.0 0.1 0.2 0.3 0.4
Environment Steps (×106)

0

50

100

150

200

Tr
ai

n
Ep

iso
de

 R
et

ur
ns

CartPole-v0

Game Score
Initial States
Experienced States

0.0 0.1 0.2 0.3 0.4
Environment Steps (×106)

1600

1400

1200

1000

800

600

400

200
Tr

ai
n

Ep
iso

de
 R

et
ur

ns

Pendulum-v0

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×106)

0

100

200

300

400

500

Tr
ai

n
Ep

iso
de

 R
et

ur
ns

CartPole-v1

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×106)

500

400

300

200

100

Tr
ai

n
Ep

iso
de

 R
et

ur
ns

Acrobot-v1

(b) N = 1

Fig. 20. Additional experimental results of comparisons of IQ (red, performs context division on all experienced states) with other two context division
strategies (other colors) with N = 50, 000 and N = 1.

encoder (denoted by E) and the number of operations per for-
ward pass for all MLP layers in each output head (denoted by
M), as in https://openai.com/blog/ai-and-compute/. Therefore,
the number of FLOPs of IQ-RE is:

2bI(E + kM) + 2bI(E + kM) + T (E + kM) + TE

where b is the batch size; T is the number of environment
steps; I is the number of training updates. The first two
terms are for the forward and backward passes required in
training updates, respectively. The latter two terms are for
the forward passes required to compute the policy action and
obtain the low-dimensional representation from the random
encoder, respectively. In our experiments: b = 32, T = 1e7,
I = 0.25e7, k = 4, E = 28.582 MFLOPs, M = 3.420
MFLOPs for Rainbow and 3.215 MFLOPs for DQN.

	I Introduction
	II Related Work
	II-A Multi-task Continual Reinforcement Learning
	II-B Single-task Reinforcement Learning
	II-C Context Detection and Identification

	III Preliminaries and Problem Statement
	III-A Definitions and Glossaries
	III-B Problem Statement

	IV The Proposed Method
	IV-A Context Division
	IV-B Knowledge Distillation
	IV-C Joint Optimization Procedure
	IV-D Random Encoders for High-dimensional State Space

	V Experiments and Evaluations
	V-A Datasets
	V-B Implementation
	V-C Baselines
	V-D Evaluation Metrics
	V-E Results
	V-F Analysis

	VI Conclusion and Future Work
	References
	Biographies
	Tiantian Zhang
	Xueqian Wang
	Bin Liang
	Bo Yuan

	Appendix A: Illustration of Context Division
	A-A Sequential K-Means Clustering
	A-B Initial States vs All Experienced States
	A-C Interference Among Contexts on Pendulum-v0

	Appendix B: Random Encoder
	B-A Representation Space Visualization of Random Encoder
	B-B Random Encoder vs. RL Trained Encoder

	Appendix C: Implementation Details
	C-A Implementation Details for the Underlying RL Model
	C-B Implementation Details for All Other Methods

	Appendix D: Additional Experimental Results
	D-A Measuring Interference
	D-B Additional Experimental Results on MountainCar
	D-C Two-Sample Kolmogorov-Smirnov Test Results for Fig. 7
	D-D Statistics of the Maximum Deterioration Ratios
	D-E Additional Results of Ablation Experiments
	D-F Additional Results of Context Division Strategy

	Appendix E: Calculation of model complexity

