
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 1

Perception and Navigation in Autonomous Systems
in the Era of Learning: A Survey

Yang Tang†, Senior Member, IEEE, Chaoqiang Zhao†, Jianrui Wang, Chongzhen Zhang, Qiyu Sun,
Wei Xing Zheng, Fellow, IEEE, Wenli Du, Feng Qian, and Jürgen Kurths

Abstract—Autonomous systems possess the features of infer-
ring their own state, understanding their surroundings, and
performing autonomous navigation. With the applications of
learning systems, like deep learning and reinforcement learning,
the visual-based self-state estimation, environment perception
and navigation capabilities of autonomous systems have been
efficiently addressed, and many new learning-based algorithms
have surfaced with respect to autonomous visual perception
and navigation. In this review, we focus on the applications
of learning-based monocular approaches in ego-motion per-
ception, environment perception and navigation in autonomous
systems, which is different from previous reviews that discussed
traditional methods. First, we delineate the shortcomings of
existing classical visual simultaneous localization and mapping
(vSLAM) solutions, which demonstrate the necessity to integrate
deep learning techniques. Second, we review the visual-based
environmental perception and understanding methods based on
deep learning, including deep learning-based monocular depth es-
timation, monocular ego-motion prediction, image enhancement,
object detection, semantic segmentation, and their combinations
with traditional vSLAM frameworks. Then, we focus on the
visual navigation based on learning systems, mainly including
reinforcement learning and deep reinforcement learning. Finally,
we examine several challenges and promising directions discussed
and concluded in related research of learning systems in the era
of computer science and robotics.

Index Terms—Autonomous system, environment perception,
navigation, learning systems, deep learning, reinforcement learn-
ing

I. INTRODUCTION

IN recent years, with the rapid developments in learning
systems, such as deep learning and reinforcement learning,

learning systems have been widely applied in various fields
in smart grid [1], biology [2], finance [3], object detection
[4], industrial production processes [5], and particularly in
the autonomous systems of robots. Autonomous systems have
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Fig. 1. An illustration for the autonomous systems.

gained a broad application prospect in various industries,
including autonomous robots [6] and autonomous driving [7],
[8]. Although current autonomous systems can perform single,
simple, and repetitive tasks, such as aided driving [9] and
transportation [10], the future of autonomous systems has
significant potential. With the help of deep neural networks,
autonomous systems that can learn and think like humans
are becoming a reality. Intelligent and autonomous systems
are the ultimate aim, which can perform advanced tasks
autonomously, interact with humans, and even work better
than humans [11]. Primarily, the autonomy of autonomous
vehicle systems relies on the results of in-depth environment
perception, intelligent motion planning, and accurate control
[12]. The architecture of autonomous systems is illustrated in
Fig. 1. Based on their perceiver [13], [14], autonomous sys-
tems understand their own state and surrounding environments
by covering visual localization, mapping, and understanding
the environment. Finally, autonomous systems can reach the
designated position autonomously and complete advanced
missions by combining the results of environment perception
and motion planning with control signals.

Perceiving and understanding the environment are the basic
elements of autonomous systems [13]. The development and
application of visual simultaneous localization and mapping
(vSLAM) have equipped robots with the ability to locate
themselves and model the environment from vision, which
has significantly expanded the autonomy and intelligence of
robots. With the help of vSLAM, autonomous systems have
the ability to use different visual sensors to collect environ-
mental information, model their surroundings and estimate
their current state [15].
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 (b) Semi-dense map;

(c) Dense map; (d) Semantic map.

Fig. 2. The environments are represented in different types. (a): Sparse map
is produced by ORB-SLAM2 [16]. (b): Semi-dense map is produced by LSD-
SLAM [17]. (c): Dense map is produced by DTAM [18]. (d): Semantic map
is produced by DA-RNN [19].

Perceiving the environment. A good perception and under-
standing of the surrounding environment are indispensable for
autonomous systems. vSLAM algorithms have benn widely
applied to model the environments into different types based
on the actual requirements, including sparse map [16], semi-
dense map [17], and dense map [18], as shown in Fig. 2 (a)-
(c). Although the geometric structures of surroundings in these
representations are clearly perceived and modeled, a high-level
information of these objects, like the semantic information, is
still lacking.

Perceiving their own state. The state of an autonomous
vehicle is described by its position and orientation. Under-
standing their current state in real time is important for
autonomous systems, which is the main precondition of au-
tonomous control. Although current vSLAM algorithms play
a crucial role in self-localization and ego-motion estimation,
there are still some strong assumptions imposed in current
vSLAM systems, such as the static scene hypothesis and the
photometric consistency hypothesis.

Visual navigation. The ability of autonomous navigation is
also essential in autonomous systems. When an autonomous
vehicle is assigned a destination, it requires the capabilities
of planning a reasonable path or trajectory. Poor or untimely
planning may lead to terrible results, such as collision and
crash. Therefore, the ability of human-like planning is the
future development direction, and it is possible to achieve this
intention with the help of learning framework. Since traditional
motion planning methods have been well summarized in [9],
this review mainly focuses on the aspect of reinforcement
learning-based navigation in autonomous systems.

Learning-based methods for visual perception and nav-
igation. With the development in learning framework [20],
deep learning and reinforcement learning have demonstrated
outstanding performance in image processing [21], [22], nat-

ural language processing [23], [24], motion estimation [25],
game theory [26], biology [2], finance [3], and control [27],
etc. The impact of learning framework on perception as well
as navigation is transformational, and it has made signifi-
cant advances in autonomous systems [13]. Recently, deep
learning-based models are widely used in relevant works of
environment perception, such as monocular depth estimation
[28], ego-motion prediction [25], objective detection [4], and
semantic segmentation [29]. Furthermore, to improve the
tracking, localization and mapping performance of current vS-
LAM methods in some complex environments (e.g., low light
or night-time scenes), attempts have been made to incorporate
vSLAM with deep learning and satisfactory results have been
obtained [30]. For example, some related works [31], [32]
incorporated learning based semantic understanding into the
vSLAM to reconstruct the semantic maps of surroundings,
as shown in Fig. 2 (d), thereby getting a high-level under-
standing of surroundings. Moreover, related work in [33] has
demonstrated that reinforcement learning exhibits good per-
formance in robotic navigation. It resolved and implemented
the navigation problems in an end-to-end manner. In addition,
reinforcement learning enables robots to learn and imitate
humans to make decisions. Unlike some well-written reviews
[13], [15], [34], this survey mainly focuses on surveying the
learning-based perception, including self-state perception and
environment perception, as well as the representative results
for reinforcement learning-based navigation in autonomous
systems.

The rest of the paper is organized as follows: Section II
introduces related works on visual perception, including a brief
review of traditional vSLAM methods, deep learning-based
visual perception, and methods combining deep learning with
vSLAM. Section III provides an overview of the reinforcement
learning-based visual navigation. Section IV summarizes the
deficiencies and challenges of existing learning systems for
visual perception and navigation, and provides some ideas
about future directions. Finally, this survey is concluded in
Section V.

II. AUTONOMOUS VISUAL PERCEPTION

In autonomous systems, determining a comprehensive un-
derstanding of the environment and its current state is one
of the basic and important perception tasks, which can be
efficiently solved by vSLAM algorithms or sub-topics of
vSLAM algorithms. Some classic SLAM methods are well
summarized and discussed in [13], [34]. Cadena et al. [13]
reviewed the related works on SLAM over the last 30 years
in detail. They revisited and answered several important and
meaningful questions related to SLAM and stated that “SLAM
is necessary for autonomous robots”. Different from previous
review papers, in this section, we mainly focus on the applica-
tion of deep learning algorithms in perception by subdividing
them into three types.

A. Geometric methods-based visual perception

SLAM is a common perception method in current au-
tonomous systems. Compared with the SLAM systems that use
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TABLE I
A SUMMARY OF MAJOR GEOMETRIC VSLAM METHODS. “MONO.” DENOTES THE MONOCULAR CAMERA, AND “STEREO” STANDS FOR STEREO CAMERA.

Method Type Map

Year Reference Filtering-based Optimization-based Direct Semi-direct Feature-based dense semi-dense sparse Sensor
2003 Real-time SLAM [35]

√ √ √
Mono.

2004 Davison et al. [36]
√ √ √

Mono.
2005 CV-SLAM [37]

√ √ √
Mono.

2006 Smith et al. [38]
√ √ √

Mono.
2007 MonoSLAM [39]

√ √ √
Mono.

2007 PTAM [40]
√ √ √

Mono.
2008 Silveira et al. [41]

√ √ √
Mono.

2009 Migliore et al. [42]
√ √ √

Mono.
2010 Newcombe et al. [43]

√ √ √
Mono.

2011 DTAM [18]
√ √ √

Mono.
2011 Kinectfusion [44]

√ √ √
RGB-D

2012 Kintinuous [45]
√ √ √

RGB-D
2013 Weikersdorfer et al. [46]

√ √ √
Mono., Event camera

2013 Endres et al. [47]
√ √ √

RGB-D
2013 Li et al. [48]

√ √ √
Mono.,IMU

2014 SVO [49]
√ √ √

Mono.
2014 LSD-SLAM [17]

√ √ √
Mono.

2014 Weikersdorfer et al. [50]
√ √ √

RGB-D, Event camera
2015 Stereo-LSD-SLAM [51]

√ √ √
Stereo

2015 ORB-SLAM [52]
√ √ √

Mono.
2015 Leutenegger et al. [53]

√ √ √
Stereo

2015 Bloesch et al. [54]
√ √ √

Mono.,IMU
2016 ElasticFusion [55]

√ √ √
RGB-D

2016 Forster et al. [56]
√ √ √

Mono., IMU
2016 SVO 2.0 [57]

√ √ √
Mono., Multicamera

2016 EVO [58]
√ √ √

Event camera
2017 DSO series [59]–[61]

√ √ √
Mono., Stereo,IMU

2017 ORB-SLAM2 [16]
√ √ √

Mono., Stereo, RGB-D
2017 Bundlefusion [62]

√ √ √
RGB-D

2017 Mur et al. [63]
√ √ √

Mono., IMU
2018 ProSLAM [64]

√ √ √
Stereo

2018 Sun et al. [65]
√ √ √

Stereo, IMU
2018 ICE-BA [66]

√ √ √
Mono., IMU

2018 VINS-mono [67]
√ √ √

Mono., IMU
2018 Lee et al. [68]

√ √ √
Mono.

2019 BAD SLAM [69]
√ √ √

RGB-D
2019 RESLAM [70]

√ √ √
RGB-D

2020 Huang et al. [71]
√ √ √

Mono.
2021 OV2SLAM [72]

√ √ √
Stereo

2021 ORB-SLAM3 [73]
√ √ √

Mono., Stereo, Fisheye, RGB-D,IMU

Lidar sensors [74], [75], visual sensors such as RGB cameras
[49], [76] can provide more environmental information, and
they have been extensively investigated in recent years owing
to their portability. Therefore, we briefly summarize different
types of vSLAM methods in a chronological order first, as
presented in Table I. Their categories of optimization, maps,
and sensors are enumerated in detail. From Table I, we find
that filtering-based vSLAM methods have been widely studied
in the initial stage owing to their low computational burden.
With the development in computer science, optimization-based
vSLAM methods have become popular in recent years due
to their higher accuracy. Meanwhile, dense maps are usually
constructed by direct methods based on RGB-D sensors, like
[44], [45], [77], etc. In addition, new sensors, such as event
cameras, and multi-sensor data fusion are attracting significant
attention and research prospects [50], [54], [78], [79]. In this
section, we communicate the basic principles of the three
classical monocular vSLAM solutions, including feature-based
methods [52], direct methods [17], and semi-direct methods
[49]. The main difference between these three methods is the
pose optimization by minimizing either the reprojection error,
photometric error, or both [76].

Feature-based methods have dominated vSLAM for a long
time, and different man-made features (like SIFT [80], SURF
[81] and ORB [82]) have been designed to improve their robust
tracking and mapping in different scenarios. The feature-based
methods can be divided into three parts, including image input,
feature extraction and matching, tracking and mapping. Most

recently, ORB-SLAM3 [73] is proposed to support different
kinds of sensors, like monocular, stereo, RGB-D, and IMU
sensors, and it also supports a variety of camera models. ORB-
SLAM3 system is much more versatile, accurate and robust
than previous work. However, the performance of feature-
based methods relies on the correct matching, and they will
fail to initialize and track in low-texture and repeated-texture
scenes [17] because of mismatch, suffers from the divergence
in the optimization algorithm, and accumulation of drift. Direct
methods cancel the process of feature extraction and matching,
and the photometric information of pixels is directly used
for pose and depth calculations during tracking and mapping
[17], [83]. Direct methods regard the pose estimation as a
nonlinear optimization problem and iteratively optimize the
initial motion guess by minimizing the photometric error
[17]. Therefore, direct methods rely heavily on the luminosity
consistency assumption [84]. Semi-direct methods first estab-
lish feature correspondences on the basis of direct methods,
which is the main difference from other methods [49], [57].
The principle of epipolar line constraint is applied to match
the same features on the epipolar line. After matching the
features, the solved pose is optimized by minimizing the
reprojection error. Therefore, semi-direct methods handle the
tracking problem by minimizing the photometric error and
the reprojection error. Similar to direct methods, semi-direct
methods have a high requirement on image quality and are
sensitive to photometric changes.

Although the architecture of vSLAM algorithms has been
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very maturely over the past 30 years and the three kinds of the
above-mentioned approaches have achieved good performance
in normal indoor/outdoor scenes, their tracking robustness
and localization/re-localization accuracy in many complex sce-
narios (like high-dynamic/large scale/night-time environments
or across weather/across-seasons conditions) still need to be
further improved [13], [84], [85].

In conclusion, although traditional geometry-based vSLAM
methods have achieved amazing results in environmental
mapping and self-localization, these methods still have some
shortcomings. For example, feature-based methods cannot
adapt to low texture area; direct methods need a good ini-
tialization; semi-direct methods are sensitive to luminosity;
traditional vSLAM/VO methods cannot handle changing light-
ing/weather/season conditions; monocular vSLAM/VO meth-
ods suffer from scale ambiguity and so on [84], [86], [87].
With the continuous development of deep learning in image
processing, applying the latest deep learning systems to the
existing vSLAM to handle the current problems in vSLAM
methods is evolving into a popular research field.

B. Deep learning-based visual perception

With the development in deep learning, utilizing deep neural
networks to address computer vision tasks has evolved into
a popular research field in recent years. Many sub-topics of
vSLAM for environment perception have been extensively
studied based on deep learning, such as monocular depth and
ego-motion prediction, which will be specified in the following
sections.

1) Learning-based monocular depth perception: Depth is
one of the most important information for autonomous systems
in scene reconstruction, self-localization, obstacle avoidance
and so on. Although the active depth sensors are available for
depth perception, image-based techniques are often preferred
thanks to the increasing availability of standard cameras on
most consumer devices [144]. Structure-from-motion (SfM)
[145], [146] and stereo matching [147], [148] are two of the
most popular methods to recover the depth from sequential
or left and right images [147], and the depth is calculated
by the triangulation and continuously optimized by projection
cost and matching cost. However, the above methods rely
on the assumption that multiple observation of the scene are
available [99], which means that the above methods are not
well applicable to estimating depth from a single image.

Estimating the depth from a single image is an ill-posed
problem [88], which requires significant man-made prior
knowledge when handled by traditional geometric methods
[149], [150]. Deep neural networks can recover pixel level
depth information from single images in an end-to-end manner
based on the prior knowledge learnt from ground truth depth
labels or geometric relationships between images [151]. Since
both ground-truth based supervised methods and geometry
based unsupervised methods have been well summarized in
[151], in this paper, we will focus on the latest work, starting
with issues that remain unresolved in monocular depth estima-
tion. As shown in [151], monocular depth estimation has made
great progress in recent few years, and unsupervised methods

are already close to that of supervised methods. After several
years of development, the framework of monocular depth
estimation has become very mature. Recent work focuses on
improving the deficiencies of the existing unsupervised frame-
work, like static scenario assumptions [152] and photometric
consistency assumptions [129].

The smoothness loss is one of the most widely used
constraints [28], [122], [123] to promote the smoothness of
the surface depth of the object, for example, the depth of
the adjacent points on the road surface varies by gradient.
However, the existing methods do not impose smoothness
constraints after distinguishing different targets in the scenario,
resulting in smoothing edge areas that should be sharp in
the estimated depth map. To address this problem, Yin et
al. [153] proposed a novel geometric constraint to improve
the accuracy of depth estimation as well as the geometric
shape in the predicted depth map by considering the surface
normal. Instead of using additional constraints to get a clear
geometric structure in monocular depth estimation, the method
proposed in [96] predicted a 2D displacement field of the given
depth map to re-sample pixels around the occlusion boundaries
into sharper reconstructions. A recent study [131] showed that
incorporating sequence information into monocular framework
is helpful to improve depth prediction, when the sequence in-
formation is available. Instead of estimating the accurate depth
of each pixel, predicting the relative depth of pixels in the
image is also crucial for scene perception and understanding
[154], which can also obtain good results in recovering metric
depth. When considering the widely application scenarios of
high-resolution depth maps, like object detection and semantic
segmentation, Miangoleh et al. [155] proposed to infer high-
resolution depth maps from images based on pre-trained depth
models.

Since the supervised signal of unsupervised methods is
mainly based on the view reconstruction loss [28], view
reconstruction relies heavily on static scenario assumptions.
Therefore, these methods fail to predict depth for moving
objects. To deal with this challenge, Godard et al. [156]
designed an “Auto-Masking” to selectively eliminate pixels
that keep the same position with same RGB value between
adjacent frames in the sequence. However, this method can
only eliminate the influence of objects moving at equivalent
relative translation to the camera, while other dynamic objects
will still have negative influence on the unsupervised training
process. Therefore, with the help of semantic segmentation,
Klingner et al. [157] divided the dynamic and static objects
by the correspondence of class labels between frames, which
is calculated by projection. Then, they eliminated the effects
of these dynamic regions on view reconstruction loss.

There are also some novel studies that improve the accuracy
of monocular depth estimation by utilizing the novel network
framework, such as proposing novel depth network [158]
or using novel attention mechanism [95], [159]. Introducing
traditional geometry is also a good way, Wang et al. [110] tried
to get a better pose estimation by using direct methods during
training. The direct method was used to further optimize the
output of the pose network before training, thereby getting a
more accurate pose and depth estimation. Depth estimation
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TABLE II
A SUMMARY OF DEEP LEARNING-BASED MONOCULAR DEPTH AND EGO-MOTION ESTIMATION.

Supervisory signal Mission

Methods Years Training Data Supervised Semi-supervised Unsupervised Depth Pose Other tasks
Eigen et al. [88] 2014 RGB + Depth

√ √
-

Li et al. [89] 2015 RGB + Depth
√ √

Surface Normal
Liu et al. [90] 2015 RGB + Depth

√ √
-

Mayer et al. [91] 2016 RGB + Depth
√ √

-
Kendall et al. [92] 2017 Stereo images + Disparity

√ √
Disparity

Fu et al. [93] 2018 RGB + Depth
√ √

-
Facil et al. [94] 2019 RGB + Depth

√ √
-

Huynh et al. [95] 2020 RGB + Depth
√ √

-
Ramamonjisoa et al. [96] 2020 RGB + Depth

√ √
Displacement field

Chen et al. [97] 2020 RGB + Depth
√ √

-
Ranftl et al. [98] 2020 RGB + Depth

√ √
-

Garg et al. [99] 2016 Stereo images
√ √

-
Godard et al. [100] 2017 Stereo images

√ √
-

Kuznietsov et al. [101] 2017 Stereo images + LiDAR
√ √

-
Poggi et al. [102] 2018 Stereo images

√ √
-

Ramirez et al. [103] 2018 Stereo images + Semantic Label
√ √

-
Aleotti et al. [104] 2018 Stereo images

√ √
-

Pilzer et al. [105] 2018 Stereo images
√ √

-
Pilzer et al. [106] 2019 Stereo images

√ √
-

Tosi et al. [107] 2019 Stereo images
√ √

-
Chen et al. [108] 2019 Stereo images

√ √
Semantic segmentation

Fei et al. [109] 2019 Stereo images + IMU + Semantic Label
√ √

-
Wang et al. [110] 2018 Mono. sequences

√ √ √
-

Zhan et al. [111] 2018 Stereo sequences
√ √ √

-
Li et al. [112] 2018 Stereo sequences

√ √ √
-

Wang et al. [113] 2019 Stereo sequences
√ √ √

Optical Flow
Hur et al. [114] 2020 Stereo sequences

√ √ √
Scene Flow

Chi et al. [115] 2021 Stereo. sequences
√ √ √

Optical Flow
Jiao et al. [116] 2021 Stereo. sequences

√ √ √
Optical Flow, motion segmentation

Jung et al. [117] 2021 Mono. sequences
√ √ √

Semantic segmentation
Zhou et al. [28] 2017 Mono. sequences

√ √ √
Motion mask

Vijayanarasimhan et al. [118] 2017 Mono. sequences
√ √ √

Motion flow and segmentation
Yang et al. [119] 2017 Mono. sequences

√ √ √
Normal

Mahjourian et al. [120] 2018 Mono. sequences
√ √ √

Principled Masks
Zou et al. [121] 2018 Mono. sequences

√ √ √
Optical Flow

Yin et al. [122] 2018 Mono. sequences
√ √ √

Optical Flow
Ranjan et al. [123] 2019 Mono. sequences

√ √ √
Optical Flow, Motion segmentation

Wang et al. [124] 2019 Mono. sequences
√ √ √

-
Li et al. [125] 2019 Mono. sequences

√ √ √
-

Li et al. [126] 2020 Mono. sequences
√ √ √

-
Vankadari et al. [127] 2020 Mono. sequences

√ √ √
-

Zhao et al. [128] 2020 Mono. sequences
√ √ √

-
Spencer et al. [129] 2020 Mono. sequences

√ √ √
-

Shu et al. [130] 2020 Mono. sequences
√ √ √

Feature map
Watson et al. [131] 2021 Mono. sequences

√ √ √
-

Lyu et al. [132] 2021 Mono. sequences
√ √ √

-
Zhou et al. [133] 2021 Mono. sequences

√ √ √
-

Konda et al. [134] 2015 Mono. sequences + Pose
√ √

-
Kendall et al. [25] 2015 Mono. sequences + Pose

√ √
-

Costante et al. [135] 2015 Mono. sequences + Pose
√ √

-
Wang et al. [136] 2017 Mono. sequences + Pose

√ √
-

Xue et al. [137] 2018 Mono. sequences + Pose
√ √

-
Xue et al. [138] 2019 Mono. sequences + Pose

√ √
-

Clark et al. [139] 2017 Mono. sequences + Pose + IMU
√ √

-
Chen et al. [140] 2019 Mono. sequences + Pose + IMU

√ √
-

Xue et al. [141] 2020 Mono. sequences + Pose
√ √

-
Wei et al. [142] 2020 Mono. sequences + Pose + Depth

√ √
-

Zhang et al. [143] 2021 Mono. sequences + Pose
√ √

-

based on novel cameras, like event-based camera [160], fish-
eye camera [152] and panorama camera [161], is attracting
increase attention because of its advantages, like low latency
and wide field-of-view. Inspired by the high performance of
HRNet [162], Zhou et al. [133] introduced the HRNet into
the unsupervised monocular depth estimation task and got a
satisfactory results.

Monocular depth estimation in special scenarios, such as
adverse weather conditions and night-time scenes, is gradually
being focused. Because of the complex luminosity changes and
photometric inconsistency at night, the previous unsupervised
frameworks driven by view reconstruction consistency [28],
[122], [123] cannot be applied to the night-time scene [129]
directly. Recent studies have tried to address this problem
by using warped feature consistency [129] or cross-domain
feature adaptation [127], which achieved good accuracy in
night-time depth estimation. Spencer et al. [129] designed a

DeFeat-Net to simultaneously learn the cross-domain dense
feature representations of frames. Moreover, a robust feature
reconstruction consistency instead of view reconstruction con-
sistency is used as the main supervised signal for the training
of framework, thereby being able to adapt special scenarios.
Based on the auto-encoder depth network pre-trained on day
time, Vankadari et al. [127] used an additional night-time
encoder to encode the images of night time. A PatchGAN-
based adversarial discriminator was designed to constrain the
consistency between the features among the images of day
time and night time, which are encoded by two encoders re-
spectively. Hence, the pre-trained decoder can directly recover
a depth map of a night-time image from features encoded by
the night-time encoder. Zhao et al. [163] proposed to use a
cyclegan-based domain adaptation framework to get an end-to-
end night-time depth model from a pretrained day-time model,
and it got a better results in night and even rainy night. Instead
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of using adaptation methods, Wang et al. [164] leveraged a
Mapping-Consistent Image Enhancement module to deal with
the low visibility and a Statistics-Based Mask (SBM) to tackle
textureless regions, so their work can directly train the model
on night-time image sequences.

2) Learning-based monocular ego-motion perception: Vi-
sual odometry (VO) is the process of estimating the ego-
motion of an agent (e.g., vehicle, human, and robot) by
using the input of a single or multiple attached cameras [34].
Geometry-based monocular VO methods handle the localiza-
tion and tracking by minimizing the photometric error [59] or
reprojection error [52] on sequential images. The difference
between traditional VO and vSLAM is that VO system lacks
the loop-closure detection and global optimization [34]. With
the development of deep learning systems, using the features
extracted by deep neural networks to regress the ego-motion
in an end-to-end manner is becoming a hot application in
recent years [25]. Compared with traditional VO methods,
pose networks do not require complex parameter tuning, such
as the settings of key frames and features [25]. Moreover,
pose networks can learn the scale information from the ground
truth during training, so these methods solve the monocular
scale ambiguity problem that widely existed in traditional
monocular VO methods [52], [59]. Konda et al. [134] first
estimated the motion information through deep learning-based
methods by formulating pose prediction as a classification
problem. Alex et al. [25] first demonstrated the ability of
convolutional neural networks (CNNs) on 6-DOF pose regres-
sion. A deep CNN framework called PoseNet was designed
for regressing monocular camera pose that could operate in
different scenes in real-time. In [135], Costante et al. also used
a deep CNN to learn high-level feature representation, and
the major difference from [25] is that the dense optical flow
was calculated and used to estimate the ego-motion instead of
feeding RGB images into the CNN directly. Considering the
dynamics and relations between adjacent pose transformations,
Wang et al. [136] and Xue et al. [137] used recurrent neural
networks (RNNs) for camera localization. Then, Xue et al.
[138] further extended their work by incorporating two helpful
modules named “Memory” and “Refining” into VO tasks,
which outperformed the previous deep learning-based VO
methods [137].

As the learning system is constantly evolving, introducing
new learning architecture to current tasks has been a good way
to improve the ability of pose network in high-level feature ex-
traction and pose regression. Xue et al. [141] proposed to con-
struct a view graph to excavate the information of the whole
given sequence for absolute camera pose estimation, and a
graph neural network was applied to model the total graph.
Li et al. [126] introduced online meta-learning algorithms
into previous learning framework, so that their method can
continuously adapt to unseen environments in a self-supervised
manner. Considering the error accumulation problem com-
monly suffered by previous learning-based methods, Zou et
al. [165] tried to aggregate long-term temporal information by
using Conv-LSTM (convolutional long short term memory)
to model long-term temporal dependency. Meanwhile, long-
range constraints based on long-range image snippets are used

to improve temporal consistency over long sequences, just
like the local optimization (bundle adjustment) that widely
used in traditional VO methods. Chi et al. [115] studied
the performance difference between feature-level collaboration
and loss-level joint optimization for multi-task learning (depth,
pose and optical flow), and feature-level collaboration shows
much greater performance improvement for all three tasks.
Therefore, they designed a single network to integrate all
the three tasks, and the pose component regresses pose from
both images and estimated disparity map and optical flow.
Inspired by bundle adjustment, Wei [142] proposed a deep
learning framework that iteratively improves both depth and
pose based on the cost volume explicitly built to measure
photo-consistency and geometric-consistency. Zhuang et al.
[143] presented an uncertainty based probabilistic framework
that integrating pose predictions from deep neural networks
and solutions from geometric feature-based solvers (5-point
method and bundle adjustment). Instead of estimating poses
from images, Zhao et al. [166] recovered relative pose by
directly solving the fundamental matrix from dense optical
flow correspondence, which was predicted by an optical flow
network, and the results demonstrated the effectiveness of the
framework in pose estimation. Jiao et al. [116] obtained the
pose between frames by minimizing the reprojection error,
since the optical flow and depth are predicted by deep neural
networks.

The traditional methods have proved that combining visual
information with inertial information is helpful for improving
the visual localization accuracy [53], [167], [168]. However,
these visual-inertial odometry (VIO) methods suffer from
accurate calibration between sensors, time-stamp synchroniza-
tion between inertial and visual data, and effective inertial
and visual information fusion [53], [167], [168]. Researchers
believe that inertial information is also helpful in learning-
based methods. Therefore, Clark et al. [139] proposed the first
end-to-end VIO framework based on deep learning without
the need for time-stamp alignment and manual calibration
between different sensors. They used the CNN architecture to
extract visual features and long short-term memory (LSTM)
to extract the inertial features, and fused their features using a
core LSTM processing module for pose regression. For a better
integration of visual and inertial features extracted by the deep
neural networks, Chen et al. [140] presented a selective sensor
fusion framework based on the attention mechanism, which
autonomously selects the most useful features extracted from
images or inertial measurement unit (IMU) by deep neural
network. Therefore, even in the case of poor image quality,
their algorithm can get accurate poses with the help of inertial
data.

We briefly summarize the deep learning-based monocular
depth and ego-motion estimation according to their published
years, the training data, the training mode, and the missions,
as shown in Table II. From the table, we find that attention
has been paid increasingly to unsupervised methods these
years, because unsupervised methods do not require expensive
ground truth [28]. Besides, considering the in-depth relation-
ship between projection and optical flow between frames,
researchers always extend the unsupervised pose and depth es-
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timation framework with optical flow estimation [121], [122].
Recently, scene flow (optical flow in 3D space) estimation
[114], [116] is getting more attention, which is trained together
with depth and pose network in an unsupervised manner. Since
optical flow, scene flow, depth and pose are tightly coupled,
the training strategy will have an impact on the performance
of each task [116]. Therefore, the multi-task frameworks have
become popular in recent years, and the geometric relationship
between these tasks (flow, segmentation, mask) has been
exploited to improve the performance of the network. Besides,
the data from multi-sensors (like camera, IMU) has also been
added to join the network to provide additional information
[109], [140], thus promoting the training of networks.

C. Deep learning with vSLAM

The methods combining vSLAM with deep learning have
also been extensively studied and have lead to notable im-
provements to traditional vSLAM methods, like tackling the
scale ambiguity of monocular vSLAM [169], [170], improving
the robust tracking and accurate mapping of vSLAM [171],
[172], strengthening the adaptability of vSLAM in different
environments [30], [84], [173], and extending the semantical
perception of the environments [174], [175].

1) Learning-based monocular depth estimation and vS-
LAM: Depth information plays an important role in tradi-
tional vSLAM methods, and sensor-based and triangulation-
based methods are two basic ways to obtain the depth of
features. With the development of deep learning in the field
of monocular depth estimation, researchers are trying to use
deep learning-based methods as an alternative to the traditional
depth calculation methods of vSLAM. The combination of
deep learning-based depth estimation and traditional vSLAM
methods has been proved to be effective in obtaining the depth
of features and overcoming the monocular scale ambiguity,
thereby improving mapping and replacing the RGB-D sensors
[169], [176]. Depth prediction was first introduced to dense
monocular vSLAM by Laina et al. [176]. Since the mapping
process reduces the dependence on feature extraction and
matching, this method has the potential to reconstruct low-
texture scenes. Moreover, this work showed that the depth
estimation network can replace the depth sensors (such as
RGB-D) and can be used for dense reconstruction. After
that, a real-time dense vSLAM framework was proposed in
[169]. They used the LSD-SLAM [17] as the baseline and
fused the depth estimation and semantic information. Unlike
the work by Laina et al. [176], where the depth estimation
was directly used in vSLAM, Tateno et al. [169] considered
the predicted depth map as the initial guess of LSD-SLAM,
and further refined the predicted depth value by the local or
global optimization algorithms in vSLAM. This method not
only got a higher pose accuracy than LSD-SLAM, but also
overcame the issue of scale inconsistency in dense monocular
reconstruction. Similarly, Yang et al. [171] proposed a novel
semi-supervised disparity estimation network and incorporated
it into direct sparse odometry (DSO) [88], thereby achieving a
better accuracy to monocular DSO and attaining a comparable
performance to previous stereo DSO methods. Recently, Loo

et al. [177] presented a CNN-SVO pipeline that leveraging the
SVO [49] with depth prediction network to improve the map-
ping and tracking of SVO. Czarnowski et al. [178] proposed
a real-time probabilistic dense vSLAM system that integrates
learned priors (depth) over geometry with classical vSLAM
formulations in a probabilistic factor-graph formulation, and
got a better accuracy than [169] in both trajectory and depth
estimation. Combining depth estimation with vSLAM has been
proven to effectively improve the performance of traditional
monocular vSLAM. Moreover, vSLAM can also be used to
promote the accuracy of depth networks. For example, Tawari
et al. [179] proposed a self-improving framework. On the
one hand the predicted depth was used to perform RGB-D
feature-based vSLAM. On the other hand, the pose calculated
by RGB-D feature-based vSLAM instead of that predicted by
pose network was leveraged to train the depth network, thereby
leading to more accurate depth estimation. The above works
have shown how to integrate vSLAM with depth prediction
via a deep neural network, and it is a promising direction to
address inherent limitations of traditional vSLAM, especially
with respect to estimating the absolute scale and obtaining
dense depths.

2) Learning-based pose estimation and vSLAM: Although
pose networks have achieved real-time performance and satis-
factory accuracy, the existing learning based pose estimation
methods do not include the mapping thread [25], [136],
which is important for the perception of the environmental
structure. Besides, traditional direct methods rely heavily on
the initial guess of pose during tracking, resulting in instable
initialization and inaccurate tracking [84], [88]. Therefore,
combining learning-based pose estimation with traditional
vSLAM is a good way to overcome the above deficiencies
[172], [180]. Zhao et al. [172] designed a self-supervised
pose prediction network and incorporated it into DSO [88].
They considered the output of the pose network as the initial
pose guess of direct VO, which replaced the constant motion
model used in DSO; then, the initial pose was improved by
the nonlinear optimization in DSO. This method got a more
robust initialization and tracking than traditional DSO when
testing on the KITTI odometry sequences [181]. Yang et al.
[180] also focused on this field, and they proposed a novel
framework for monocular VO that exploits deep networks on
three levels - deep depth, pose and uncertainty estimation,
which not only improve the robust initialization and tracking
of DSO in the challenging scenarios with photometric changes
but also assist in recovering the scale information of monocular
VO. Different from the above frameworks, Wagstaff et al.
[182] proposed to use a deep neural network to correct the pose
estimated by traditional VO frameworks, and a self-supervised
deep pose correction network is designed to estimate a pose
correction rather than the full inter-frame pose. Teed et al.
[183] proposed a new deep learning-based SLAM system with
strong performance and generalization, called DROID-SLAM,
and a GRU based update operator is proposed for depth and
pose update.

3) Learning-based image enhancement and vSLAM: Cur-
rent monocular vSLAM methods have achieved good robust-
ness under specific scenarios, such as outdoor sunny scenes
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with normal illumination conditions [181]. While driving in
complex environments, such as during the night, in rain, and
other scenarios, current monocular vSLAM systems cannot
accurately estimate the pose of robots and reconstruct the point
clouds of environments.For example, compared with the day-
time scenarios under a single light source (sun), the night-time
scenarios suffer from complex lighting changes because of
multiple light sources (e.g. street lights, own car light and other
car lights) [127], which affects the extraction of high-quality
points and the accuracy of feature matching between frames
[30]. Therefore, tracking the key points or features between
images in such scenarios is instable and in accuracy because of
the changing illumination, resulting in inaccurate calculation
of depth and pose [30]. Besides, different weather conditions
in the same scenario also cause changes in the luminosity
and feature descriptors of the scene, which brings challenges
to feature matching and relocalization [85]. Researchers have
proposed some geometric methods to improve the performance
of vSLAM in challenging environments, such as using mul-
tiple cameras [184], designing a new NID metric [85] and
raising novel feature descriptor [185], and these methods can
achieve robust VO and relocalization under different lighting
and weather conditions.

With the development of learning systems in image style
translation [186], [187] and video synthesis [188], [189],
deep learning-based image enhancement provides a new and
simple way for vSLAM systems to overcome challenging
environments [190], [191]. Deep learning-based image en-
hancement helps to enhance the quality of images, like enhanc-
ing the brightness constancy of images [192] or transferring
the images from low light to normal light [30], so as to
make the images more suitable for current vSLAM systems.
Considering that direct methods cannot handle the dynamic
lighting changes, Gomez et al. [192] used deep neural net-
works to enhance the brightness constancy of image sequences
captured from high dynamic range (HDR) environments. The
experiments showed that learning-based image enhancement
can improve the trajectory estimation of ORB-SLAM [52]
and DSO [88] in HDR environments. Since the illumination
influences feature extraction and matching, Jung et al. [30]
proposed a new framework called multi-frame GAN that
translated the images from night-time to day-time to improve
the quality of input images. Both stereo ORB-SLAM [16] and
stereo DSO [60] achieved accurate tracking performance on
the transferred high-quality day-time images, which means that
their method [30] can overcome the low light environments.
Unlike [30], Von Stumberg et al. [84] replaced the input
of direct methods (gray-scale images) with feature maps
created by their designed GN-Net for relocalization tracking.
Since GN-Net can predict the consistent feature map of the
same scene under different lighting and weather conditions,
their method had the ability to achieve accurate tracking and
relocalization in different weather conditions.

4) Learning-based object detection, semantic segmentation
and vSLAM: We consider the following three problems:

Dynamic scene adaptability: Traditional vSLAM relies
heavily on static scene assumption, i.e., the performance of
vSLAM is limited by moving objects [193], as shown in Fig.

(a) The trajectory generated by ORB-
SLAM2 [16] in high-dynamic environ-
ment;

(b) The trajectory generated by
deep learning methods in a nor-
mal environment;

Fig. 3. (a): ORB-SLAM2 cannot generate the usable trajectory in high-
dynamic environment [193]; (b): The trajectories generated by SfMLearner
[28],GeoNet [122] and SC-SfM [194] on the KITTI odometry sequence 09.

3 (a). Both photometric error and reprojection error are based
on geometric projections between frames, but the features on
the dynamic object do not satisfy the projection relationship
based on the camera motion, which will lead to inaccurate
pose estimation. The features on static objects are positive to
improve the accuracy, while those on dynamic objects have
a negative impact on the tracking process [195]. Therefore,
if the dynamic objects on the input images can be detected
and labelled, this problem will be well addressed. Considering
the outstanding performance of deep learning-based object
detection and semantic segmentation, the integration of deep
learning framework and vSLAM can effectively assist vSLAM
in identifying dynamic objects in the environment to classify
and handle the dynamic features. Excellent detection and
segmentation networks, such as YOLO [196], SSD [197],
Mask-RCNN, [198] and SegNet [199], have been incorporated
into traditional vSLAM frameworks as an additional thread to
identify and eliminate the dynamic features. Zhong et al. [200]
presented a novel system that integrated vSLAM with the
object detector SSD, called Detect-SLAM. The SSD was used
to detect the dynamic and static objects for every key frame;
Since the extracted features on the dynamic objects were
removed, the remaining static features satisfied the projection
function between frames, which greatly improved the accuracy
of the pose and depth solutions. Wang et al. [173] considered
the effects of moving objects on localization accuracy and
constructed maps, and developed a novel vSLAM solution.
They used YOLOv3 [201] to detect moving objects and con-
structed a semantic static map with the data without moving
objects. Xiao et al. [195] developed a new detection thread
to detect and remove the dynamic objects, and designed a
selective tracking algorithm to process the dynamic features
during tracking. Because the object detection methods are
not considered during pixel-level semantic annotation, the
classification of feature attributes is not accurate enough.
Therefore, Yu et al. [202] presented a robust semantic vSLAM
for dynamic environments with five threads based on ORB-
SLAM2. They used SegNet to segment the movable objects
at the pixel level and designed a moving consistency check
process to detect the movements of the movable ORB features.
Only the semantically and geometrically dynamic features



IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 9

were deleted. Similarly, Cui et al. [193] combined the results
of semantic segmentation from SegNet with ORB-SLAM2.
They proposed a new method, called Semantic Optical Flow
(SOF), to improve the detection of dynamic features and rea-
sonably remove the dynamic features during tracking. Unlike
[173], [193], [195], [200], [202] that directly detect and delete
the dynamic features, recent studies tried to further estimate
and utilize the dynamic objects in the scenes [203], [204].
Huang et al. [203] proposed a stereo VO framework that
not only estimated the motion of camera but also clustered
the surrounding objects. A sliding window optimization was
used to solve the motions of camera and surrounding dynamic
objects. Yang et al. [204] dug deeper into the relationship
between the motion of camera and surrounding objects, and
found that the two parts can improve each other. Since both
dynamic and static objects can provide long-range geometric
and scale constraint, it is helpful to improve the camera pose
estimation and constrain the monocular drift.

Scale recovery and visual localization: Scale ambiguity
has always been a big challenge for monocular vSLAM,
which brings great uncertainty to accurate trajectory prediction
and mapping [87]. Because objects in reality have their own
inherent properties, like the height of cars, these properties
can be used for monocular vSLAM to get the absolute scale
information of scenes. Therefore, semantic information can be
utilized to build a bridge between objects and their properties,
and it has shown its effectiveness in monocular vSLAM for
scale recovery and assisting localization. Semantic information
introduces the size information of objects in the environment
into the vSLAM framework to handle the problem of monoc-
ular scale ambiguity. Frost et al. [205] represented objects
in the environment as spheres and recovered the scale from
the detected objects with a known radius. Similarly, in [170],
Sucar et al. recovered the scale by setting the prior height of
the object (car). A detection method was used to detect this
object and compute the height, and the scale was solved by
the ratio of the calculated height to the prior height. For lo-
calization, Stenborg et al. [206] proposed a novel method that
locates the camera based on semantically segmented images,
which is different from traditional localization methods based
on features. To obtain more accurate localization, Bowman et
al. [207] first integrated the geometric, semantic, and IMU
information into a single optimization framework and then as-
sociated scale information with semantic information. Lianos
et al. [208] utilized the semantic information of the scenes to
establish mid-term constraints in the tracking process, thereby
reducing the monocular drift in VO.

High-level semantic perception: Autonomous systems
need to be able to perform high-level tasks, while the point
cloud maps built by traditional vSLAM cannot fully meet
the requirements of these tasks. Therefore, a multi-level un-
derstanding of their surroundings is essential. For instance,
autonomous vehicles should have an understanding of the
areas that are drivable and those that have obstacles. However,
the environments modeled by traditional vSLAM methods are
represented by point clouds, which only contain the location
of the point and cannot provide any high-level information
about 3D objects. Although the current metric representation

for vSLAM executes some basic tasks, such as localization and
path planning, it is still insufficient for some advanced tasks,
such as human-robot interaction, 3D object detection, and
tracking. Therefore, high-level and expressive representations
will play a key role in the perception of autonomous systems.
To obtain high-level perception, an object-level environment
representation [209] was proposed in 2011 by modeling the
objects in advance and matching them in a global point cloud
map. Salas et al. [210] extended this work in [209]. They
created an object database to store the 3D models generated
by Kinectfusion [44] and computed the global descriptor of
every object model for quick matching based on [211]. They
also demonstrated that object-level mapping is useful for
accurate relocalization and loop detection. Contrary to building
the models in advance, Sunderhauf et al. [212] proposed an
online modeling method for generating the point cloud models
of objects, along with a novel framework for vSLAM by
combining object detection with data association to obtain
semantic maps. However, traditional geometry-based high-
level environment perception requires modeling and matching
objects in the environment in advance, which leads to the
complexity of the whole process, i.e. only some objects can
be modeled and recognized in these methods.

In comparison to an object-level maps, pixel-level semantic
maps-based on learning systems are more precise because
they present the semantic information of each point in the
maps . To improve the accuracy of segmentation and semantic
mapping, conditional random fields (CRFs) have been widely
used in related works. A voxel-CRF model was presented in
[213] to associate the semantic information with 3D geometric
structure, and a dense voxel-based map with semantic labels
was constructed. For consistent 3D semantic reconstruction,
Hermans et al. [214] proposed a novel 2D-3D label transfer
method based on CRFs and Bayesian updates. Considering
the intrinsic relationship between geometry and semantics,
Kundu et al. [215] utilized the constraints and jointly opti-
mized semantic segmentation with 3D reconstruction based
on CRFs. Gan et al. [32] focused on the continuity of maps
and valid queries at different resolutions, and exploited the
sparse Bayesian inference for accurate multi-class classifica-
tion and dense probabilistic semantic mapping. With the help
of semantic maps, autonomous systems can obtain a high-level
understanding of their surroundings, and they can easily know
“which and where is the desk”.

With the development in deep neural networks, several
detection and segmentation methods based on deep learning
are proposed. Methods for object detection and image seg-
mentation have been reviewed in [4] and [29]. Leveraging
deep learning-based image segmentation to perform semantic
mapping is also a hot topic. In [216], Li et al. combined
the LSD-SLAM [17] with CNN-based image segmentation to
reconstruct a semi-dense semantic map. Cheng et al. [174]
integrated a CRF-RNN-based segmentation algorithm with
ORB-SLAM [52], and built a dense semantic point-cloud
map by using RGB-D data. Deep learning-based semantic
segmentation with dense SLAM frameworks have also been
applied to construct dense semantic maps. Mccormac et al.
[175] incorporated CNN-based semantic prediction into state-
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of-the-art dense vSLAM method, ElasticFusion [55]. They
considered the multi-view segmentation result of the same 3D
point and fuse semantic information in a probabilistic manner.

When/where can we integrate learning methods to aid tra-
ditional frameworks, like vSLAM? There are two main ways
of using deep learning to improve traditional frameworks:
one is to enhance the quality of inputs through the learning
systems, like image enhancement and vSLAM; the other is to
embed the learning systems into traditional frameworks, like
pose estimation, depth estimation and vSLAM. For example,
considering that traditional vSLAM cannot well adapt to
challenging low-light environments, learning methods are used
to enhance the stability of feature tracking of vSLAM by
improving the quality of input images [30]. Since dynamic
objects will affect the feature matching, which in turn affects
the pose and depth solution of vSLAM, learning systems
are used to detect dynamic objects and help to eliminate the
dynamic features [195]. Therefore, the basic idea is to analyze
the limitations and shortcomings of traditional vSLAM, and
then introduce learning systems to improve the traditional
vSLAM framework. In addition, we should also note that the
introduction of the learning systems also brings some problems
to the entire framework, such as the increase of computation,
the dataset dependence of the learning systems, etc, and there
also remain problems we need to address in the future.

III. AUTONOMOUS VISUAL NAVIGATION

After perceiving the surroundings and state, autonomous
robots will plan appropriate trajectories according to the mis-
sions, their own state as well as the environmental information.
A survey of geometry-based motion and control planning for
autonomous vehicles is proposed in [9]. Therefore, in this
section, we mainly focus on autonomous visual navigation
based on reinforcement learning, as shown in Fig. 4. We
first present visual navigation methods, and introduce three
main deep reinforcement learning methods. Then, we review
deep reinforcement learning-based visual navigation scenarios,
methods and environments.

Navigation can be defined as a process of accurately de-
termining one’s location, planning, and following a route
from one place to another. With the help of the advanced
sensors and navigation algorithms, vision has been introduced
into navigation [217], [218]. Compared with other naviga-
tion methods, such as magnetic navigation [219], inertial
navigation [220], laser navigation [221] and GPS navigation
[222], visual navigation has a relatively low cost and general
simulation platforms. Therefore, visual navigation has become
a mainstream research approach for researchers. Traditional
visual navigation of mobile robots is generally based on
three main methods: map-based navigation, map-building-
based navigation, and mapless navigation [223].

Map-based navigation requires the global map of the current
environment to make decisions for navigation. For exam-
ple, in [224], the robot used a generic map to accomplish
symbolic navigation. Specifically, the robot was not guided
to the locations with specific coordinates but with symbolic
commands. Symbolic commands are the general description

of the types of entities in the environment. In map-building-
based navigation, robots use different sensors to perceive the
environment and update the map. For example, in [225], the
robot accomplished long-distance navigation with the help
of a topological map. Specifically, the global environment
was built as a topological map and described by graphics
during navigation. An appearance-based system and a visual
servoing strategy qualitatively estimated the position of the
robot and kept it on a specific trajectory employing omnidi-
rectional cameras. In mapless navigation, robots do not have
any environment information and navigate with the perceived
information without maps. Saeedi et al. [226] presented a
general-purpose 3-D trajectory-tracking system. This system
could be applied to unknown indoor and outdoor environments
without the need of mapping the scene, odometry or the
sensors other than vision sensors.

Reinforcement learning based visual navigation: Since
reinforcement learning is suitable for continuous motion plan-
ning tasks in complex environments, reinforcement learning
based navigation has been preliminarily studied recently. Com-
pared to traditional control methods, when using reinforcement
learning algorithms to address navigation problems, sufficient
theoretical knowledge is not required, and the proposed model
tends to solve the problem end-to-end. By defining better
state space representations in complex and infinite environ-
ments, reinforcement learning algorithms can be simplified
and navigation efficiency will be improved. Jaradat et al.
[227] used Q-learning to handle the problem of mobile robot
navigating in an unknown dynamic environment. Owing to
the infinite number of states in a dynamic environment, the
authors limited the number of states based on a new definition
of the state space to ensure that the navigation speed was
improved. Similarly, Shi et al. [228] utilized Q-learning to
predict partial missing QR codes in order to ensure image-
based visual servoing. Since the QR code has a large number
of feature points, the authors proposed to take its rotation and
translation between the current image and the desired image
as the state space to simplify the computational complexity of
reinforcement learning.

During the training period, adding auxiliary tasks, such as
value function [229], reward prediction [230], map recon-
struction [231], and edge segmentation [232], can improve
the reinforcement learning efficiency. Jaderberg et al. [230]
proposed a novel unsupervised reinforcement and auxiliary
learning algorithm. The algorithm predicted and controlled
the features of the sensorimotor stream by treating them as
pseudo-rewards for reinforcement learning. Moreover, during
the training process, the agent was allowed to perform ad-
ditional tasks, such as pixel control, reward prediction and
value function replay. In [231], the agent only used the visual
information (images of the monocular camera) for navigation
search (finding the apple in the maze). The study considered
two auxiliary tasks. In the first task, a low-dimensional depth
map was reconstructed at each time step, which is beneficial
for obstacle avoidance and short-term path planning. The other
task involved loop closure detection, wherein the agent learned
to detect whether the current location had been visited within
the currently running trajectory. The experiments in these
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Fig. 4. The structure of autonomous visual navigation based on reinforcement learning.

studies proved that co-training can significantly improve the
learning speed and performance of the model.

Recently, multi-modal reinforcement learning has become
a hot point and cutting edge, which combines multi-modal
information, such as language and video, with vision as inputs
in the reinforcement learning model. To deal with navigation
issues, visual language navigation (VLN) [233] has been
widely used in recent years. VLN is a task that guides the
embedded agent to execute natural language instructions in
a 3D environment. It requires a deep understanding of the
linguistic semantics, visual perception, and most importantly,
the alignment of the two. Most existing methods are based
on sequence-to-sequence architecture [234]–[236]. That is,
instructions are encoded as word sequences, and navigation
trajectories are decoded as a series of actions, which are
enhanced by attention mechanism and beam search. Therefore,
connecting cross-modality training data is a key to improve
training efficiency. Wang et al. [237] summarized VLN tasks
and studied how to solve the three key challenges of VLN,
namely cross-modal grounding, ill-posed feedback, and the
generalization problems. Chaplot et al. [238] proposed a
dual-attention unit to disentangle the knowledge of words in
the textual representations and visual concepts in the visual
representations, and align them with each other. The fixed
alignment enables the learned knowledge transferred across
tasks. In response to the first and second challenges, the
authors proposed the reinforced cross-modal matching (RCM)
method, which used reinforcement learning to connect local
and global scenarios. In response to the third challenge,
self-supervised imitation learning (SIL) was proposed, which
helped the agent to get better policies by imitating its best
performance from the past.

However, reinforcement learning-based navigation is limited
to small action space and sample space, and it is generally in a
discrete situation. Moreover, more complex tasks closer to the
actual situation tend to have a large state space and continuous
action space.

Deep reinforcement learning based visual navigation:
has achieved promising results recently by combining the per-
ceptual ability of deep learning with the continuous decision
ability of reinforcement learning. Compared to reinforcement
learning based navigation, deep reinforcement learning meth-
ods equip robots with the ability to learn high-dimensional data
[239] to ensure precise perception and positioning, so that they

can accomplish more complex tasks, for example, navigating
to different targets in a scene without retraining [240].

Deep reinforcement learning algorithms can be divided
into two types: value-based and policy-based. Value-based
algorithms learn the value function or the approximation of the
value function, and then select a policy based on the value.
Deep Q-Network (DQN) is the first value-based algorithm.
Tai et al. [241] first built an exploring policy for robotics
based on DQN, in order to explore a corridor environment
with the depth information from an RGB-D sensor only. There
are many extensions of DQN in order to improve stability and
efficiency during training. Dueling DQN [242] can directly
learn the value of state through the advantage function, which
makes it learn faster than DQN when some of the actions do
not affect the environment. On the other hand, double DQN
[243] can train two Q networks at the same time and choose
a smaller Q value to reduce the overestimation error, which
equips double DQN with stable performance. In that way,
combining dueling DQN with double DQN is a good choice.
Zeng et al. [244] utilized dueling double DQN with multi-step
learning to handle coverage-aware UAV navigation problem.
Specifically, the signal measured on the UAV was used to
directly train the action-value function of the navigation policy,
thus greatly maintaining the relative stability of the target and
improving the learning efficiency. The original DQN can only
be applied in tasks with a discrete action space. In order to
extend to continuous control, many policy-based algorithms
have been developed. Policy-based algorithms learn directly
based on the policy without the reward. For example, deep
deterministic policy gradients (DDPG) [245] and normalized
advantage function (NAF) [246] are policy-based algorithms
that have been widely used. In comparison to NAF, DDPG
needs less training parameters. Liu et al. [247] navigated a
group of agents to provide long-term communications cover-
age, which only used one agent to output control decisions
for all agents by employing DDPG. However, the DDPG
algorithm requires researchers to spend a lot of time iterating
and manually adjusting rewards in practice. To address this
problem, one way is to use some expansion of DDPG to
improve sampling efficiency [248], [249]. Tai et al. [248]
presented a model using asynchronous multithreading DDPG
to collect data, which helped to improve sampling efficiency.
The mapless motion planner could be trained end-to-end
without any features designed by human or prior demonstra-
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tions. Similarly, Zhang et al. [249] proposed asynchronous
episodic DDPG, which improved learning efficiency with
less training time in computationally complex environments.
Episodic control and a novel type of noise were introduced
to the asynchronous framework in order to improve sample
efficiency while increasing data throughput. Another solution
is to introduce AutoRL, an evolutionary automation layer
around reinforcement learning, which helps to optimize the
reward and the neural network hyperparameter while learning
navigation policies. Chiang et al. [250] introduced AutoRL
to simultaneously train a group of agents using DDPG for
several generations. Each agent had a slightly different reward
function and hyperparameter to optimize the real goal-reaching
the destination.

Actor-critic (AC) algorithm [251] combines two types of
deep reinforcement learning algorithms mentioned above. That
is, the actor network chooses the proper action in a con-
tinuous action space, while the critic network implements
single-step-update, which improves the learning efficiency.
In other words, it learns both the value function and the
policy function. Asynchronous Advantage Actor-Critic (A3C)
network [252], an improvement of the AC network with mul-
tithreading method, as an on-policy learning algorithm, uses
newly collected samples for each gradient step. A3C network
performs interactive learning with the environment in multiple
threads simultaneously, thereby avoiding over-fitting of the
training data. When robots autonomously exploring unknown
cluttered environments, A3C equips the robots with the ability
to gain cross-target generalization. In order to gain cross-target
generalization ability, Zhu et al. [240] took both the target
and scene images as inputs of the deep reinforcement learning
network; then, the agent followed the output action to navigate
to a target. During the training process, a new observation was
valued through the A3C network to ensure that the agent did
not need to retrain the new target. Moreover, Duron et al.
[253] added semantic network to the visual network proposed
in [240] to learn context from the objects present in the scene.
A3C network takes the features from the joint embedding layer
as inputs and then outputted the next action and the Q-value for
the current state. Besides, off-policy learning algorithm, such
as soft actor-critic (SAC) [254], aims to reuse past experience,
which provides for both sample-efficient learning and stability.
Jesus et al. [255] applied SAC to learn continuous action space
policies and maximize the entropy of the policy in the mobile
robotics exploration problem.

With the development in deep reinforcement learning al-
gorithms, the problem of vanishing gradient arises. That is,
as the number of hidden layers in neural networks increases,
the classification accuracy in the training process decreases.
The LSTM architectures [256] is a good way to tackle this
problem. When the input data is time-varying, LSTM can
capture the long-term dependencies of sequential data. Mnih
et al. [252] used LSTM units to make better decisions by
considering the previous state characteristics. In real-word
navigation, training data are more variable and unpredictable
than those in simulation experiments. Therefore, LSTM plays
a vital role in generating good navigation policies. Mirowski
et al. [257] only used the visual information as input for

unmanned vehicle navigation without relying on maps, GPS,
and other auxiliary tools. The authors put unmanned vehicles
in complex scenes of city scale and collected real-world data
for training. To accomplish the tasks, a multi-city navigation
network with LSTM was proposed. The method processed
images, extracted features, remembered and understood the
environment, and finally generated the navigation policies.

By using deep reinforcement learning methods, agents can
automatically learn the characteristics of the data collected by
the sensors without human intervention. On this basis, agents
are able to formulate a navigation policy to ensure navigation
in more complex environments, especially in real world. In the
field of navigation that is biased toward obstacle avoidance,
the methods used in [258], [259] obtained satisfactory gen-
eralization performance. Therefore, the models trained solely
in virtual environments are possible to be transferred to real
robots. Chen et al. [258] presented a novel approach to train
action policies to acquire navigation skills for wheel-legged
robots using deep reinforcement learning. It is crucial that
domain randomization was introduced to increase the diversity
in training samples, improve the generalization ability, thereby
focusing on the task-related aspects of observation. Therefore,
it has been used in real environments with more complicated
types of obstacles and movements. Xie et al. [259] proposed a
new network structure, consisting of two parts, to deal with the
obstacle avoidance problems. First, the convolutional residual
network was used to extract the depth information. Then the
reinforcement learning structure could efficiently learn how
to avoid obstacles in a simulator even with very noisy depth
information predicted from the RGB images.

To improve the performance of deep reinforcement learning
networks, training data should be essentially considered in
experiments. Sufficient and variable training data are the basis
of convincing results during the training process, while in the
real-world, training data are always unobtainable or missing.
To handle this problem, simulation frameworks can be utilized
to train agents. For example, in [240], the first simulation
framework, called AI2-THOR (The House Of inteRactions),
was developed to provide an environment with high-quality 3D
scenes as well as physics engines. Therefore, the robot in a
simulation environment can effectively collect several training
samples, which improves the data utilization. Specifically,
Wu et al. [260] analyzed the cross-target and cross-scene
generalization ability of the target-driven navigation models
on AI2-THOR. The evaluation, which was conducted in 120
synthetic scenes from four categories, including kitchen, living
room, bedroom and bathroom, greatly exceeded some relative
baselines.

After training in simulation, it is difficult to ensure that the
agent achieves similar performances between the virtual scene
and the real scene because of the domain shift. One possible
solution is to add the vSLAM map in the navigation process,
which helps to narrow the difference in performance between
simulation and real environment. On the basis of [250], Francis
et al. [261] introduced the vSLAM map to robot navigation,
in order to reconstruct the motion probability map. Since the
vSLAM map is noisy, it can compensate for the difference
in performance between the robots in the virtual and the
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real environment due to the different levels of noise. From
another perspective, constructing an exploration framework
bridges the gap between simulation and the real environment.
Li et al. [232] constructed a framework consisting of mapping,
decision and planning. Each module was independent and can
be achieved by a variety of methods. Compared to traditional
end-to-end deep reinforcement learning methods with raw
sensor data as input and control policy as output, the proposed
deep reinforcement learning algorithm based on framework
learned faster and equipped itself with better generalization
performance in different maps.

IV. DISCUSSION

A. Deep learning-based visual perception

The constructed map is an intuitive representation of the
scene perception and the basis for intelligent robots to au-
tonomously perform advanced tasks. Mapping has undergone
a development process from 2D to 3D, from sparse to dense,
and from topological to semantic, among others. Furthermore,
although several methods have been proposed to improve the
localization accuracy, there are still many challenges remain-
ing to be solved. Therefore, we summarize the challenges and
promising directions of perception as follows.
• Accurate perception: Although learning-based percep-

tion algorithms have made great process in the perception
areas, their accuracy, especially the accuracy of unsuper-
vised learning methods, still has much room for improve-
ment. Digging the more effective constraints for training
from the aspect of geometry, cross-task relationships and
interpretability, utilizing novel learning frameworks, like
meta-learning, curriculum learning and lifelong learning
to make full use of the data, and developing more efficient
neural network frameworks for feature extraction and
inference are both promising directions.

• Robust perception: Robustness is one of the most im-
portant indicators for the reality application of perception
algorithms. Although current learning systems have re-
ceived good accuracy on the datasets, the network will
be affected by the sensor noise, lighting and scenarios
when being used to real environments. Therefore, the
robust environmental perception, ego-motion perception
and navigation based on learning systems under different
conditions (like different seasons, different weather, dif-
ferent lighting conditions, different source sensors, indoor
and outdoor as well as day and night) in the same scene
are problems to be handled.

• Real-time perception: Real-time perception is impor-
tant for autonomous systems in practical applications.
Current high accuracy networks are based on complex
network structures, which includes a huge number of
parameters and large Flops. Therefore, the training and
application of deep neural networks have a higher demand
on the computing power of the systems, which limits the
practical applications. Using novel lite-weight learning
architectures, such as light weight network and knowl-
edge distillation, to improve the real-time performance
of perception networks will be another trend.

• Geometry assist in perception: Utilizing the geometric
prior built by a learning framework or knowledge graph
in the perception of autonomous systems is helpful and
a promising direction with broad development prospects.
For example, semantic labels predicted by deep learning
are used to correlate with the knowledge graph of objects
to obtain prior geometric information, such as the size of
objects; therefore, the detailed scale, structure, and 3D
information can be obtained.

• Representation of the environment based on deep
learning: Representing the environment based on deep
learning is another challenge and a promising direction.
Although previous works such as [169], [171], [177]
leveraged the deep learning into mapping, the maps
of these methods are still built traditionally. With the
developments of Nerf algorithms [262], [263], it provides
a way to present the scene by using neural networks. Most
recent work has tried to construct the SLAM systems
based on Nerf [264], and this is quite an interesting and
promising direction.

• Multi-sensor data fusion based on deep learning:
Fusing information from multi-sensors (IMU, LiDAR,
event-based camera, or infrared camera ) or multi-agent
is an effective way to deal with poor quality input images
comprising motion blur and recover scale information.
However, expressing the additional sensor information
explicitly in the constraints for training is a significant
challenge. For example, the current methods leverage
IMU data with images for pose estimation in a supervised
manner [139], [140], and the information from IMU is not
represented in the loss function. Thus, whether the IMU
data plays an important role in pose estimation and what
role it plays is unknown and not yet explainable.

• Integration of deep learning and traditional frame-
works: Although a lot of relevant research has been
summarized above, there is still a lot of work to be done
in this direction. With the help of deep learning, the basic
idea is to improve the traditional frameworks by analyzing
the limitations and shortcomings of traditional methods.
For example, considering that the current direct methods
rely heavily on the photometric consistency assumption,
we can use deep learning to perform a photometric cor-
rection or transform images into photometric-consistent
feature maps.

B. Reinforcement learning based visual navigation

There is still a long way to go before reinforcement learning
can be applied to autonomous systems.Therefore, there are
many challenges to be addressed.
• Sparse rewards: Rewards have a great impact on

the learning results during the training process, but the
problem of sparse rewards in reinforcement learning has
not been well solved. When the training tasks are com-
plicated, the probability of exploring the target (getting
positive rewards) by random exploring becomes very
low. Therefore, it is difficult for reinforcement learning
algorithms to converge by only relying on the positive
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rewards. To deal with this problem, redesigning the
reward function according to specific scenarios will be
helpful in avoiding the problem of sparse rewards, and
by means of hierarchical networks, such as hierarchical
reinforcement learning [265], the training efficiency and
the final performance will be improved.

• Complicated calculation and high cost: When a
robot navigates in a large-scale or continuous state space
environment, the calculation process is likely to be high-
dimensional and complex. Moreover, reinforcement learn-
ing algorithms require thousands of trials and errors to
train iteratively, while in real-world tasks, agents hardly
withstand so many trials and errors because of limited
cost. Therefore, the efficient feature representation of
large-scale spatial reinforcement learning will simplify
the calculation process. In other words, the use of efficient
and fast online self-evaluation reinforcement learning
algorithms will reduce the training costs and improve
learning efficiency.

• Performance between simulation and real-world: Due
to the huge gap between simulation environments and
real scenes, many reinforcement learning algorithms with
higher performance in simulation experiments cannot
handle the practical problems in the real world, which
strongly limits the widespread application of this tech-
nology. Establishing a network that can be directly trans-
ferred to the real world and building a high-fidelity
simulation and physical platform will be a future trend,
which can effectively convert virtual scenes generated in
a simulator into real scenes for reinforcement learning
training.

• Transferable property improvement: In many tasks,
the training data is limited and unobtainable. Adversarial
learning methods [266] can be applied to increase the
data differences in the training process and reduce data
differences in the testing process, which improves the
data diversity and the generalization ability of the model.
Moreover, many transfer learning methods, such as few-
shot learning, zero-shot learning, and meta learning
[267]–[269], can recognize the new model and apply
the knowledge and skills learned in previous tasks to
novel tasks with few or even no training data. This
is effective for enhancing the transferability, reducing
network parameters, and promoting generalization.

• Multi-modal and multi-task: Current reinforcement
learning-based navigation methods mainly focus on visual
input. However, by considering the information from mul-
tiple models, such as voice, text, and video, the agents can
better understand the scenes and the performance in ex-
periments will be more accurate and efficient. Moreover,
it is proved that multi-task reinforcement learning mod-
els [270], in which the agent is simultaneously trained
with auxiliary and target tasks, improve the training
efficiency. Therefore, multi-model and multi-task are also
development trends in navigation based on reinforcement
learning.

C. Application

The developments of autonomous environment perception
and motion planning drive the emergence of a large number
of high-tech industries, such as unmanned vehicles and service
robots, which have greatly improved the quality of human
life [271]. Furthermore, autonomous systems have a broad
application prospect in various fields, like industry, agricul-
ture, services, transportation, etc. For example, accidents in
petrochemical industry have occurred from time to time in
recent years, which inevitably caused great damage of life
and property. The use of autonomous systems monitoring a
chemical park can help to find dangers in advance. Intelligent
monitoring robots with various gas and optical sensors can
monitor the safety hazards in the chemical plant area in real
time. Robots autonomously perceive and construct the map of
structure environments based on visual sensors. Then, based
on the perceived information, robots plan the path and tasks for
better monitoring. In case of emergency, the environment be-
comes semi-structured and complicated, in which autonomous
robots can reach dangerous areas, sense the surrounding areas,
deliver important information to the staff, assess the situation
and even assist staff in decision-making as well as rescue. At
present, the difficulties lie in the distance between theoretical
research and practical applications, such as reliability, robust-
ness and real-time response capability. Therefore, this survey
reviews the existing learning-based perception and navigation
methods, which provides a guideline for future research and
promotes the developments of autonomous systems.

V. CONCLUSION

Through this review, we aim to contribute to this growing
area of research by exploring the learning-related methods for
self-state perception, environment perception and navigation
in autonomous systems. Therefore, we review the related
works of learning-based vSLAM and navigation in the learning
age. The influx of deep learning algorithms can be observed
to support the subtasks of vSLAM or incorporate with vS-
LAM in recent works, which improve the robustness and
performance of traditional vSLAM algorithms. Meanwhile,
navigation based on deep reinforcement learning achieves
good efficiency and transferability in autonomous systems. We
provide two comprehensive taxonomy tables of state-of-the-
art vSLAM algorithms as well as deep learning-based depth
and pose estimation methods, which clarify the mainstream
algorithm framework and the development trend. Finally, this
review highlights the key challenges and promising directions
in learning-based perception and navigation.
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