
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 1

ZNNs with a Varying-Parameter Design Formula

for Dynamic Sylvester Quaternion Matrix Equation
Lin Xiao, Wenqian Huang, Xiaopeng Li, Fuchun Sun, Qing Liao, Lei Jia, Jichun Li, and Sai Liu

Abstract—This paper aims to studying how to solve dynamic
Sylvester quaternion matrix equation (DSQME) using the neural
dynamic method. In order to solve the DSQME, the complex
representation method is firstly adopted to derive the equivalent
dynamic Sylvester complex matrix equation (DSCME) from
the DSQME. It is proved that the solution to the DSCME
is the same with that of the DSQME in essence. Then, a
state-of-the-art neural dynamic method is presented to generate
a general dynamic-varying parameter zeroing neural network
(DVPZNN) model with its global stability being guaranteed by
Lyapunov theory. Specifically, when the linear activation function
is utilized in the DVPZNN model, the corresponding model
(termed LDVPZNN) achieves finite-time convergence, and time
range is theoretically calculated. When the nonlinear power-
sigmoid activation function is utilized in the DVPZNN model, the
corresponding model (termed PSDVPZNN) achieves the better
convergence as compared with the LDVPZNN model, which
is proved in detail. At last, three examples are presented to
compare the solution performance of different neural models
for the DSQME and the equivalent DSCME, and the results
verify the correctness of the theories, and the superiority of the
proposed two DVPZNN models.

Index Terms—Zeroing neural network, dynamic Sylvester
quaternion matrix equation, complex representation, finite-time
convergence.

I. INTRODUCTION

Q
UATERNION was proposed by William Luyun Hamil-

ton in the 19th century when studying how to extend

complex numbers to higher dimensions [1]. In fact, quaternion

is an extension of the field of ordinary complex numbers. The

ordinary complex number field is composed of a real part

and an imaginary part. When adding two imaginary parts on

the basis of the complex number field, the quaternion was

formally proposed. Throughout the paper, C represents the

complex number field, and Q represents the quaternion field.

Quaternions are widely used in many aspects, such as image

analysis [2], [3], attitude control [4], and signal processing [5],

[6].

In recent years, solving the problems related to Sylvester

equation has become a hot issue. The Sylvester equation is a

L. Xiao, W. Huang, X. Li, L. Jia and S. Liu are the Hunan Provin-
cial Key Laboratory of Intelligent Computing and Language Information
Processing, and MOE-LCSM, Hunan Normal University, Changsha, Hunan
410081, China. (e-mail: xiaolin5@hunnu.edu.cn; Wqsunshine823@163.com;
478084904@qq.com; LJia@smail.hunnu.edu.cn; 2453069767@qq.com).

F. Sun is with the Department of Computer Science, Tsinghua University,
Beijing 100000, China. (e-mail: fcsun@tsinghua.edu.cn).

Q. Liao is with the College of Computer Science and Technology,
Harbin Institute of Technology, Shenzhen 518005, China. (e-mail: liao-
qing@hit.edu.cn).

J. Li is with the School of Science, Engineering and Design, Teesside
University, Middlesbrough TS1 3BX, U.K. (e-mail: jl20340@essex.ac.uk).

very common equation. There have been a lot of researches

on the dynamic Sylvester equation. For example, a recurrent

neural network (RNN) proposed by Zhang et al. [7], which is

also termed zeroing neural network (ZNN), was used to solve

the Sylvester equation with dynamic coefficients; the general-

ized Sylvester equation was solved by using generalized Schur

methods [8]; and a semi-supervised multi-label learning was

worked by solving the Sylvester equation [9]. Generally, the

dynamic Sylvester equation is:

D(t)U(t) + U(t)G(t) = J(t) ∈ Rn×n, (1)

where D(t), G(t) and J(t) are known, and U(t) is unknown.

By the previous three values, the value of U(t) can be

obtained. Solving the Sylvester equation is of great signifi-

cance in some fields, such as linear system [10], [11], signal

processing [12], [13], pole configuration [14], and observer

design [15].

Combining the quaternion and the Sylvester equation can

get the Sylvester quaternion equation. The Sylvester quater-

nion equation means that four elements in the equation are

all quaternions, including three known quaternions and one

unknown quaternion to be solved. The Sylvester quaternion

equations include the static and dynamic Sylvester quaternion

equations, which have been widely used in the fields of

robot [16], [17], human body image [18], [19] and so on.

The solution of the static Sylvester quaternion equation will

not change with time, while the solution of the dynamic

Sylvester quaternion equation will change with the change of

time. Generally, the dynamic Sylvester quaternion equation

is an extension of the static Sylvester quaternion equation.

Therefore, the dynamic Sylvester quaternion matrix equation

(DSQME) is a more general case. When all three imaginary

parts are equal to 0 in the quaternion, the DSQME becomes a

real number Sylvester matrix equation. When two imaginary

parts are equal to 0 and the others are not equal to 0,

the DSQME becomes a complex number Sylvester matrix

equation.

ZNN as a kind of neural network [20] can effectively

solve time-varying problems, including the DSQME. In the

beginning, many researchers improved its convergence by

changing the activation function. Guo et al. [21] proposed

a novel ZNN model activated by Li-function; based on the

adaptive design coefficients of the symbolic dual-power non-

linear activation function, Jian et al. [22] proposed three

new adaptive ZNN models; in [23], the proposed complex

ZNN models are activated with various complex activation

functions respectively, such as sign function and Li-function.

Later, researchers proposed different design formulas to get

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2

better performance of the ZNN. Jin et al. [24] proposed

a noise-tolerant ZNN design formula; Shi et al. [25] used

integral-type error function and twice ZNN formula. Finally,

researchers found that adding varying parameters can also

improve convergence and robustness of the ZNN. Tan et al.

[26] presented new varying-parameter ZNN models; Zhang

et al. [27] proposed a varying-gain RNN, and other studies

on the RNN are proposed [28], [29]. However, the studied

varying parameters of the ZNN increase over time, which will

increase the calculation complexity of the model and waste

a lot of resources. Therefore, in this paper, by combining

the design formula with dynamic-varying parameters, the

dynamic-varying parameter ZNN (DVPZNN) design formula

is proposed. The DVPZNN model can be obtained on the basis

of the DVPZNN design formula correspondingly.

Using different activation functions for the proposed D-

VPZNN model can get different ZNN models. When using

the linear activation function in the DVPZNN model, linear

DVPZNN (LDVPZNN) model is obtained; when using the

nonlinear power-sigmoid activation function, power-sigmoid

DVPZNN (PSDVPZNN) model is obtained. The main idea

of this paper is to put forward two novel DVPZNN models,

named LDVPZNN and PSDVPZNN models, based on a

varying design parameter for solving the DSQME.

The organization structure of this paper is as below. Section

II introduces the concepts related to the quaternion and the

description of the problem to be solved. In Section III, two

DVPZNN models to solve the DSQME are proposed. In

Section IV, the stability and convergence of the proposed mod-

els are analyzed theoretically. In Section V, three simulative

experiments are provided to display the excellent attributes of

the presented two models. Section VI concludes this paper

globally. The main contributions of this paper are as follows.

• The dynamic Sylvester quaternion matrix equation (D-

SQME) is studied in this work for the first time. Based

on the complex representation method, the DSQME is

transformed into the dynamic Sylvester complex matrix

equation (DSCME), and the correctness of the complex

representation of the quaternion matrix is proven.

• A novel design formula which can adapt to the change of

the error is applied to the ZNN model, with two dynamic-

varying parameter zeroing neural network (DVPZNN)

models being further proposed. The global stability and

the finite-time convergence are theoretically proven and

analyzed.

• Through three examples and comparing with the classic

ZNN model activated with the sign-bi-power function, it

is concluded that two proposed DVPZNN models in this

paper have superior convergence.

II. PROBLEM DESCRIPTION

Quaternion has certain rules and methods of operation. In

this section, the rules and methods will be introduced in detail.

The quaternion consists of one real part and three imaginary

parts. Generally, a quaternion q̂ is:

q̂ = q0 + q1i + q2j + q3k, (2)

where q0 denotes the real part and q1i + q2j + q3k denotes

the imaginary part; i, j and k are all imaginary units. The

relationships between three imaginary units are as follows:

i2 = j2 = k2 = ijk = −1, i3 = −i, j3 = −j, k3 =
−k,−ij = ji = −k,−jk = kj = −i,−ki = ik = −j.

There are two ways to express a quaternion in a matrix,

which are real representation and complex representation.

Since this paper deals with complex representation, the follow-

ing contents about complex representation will be introduced

in detail. Through the above rules, quaternion (2) can be

transformed into: q̂ = (q0 + q1i) + (q2 + q3i)j. Let h0 =
q0 + q1i, h1 = q2 + q3i, we can get: q̂ = h0 + h1j. Generally,

the method of expressing a quaternion with a second-order

complex number matrix is called the complex representation.

For the convenience of representation, we define Φ (·) as the

complex representation of the quaternion. Next, the complex

representation of the quaternion q̂ can be expressed as [30]:

Φ(q̂) =

[

q0 − q3i −q2 − q1i
q2 − q1i q0 + q3i

]

∈ C2×2.

For the quaternion matrix Q̂ ∈ Q2×2, Q̂ = Q0+Q1i+Q2j+
Q3k. Express Q̂ as the complex representation of quaternion

matrix:

Φ(Q̂) =

[

Q0 −Q3i −Q2 −Q1i
Q2 −Q1i Q0 +Q3i

]

∈ C4×4.

It has been proved that the result of multiplying two

quaternions is the same as the result of multiplying their

complex representations [30]. In principle, since the complex

representation of the quaternion matrix is derived from the

complex representation of the quaternion, the quaternion ma-

trix also has the above properties. Below, a theorem is given

to prove this point.

Theorem 1. The complex representation of the product of two

quaternion matrices is equal to the product of the complex

representations of two quaternion matrices.

Proof: Give four quaternions a = a0 + a1i+ a2j + a3k,

b = b0 + b1i + b2j + b3k, c = c0 + c1i + c2j + c3k, and

d = d0 + d1i+ d2j + d3k. These four quaternion arrays form

a quaternion matrix X ∈ Q2×2:

X =

[

a b
c d

]

, (3)

and the complex representation of the quaternion matrix X is:

Φ(X) =

[

X0 −X3i −X2 −X1i
X2 −X1i X0 +X3i

]

, (4)

where

X0 =

[

a0 b0
c0 d0

]

, X1 =

[

a1 b1
c1 d1

]

,

X2 =

[

a2 b2
c2 d2

]

, X3 =

[

a3 b3
c3 d3

]

.

(5)

Similarly, give four quaternions e = e0 + e1i + e2j + e3k,

f = f0 + f1i + f2j + f3k, g = g0 + g1i + g2j + g3k, and

h = h0 +h1i+h2j+h3k. These four quaternion arrays form

a quaternion matrix Y ∈ Q2×2:

Y =

[

e f
g h

]

, (6)

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 3

and the complex representation of the quaternion matrix Y is:

Φ(Y) =

[

Y0 − Y3i −Y2 − Y1i
Y2 − Y1i Y0 + Y3i

]

, (7)

where

Y0 =

[

e0 f0
g0 h0

]

, Y1 =

[

e1 f1
g1 h1

]

,

Y2 =

[

e2 f2
g2 h2

]

, Y3 =

[

e3 f3
g3 h3

]

.

(8)

The product of two quaternion matrices is as follows:

XY =

[

ae+ bg af + bh
ce+ dg cf + dh

]

. (9)

Let

a0e0 − a1e1 − a2e2 − a3e3 + b0g0 − b1g1 − b2g2 − b3g3 = α0,

a0e1 + a1e0 + a2e3 − a3e2 + b0g1 + b1g0 + b2g3 − b3g2 = α1,

a0e2 − a1e3 + a2e0 + a3e1 + b0g2 − b1g3 + b2g0 + b3g1 = α2,

a0e3 + a1e2 − a2e1 + a3e0 + b0g3 + b1g2 − b2g1 + b3g0 = α3,

a0f0 − a1f1 − a2f2 − a3f3 + b0h0 − b1h1 − b2h2 − b3h3 = β0,

a0f1 + a1f0 + a2f3 − a3f2 + b0h1 + b1h0 + b2h3 − b3h2 = β1,

a0f2 − a1f3 + a2f0 + a3f1 + b0h2 − b1h3 + b2h0 + b3h1 = β2,

a0f3 + a1f2 − a2f1 + a3f0 + b0h3 + b1h2 − b2h1 + b3h0 = β3,

c0e0 − c1e1 − c2e2 − c3e3 + d0g0 − d1g1 − d2g2 − d3g3 = η0,

c0e1 + c1e0 + c2e3 − c3e2 + d0g1 + d1g0 + d2g3 − d3g2 = η1,

c0e2 − c1e3 + c2e0 + c3e1 + d0g2 − d1g3 + d2g0 + d3g1 = η2,

c0e3 + c1e2 − c2e1 + c3e0 + d0g3 + d1g2 − d2g1 + d3g0 = η3,

c0f0 − c1f1 − c2f2 − c3f3 + d0h0 − d1h1 − d2h2 − d3h3 = ρ0,

c0f1 + c1f0 + c2f3 − c3f2 + d0h1 + d1h0 + d2h3 − d3h2 = ρ1,

c0f2 − c1f3 + c2f0 + c3f1 + d0h2 − d1h3 + d2h0 + d3h1 = ρ2,

c0f3 + c1f2 − c2f1 + c3f0 + d0h3 + d1h2 − d2h1 + d3h0 = ρ3.

The above formula can be converted to:

XY =

[

α0 + α1i+ α2j + α3k β0 + β1i+ β2j + β3k
η0 + η1i+ η2j + η3k ρ0 + ρ1i+ ρ2j + ρ3k

]

.

The complex representation of XY is

Φ(XY)

=

[

α0 β0

η0 ρ0

]

−

[

α3 β3

η3 ρ3

]

i −

[

α2 β2

η2 ρ2

]

−

[

α1 β1

η1 ρ1

]

i

[

α2 β2

η2 ρ2

]

−

[

α1 β1

η1 ρ1

]

i

[

α0 β0

η0 ρ0

]

+

[

α3 β3

η3 ρ3

]

i

.

(10)
The product of the complex representation of two quaternion

matrices X and Y is as follows:

Φ(X)Φ(Y) =

[

X0 −X3i −X2 −X1i
X2 −X1i X0 +X3i

] [

Y0 − Y3i −Y2 − Y1i
Y2 − Y1i Y0 + Y3i

]

=

[

a0 b0
c0 d0

]

−

[

a3 b3
c3 d3

]

i −

[

a2 b2
c2 d2

]

−

[

a1 b1
c1 d1

]

i

[

a2 b2
c2 d2

]

−

[

a1 b1
c1 d1

]

i

[

a0 b0
c0 d0

]

+

[

a3 b3
c3 d3

]

i

•

[

e0 f0
g0 h0

]

−

[

e3 f3
g3 h3

]

i −

[

e2 f2
g2 h2

]

−

[

e1 f1
g1 h1

]

i

[

e2 f2
g2 h2

]

−

[

e1 f1
g1 h1

]

i

[

e0 f0
g0 h0

]

+

[

e3 f3
g3 h3

]

i

=

[

α0 β0
η0 ρ0

]

−

[

α3 β3
η3 ρ3

]

i −

[

α2 β2
η2 ρ2

]

−

[

α1 β1
η1 ρ1

]

i

[

α2 β2
η2 ρ2

]

−

[

α1 β1
η1 ρ1

]

i

[

α0 β0
η0 ρ0

]

+

[

α3 β3
η3 ρ3

]

i

.

(11)

Through a series of calculations, the results of Φ(X)Φ(Y) and

Φ(XY) are equal, since (10) and (11) are the same. The proof

is completed.

In this paper, the following 2× 2 DSQME is considered:

D̂(t)Û(t) + Û(t)Ĝ(t) = Ĵ(t), (12)

where D̂(t), Ĝ(t) and Ĵ(t) ∈ Q2×2 are known quaternion

matrices, and Û(t) ∈ Q2×2 is an unknown quaternion matrix

to be solved. Firstly, we get the DSCME based on Theorem

1:

Φ(D̂(t))Φ(Û (t)) + Φ(Û (t))Φ(Ĝ(t)) = Φ(Ĵ(t)). (13)

Then, we can get:

D(t)U(t) + U(t)G(t) = J(t), (14)

where

D(t) =

[

D(t)0 −D(t)3i −D(t)2 −D(t)1i
D(t)2 −D(t)1i D(t)0 +D(t)3i

]

∈ C4×4,

U(t) =

[

U(t)0 − U(t)3i −U(t)2 − U(t)1i
U(t)2 − U(t)1i U(t)0 + U(t)3i

]

∈ C4×4,

G(t) =

[

G(t)0 −G(t)3i G(t)2 −G(t)1i
G(t)2 −G(t)1i G(t)0 +G(t)3i

]

∈ C4×4,

J(t) =

[

J(t)0 − J(t)3i J(t)2 − J(t)1i
J(t)2 − J(t)1i J(t)0 + J(t)3i

]

∈ C4×4.

(15)

So far, if we want to solve the DSQME problem, we

can solve DSCME (14). The following model derivation and

theoretical analysis will be carried out based on equation (14).

III. ZNN MODEL

In this section, the related ZNN models will be introduced in

detail. This section is mainly divided into three small chapters

for description.

A. The Existing ZNN Design Formula

Define an error function based on DSCME (14), which is

obtained in the previous study:

L(t) = D(t)U(t) + U(t)G(t)− J(t), (16)

where D(t), G(t), J(t) and U(t) ∈ C4×4. In terms of [31],

an evolutionary design formula is utilized:

L̇(t) = −γΨ(ν1L(t) + ν2L
̺

σ (t)), (17)

where Ψ(·) represents monotonically increasing odd activation

function that activates each element in L(t); γ, ν1 and ν2 are

positive real numbers; ̺ and σ are positive integers. Some

classic monotonically increasing odd functions are listed as

below.

• The linear activation function:

ψ(x) = x. (18)

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 4

• The power-sigmoid activation function:

ψ(x) =

{

xα, if |x| ≥ 1,
1+exp(−η)
1−exp(−η) ·

1−exp(−ηx)
1+exp(−ηx) , otherwise,

(19)

where η > 2 and α ≥ 3.

• The sign-bi-power activation function:

ψ(x) =
sgnǫ(x)

2
+

sgn1/ǫ(x)

2
, (20)

with design parameter ǫ ∈ (0, 1) and sgnǫ(·) defined as

sgnǫ(x) =

|x|ǫ, if x > 0,

0, if x = 0,

−|x|ǫ, if x < 0.

(21)

Remark 1. The power-sigmoid activation function not only

guarantees the superior convergence when the absolute value

of the error is greater than 1, but also guarantees the ex-

ponential convergence when the absolute value of the error

is less than 1. Compared with the linear activation function,

the power-sigmoid activation function is more flexible and

autonomous. Due to the switching term sgn(·) in the sign-

bi-power activation function, it will inevitably lead to the

chattering of the neural network. Thus the power-sigmoid

activation function without switching term sgn(·) is more stable

than the sign-bi-power activation function.

B. The New ZNN Design Formula

Adaptive thinking has been deeply embedded in neural

networks [32], and varying parameters are one of them.

Moreover, in order to get better convergence, add varying

parameters on the basis of design formula (17) to get a novel

design formula:

L̇(t) = −γ exp(||L(t)||)Ψ(ν1L(t) + ν2L
̺

σ (t)), (22)

where ||L(t)|| =
√

∑4
s=1

∑4
w=1 |lsw(t)|2 denotes Frobenius

norm of modulus and |lsw(t)| represents the modulus of lsw(t).
When the error is relatively large, we hope that the parameter

is relatively large to increase the step size of the ODE solver to

achieve the purpose of rapid convergence of the state solution.

However, a larger step size will lead to the consumption

of computing resources and the increase in computing time.

When the error is small, the situation is opposite to the above.

Therefore, we obtain varying parameter exp(||L(t)||) to ensure

the convergence effect while avoiding the unnecessary waste

of resources.

C. Two DVPZNN Models

Next, we get the derivation of L(t) based on equation (16):

L̇(t) = D(t)U̇(t)+ Ḋ(t)U(t)+ U̇(t)G(t)+U(t)Ġ(t)− J̇(t).
(23)

Algorithm 1 Implementation of the DVPZNN model (25)

Input: D(t) ∈ C4×4, G(t) ∈ C4×4, J(t) ∈ C4×4 , initial

value U(0) ∈ C4×4, parameter γ ∈ R+, total time T ∈ R+,

and step size τ ∈ R+.

Output: State solutions Us ∈ C
T
τ
×16.

1: Define Us ∈ C
T
τ
×16 and M ∈ C16×16.

2: u0=reshape(U(0),16,1) ,Us(1, :) = u
T
0 .

3: Take the time derivatives of D(t), G(t) and J(t) to get

Ḋ(t), Ġ(t) and J̇(t).
4: for η = 0 : τ : T do

5: Use η to update D(t), G(t), J(t), Ḋ(t), Ġ(t) and J̇(t)
to get D(η), G(η), J(η), Ḋ(η), Ġ(η) and J̇(η).

6: L(η) = D(η)U(η) − U(η)G(η) − J(η).
7: v = exp(||L(η)||).
8: k=reshape(J(η),16,1), k̇=reshape(J̇(η),16,1).

9: l=reshape(L(η),16,1).

10: M = I ⊗D(η) +GT(η) ⊗ I .

11: Find the differential equation Muη+1 = −γvΨ(l) −
(I ⊗ Ḋ(η) + ĠT(η)⊗ I)uη − k̇ to get uη+1.

12: Us(η + 2, :) = u
T
η+1.

13: end

14: return Us.

Combining equations (22) and (23), the following result is

obtained:

D(t)U̇(t) + U̇(t)G(t)

= − γ exp(||L(t)||)Ψ(ν1L(t) + ν2L
̺

σ (t))

− Ḋ(t)U(t)− U(t)Ġ(t) + J̇(t).

(24)

Substitute equation (16) into equation (24) and the DVPZNN

model can be acquired as below:

D(t)U̇ (t) + U̇(t)G(t)

=− γ exp(||L(t)||)Ψ(ν1(D(t)U(t) + U(t)G(t) − J(t))

+ ν2(D(t)U(t) + U(t)G(t)− J(t))
̺

σ)

− Ḋ(t)U(t)− U(t)Ġ(t) + J̇(t).
(25)

Its implementation is shown in Algorithm 1. When linear

activation function is applied to the DVPZNN model, the

LDVPZNN model can be obtained, and when power-sigmoid

activation function is applied, the PSDVPZNN model can be

gained.

Remark 2. In DVPZNN model (25), there is a power func-

tion: L
̺

σ (t). Since the power function is to exponentiate

each element in L(t) and the elements in L(t) may have

negative numbers, we must ensure that each exponentiation

is meaningful when designing ̺
σ , that is, ̺

σ is an odd root.

IV. STABILITY AND CONVERGENCE ANALYSIS

For the purpose of better highlighting the advantages of

the proposed models, the corresponding analysis will be made

from two aspects of global stability and finite-time conver-

gence.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 5

A. Global Stability Analysis

Theorem 2. For DSCME (14), if the DVPZNN model is used

to solve this problem, given an initial state U(0) arbitrarily,

the state solution U(t) will globally converge to the exact

solution and remain stable.

Proof: First, a Lyapunov function candidate is defined:

V (t) = ||L(t)||2/2. Obviously, V (t) ≥ 0. To prove the above

theorem, we require deriving the Lyapunov function candidate:

V̇ (t) =
1

2
Tr

(

L̇T (t)L (t) + LT (t) L̇ (t)
)

= −
1

2
γ exp (||L (t) ||F)Tr (Ξ) ,

(26)

where Tr(A) =
∑n

s=1 ass denotes the trace of matrix

A ∈ Rn×n; Ξ = Ψ
(

ν1L
T (t) + ν2

(

LT
)

̺

σ (t)
)

L (t) +

Ψ
(

ν1L (t) + ν2 (L)
̺

σ (t)
)

LT (t) . The activation function of

DVPZNN model (17) introduced above is monotonically

increasing, so the use of the activation function does not

affect the symbols of the elements in L(t) or L̇(t). So

Tr
(

L(t)LT(t)
)

≥ 0 and Tr
(

LT(t)L(t)
)

≥ 0 always hold.

For
(

LT
)

̺

σ (t)L(t), as mentioned in Remark 2, ̺
σ is an odd

power function, and it will not change the sign of the elements

in L(t), so
(

LT
)

̺

σ (t)L(t) ≥ 0 and (L)
̺

σ (t)LT(t) ≥ 0 are

true.

As pointed out in the previous section, ν1 and ν2 are positive

integers, so Ξ ≥ 0 holds. Besides, γ > 0 and exp(||E(t)||F) ≥
0, so V̇ (t) ≤ 0. In summary, the DVPZNN model satisfies

the Lyapunov stability theorem [33], so its state solution can

globally converge to exact solution and remain stable when

solving the DSQME problem. Thus, the proof is completed.

B. Finite-time Convergence Analysis

Theorem 3. Assume that l+(t) and l−(t) are the largest and

smallest elements in error matrix L(t), respectively. If the

LDVPZNN model is utilized to solve the DSQME with random

initial value, the exact solution of the DSQME will be obtained

by the LDVPZNN model within finite-time:

ln

(

ν2
min(lsw(0))ν1+ν2

)

̺−σ
σ γν1 exp(δ)

< tf <

ln

(

ν2
max(lsw)(0)ν1+ν2

)

̺−σ
σ γν1

. (27)

Proof: When the LDVPZNN model is used to solve the

DSQME, there is the following formula:

L̇(t) = −γ exp(||L(t)||)(ν1L(t) + ν2L
̺

σ (t)). (28)

Supposing 0 < ||L(t)|| ≤ δ, then we have:
{

L̇(t) ≥ −γ exp(δ)Ψ(ν1L(t) + ν2L
̺

σ (t)),

L̇(t) < −γ exp(0)Ψ(ν1L(t) + ν2L
̺

σ (t)).
(29)

Solve these two differential inequalities separately.

1) L̇(t) ≥ −γ exp(δ)Ψ(ν1L(t) + ν2L
̺

σ (t)).
Use the Hadamard product to multiply L−

̺

σ (t) on both

sides, and

L−
̺

σ (t) ◦ L̇
σ−̺

σ (t) ≥ −γ exp(δ)Ψ(ν1L(t) + ν2QI).
(30)

where QI is a matrix with all elements being 1. Let

Y (t) = L
σ−̺

σ (t), and we get

dY (t)

dt
+
σ − ̺

σ
γν1 exp(δ)Y (t) ≥

̺− σ

σ
γν2 exp(δ)QI.

(31)

Since the matrix Y (t) is composed by elements ysw(t),
by the first order differential theory, we can get:

ysw(t) ≥

(

ysw(0)+
ν2
ν1

)

exp

(

̺− σ

σ
γν1 exp(δ)t

)

−
ν2
ν1
.

(32)

Obviously, Y (tf) = L(tf) = 0. In this case, the time tf1
for the LDVPZNN model to attain exact solution is:

tf1 ≥

ln

(

ν2
lsw(0)ν1+ν2

)

̺−σ
σ γν1 exp(δ)

. (33)

2) L̇(t) < −γ exp(0)Ψ(ν1L(t) + ν2L
̺

σ (t)).
Similar to the above process, we can get:

ysw(t) <

(

ysw(0) +
ν2
ν1

)

exp(
̺− σ

σ
γν1t)−

ν2
ν1
, (34)

tf2 <

ln

(

ν2
lsw(0)ν1+ν2

)

̺−σ
σ γν1

. (35)

The lsw(0) in tf1 and tf2 represents the swth entry of L(0).
Let lmax(t) = max (lsw(t)) and lmin(t) = min (lsw(t)),

then we have

tf1 ≥

ln

(

ν2
lsw(0)ν1+ν2

)

̺−σ
σ γν1 exp(δ)

>

ln

(

ν2
min(lsw(0))ν1+ν2

)

̺−σ
σ γν1 exp(δ)

, (36)

tf2 <

ln

(

ν2
lsw(0)ν1+ν2

)

̺−σ
σ γν1

<

ln

(

ν2
max(lsw)(0)ν1+ν2

)

̺−σ
σ γν1

. (37)

In summary, let tf be the convergence time related to the initial

state. tf is between tf1 and tf2 :

tf1 < tf < tf2 , (38)

ln

(

ν2
min(lsw(0))ν1+ν2

)

̺−σ
σ γν1 exp(δ)

< tf <

ln

(

ν2
max(lsw)(0)ν1+ν2

)

̺−σ
σ γν1

. (39)

Theorem 4. If the PSDVPZNN model is utilized to solve the

DSQME with random initial value, the PSDVPZNN model will

have better convergence performance in solving the DSQME

than using the LDVPZNN model.

Proof: Since the activation function in the DVPZNN

model activates each element in L(t), we can get ZNN design

formula (22) as the following element form.

l̇sw(t) = −γ exp(||L(t)||)ψ
(

ν1lsw(t) + ν2lsw
̺

σ (t)
)

. (40)

Define a Lyapunov function candidate based on the above

formula:

V (lsw(t), t) =
1

2
l2sw(t). (41)

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 6

0 1 2 3 4 5
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

LDVPZNN

SBPZNN

PSDVPZNN

||u(t)− u∗(t)||F

t (s)

(a) Residual errors

0 2 4 6
-2

0

2

4

0 2 4 6
-0.5

0

0.5

0 2 4 6
-4

-2

0

2

0 2 4 6
-1

0

1

u0(t)
u1(t)

u2(t)

u3(t)

(b) SBPZNN model generated

0 2 4 6
-1

0

1

2

3

0 2 4 6
-0.5

0

0.5

0 2 4 6
-4

-2

0

2

0 2 4 6
-0.5

0

0.5

1

u0(t)
u1(t)

u2(t)

u3(t)

(c) LDVPZNN model generated

0 2 4 6
-2

0

2

4

0 2 4 6
-0.5

0

0.5

0 2 4 6
-4

-2

0

2

0 2 4 6
-1

0

1

u0(t)
u1(t)

u2(t)

u3(t)

(d) PSDVPZNN model generated

Fig. 1. Error norm comparison chart and trajectories of real and imaginary
parts of û(t) generated by the LDVPZNN, SBPZNN and PSDVPZNN models
in Example I, where x-axis denotes t (s).

Next, we use V̇linear(lsw(t), t) and V̇p−s(lsw(t), t) to repre-

sent the Lyapunov function candidate defined based on the

LDVPZNN model and the PSDVPZNN model, respectively.

Then, take the derivation of time t of the Lyapunov function

candidate:

V̇ (lsw(t), t) = l̇sw(t)lsw(t). (42)

When the LDVPZNN model is used, the above equation
becomes:

V̇linear(lsw(t), t) = −γ exp(||L(t)||)lsw(t)
(

ν1lsw(t) + ν2lsw
̺
σ (t)

)

.

(43)

When the PSDVPZNN model is used, we need to discuss

it separately because power-sigmoid activation function is a

piecewise function.

CASE I: |ν1lsw(t) + ν2lsw
̺

σ (t)| ≥ 1. In this case, equation

(40) becomes:

l̇sw(t) = −γ exp(||L(t)||)
(

ν1lsw(t) + ν2lsw
̺

σ (t)
)α

, (44)

where α ≥ 3 and is an odd integer. So take the derivation of

the Lyapunov function candidate:

V̇p−s(lsw(t), t)

= −γ exp(||L(t)||)lsw(t)
(

ν1lsw(t) + ν2lsw
̺

σ (t)
)α

= V̇linear(lsw(t), t), if ν1lsw(t) + ν2lsw
̺

σ (t) = 1;

< V̇linear(lsw(t), t), if ν1lsw(t) + ν2lsw
̺

σ (t) > 1;

= V̇linear(lsw(t), t), if ν1lsw(t) + ν2lsw
̺

σ (t) = −1;

< V̇linear(lsw(t), t), if ν1lsw(t) + ν2lsw
̺

σ (t) < −1;
(45)

CASE II: |ν1lsw(t) + ν2lsw
̺

σ (t)| < 1. In this case, it would

be a bit inconvenient to directly bring the activation function

into (40). So discuss the sigmoid function firstly:

Ψ(u) =
1 + exp(−η)

1− exp(−η)
·
1− exp(−ηu)

1 + exp(−ηu)
(46)

0
1

1

2

3

ti
m

e

0.5

3

2

imaginary

4

real

5

10
0

-0.5 -1

u0(t)− u3(t)i

0
0.5

1

2

0.5

ti
m

e

3

0

imaginary

4

0 -0.5

real

5

-1
-1.5

-0.5 -2

−u2(t)− u1(t)i

0

1

2

0.2 1

ti
m

e

3

0

imaginary

4

0

real

5

-1
-0.2 -2

-0.4 -3

u2(t)− u1(t)i

0
1

1

2

0

ti
m

e

0.5

3

imaginary

4

-0.5

real

5

0
-1

-0.5 -1.5

u0(t) + u3(t)i

Fig. 2. Trajectories of the complex representation solution of the one-
dimensional dynamic Sylvester quaternion equation generated by the LD-
VPZNN, SBPZNN and PSDVPZNN models in Example I.

where u ∈ (−1, 1) due to |ν1lsw(t) + ν2lsw
̺

σ (t)| < 1.

Let

F (u) = u−
1 + exp(−η)

1− exp(−η)
·
1− exp(−ηu)

1 + exp(−ηu)
(47)

and take the derivation of u:

Ḟ (u) = 1−
1 + exp(−η)

1− exp(−η)
·

2η exp(−ηu)

(1 + exp(−ηu))2
. (48)

Then let

G(u) =
2η exp(−ηu)

(1 + exp(−ηu))2
(49)

and take the derivation of u:

Ġ(u) =
2η2 exp(−ηu)(1− exp(−2ηu))

(1 + exp(−ηu))4
. (50)

From the above formula, we can obtain that Ġ(u) > 0 when

u > 0, Ġ(u) < 0 when u < 0. This means that G(u) takes

the minimum value at u = 0. Since

Ḟmax(u) = 1−Gmin(u)

= 1−G(0)

= 1−
η

2
·
1 + exp(−η)

1− exp(−η)
< 0,

(51)

we can conclude that F (u) is monotonically decreasing. Then

when u ∈ (−1, 1),

F (u) < F (−1) = −1−
1 + exp(−η)

1− exp(−η)
·
1− exp(η)

1 + exp(η)

= −1−
− exp(η) + exp(−η)

− exp(−η) + exp(−η)

= 0.

(52)

After the above analysis, we can summarize that when u ∈
(−1, 1), the power-sigmoid function is larger than the linear

function. Obviously, in such case,

V̇p−s(lsw(t), t) < V̇linear(lsw(t), t). (53)

Combining the above two cases, we can get

V̇p−s(lsw(t), t) < V̇linear(lsw(t), t). In the sense of Lyapunov

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 7

0
2

1

2ti
m

e

3

0.4

imaginary

4

0 0.2

real

5

0
-0.2

-2 -0.4

α0 − α3i

0
2

1

2

1

ti
m

e

1

3

0

imaginary

4

real

5

-10
-2

-1 -3

β0 − β3i

0

1

2

0.8 3

ti
m

e

3

2

imaginary

4

0.6 1

real

5

00.4
-1

0.2 -2

−α2 − α1i

0
2

1

2

4

ti
m

e

1

3

2

imaginary

4

real

5

00
-2

-1 -4

−β2 − β1i

0
1

1

2

2

ti
m

e

3

1

imaginary

4

0

real

5

0
-1

-1 -2

−

ρ0 − ρ3i

0
1

1

2

2
ti

m
e

0.5

3

1

imaginary

4

real

5

00
-1

-0.5 -2

β2 − β1i

0
1

1

2ti
m

e

0.5

3

0.4

imaginary

4

0.2

real

5

0 0
-0.2

-0.5 -0.4

α0 + α3i

0
2

1

2

-0.5

ti
m

e

3

-1

imaginary

4

1 -1.5

real

5

-2
-2.5

0 -3

β0 + β3i

0
1.5

1

2

2

ti
m

e

1

3

1.5

imaginary

4

1

real

5

0.5 0.5
0

0 -0.5

α2 − α1i

0
2

1

2

3

ti
m

e

3

2

imaginary

4

1 1

real

5

0
-1

0 -2

β2 − β1i

0
1.5

1

2

1 1

ti
m

e

3

0

imaginary

4

0.5

real

5

-1
0 -2

-0.5 -3

α0 + α3i

0
1

1

2

0.5

ti
m

e

0

3

0

imaginary

4

-0.5

real

5

-1 -1
-1.5

-2 -2

β0 + β3i

0
1

1

2ti
m

e

0.5

3

0.2

imaginary

4

0

real

5

0 -0.2
-0.4

-0.5 -0.6

ρ2 − ρ1i

0
2

1

2

2

ti
m

e

3

1

imaginary

4

1 0

real

5

-1
-2

0 -3

ǫ2 − ǫ1i

0

1

2

0.6 1

ti
m

e

3

0.5

imaginary

4

0.4 0

real

5

-0.50.2
-1

0 -1.5

ρ0 + ρ3i

0
1.5

1

2

1 1.5

ti
m

e

3

1

imaginary

4

0.5

real

5

0.5
0 0

-0.5 -0.5

ǫ0 + ǫ3i

Fig. 3. Trajectories of the complex representation solution of the two-dimensional DSQME generated by the LDVPZNN, SBPZNN and PSDVPZNN models.

0 1 2 3 4 5
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

LDPVZNN

SBPZNN

PSDVPZNN

t (s)

||U(t)− U∗(t)||F

Fig. 4. Error norm comparison charts in Example II.

stability theorem [33], the PSDVPZNN model will have

better convergence performance in solving the DSQME than

using the LDVPZNN model. Thus the proof is completed.

V. EXPERIMENTAL SIMULATION

In this part, three simulative experiments are afforded to

prove the stability and convergence performance of the pro-

posed DVPZNN models, and the sign-bi-power function acti-

vated original ZNN (SBPZNN) model is used for comparison.

The detailed SBPZNN model is omitted here. The experiments

include three experimental examples: the dynamic Sylvester

quaternion equation with the matrix dimension being one;

the dynamic Sylvester quaternion equation with the matrix

dimension being 2 × 2; and the static Sylvester quaternion

matrix equation with the matrix dimension being 2 × 2.

In order to ensure the consistency of the parameters in the

experiments, the parameters of all experiments are set as: η =
4, α=3, ǫ=0.4, ν1=ν2=1, ̺=1, and σ=3. In each example, the

initial values of the state matrices are randomly generated,

the real part of each element ranges from −3 to 3, and the

imaginary part ranges from 0 to 1.

A. Example I: One-dimensional dynamic Sylvester quaternion

equation

Considering that the known quaternions in formula (12)

are all one-dimensional quaternions, the following example

is given:

d̂(t) = cos(6t) + 4i+ 6k,

ĝ(t) = cos(6t)− sin(6t)j + 3k,

ĵ(t) = sin(5t) + 3i− 2k.

Through the values of the above three items, the value of

û(t) can be calculated by using the ZNN models to calculate

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 8

0 5
-5

0

5

0 5
-2

0

2

0 5
-5

0

5

0 5
-2

0

2

0 5
-2

-1

0

0 5
-1

0

1

0 5
-2

0

2

0 5
-2

-1

0

0 5
-5

0

5

0 5
-1

0

1

0 5
-5

0

5

0 5
-5

0

5

0 5
-2

0

2

0 5
-1

0

1

0 5
-2

0

2

0 5
-1

0

1

α0(t)

α1(t)

α2(t)

α3(t)

β0(t)

β1(t)

β2(t)

β3(t)

ρ0(t)

ρ1(t)

ρ2(t)

ρ3(t)

ǫ0(t)

ǫ1(t)

ǫ2(t)

ǫ3(t)

(a) SBPZNN model generated

0 5
-5

0

5

0 5
-2

0

2

0 5
-5

0

5

0 5
-2

0

2

0 5
-1

-0.5

0

0 5
-1

0

1

0 5
-2

-1

0

0 5
-2

-1

0

0 5
-5

0

5

0 5
-1

0

1

0 5
-5

0

5

0 5
-5

0

5

0 5
-2

0

2

0 5
-1

0

1

0 5
-2

0

2

0 5
-1

0

1

α0(t)

α1(t)

α2(t)

α3(t)

β0(t)

β1(t)

β2(t)

β3(t)

ρ0(t)

ρ1(t)

ρ2(t)

ρ3(t)

ǫ0(t)

ǫ1(t)

ǫ2(t)

ǫ3(t)

(b) LDVPZNN model generated

0 5
-5

0

5

0 5
-2

0

2

0 5
-5

0

5

0 5
-2

0

2

0 5
-2

-1

0

0 5
-1

0

1

0 5
-2

0

2

0 5
-2

-1

0

0 5
-5

0

5

0 5
-1

0

1

0 5
-5

0

5

0 5
-5

0

5

0 5
-2

0

2

0 5
-1

0

1

0 5
-2

0

2

0 5
-2

0

2

α0(t)

α1(t)

α2(t)

α3(t)

β0(t)

β1(t)

β2(t)

β3(t)

ρ0(t)

ρ1(t)

ρ2(t)

ρ3(t)

ǫ0(t)

ǫ1(t)

ǫ2(t)

ǫ3(t)

(c) PSDVPZNN model generated

Fig. 5. Trajectories of real and imaginary parts of Û(t) generated by the LDVPZNN, SBPZNN and PSDVPZNN model in Example II, where x-axis denotes
t (s).

0 1 2 3 4 5
10

-8

10
-6

10
-4

10
-2

10
0

10
2

LDVPZNN

SBPZNN

PSDVPZNN

||U(t)− U∗(t)||F

Fig. 6. Error norm comparison charts in Example III.

DSCME (14). Here, we give the complex representation of û:

Φ(û(t)) = u(t) =

[

u0(t)− u3(t)i −u2(t)− u1(t)i
u2(t)− u1(t)i u0(t) + u3(t)i

]

.

(54)

In order to know the convergence of the LDVPZNN and

PSDVPZNN models more significantly than the SBPZNN

model, the error graphs of three models are shown in Fig. 1(a).

From Fig. 1(a), we can learn: the LDVPZNN and PSDVPZNN

models tend to converge at a faster rate and are relatively

stable, but the SBPZNN model tends to stabilize at a slower

rate and has greater volatility. Fig. 1(b), Fig. 1(c) and Fig.

1(d) respectively show the trajectories of u0(t) (real part),

u1(t), u2(t) and u3(t) (imaginary parts) in the quaternion

solution u(t) produced by three models. Two trajectories in

each subgraph respectively represent two u0(t), u1(t), u2(t)
and u3(t) in the complex representation of u(t) (54). When

two trajectories coincide, the ZNN models solve the exact

solution of the equation. In other words, the state solution

generated by the ZNN models converges to the exact solution.

At the same time, the trajectories of each element of U(t) in

the complex representation are shown in Fig. 2 where the blue

trajectory is the exact solution; the red trajectory is the solution

produced by the LDVPZNN model; the green trajectory is

the solution produced by the SBPZNN model; and the cyan

trajectory is the solution produced by the PSDVPZNN model.

B. Example II: Two-dimensional dynamic Sylvester quater-

nion matrix equation

When the known matrices in formula (12) are all two-

dimensional quaternion matrices, the following example is

considered:

D̂(t) =

[

cos(5t) + 2i− 3j − 12k sin(4t)− 3i− 3j + 5k
sin(−3t)− 4i− 6j + 3k cos(2t) + 4i+ 5j + 2k

]

,

Ĝ(t) =

[

cos(6t)− 3i+ 2j + 2k cos(3t) + i+ 2j + 3k
sin(2t) + 4i− 3j − 5k sin(−5t) + 3i− 2j − 5k

]

,

Ĵ(t) =

[

sin(−3t)− 2i+ j − 3k cos(−6t) + 3i− 2j + 4k
cos(4t)− 3i− 2j + 5k sin(2t) + 4i+ 5j − 3k

]

.

Similarly, we use the complex representation of the quaternion

matrix to find Û(t) of which complex representation is

Φ(Û(t)) = U0(t) + U1(t)i+ U2(t)j + U3(t)k

=

[

U0(t)− U3(t)i −U2(t)− U1(t)i
U2(t)− U1(t)i U0(t) + U3(t)i

]

=

[

α0 β0
η0 ρ0

]

−

[

α3 β3
η3 ρ3

]

i −

[

α2 β2
η2 ρ2

]

−

[

α1 β1
η1 ρ1

]

i

[

α2 β2
η2 ρ2

]

−

[

α1 β1
η1 ρ1

]

i

[

α0 β0
η0 ρ0

]

+

[

α3 β3
η3 ρ3

]

i

=

α0 − α3i β0 − β3i −α2 − α1i −β2 − β1i
η0 − η3i ρ0 − ρ3i −η2 − η1i −ρ2 − ρ1i
α2 − α1i β2 − β1i α0 + α3i β0 + β3i
η2 − η1i ρ2 − ρ1i η0 + η3i ρ0 + ρ3i

,

(55)

where αk, βk, ηk, ρk ∈ Uk(t), k = 0, 1, 2, 3.

Fig. 3 and Fig. 4 respectively show the trajectories of each

element of Û(t) in the complex representation and the error

change of the LDVPZNN, SBPZNN and PSDVPZNN models

in solving the DSCME. The meanings of the trajectory colors

in Fig. 3 are the same as those in Fig. 2. Fig. 5(a), Fig. 5(b)

and Fig. 5(c) show the trajectories of the real and imaginary

parts in the quaternion matrix Û(t) generated by the ZNN

models. When two trajectories coincide, Û(t) converges to

the exact solution. Each column of three subgraphs represents

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 9

TABLE I
CONVERGENCE TIMES OF THE ZNN-I, ZNN-II, ZNN-III [23], PC-CVZNN [34], NSVPZNN [35] AND PSDVPZNN MODELS SOLVING EXAMPLES I,

II, AND III WHEN γ = 1 AND γ = 10.

ZNN models Design formulas
Convergence time

SpeedParameters γ = 1 γ = 10
Examples I II III I II III

ZNN-I [23] L̇(t) = −γ exp(t)L(t) 2.43s 2.01s 2.02s 1.50s 0.52s 0.51s slow

ZNN-II [23] L̇(t) = −γ exp(t)Ψs(L(t)) 2.22s 4.03s 4.10s 0.52s 1.56s 1.48s very slow

ZNN-III [23] L̇(t) = −γ exp(t)Ψli(L(t)) 0.95s 0.90s 0.98s 0.16s 0.14s 0.14s fast

PC-CVZNN [34] L̇(t) = −γ(pt + 2pt+ p)Ψ1(L(t)) 0.71s 0.72s 0.72s 0.11s 0.11s 0.11s fast

NSVPZNN [35] L̇(t) = −γ(t2 +m)Ψ2(L(t)) 0.84s 0.86s 0.86s 0.13s 0.12s 0.13s fast

PSDVPZNN (this paper) L̇(t) = −γ(||L(t)||F)Ψps(L(t)) 0.53s 0.38s 0.37s 0.07s 0.07s 0.06s very fast

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

ZNN-I

ZNN-II

ZNN-III

PC-CVZNN

PSDVPZNN

NSVPZNN

||U(t)− U∗(t)||F

t (s)

(a) Example I with γ = 1

0 1 2 3 4 5
0

2

4

6

8

10

12

14

16
ZNN-I

ZNN-II

ZNN-III

PC-CVZNN

PSDVPZNN

NSVPZNN

||U(t)− U∗(t)||F

t (s)

(b) Example II with γ = 1

0 1 2 3 4 5
0

1

2

3

4

5

6

7

8

ZNN-I

ZNN-II

ZNN-III

PC-CVZNN

PSDVPZNN

NSVPZNN

||U(t)− U∗(t)||F

t (s)

(c) Example III with γ = 1

0 0.5 1 1.5 2
0

1

2

3

4

5

6

ZNN-I

ZNN-II

ZNN-III

PC-CVZNN

PSDVPZNN

NSVPZNN

||U(t)− U∗(t)||F

t (s)

(d) Example I with γ = 10

0 0.5 1 1.5 2
0

1

2

3

4

5

6

7

8

9
ZNN-I

ZNN-II

ZNN-III

PC-CVZNN

PSDVPZNN

NSVPZNN

||U(t)− U∗(t)||F

t (s)

(e) Example II with γ = 10

0 0.5 1 1.5 2
0

1

2

3

4

5

6
ZNN-I

ZNN-II

ZNN-III

PC-CVZNN

PSDVPZNN

NSVPZNN

||U(t)− U∗(t)||F

t (s)

(f) Example III with γ = 10

Fig. 7. Comparisons of error trajectories generated by the ZNN-I, ZNN-II, ZNN-III [23], PC-CVZNN [34], NSVPZNN [35] and PSDVPZNN models when
γ = 1 and γ = 10.

elements in matrix Uk(t). From these two figures, obviously,

the PSDVPZNN model has the best convergence, followed by

the LDVPZNN model, and the SBPZNN model has the worst

convergence.

C. Example III: Two-dimensional static Sylvester quaternion

matrix equation

Given that the known matrices are two-dimensional static

quaternion matrices, the following example is given:

D̂(t) =

[

6 + 3i− 2j + 7k 2 + i+ j − k
−2− 3i− 5j − k 3 + 5i+ j − 3k

]

,

Ĝ(t) =

[

7− 2i− 4j + 5k 2− 2i+ 3j + k
4 + i+ 3j + k 7− 3i− 5j − 5k

]

,

Ĵ(t) =

[

5− 3i− j + 2k 3− 2i+ 2j + 3k
1 + 2i+ 3j + 4k 5 + 4i− 9j − 2k

]

,

of which complex representation is (55). Through this static

example, we can not only verify the superiority of our pro-

posed LDVPZNN model and PSDVPZNN model compared

with the SBPZNN model, but also verify that the ZNN mod-

els can solve both time-varying problems and time-invariant

problems. In addition, the error graph of three models is shown

in Fig. 6. The graph shows the effectiveness of the proposed

model for static problems, and has better performance.

D. Comparative experiment

In order to further verify the effectiveness of the PSD-

VPZNN model proposed in this paper, the ZNN models in

[23], [34], [35] are used for comparison. The compared design

formulas and convergence times when solving the DSQME

problem in Examples I, II and III are shown in TABLE I,

where Ψs, Ψli, Ψ1, Ψ2 and Ψps represent the sign, Li [23], new

sign-bi-power [34], new improved [35], and power-sigmoid

activation functions, respectively. By using the design formulas

in TABLE I and the modeling technique in Section III-C,

the corresponding models for solving the DSQME can be

obtained.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 10

In the process of comparison, relative parameters are set

as: η = 4, α=3, ǫ=0.4, ν1=ν2=1, ̺=1, σ=3, p=1.2, m=2, and

especially γ = 1 or 10. The experimental results are shown

in Fig. 7. It can be seen from Fig. 7 that whether γ = 1 or

γ = 10, the PSDVPZNN model solves the DSQME problem

in Examples I, II and III with the fastest convergence rate. It

indicates that the convergence performance of the PSVPZNN

model is the best. Similarly, TABLE I also verified this result.

From TABLE I, more detailed data shows that compared to

other ZNN models, the PSDVPZNN model has the fastest

convergence speed in various situations.

VI. CONCLUSION

In this paper, to solve the DSQME problem, we use the

equivalence of quaternion complex representation to convert

the DSQME to the DSCME. Then two DVPZNN models

(i.e., the LDVPZNN model and the PSDVPZNN model) are

designed to further address the DSQME problem. On the

basis of the novel varying parameter, the DVPZNN models

can adapt to error changes to reduce waste of resources and

have better convergence, with the convergence time range

being calculated. Finally, we verify that the DVPZNN models

can effectively solve the DSCME problem through quaternion

complex representation and perform better than the SBPZNN

model through three numerical experiments. More importantly,

the use of new dynamic varying parameter to make the

DVPZNN models have better performance provides a very

good idea for the design of varying parameter in the future.

REFERENCES

[1] W. R. Hamilton, “On a new species of imaginary quantities, connected
with the theory of quaternions,” Proc. Roy. Irish Acad., vol. 2, no. 1,
pp. 424–434, Nov. 1840.

[2] W. L. Chan, H. Choi, and R. Baraniuk, “Quaternion wavelets for image
analysis and processing,” in Proc. IEEE Int. Conf. Image Processing,
vol. 5, Singapore, Oct. 2004, pp. 3057–3060.

[3] B. Chen, H. Shu, G. Coatrieux, G. Chen, X. Sun, and J. L. Coatrieux,
“Color image analysis by quaternion-type moments,” J. Math. Imag. Vis.,
vol. 51, no. 1, pp. 124–144, Jan. 2015.

[4] R. Kristiansen and P. J. Nicklasson, “Satellite attitude control by
quaternion-based backstepping,” IEEE Trans. Control Syst. Technol.,
vol. 17, no. 1, pp. 227–232, Jan. 2009.

[5] N. Le Bihan and J. Mars, “Singular value decomposition of quaternion
matrices: a new tool for vector-sensor signal processing,” Signal Pro-
cess., vol. 84, no. 7, pp. 1177–1199, Jul. 2004.

[6] M. D. Jiang, Y. Li, and W. Liu, “Properties of a general quaternion-
valued gradient operator and its applications to signal processing,” Front.
Inform. Technol. Electron. Eng., vol. 17, pp. 83–95, Feb. 2016.

[7] Y. Zhang, D. Jiang, and J. Wang, “A recurrent neural network for solving
Sylvester equation with time-varying coefficients,” IEEE Trans. Neural

Netw., vol. 13, no. 5, pp. 1053–1063, 2002.
[8] B. Kagstrom and L. Westin, “Generalized schur methods with condition

estimators for solving the generalized Sylvester equation,” IEEE Trans.

Autom. Control, vol. 34, no. 7, pp. 745–751, 1989.
[9] G. Chen, Y. Song, F. Wang, and C. Zhang, “Semi-supervised multi-label

learning by solving a Sylvester equation,” in Proc. SIAM Int. Conf. Data

Mining, 2008, pp. 410–419.
[10] P. Benner, T. Damm, and Y. R. R. Cruz, “Dual pairs of generalized

Lyapunov inequalities and balanced truncation of stochastic linear
systems,” IEEE Trans. Autom. Control, vol. 62, no. 2, pp. 782–791,
Feb. 2016.

[11] R. Chteoui, A. F. Aljohani, and A. B. Mabrouk, “Lyapunov–Sylvester
computational method for numerical solutions of a mixed cubic-
superlinear schrödinger system,” Eng. Comput., pp. 1–14, 2021.

[12] H. R. Shaker and M. Tahavori, “Control configuration selection for
bilinear systems via generalised hankel interaction index array,” Int. J.

Control, vol. 88, no. 1, pp. 30–37, 2015.

[13] A. S. Hodel and P. Misra, “Solution of underdetermined Sylvester
equations in sensor array signal processing,” Linear Algebra Appl., vol.
249, no. 1-3, pp. 1–14, 1996.

[14] T.-x. Li and E. K.-W. Chu, “Pole assignment for linear and quadratic
systems with time-delay in control,” Numer. Linear Algebra Appl.,
vol. 20, no. 2, pp. 291–301, 2013.

[15] C.-C. Tsui, “A complete analytical solution to the equation TA-FT= LC
and its applications,” IEEE Trans. Autom. Control, vol. 32, no. 8, pp.
742–744, 1987.

[16] L. Ding, L. Xiao, K. Zhou, Y. Lan, and Y. Zhang, “A new RNN model
with a modified nonlinear activation function applied to complex-valued
linear equations,” IEEE Access, vol. 6, pp. 62 954–62 962, 2018.

[17] Z. He, Q. Wang, and Y. Zhang, “A system of quaternary coupled
Sylvester-type real quaternion matrix equations,” Automatica, vol. 87,
pp. 25–31, 2018.

[18] H. Kusamichi, T. Isokawa, N. Matsui, Y. Ogawa, and K. Maeda, “A new
scheme for color night vision by quaternion neural network,” in Proc.

2nd Int. Conf. Auto. Robots Agents. Palmerston North, New Zealand,
Dec. 2004, pp. 101–106.

[19] J. Biggs, “A quaternion-based attitude tracking controller for robotic
systems,” in IMA Conference on Mathematics of Robotics, 2015.

[20] J. Sun, H. Zhang, S. Xu, and Y. Liu, “Full information control for
switched neural networks subject to fault and disturbance,” IEEE Trans.

Neural Netw. Learn. Syst., pp. 1–12, 2021.
[21] D. Guo and Y. Zhang, “Li-function activated ZNN with finite-time

convergence applied to redundant-manipulator kinematic control via
time-varying Jacobian matrix pseudoinversion,” Appl. Soft Comput,
vol. 24, pp. 158–168, Nov. 2014.

[22] Z. Jian, L. Xiao, K. Li, Q. Zuo, and Y. Zhang, “Adaptive coefficient
designs for nonlinear activation function and its application to zeroing
neural network for solving time-varying Sylvester equation,” J Frankl

Inst, vol. 357, no. 14, pp. 9909–9929, 2020.
[23] Q. Ma, S. Qin, and T. Jin, “Complex Zhang neural networks for

complex-variable dynamic quadratic programming,” Neurocomputing,
vol. 330, pp. 56–69, 2019.

[24] L. Jin, Y. Zhang, S. Li, and Y. Zhang, “Noise-tolerant ZNN models
for solving time-varying zero-finding problems: A control-theoretic
approach,” IEEE Trans. Autom. Control, vol. 62, no. 2, pp. 992–997,
Feb. 2016.

[25] Y. Shi and Y. Zhang, “Solving future equation systems using integral-
type error function and using twice ZNN formula with disturbances
suppressed,” J. Franklin Inst., vol. 356, no. 4, pp. 2130–2152, Mar.
2019.

[26] Z. Tan, W. Li, L. Xiao, and Y. Hu, “New varying-parameter ZNN
models with finite-time convergence and noise suppression for time-
varying matrix Moore–Penrose inversion,” IEEE Trans. Neural Netw.

Learn. Syst., vol. 31, no. 8, pp. 2980–2992, 2019.
[27] W. Li, Z. Su, and Z. Tan, “A variable-gain finite-time convergent

recurrent neural network for time-variant quadratic programming with
unknown noises endured,” IEEE Trans. Ind. Informat., vol. 15, no. 9,
pp. 5330–5340, Sep. 2019.

[28] S. Li, B. Liu, and Y. Li, “Selective positive–negative feedback produces
the winner-take-all competition in recurrent neural networks,” IEEE

Trans. Neural Netw. Learn. Syst., vol. 24, no. 2, pp. 301–309, 2012.
[29] P. S. Stanimirović, I. S. Živković, and Y. Wei, “Recurrent neural network

for computing the drazin inverse,” IEEE Trans. Neural Netw. Learn.

Syst., vol. 26, no. 11, pp. 2830–2843, 2015.
[30] F. Zhang, “Quaternions and matrices of quaternions,” Linear Algebra

Appl., vol. 251, pp. 21–57, 1997.
[31] L. Xiao, “A new design formula exploited for accelerating Zhang neural

network and its application to time-varying matrix inversion,” Theor.
Comput. Sci., vol. 647, pp. 50–58, 2016.

[32] Y. Li, Y. Liu, and S. Tong, “Observer-based neuro-adaptive optimized
control of strict-feedback nonlinear systems with state constraints,” IEEE

Trans. Neural Netw. Learn. Syst., 2021.
[33] Y. Zhang and S. S. Ge, “Design and analysis of a general recurrent

neural network model for time-varying matrix inversion,” IEEE Trans.

Neural Netw., vol. 16, no. 6, pp. 1477–1490, 2005.
[34] L. Xiao, J. Tao, J. Dai, Y. Wang, L. Jia, and Y. He, “A parameter-

changing and complex-valued zeroing neural-network for finding solu-
tion of time-varying complex linear matrix equations in finite time,”
IEEE Trans. Ind. Informat., vol. 17, no. 10, pp. 6634–6643, 2021.

[35] L. Xiao and Y. He, “A noise-suppression ZNN model with new variable
parameter for dynamic Sylvester equation,” IEEE Trans. Ind. Informat.,
vol. 17, no. 11, pp. 7513–7522, 2021.

