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Abstract— In this article, we investigate the degree of explain-
ability of graph neural networks (GNNs). The existing explainers
work by finding global/local subgraphs to explain a prediction,
but they are applied after a GNN has already been trained.
Here, we propose a meta-explainer for improving the level of
explainability of a GNN directly at training time, by steering
the optimization procedure toward minima that allow post hoc
explainers to achieve better results, without sacrificing the overall
accuracy of GNN. Our framework (called MATE, MetA-Train
to Explain) jointly trains a model to solve the original task, e.g.,
node classification, and to provide easily processable outputs for
downstream algorithms that explain the model’s decisions in a
human-friendly way. In particular, we meta-train the model’s
parameters to quickly minimize the error of an instance-level
GNNExplainer trained on-the-fly on randomly sampled nodes.
The final internal representation relies on a set of features
that can be “better” understood by an explanation algorithm,
e.g., another instance of GNNExplainer. Our model-agnostic
approach can improve the explanations produced for different
GNN architectures and use any instance-based explainer to drive
this process. Experiments on synthetic and real-world datasets for
node and graph classification show that we can produce models
that are consistently easier to explain by different algorithms.
Furthermore, this increase in explainability comes at no cost to
the accuracy of the model.

Index Terms— Explainable Artificial Intelligence (AI), graph
classification, graph neural network (GNN), meta learning, node
classification.

I. INTRODUCTION

GRAPH neural networks (GNNs) are neural network
models designed to adapt and perform inference on

graph domains, i.e., sets of nodes with sparse connectivity [2],
[15], [21], [23]. While a few models were already proposed
in between 2005 and 2010 [7], [9], [18], [19], the interest in
literature has increased dramatically over the past few years,
thanks to the broader availability of data, processing power,
and automatic differentiation frameworks. This is part of a
larger movement toward applying neural networks to more
general types of data, such as manifolds and points clouds,
going under the name of “geometric deep learning” [3].
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Not surprisingly, GNNs have been applied to a very broad
set of scenarios, from medicine [22] to road transporta-
tion [29], many of which possess significant risks and chal-
lenges and a potentially large impact on the end-users. Because
of this, several researchers have investigated techniques to help
explain the predictions done by a trained GNN, such as iden-
tifying the most critical portions of the graph that contributed
to a certain inference [25], to help mitigate those risks and
simplify the deployment of the models. Explanation methods
can be broadly categorized as model-level explainers [17],
[20], [26], which try to extract global explanatory patterns
from the trained model, and instance-level algorithms [5], [12],
[16], [25], [28], which try to explain individual predictions
performed by the model. In this article, we focus on the latter
group, although we hypothesize that the ideas underlying the
algorithm we propose can also be extended to the former.

More generally, a limitation of most explanatory methods
is that they are applied only after a model has been trained.
However, not every trained GNN is necessarily easy to explain.
In critical scenarios, the end-user has no straightforward way
to possibly trade off a small amount of accuracy to increase
the quality of explanations. We hypothesize that because of
the highly nonconvex shape of the optimization landscape of
a neural network, multiple models can have similar accuracy
but possibly different behaviors when explained. In these
scenarios, the literature currently lacks an easy way to steer
the optimization of a GNN toward an appropriate level of
explainability.

In this article, we investigate MetA-Train to Explain
(MATE), an algorithm to this end that is grounded in the
meta-learning literature, most notably, model-agnostic meta-
learning (MAML) [6]. The key idea of this article is to
find explainable GNNs, by training models that can quickly
converge to good explanations when a known instance-level
explainer (e.g., GNNExplainer [25]) is applied.

A. Contribution of This Article
We develop a framework to train GNNs such that they can

be easily explained using any instance-level algorithm. During
training, for each iteration we first optimize the model to solve
an explanation task, inspired by GNNExplainer, on a random
subset of nodes. Then, we meta-update the model starting from
the new estimate of its parameters, backpropagating through
the explanation’s steps.

On a wide range of experiments, we show that MATE
consistently finds models whose parameters provide a better
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Fig. 1. These plots contain GNNExplainer’s losses for every node explained
in the evaluation of BA-shapes (Top) and Tree-grids (Bottom) datasets. The
local minima found with MATE allows the optimization process to start from
a lower value. This often translates into a lower final value and sometimes
steeper slopes. We believe that this is the cause of better explainability scores
obtained on the MATE-trained models.

starting point for three different instance-level explainers, i.e.,
GNNExplainer [25], PGExplainer [17], and SubgraphX [28].
We hypothesize that MATE can efficiently steer the optimiza-
tion process toward better minima (in terms of post hoc expla-
nation). Fig. 1 shows GNNExplainer’s loss on two datasets and
provides empirical support to our hypothesis. When GNNEx-
plainer interprets the outputs of an MATE-trained model,
it starts and ends its optimization process with significantly
lower values. To the best of our knowledge, this is the
first work proposing an algorithm to improve the degree of
explainability of a GNN at training time through a meta-
learning framework.

B. Organization of This Article

The rest of this article is structured as follows. In
Section I-C, we overview the existing works in the literature.
In Section II, we introduce the framework of message-passing
GNNs (see Section II-A), instance-level explainers for GNNs
(see Section II-B), and we describe in detail GNNExplainer
(see Section II-C). Then, in Section III, we introduce MATE,
integrating GNNExplainer in a meta-learning bilevel optimiza-
tion problem to train more interpretable networks. We evaluate
our algorithm extensively in Section IV, where we compare
the explanations we obtain when running both GNNExplainer
and PGExplainer on the trained networks. Finally, we conclude

with some final remarks and a series of future improvements
in Section VI.

C. Related Works

Providing instance-level explanations in graph domains is
more challenging than in other domains (such as computer
vision) because of the richness of the underlying data and
the general irregularity of the connectivity between nodes.
In particular, a single prediction on a node of the graph
can depend simultaneously on the features of the node itself,
on the features of neighboring nodes (because of the way a
GNN diffuses the information over the graph), and even on
graph-level properties or specific properties of the community
in which the node is residing [26]. Instance-level methods,
such as the seminal GNNExplainer [25], work by extract-
ing highly sparse masks from the computational subgraph
underlying a single prediction to identify relevant node and
edge features. PGExplainer [17] learns a parameterized model
trained on the entire dataset to predict edge importance.
GraphMask [20] follows a similar approach but predicts which
edges can be dropped without changing the model’s prediction.
Furthermore, it computes the importance of an edge for every
layer while PGExplainer only focuses on the input space.
SubgraphX [28] explains its predictions by exploring different
subgraphs with Monte Carlo tree search. It uses Shapley values
to measure the subgraph importance and guide the search. The
literature contains different types of algorithms such as global
explainers [26], counterfactual explainers [16], and algorithms
developed for heterogeneous graphs [24]. For a complete
review, we suggest the work of [27].

Our algorithm strongly differs from the literature reviewed
up to this point. In fact, it is not an explainer, but rather
a training procedure drawing inspiration from MAML [6],
whose objective is to facilitate the work of post hoc explain-
ers. MAML is a bilevel optimization method that learns
the parameters of a neural network to prepare it for fast
adaptation to different tasks, i.e., it finds a set of model
parameters that stay relevant for several tasks rather than a
single one. Formally, MAML achieves this by adapting the
model’s parameters θ over a randomly sampled batch of tasks
using a few gradient descent updates and a few examples
drawn from each one. This process generates different versions
of the model’s parameters, each one adapted for a specific task.
Then, it exploits these modified parameters as the starting
point for the meta-update of the global model’s parameters.
From the trained model, the model can adapt to any additional
task sampled from the same distribution with only a small
number of gradient descent steps. In our extension of MAML,
we identify a task as the explanation of a given node or a graph
using a specific instance-level explainer. MATE’s overall goal
is to modify the training procedure of GNN such that after
training, it is easier for any explainer to find an optimum of its
corresponding optimization problem. To this end, we introduce
an additional set of parameters that work as a surrogate for
the explainer during GNN’s training. This surrogate is trained
on-the-fly and guides the inner loop optimization in which we
adapt the GNN to the explanation. We hypothesize that this
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optimization pushes the GNN toward a set of parameters that
provide better starting point for the explanation process.

II. PRELIMINARIES

A. Graph Neural Networks

The basic idea of GNNs is to combine local (nodewise)
updates with suitable message passing across the graph, fol-
lowing the graph topology. In particular, we can represent
the input graph G with the n × d matrix X collecting all
node features (with n being the number of nodes and d
the number of features for each node) and by the adjacency
matrix A ∈ {0, 1}n×n encoding its topology. A two-layer graph
convolutional network (GCN) [14] working on it is defined as

fθ (G) = fθ (X, A) = softmax(Dφ(DXθ1)θ2) (1)

where φ is an elementwise nonlinearity [such as the Rectified
Linear Unit (ReLU) φ(·) = max(0, ·)], and D is a diffusion
operator like the normalized Laplacian or any appropriate shift
operator defined on the graph. The model is parameterized by
the vector of trainable weights θ = [θ1, θ2]. The softmax func-
tion normalizes the output to a probability distribution over
predicted output classes. For tasks of node classification [14],
we also know the desired label for a subset of nodes, and
we wish to infer the labels for the remaining nodes. Graph
classification is easily handled by considering sets of graphs
defined as above, with a label associated with every graph
(see [8]). In this case, we need a pooling operation before the
softmax to compress the node representations into a global
representation for the entire graph. In both the scenarios,
we optimize the network with a gradient-based optimization,
minimizing the cross-entropy loss

L = −
C∑

c=1

1[y = c]logPθ (Y = y| G) (2)

where C is the total number of classes, 1 is the indicator
function, and Pθ (Y = y| G) is the probability assigned by the
model fθ to class y for a single node or graph, depending on
the task we wish to solve.

B. Instance-Level Explanations for GNNs

Instance-level methods provide input dependent explana-
tions, by identifying the important input features for the
model’s predictions. There exist different strategies for extract-
ing this information. Following the taxonomy introduced
in [27], we focus our analysis on perturbation-based meth-
ods [16], [17], [20], [25]. All these algorithms use a common
scheme. They monitor the prediction’s change with different
input perturbations to study the importance scores associated
with each edge or node’s features. These methods generate
some masks associated with graph features. Then masks,
treated as optimization parameters, are applied to the input
graph to generate a new graph highlighting the most relevant
connections. This new graph is fed to the GNN to evaluate
the masks and update them following different rules. The
important features for the predictions should be the ones
selected by the masks.

Following the notation from Section II-A, let fθ (G) be
a trained GNN model parameterized by weights θ , making
predictions from the input graph G having node features X
and the adjacency matrix A. Given a node v whose prediction
we wish to explain, we denote by Gc

v = (Xc
v , Ac

v) the subgraph
participating in the computation of fθ (G). For example, for
a two-layer GCN, Gc

v contains all the neighbors up to order
two described with the associated adjacency matrix Ac

v ∈
{0, 1}n×n and their set of features Xc

v = {x j | j ∈ Xc
v}.

Instance-level explanation methods generate random masks
for the input graph Gc

v and treat them as training variables
W = [M x

v , Ma
v ]. These masks are applied to the computational

subgraph generating the explanation subgraph Ge
v = (Xe

v , Ae
v).

The explanation is the solution of the optimization problem
over Ge

v

Ge∗
v = arg min

W

{
Le

(
Gc

v , θ, W
)}

(3)

where Le is an explanation objective, such that lower val-
ues correspond to “better” explanations. In the following,
we describe briefly the procedure for GNNExplainer [25],
although our proposed approach can be easily extended to any
method of the form (3).

C. GNNExplainer

In GNNExplainer [25], the masks are applied to the com-
putational subgraph via pairwise multiplication

Ge
v = (

Xe
v , Ae

v

) = (
Xc

v � σ
(
M x

v

)
, Ac

v � σ
(
Ma

v

))
(4)

where W = [M x
v , Ma

v ] are the explainer’s parameters,
� denotes the elementwise multiplication, and σ denotes the
sigmoid. Then, it optimizes the masks by maximizing the
mutual information (MI) between the original prediction and
the one obtained with the masked graph. Different regular-
ization terms encourage the masks to be discrete and sparse.
Formally, GNNExplainer defines the following optimization
framework:

arg max
Ge

v

MI
(
Y,Ge

v

) = H
(
Y | Gc

v

) − H
(
Y | Ge

v

)
(5)

where MI quantifies the change in the conditional entropy
H (·) (or probability prediction) when v’s computational graph
is limited to the explanation subgraph. The first term of the
equation is constant for a trained GNN. Hence, maximizing
the MI corresponds to minimizing the conditional entropy

H
(
Y |Ge

v

) = −EY |Ge
v

[
logPθ

(
Y |Ge

v

)]
(6)

which gives us the subgraph that minimizes the uncertainty
of the network’s (parameterized by θ ) prediction when GNN
computation is limited to Ge

v .
When we are interested in the reason behind the prediction

of a certain class for a certain node, the conditional entropy
is replaced with a cross-entropy objective. Finally, we can use
gradient descent-based optimization to find the optimal values
for the masks minimizing the following objective:

Le = −
C∑

c=1

1[y = c]logPθ

(
Y = y| Ge

v

)
. (7)
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Fig. 2. Diagram of our algorithm, which optimizes for an explainable
representation θ .

GNNExplainer deploys some regularization strategies to
obtain its explanations. First, an elementwise entropy encour-
ages the masks to be discrete. Second, the sum of all masks’
elements (equivalent to their �1 norm) penalizes large sub-
graphs. All these strategies contribute to the fact that Ge

v tends
to be a small connected network containing the node to be
explained.

III. PROPOSED APPROACH

The methods described in Section II-B work by explaining
a single instance after the GNN has been trained, decoupling
the two steps. In this section, we aim to train models that
can be biased toward producing explainable predictions during
their training. We first define the problem setup and present
the general form of our algorithm. MAML [6] works by
optimizing models that can be quickly trained on new tasks.
In our framework, we define an “explanation task” on a
randomly sampled node and train a model that can quickly
converge to a good explanation according to the desired metric
(in our case, GNNExplainer). Our goal is a model with more
interpretable outputs. By adapting the GNN’s parameters for
these “explanation tasks,” we promote an internal representa-
tion based on easily interpretable features (see Fig. 2).

A. Problem Setup

We define the main task, being node or graph classifi-
cation, as optimizing the original objective function L with
gradient-based techniques (e.g., cross-entropy over the labeled
nodes of the graph). We will take into consideration node
classification tasks being the extension to graph classification
trivial. Then we define a single “explanation task” T e

v =
{ fθ ,Ge

v ,Le} for any randomly sampled node v from the graph
G. The explanation task requires an explanatory subgraph
Ge

v produced by an explainer trained on-the-fly during the
optimization of the model fθ using its current state θ . The
loss Le provides task-specific feedback. It is the same loss
used during the explainer’s optimization with Ge

v fixed instead
of θ . By optimizing the model’s parameters θ for a few steps
of gradient descent, we will adapt the model’s parameters
to the explanation, producing a new set of parameters θ �.
In Section III-B, we will explain step by step how we use
these adapted parameters to perform a meta-optimization for
the model’s principal objective.

B. Meta-Explanation

We want to steer the optimization process to find a set
of parameters that help post hoc explanation algorithms
to provide relevant interpretation of the model prediction.

We present a graphical representation of our framework in
Fig. 3.

Differently from MAML, MATE has two different optimiza-
tion objectives. The first is the explanation objective Le as
described in (7) and optimized in the inner loop. The second is
the main objective L (2), a standard cross-entropy loss for the
main classification task, optimized in the outer loop. The first
one uses the computational subgraph of a randomly sampled
node. The second one instead exploits the entire graph.

To perform a single update, we start the inner loop by
sampling at random a node v from the graph and extracting
its computational subgraph Gc

v . Explaining v’s prediction will
be our target or our “explanation task.” We continue by
initializing and training a GNNExplainer minimizing (7) for
K gradient steps (with K being a hyperparameter) to obtain
the explanation subgraph for v based on the current GNN
parameters. A single update is in the form

W = W − δ∇WLe
(
Gc

v , W
)

(8)

where we take the gradient of the explanation loss with respect
to the explainer’s parameters regarding the model’s ones fixed.
The step size δ, like all the next step sizes, may be fixed or
meta-learned.

At this point, we can define our “explanation task” T e
v =

{ fθ ,Ge
v ,Le}. We adapt the model parameters to T e

v using T
gradient descent updates. Again, a single update takes the form

θ � = θ � − α∇θ �Le
(
Ge

v , θ
�) (9)

where θ � is the vector of the adapted parameters and Ge
v is the

explanation subgraph. We compute the gradient with respect
to the model’s parameters leaving the explainer’s masks fixed.
Like the previous update, we have another hyperparameter
paired with T , α, representing the step size for adaptation.

The model’s parameters are trained by optimizing for the
performance of fθ � with respect to θ for the main classification
task, exploiting the entire graph structure. The meta-update is
defined as

θ = θ − β∇θL
(
G, θ �) (10)

where β is the meta step size. The meta-optimization updates
θ using the objective computed with the adapted model’s
parameters θ �. We outline the framework in Algorithm 1.

The meta-gradient update involves a gradient through a
gradient. We use the Higher library [10] to handle the addi-
tional backward passes and to deploy the Adam optimizer [13]
to perform the actual updates. The extension to the graph
classification task is trivial. Instead of sampling a random node
for the explanation, we select an entire graph from the current
batch used for the model’s update.

IV. EXPERIMENTAL EVALUATION

In this section, we evaluate MATE with several experi-
ments over synthetic and real-world datasets. We first describe
the datasets and experimental setup. Then, we present the
results on both node and graph classification. With qual-
itative and quantitative evaluations, we demonstrate that
GNNExplainer, PGExplainer, and SubgraphX provide bet-
ter explanation results when used on models trained with
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Fig. 3. Schematics of our meta-learning framework for improving GNN’s explainability at training time. MATE steers the optimization procedure toward
more interpretable minima in the inner loop, meanwhile optimizing for the original task in the outer one. The inner loop adapts the model’s parameters to a
single “explanation task.” It starts with the sampling of a random node and its computational subgraph. Then, we train GNNExplainer to explain the current
model’s prediction. Afterward, we can adapt the model’s parameters to the “explanation task” ending in a new model’s state. Finally, we meta-update the
original parameters minimizing the cross-entropy loss computed with the adapted parameters.

Algorithm 1 : MATE
Data: Input Graph G = (X, A)
Require: α, β, γ step size hyperparameters, (K,T) number of
gradient-based optimization steps.
1: Initialize model’s parameters θ .
2: while not done do
3: Random sample v from G and

extract computational graph Gc
v

4: Initialize explainer’s parameters W
5: for K steps do
6: Compute explainer’s parameters (θ fixed)

W = W − δ∇WLe(Gc
v , W )

7: end for
8: for T steps do
9: Adapt model’s parameters (W fixed)

θ � = θ � − α∇θ �Le(Ge
v , θ

�)
10: end for
11: Meta-update

θ = θ − β∇θL(G, θ �)
12: end while

MATE, in some cases improving the state-of-the-art in explain-
ing node/graph classification predictions. At the same time,
we show that our framework does not impact the classification
accuracy of the model. We based our implementation1 upon
the code develop in [11].

1https://github.com/ispamm/MATE

A. Datasets

Synthetic datasets are very common in the evaluation of
explanation techniques. These datasets contain graph motifs
determining the node or graph class. The relationships between
the nodes or graphs and their labels are easily understandable
by humans. The motifs represent the approximation of the
explanation’s ground truth. In our evaluation, we consider
four synthetic datasets for node classification and one for
graph classification. Barabási-Albert (BA)-shapes generates a
base graph with BA [1] and attaches randomly a house-like,
five-node motif. It has four labels, one for the base graph,
one for the top node of the house motifs, and one for the
two upper nodes, followed by the last label for the bottom
ones of the house. BA-Community has eight classes and
contains two BA-shapes graphs with randomly attached edges.
The memberships of the BA-shapes graphs and the structural
location determine the labels. In Tree-cycle, the base graph
is a balanced tree graph with a depth equal to 8. The motifs
are a six-node cycle. In this case, we have just two labels,
motifs and nonmotifs. Tree-grids substitute the previous motif
with a grid of nine nodes. Concerning graph classification,
BA-2motifs has 800 graphs and two labels. Each network has
a base component generated with the BA model. Then one
between the cycle and house-like motif, injected in the graph,
determines the resulting label. All the node features are vectors
containing all 1 s. The other dataset for graph classification
is MUTAG [4], a molecular dataset. The dataset contains
several molecules represented as graphs where nodes represent
atoms and edges chemical bonds. The molecules are labeled
based on their mutagenic effect on a specific bacterium.
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TABLE I

EXPLANATION ACCURACY OBTAINED ON THE MODEL TRAINED WITH AND WITHOUT OUR META-TRAINING FRAMEWORK

TABLE II

MODEL’S ACCURACY WITH AND WITHOUT OUR META-TRAINING FRAMEWORK OBTAINED WITH EARLY STOPPING.
THE SCORES ARE IN THE FORMAT TRAIN/VALIDATION/TEST

As discussed in [4], carbon rings with chemical groups NH2

or NO2 are present in mutagenic molecules. A good explainer
should identify such patterns for the corresponding class.
However, Luo et al. [17] observed that carbon rings exist in
both mutagen and nonmutagenic graphs.

B. Baselines

We use the same GNN architectures described in [11]. The
model has three graph convolutional layers and an additional
fully connected classification layer. For node classification, the
last layer takes as input the concatenation of the three inter-
mediate outputs. For graph classification, instead, it receives
the concatenation of max and mean pooling of the final
output. Concerning the explainers, we use GNNExplainer [25],
PGExplainer [17], and SubgraphX [28]. Our baselines will
be the explanations provided by the three explainers over the
outputs of the GNN architecture described previously, trained
in a standard fashion. We train GNN with Adam [13] and an
early stopping strategy on a validation split. GNNExplainer
and PGExplainer with the GNNs use the hyperparameters
fine-tuned by Holdijk et al. [11]. For SubgraphX, we used
the hyperparameters of the original implementation [28]. We
repeat the explanation steps ten times with different seeds and
report in Tables I, V, and VI the mean AUC score with the
standard deviation.

C. Metrics

Like in recent works, we divide the evaluation into quan-
titative and qualitative experiments. For the quantitative part,
following [11], [17], and [25], we compute the AUC score
between the edges inside motifs, considered as positive edges,
and the importance weights provided by the explanation
methods. Every connection outside the motif has a negative
label. High scores for the edges in the ground-truth explanation
corresponds to higher explanation accuracy. The qualitative
evaluation, instead, provides a visualization of the chosen

subgraph. Given the mask, we select all the edges that have
the weights satisfying a predefined threshold. Then, we choose
only the nodes that are in a direct subgraph together with the
node-to-be-explained. Finally, we select only the top-k edges
where k is the number of connections in the motifs. Darker
edges have higher weights in the mask than the lighter ones.
Nodes are color-coded by their ground-truth label.

D. Hyperparameters

MATE requires two sets of hyperparameters. The first
regards the optimization process with the tuples (K , δ) and
(T, α) and meta step size β. The tuples drive the explainer
training and the adaptation procedure. We set (K = 30, δ =
0.03), α = 0.0001 for all the datasets. Then we set β =
0.003 and β = 0.001 for the node and graph classification
dataset, respectively. We fine-tuned the number of adaptation
steps T for each dataset selecting from the values [1, 3, 5, 10].
The second parameter set is the one of GNNExplainer. In this
case, we used the same hyperparameters of [11].

V. RESULTS

We investigate the question: Does a model trained to be
explainable improves the performances of post hoc explanation
algorithms?

A. Quantitative

In Table I, we report the results in terms of the explanation
accuracy obtained using three different explainers on models
trained with and without MATE. We report that in 89% of
the cases, the MATE-trained models helped the explainers to
outscore their counterparts who interpreted standard models.
The average increments are 4.6% points on GNNExplainer,
24.6% on PGExplainer, and 4.7% on SubgraphX. Part of the
success of the combination META+PGExplainer is because
Holdijk et al. [11] were not able to replicate the original
results on Tree-grids. Yet, the results of PGExplainer over the
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TABLE III

VISUALIZATION OF THE EXPLANATION SUBGRAPHS FOR THE NODE CLASSIFICATION TASK. NODE COLORS REPRESENT NODE LABELS. DARKNESS OF
THE EDGES SIGNALS IMPORTANCE FOR CLASSIFICATION. THE GROUND-TRUTH MOTIF IS PRESENTED IN THE FIRST ROW

model trained with MATE are comparable with the ones pre-
sented in [17]. We used the same hyperparameters regardless
of the explainers used for imputation. Therefore, we believe
there is still some margin for improvement with a fine-tuning
targeting the explainer’s accuracy.

In Table II, we report the accuracies obtained by
the GNN model obtained via standard optimization and
with our framework. We show that there are no relevant
changes in the utility of the model when optimized to be
explainable.

B. Qualitative

In this section, we analyze the qualitative aspect of the
explanation subgraphs computed by the post hoc explainers
over a GNN trained with and without our meta-training frame-
work. Since GNNExplainer and PGExplainer output a soft
explanation mask, the intensity of the edges in the subgraph
reflects the associated confidence. SubgraphX assigns the

same importance to each edge being part of the explanation.
We present the results for the node classification task in
Table III. GNNExplainer and PGExplainer provide explana-
tions with darker edges inside the motifs on the MATE-trained
models, highlighting greater confidence. Most notably, all the
explainers find the cycle motif in Tree-cycles when taking the
meta-trained model as input. We report a slight improvement
or comparable results for all the other datasets. In Table IV,
we show the interpretations over the graph classification task.
In this scenario, PGExplainer is the best performing model
among the baselines, but only the variant trained with our
meta-training approach is capable of perfectly highlighting
both the five-node cycle motif and the NH2 and NO2 motifs.
The combination MATE-SubgraphX on the BA-2motif could
improve neither the quantitative nor the qualitative evalua-
tion. However, the same combination correctly includes the
ground-truth motifs on MUTAG instead of focusing on the
carbon ring alone.
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TABLE IV

VISUALIZATION OF THE EXPLANATION SUBGRAPHS FOR THE GRAPH
CLASSIFICATION. DARKNESS OF THE EDGES SIGNALS IMPORTANCE

FOR CLASSIFICATION. THE GROUND-TRUTH MOTIF

IS IN THE FIRST ROW

C. Ablation
We performed an ablation study on the Tree-cycles dataset.

In particular, we observed the change in GNN accuracy and
explainability score when varying the number of optimization
steps in MATE’s inner loop. Table V shows the change
when acting on the number of GNNExplainer’s training steps.
We can observe that this value does not influence the GNN
accuracy performances. However, we have found a sweet
spot in the range K = [20, 50] for the explanation scores
of both the explainers. Table VI shows what happens when
we perform a different number of adaptation steps T on
the “explanation task.” This hyperparameter has a greater
impact on both model’s accuracy and explainability score.
Increasing T worsens the accuracy performance especially
for the maximum tested value of T = 10. Surprisingly,
PGExplainer shares this behavior; meanwhile, GNNExplainer
performances increase with higher values of T . We have
found a similar behavior for all the datasets taken into
consideration.

TABLE V

RESULTS OF AN ABLATION STUDY ON THE EFFECT OF THE NUMBER OF
GNNEXPLAINER OPTIMIZATION STEPS ON THE MODEL’S ACCURACY

AND AUC SCORE. THE ABLATION STUDY IS PERFORMED USING

THE TREE-CYCLES DATASET AVERAGING TEN RUNS

TABLE VI

RESULTS OF AN ABLATION STUDY ON THE EFFECT OF THE NUMBER OF

ADAPTATION STEPS ON THE MODEL’S ACCURACY AND AUC SCORE.
THE ABLATION STUDY IS PERFORMED USING THE TREE-CYCLES

DATASET AVERAGING TEN RUNS

VI. CONCLUSION AND FUTURE WORKS

In this work, we presented MATE, a meta-learning frame-
work for improving the level of explainability of a GNN at
training time. Our approach steers the optimization procedure
toward more interpretable minima meanwhile optimizing for
the original task. We produce easily processable outputs for
downstream algorithms that explain the model’s decisions in a
human-friendly way. In particular, we optimized the model’s
parameters to minimize the error of GNNExplainer trained
on-the-fly on randomly sampled nodes. Our model-agnostic
approach can improve the explanation produced for differ-
ent GNN architectures by different post hoc explanation
algorithms. Experiments on synthetic and real-world datasets
showed that the meta-trained model is consistently easier
to explain by GNNExplainer, PGExplainer, and SubgraphX.
A small ablation demonstrated how MATE balances the
model’s accuracy with the explainability of its outputs. Fur-
thermore, this increase in explainability does not impact the
model’s prediction performances. Future works may study the
feasibility of this approach for other domains like images,
audio, and video.
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