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3D-DFM: Anchor-Free Multimodal 3-D Object
Detection With Dynamic Fusion Module
for Autonomous Driving

Chunmian Lin™, Daxin Tian"™, Senior Member, IEEE, Xuting Duan™, Member, IEEE,

Jianshan Zhou"', Dezong Zhao

Abstract— Recent advances in cross-modal 3D object detection
rely heavily on anchor-based methods, and however, intractable
anchor parameter tuning and computationally expensive post-
processing severely impede an embedded system application,
such as autonomous driving. In this work, we develop an
anchor-free architecture for efficient camera-light detection and
ranging (LiDAR) 3D object detection. To highlight the effect of
foreground information from different modalities, we propose a
dynamic fusion module (DFM) to adaptively interact images with
point features via learnable filters. In addition, the 3D distance
intersection-over-union (3D-DIoU) loss is explicitly formulated
as a supervision signal for 3D-oriented box regression and
optimization. We integrate these components into an end-to-end
multimodal 3D detector termed 3D-DFM. Comprehensive exper-
imental results on the widely used KITTI dataset demonstrate
the superiority and universality of 3D-DFM architecture, with
competitive detection accuracy and real-time inference speed.
To the best of our knowledge, this is the first work that
incorporates an anchor-free pipeline with multimodal 3D object
detection.

Index Terms—3D object detection, autonomous driving, deep
learning, intelligent transportation systems, multimodal fusion.

I. INTRODUCTION

BJECT detection is a fundamental and essential task
for a wide range of real-world applications, including
autonomous driving. In general, 2-D object detection encodes
object location as the coordinates of the box on the image
plane, but without truly spatial information, depicting the
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physical location of the object of interest is insufficient. To this
end, 3D object detection recently emerged as a viable option,
due to the widespread availability of various sensors and
advanced data-processing techniques. It detects a 3D-oriented
bounding box around the target and provides an accurate
perception result to guide path planning in such autonomous-
driving system.

Existing 3D object detection works have shown promis-
ing results, and they can be divided into single-modal and
multimodal methods. A single-modal detector typically uses a
single camera or light detection and ranging (LiDAR) sensor to
understand the 3D properties of objects, i.e., size and orienta-
tion, suffering from several limitations. Due to a lack of depth
information, a camera-based 3D detector fails to accurately
localize spatial objects, whereas the LiDAR-based method
cannot distinguish semantic categories of similar structures,
particularly in such crowded or distant scenes. Consequently,
several studies focused on cross-modal 3D object detection
using both camera images and LiDAR points, and they inves-
tigated a variety of schemes aggregating modality features at
different stages, as shown in Fig. 1.

Early-level fusion occurs during data input, and pixel seg-
mentation labels [1], [4], pseudo-LiDAR signals [5], [6], and
spatial transformation operations [7] are used to supplement
the point representation. They must, however, ensure data
alignment from various sensors through some complex opera-
tions. Late fusion is much easier to build and deploy because
it incorporates pretrained 2-D and 3D detectors directly and
fuses respective detection results by adding or concatenating
association [3]. Though it avoids several time-consuming oper-
ations at the data level, false candidates from the single-modal
method may be mistakenly regarded as valuable cues during
result fusion, thereby reducing detection performance. Middle-
level fusion generally performs image-point complementari-
ties on the intermediate feature map, via multiview combi-
nation [8], region-proposal aggregation [9], bird’s-eye-view
(BEV) feature fusion [2], [10]-[12], and so on. However, these
fusion modules produce coarse or imperfect correspondence
at a fixed location, and background noise also produces a
large number of false positive results. Furthermore, existing
cross-modal fusion methods follow an anchor-based pipeline
with many prior boxes and postprocessing, resulting in high
architecture complexity and a large computation budget.
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Fig. 1. Schematic of different fusion methods including early-level (Point-

Painting [1]), middle-level (EPNet [2]), and late-level (CLOCs [3]) fusion.
Commonly, these approaches require to define prior box parameters to
generate region proposals for 3D box prediction via RPN architecture, and
postprocessing NMS is also indispensable to remove redundant candidates,
significantly hindering the inference efficiency.

Box regression in 3D object detection is a more difficult
and complex problem because it involves more spatial and size
parameters. L1-norm distance is commonly used in the 2-D
object detection to evaluate the similarity of ground truth (GT)
and predicted box. However, this type of loss ignores the
geometric property of the bounding box and generates different
candidate boxes for the same GT, leading to the suboptimal
box regression result [14]. Because of the increased degree
of freedom in 3D object detection, this phenomenon would be
amplificated. Recently, the intersection of union (IoU) [15] and
its variant generalized-IoU (GIoU) [16] have been proposed as
another evaluation metric of the distance between two boxes
and have been successfully extended from 2-D to 3D object
detection community, e.g., 3D-IoU [17] and 3D-GIoU [18].
Unfortunately, the IoU metric cannot evaluate two nonoverlap
boxes, and the divergence of GloU during model training
remains unresolved. These problems motivate us to look into
an alternative to guide 3D box regression and optimization.

In this article, we present an anchor-free pipeline for
multimodal 3D object detection, which waives complicated
prior box and time-consuming NMS postprocessing. This is
the first time, to the best of our knowledge, that anchor-free
architecture has been combined with cross-modal 3D object
detection. Using learnable filters, a dynamic fusion mod-
ule (DFM) is proposed to aggregate image with point rep-
resentation. It generates kernel parameters from the image
feature map and then convolves point features with these
generated filters to achieve adaptive image-point feature fusion
and interaction. Background information is filtered out in this
manner, and foreground features are preserved to contribute
to object localization and detection. Furthermore, we develop

a 3D distance intersection-over-union (3D-DIoU) metric that
considers the attributes of center, overlap, and scale for two
boxes, and formulate the 3D-DIoU loss for more accurate
and consistent box regression. We incorporate these com-
ponents into an end-to-end network termed 3D-DFM that
is a flexible and general architecture that can utilize the
existing voxel-based method to build a powerful cross-modal
3D detector. Extensive experiments are performed on publicly
available KITTI benchmark [19], and the results demonstrate
the superiority and universality of 3D-DFM. In particular,
based on one-stage VoxelNet [20] and two-stage Part-A? [21],
our proposed method reports real-time inference speed and
state-of-the-art detection accuracy, which outperforms both
single-modal and cross-modal 3D detectors by a remarkable
margin.

The main contributions in this article can be summarized as

follows.

1) First, we incorporate an anchor-free pipeline with
camera-LiDAR 3D object detection, which simplifies
postprocessing operations with much less engineering
effort and accelerates model inference speed.

2) DFM is designed to combine the image with point fea-
tures dynamically. It generates kernel parameters from
the semantic map and interacts with point feature via
these filters adaptively.

3) We investigate the effect of center point, overlapping
area, and scale between two boxes and propose the
3D-DIoU loss for better 3D box optimization.

4) Empirical studies and ablation analysis are conducted on
the KITTI dataset, and the results present the effective-
ness and generalization of our proposed method.

II. RELATED WORKS

This section would review recent works on 3D object
detection, anchor-free object detection, and box optimization
in object detection.

A. 3D Object Detection

As previously stated, 3D object detection can be divided
into three categories: camera-based, LiDAR-based, and cross-
modal methods.

1) Camera-Based Method or Monocular 3D Detection: It
usually builds on the design of 2-D object detector and uses
geometric constraints to normalize bounding coordinates in
the 3D space [22]. Recently, several image-based 3D detection
works have been interested in how to recover depth informa-
tion for assisting 3D object localization accuracy. A series
of pseudo-LiDAR works [5], [23], [24] generates pseudo
signal from depth image and performs 3D object detection
on the pseudo point representation. Furthermore, DL4CN [25]
proposes a dynamic depthwise dilated local convolutional
network that learns depth maps automatically from images
with different filters. CaDNN [26] is a differentiable end-
to-end approach for monocular 3D detection that predicts
categorical depth distribution for each pixel. Nevertheless,
an image-based 3D detector achieves poor accuracy and only
captures coarse object 3D boxes.
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Overview of 3D-DFM. Image stream: arbitrary 2-D CNN can be adopted for image feature learning. We design a simple architecture with five

deformable convolutional layers with stride 2, followed by three deconvolutions to recover the resolution of semantic map. Point stream: for efficiency, any
voxel-based detector can be utilized as a point cloud encoder that contains voxelization, VFE, 3D backbone, BEV projection, and 2-D backbone. DFM: it
dynamically generates kernel parameters from the image map and convolves point features with these filters to aggregate multimodal information adaptively.
Detection head: it directly predicts the center heatmap, Z-axis coordinate, local offset, orientation, and 3D box size from the joint feature map. Also, the
whole architecture is supervised by the focal loss [13] and proposed 3D-DIoU loss for classification and box regression, respectively.

2) LiDAR-Based 3D Detector: It regresses the 3D box
directly from the point cloud and reports the state-of-the-art
detection performance in several public benchmarks. To handle
the sparisity and irregularity of the point cloud, existing
approaches either process voxel features via an efficient con-
volutional neural network (CNN) [20], [21], [27] or consume
raw points by PointNet architectures [28]-[30]. It is noted
that utilizing both data representations can result in improved
detection performance. SA-SSD [31] builds a convolutional
network to explicitly leverage the structured information of
3D point cloud while also guiding the backbone to be
aware of object structure. Similarly, PV-RCNN [32] designs
voxel set abstraction and keypoint set abstraction modules;
it first summarizes voxel representation into a small set of
keypoints and pools keypoints to representative region-of-
interest (Rol)-grid points. However, without the assistance
of semantics, LiDAR-based algorithms are prone to feature
ambiguity of similar objects.

3) Cross-Modal Approach: It has received increasing atten-
tion due to the advantages of image-point complementarity.
Early fusion typically introduces additional labels or features
into a point cloud, such as PointPainting [1], PointAug-
ment [4], and MVX-Net [11]. Many studies concentrate on
feature combinations at the intermediate level. MV3D [8] and
AVOD [9] fuse multiview proposal or Rol region using a
pooling or crop module. 3D-CVF [12] performs autocalibrated
projection to transform the image into a smoother BEV
feature map and then applies simple concatenation on both
points. EPNet [2] designs a Li-Fusion module inspired by the
novel continuous convolution [10] and establishes pointwise
correspondences for finer multimodal feature aggregation.

Later fusion directly combines the 2-D and 3D detection
results via a specific association or operation. CLOCs [3]
adopts geometric and semantic consistency to convert 2-D and
3D candidates into a set of joint detection candidates, whereas
these schemes frequently encounter issues with imperfect
correspondence or data misalignment. In this work, we would
develop a more accurate and adaptive approach to support
multimodal feature fusion.

B. Anchor-Free Object Detection

Anchor-based detectors, in the context of 2-D object detec-
tion, depend on the design of prior boxes or predefined para-
meters to guide the bounding-box regression, which results in
heavy computational cost and model complexity. Conversely,
anchor-free architecture avoids the complicated engineering
effort and instead predicts box size and confidence score from
feature maps, such as DenseBox [33] and YOLOv1 [34].
Recently, keypoint estimation has been used for object detec-
tion. CornerNet [35] estimates a pair of bounding-box corners
and designs corner pooling for better object localization.
CenterNet [36] is a simpler and faster approach for locating
the object’s center point and predicting all other object prop-
erties, such as size, location, and orientation. The anchor-free
paradigm has been widely studied and popularized in the
2-D object detection domain due to its efficient and accurate
detection performance.

Several works introduce an anchor-free pipeline to 3D
object detection. PointRCNN [30] creates the 3D proposal
generation subnetwork for box refinement and confidence
prediction based on point cloud segmentation. AFDet [37] sim-
plifies postprocessing by removing anchor and NMS designs.



CenterPoint [38] and CenterNet3D [39] develop center-based
3D object detection architectures: the former estimates the
center point for simultaneous detection and tracking, while
the latter proposes an auxiliary corner attention module to pay
more attention to object boundaries. In this article, we would
investigate the potential of combining anchor-free architecture
with multimodal 3D object detection.

C. Box Optimization in Object Detection

For 2-D object detection, L1 loss and its derivate are
commonly used for box optimization, which measures the
Euclidean distance between the GT and predicted boxes.
Nonetheless, the independent assumption of four corner points
may result in poor localization results. Alternatively, the loU
loss is introduced for bounding-box prediction [15], and the
GloU [16] is explored to tackle with two nonoverlapping boxes
optimization.

It is intractable for a 3D-oriented bounding box with
more coordinate, size, and pose parameters. More importantly,
geometric correlation is also of vital importance for corner
point prediction, which implies that the L1 distance loss is
unsuitable for 3D object detection. Consequently, the 3D-IoU
loss [17] and the 3D-GIoU loss [18] are proposed to evaluate
the similarity of two rotated boxes in the 3D space. In general,
box optimization in 3D space remains an open problem, and
in this article, we will investigate a novel loss function to
facilitate the 3D box regression.

III. METHODOLOGY

This section would introduce our proposed 3D-DFM archi-
tecture, as shown in Fig. 2, that primarily consists of image
stream, point stream, DFM, and detection head.

A. Image Stream

A CNN is used to learn dense semantic features from RGB
images in an image stream. We introduce deformable convo-
lution [40] to capture local offset for spatial location in order
to improve geometric transformation modeling. Furthermore,
residual architecture [41] is required for stable model training
and convergence. Therefore, we design a simple image stream
composed of five stacked convolutional blocks with shortcut
connections, each of which contains a 3 x 3 deformable filter
with stride 2, followed by batch normalization [42] and ReLU
activation function. The number of channels is 32, 64, 128,
256, and 512. To recover the size of feature map, we append
three deconvolutional layers with 256, 128, and 64 channels.
Finally, the image stream produces a high-resolution semantic
map with stride 4 of input. It should be noted that any
convolutional backbone can be adopted as an image stream,
and we simply present a lightweight architecture for semantic
feature extraction.

B. Point Stream

To efficiently encode point cloud features, the point stream
architecture follows the previous voxel-based works that
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Fig. 3. Architecture of DFM. It generates kernel parameters from the image
map via 1 x 1 convolution and dynamically interacts point features with
these filters to produce the joint feature map. In this way, optimal pixel-point
correspondences would be obtained to aggregate the multimodal information
adaptively.

include voxelization, voxel feature encoding (VFE), 3D back-
bone, BEV projection, and 2-D backbone. To be specific, the
raw point cloud is grouped and quantized into regular voxels
with a fixed length, width, and height dimensions. Subse-
quently, a point-based architecture (i.e., PointNet) encodes the
3D information within each voxel, and the pooled feature is
fed into 3D backbone (e.g., 3D sparse CNN [43]) for voxel
abstraction. Finally, we compress the voxel feature into a BEV
representation along the height dimension and adopt 2-D dense
backbone to produce the point feature map. More importantly,
most off-the-shelf voxel-based approaches can be served as
a point feature encoder, and we would introduce one- and
two-stage 3D detectors into our proposed architecture.

C. Dynamic Fusion Module

Much prior research aggregates image and point feature
maps using a mathematical operation (e.g., summation or
concatenation), and however, these approaches simply perform
coarse correspondences at the targeted location without infor-
mation interaction in local and global regions. The dynamic
filter network [44] proposes a new convolutional framework
in which kernel parameters are generated dynamically based
on the input rather than fixed filters as in the standard
convolutional layer. It contains a filter-generating module and
a dynamic filtering layer. The former is a learnable architecture
that provides custom parameters for different input samples,
and the latter further applies these kernels to the input.
A dynamic filter network has been applied in many complex
tasks and showed promising performance [45], [46] due to its
unique architecture and dynamic mechanism.

As shown in Fig. 3, we investigate the dynamic filtering
mechanism on cross-modal feature combination and design
DFM conditioned on image feature f; € RT>WixCi and
point feature fp e RTr*WrxCr where H, W, and C are
height, width, and the number of channels of feature map,
respectively. Specifically, DFM adopts 1 x 1 convolution or
linear unit as filter-generating network at first and dynamically
generates filter parameters Fy € RV*K*K*Cr from the image
map, where N is the number of filters, K is the size of the
filter, and Cp is the number of channels. Also, in the dynamic
filtering layer, these kernels are adaptively convolved with
the point feature to obtain one-to-one correspondence results.



As a consequence, the joint feature map fp € RT*W*N js

fed into an anchor-free detection head for box prediction in
the next stage. The fused feature at (i, j) position can be
mathematically described as follows:

fo(, j) = Fo Q)(fr i, j) (1)

where ) denotes the convolved multiplication.

There are several advantages of DFM design. On the one
hand, DFM can be regarded as an attention mechanism for
attending to the Rol feature of the size of H x W. The
point feature is dynamically reweighted by the customized
kernel parameters generated from the image map, to obtain
the significant fused representations. In this way, ineffective
bins with background information are filtered out, and the
model would pay more attention on the majority of foreground
features during object localization and classification. On the
other hand, DFM can adaptively provide better pixel-point
correspondences via learnable filters. These sample-specific
parameters are interacted with point feature to produce a more
discriminative joint feature. Furthermore, DFM is also a light-
weight architecture that only involves simple convolutional or
linear operations, resulting in a marginal computation overhead
for the network.

D. Detection Head

Our anchor-free detection head takes the joint feature map
fp € RE>XWXN ag input and predicts center-point heatmap,
z-axis coordinate, local offset, orientation, and 3D box size of
objects, which is similar to the previous center-based works
in [41] and [45].

The heatmap branch is responsible for the center-point
estimation that finds where the object center p(x, y) is in BEV.
It learns to predict an H x W heatmap M,,. € [0, 1]7*W*C
for C categories, with the rendered Gaussian kernels G =
exp(—((x — px)* + (y — py)*/20,)) at each GT object center
p(x,y), where o, denotes the object size adaptive standard
deviation. Then, a z-axis coordinate branch is used to deter-
mine the z-axis location Z € R¥*W*! for each center point.
The local offset branch aims to recover discretization errors
caused by the voxelization process and downsample stride and
find the more accurate object center. It directly predicts an
offset map O € R”*W>3 for each center point. Considering
the assumption that objects are shared with the same ground
plane in most autonomous-driving scenes, we simply estimate
the orientation map R € R7*W*2 around the z-axis and
encode the rotation as (sin(f), cos(d)). Finally, the 3D box
size feature map § € R7*W*3 is regressed to obtain the
width, length, and height for each object. During model
training, we adopt logistic regression with focal loss [13]
for classification and the newly developed loss function to
supervise 3D box regression, as described in Section III-E.

E. Loss Function

Overall, the loss function L for classification and box
regression in the proposed method can be expressed as follows:

L= Lcls + Lreg~ (2)

Algorithm 1 3D-DIoU

Input: Ground-truth box: B, (xg, Ve» Zg> We, lg, hg, Hg) and the
predicted box: B, (xp, Vp>Zps Wpylp, hp, Hp)
2D-IoU of Boxes
1. Boxes in BEV Projection
B;’”( bev |,bev hev lbev ehev)

s Vg
Bzev( bev’ ybeu ?}eu, lff“, eﬁeu)

2.2D IoU Calculatlon

Area Bé’e“ Ay = wge“ X hge“ X sin(@é’e“)

Area B : A, = wh x hb” x sin(05°)

Ip: calculates the intersection area by sorting vertexes
of two overlapping boxes in anticlockwise order,
else Iy, =0

ToUp = Igp/(Ag +Ap,— gp)

3D-DIoU of Boxes
1. 3D-IoU Calculation

Volume Bg: Vg = w, X I, X hy

Volume Bj: V, =w, x 1, x hp

Intersection of Height: I, = min(zy +hy/2,2, +h,/2)

—max(z, —hg/2,2, — h,/2)

Intersection of Volume: I, = Iy, x I

IoUsp =1,/ (Vo + V, — 1)

2. The Distance of Center Points

2 2
D= \/xg—x,, Yg yl’) +(Zg_zp)
3. The Diagonal of Smallest Closing Volume

C = \/max(wg, wp)2 + max (lg, lp)2 + max (hg, hp)z
4. 3D-DIoU Calculation
D10U3D = 10U3D - DZ/C2
Output: DIoUs;p

The classification loss adopts a focal loss to handle the class
imbalance in heatmap prediction, as illustrated as follows:

(1 xyc)alOg(wa) Mxyc =1
Lcls = z (1 - xyc)ﬁ(Mxyc) (3)
e x log(1l — xﬂ) otherwise

where N is the number of the center point and M,,. denotes
the center heatmap generated from Gaussian kernel. In all
experiments, the hyperparameters a and f are set to 2 and 4,
respectively.

Inspired by 2-D distance IoU [49], we investigate the effect
of center distance, overlap, and aspect ratio factors on box
regression, and reformulate the 3D distance IoU (3D-DIoU)
metric to guide 3D bounding-box optimization, as defined in
Algorithm 1. Given the predicted (B,) and its GT (B,) boxes,
we first calculate the 2-D IoU (IoU,.p) and the intersection
area (I,,) in the BEV projection. In the case of 3D box
regression, we further compute the 3D-IoU (IoUsp) between
two boxes by quantizing the box and intersection volumes
(Vg, Vp, and 1,). To evaluate the effect of geometric attributes,
we consider box center distance (D) and diagonal of the small-
est closing volume (C), and finally, the 3D-DIoU (DIoUsp)
is formulated as the subtraction between 3D-IoU and the
ratio square of center point and diagonal distance. In contrast
to previous box regression methods, the newly developed



TABLE I

3D AP PERFORMANCE OF 3D-DFM AND THE STATE-OF-THE-ART DETECTORS ON THE KITTI TEST SET. ALL 3D DETECTION METHODS IN KITTI
LEADERBOARD ARE RANKED BY THE AP PERFORMANCE AT MODERATE LEVEL UNDER THE IoU THRESHOLD OF 0.7. NOTED THAT “MoD.,”
“L,”“C + L,” “E,” “M,” AND “H” ARE THE ABBREVIATION OF “MODALITY,” “LIDAR,” “CAMERA + LIDAR,” “EASY,” “MODERATE,”
AND “HARD,” RESPECTIVELY. IN PARTICULAR, THE RED-BOLD FRONTS DENOTE THE PERFORMANCE GAIN OR
DROP COMPARED WITH VOXELNET AND PART-A? METHODS

Car (AP %) Pedestrian (AP %) Cyclist (AP %) mAP

Mod. Methods E M H B M H E y M H %) FPS
VoxelNet (CVPR2018) [20] 7747 65.11 5773 3948 33.69 31.51 6122 4836 4437 50.99 12

Pointpillar (CVPR2019) [48] 82.58 7431 68.99 5145 4192 3889 77.10 58.65 5192 60.65 62

L PointRCNN (CVPR2019) [30] 8594 75776 68.32 4943 41778 38.63 7393 59.60 53.59 60.78 10
SA-SSD (CVPR2020) [31] 88.75 79.79 74.16 - - - - - - - 25
CenterNet3D (IEEE TITS2020) [39] | 86.20 77.90 73.03 - - - - - - - 25
Part-A2 (IEEE TPAMI2020) [21] 87.81 7849 73.51 53.10 4335 40.06 79.17 6352 5693 63.99 12

MMEF (CVPR2019) [6] 88.40 7743 70.22 - - - - - - - 13

PI-RCNN (AAAI2020) [49] 84.37 74.82 70.03 - - - - - - - 10
PointPainting (CVPR2020) [1] 82.11 71.70 67.08 50.32 40.97 3787 77.63 63.78 55.89 60.81 3

CiL CLOCs (IROS2020) [3] 86.38 7845 72.45 - - - - - - - 10
EPNet (ECCV2020) [2] 89.81 79.28 74.59 - - - - - - - 10

3D-CVF (ECCV2020) [12] 88.84 79.72 72.80 - - - - - - - 12
3D-DFM-VoxelNet 79.05 68.87 63.68 41.34 36.66 34.60 71.16 56.34 50.70 55.82 20

vs. VoxelNet +1.58 +3.76 +595 +1.86 +2.97 +3.09 +9.94 +7.98 +6.33 +4.83 +8

3D-DFM-Part- A2 87.75 8093 76.12 4693 39.68 3731 79.65 6338 56.61 63.15 16

vs. Part-A2 -0.06 +2.44 +2.61 -6.17 -3.67 -275 +048 -0.14 -0.32 -0.84 +4

3D-DIoU metric takes the box center, overlapping area, and
aspect ratio into consideration, which is favorable for reflecting
the similarity of two boxes and guiding the box optimization.
Consequently, we further adopt the 3D-DIoU loss for box
optimization as mathematically demonstrated in the following
equation:

Lg = 1 — DIoUjsp. 4)

IV. EXPERIMENTS

In this section, we first describe implementation details.
Subsequently, experimental results on the KITTI dataset are
reported to evaluate our proposed 3D-DFM, and ablation
studies are conducted to verify the effectiveness of each
component. Finally, we visualize the detection results.

A. Implementations

1) Dataset Setup: The KITTI dataset [19] is one of
the most challenging 3D object detection benchmarks for
autonomous-driving applications, which provides 7481 train-
ing and 7518 testing samples. It is noted that both camera
images and LiDAR points are available for model evaluation,
and all training data are annotated with instance labels and
calibration files. We split the training set into 3712 samples for
training and 3769 samples for validation. The evaluation met-
ric is the average precision (AP) at 0.7 IoU threshold. On the
KITTI dataset, we also compare the detection performance of
our proposed method to that of state-of-the-art single-modal
and multimodal detectors at easy, moderate, and hard levels.

2) Training Details: The experimental platform is on
Ubuntul8.04 LTS with NVIDIA RTX GPU. In the image
stream, the input size of 1280 x 384 is reshaped to 1408 x
416 pixels for dimension alignment. For point stream, the

range of point cloud is limited to [0, 70.4] m in the x-axis,
[—40, 40] m in the y-axis, and [—3, 1] m in the z-axis. As for
point cloud extractor, we use one-stage VoxelNet and two-
stage Part-A? detectors, with the default settings from official
implementations. Our 3D-DFM is trained with a batch size of
8 for 80k steps, optimized by adamW [50] and a one-cycle
learning rate policy, with a weight decay of 0.01, a momentum
from 0.95 to 0.85, and a maximum learning rate of 0.003.
Unless otherwise specified, all experiments would follow the
same training setting.

B. Experimental Results

We primarily present the 3D detection performance in
the car, pedestrian, and cyclist classes and then compare
the proposed approach to other state-of-the-art single-model
and multimodal detectors on the KITTI test set, as shown
in Table L.

3D-DFM-VoxelNet takes VoxelNet for point feature
encoding and replaces the convolutional middle layer with
3D sparse CNN for efficiency. It reports accurate and fast
3D detection performance with 55.82% mAP at 20 FPS, out-
performing VoxelNet by a remarkable margin. To be specific,
3D-DFM-VoxelNet increases the baseline by 1.58%, 3.76%,
and 5.95% car AP at three different levels, and similar perfor-
mance gains are also reported in pedestrian and cyclist classes.
It is highlighted that the inference speed of 3D-DFM-VoxelNet
is up to 20 FPS, which approaches to the requirements of many
real-time applications such as autonomous-driving systems.

As for 3D-DFM-Part-A2, it first voxelizes the raw point
cloud into regular grid and pools the candidates by Rol-aware
operation at the refinement stage. 3D-DFM-Part-A% shows
prominent performance with 80.93% and 76.12% AP in car
class at moderate and hard levels, which outperforms all
single-modal and multimodal detectors by a considerable
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Fig. 4. Trend of Ll1-distance, 3D-IoU, 3D-GIoU, and 3D-DIoU loss functions during model training, and all experiments are performed on the basis of

VoxelNet. It is observed that 3D-DIoU loss converges much faster than other three loss functions and finally drops at a smaller value. Best viewed in color.

TABLE II

3D CAR AP OF 3D-DFM AND OTHER DETECTORS ON THE KITTI VAL
SET. NOTED THAT “Mob.,” “L,” “C + L,” “E,” “M,” AND “H” ARE
THE ABBREVIATIONS OF “MODALITY,” “LIDAR,” “CAMERA +
LIDAR,” “EASY,” “MODERATE,” AND “HARD,” RESPECTIVELY.
IN PARTICULAR, THE RED-BOLD FRONTS INDICATE THE
PERFORMANCE GAIN OR DROP COMPARED WITH

TABLE III

ANALYSIS OF ANCHOR-FREE PIPELINE FOR VOXELNET AND PART-A2
METHODS ON THE KITTI VAL SET. NOTED THAT “E,” “M,”
AND “H” DENOTE “EASY,” “MODERATE,” AND “HARD”
DIFFICULTY LEVELS, RESPECTIVELY

VOXELNET AND PART-A% BASELINES Methods Car (AP%) FPS
E M H
Car (AP%) VoxelNet (CVPR2018) 8197 6546 62.85 12
Mod. Method
© ethods E M H +0.81 +1.68 +1.47 +13
VoxelNet (CVPR2018) [20] 8197 6546  62.85 VoxelNet w. anchor-free 8278 67.14 64.32 25
L Pointpillar (CVPR2019) [48] 83.62 75.22 72.40 Part-A> (IEEE TPAMI2020) 89.33 81.59 76.05 12
PointRCNN (CVPR2019) [30] 87.07 77.83 72.18 +0.13  +0.44 +1.22 +8
Part-A® (IEEE TPAMI2020) [21] | 89.33  81.59  76.05 Part-A? w. anchor-free 89.46 82.03 7727 20
PI-RCNN (AAAI2020) [49] 88.27 78.53 77.75
CsL CLOCs (IROS2020) [3] 92.35 82.73 78.10
EPNet (ECCV2020) [2] 92.28 82.59 80.14 .
3D-CVF (ECCV2020) [12] 89.67 79.88 78.47 3D-DFM-Part-A? still demonstrates the state-of-the-art detec-
3D-DFM-VoxelNet 85.60 7589 7230 tion accuracy among all algorithms. In general, our 3D-DFM
vs. VoxelNet +3.63  +10.43 4945 architecture facilitates the accuracy and efficiency of both one-
3D-DFM-Part-A* 9194 8490 8248 and two-stage voxel-based 3D detectors.
vs. Part-A2 +2.61 +331 +6.43

margin. It also achieves the state-of-the-art accuracy with
79.65% AP on cyclist class at easy level among all approaches,
demonstrating the superiority of the proposed method. In terms
of speed, 3D-DFM-Part-A? runs at 16 FPS in one inference,
which implies its possibility applied in a real-time system.

However, a significant performance drop is found in the
pedestrian class. The function of DFM is assumed to conflict
with the pooling operation in the box refinement stage, and this
contradiction is amplified in small and few object detection,
such as pedestrian detection. Furthermore, model robustness
may result in a notable performance gap between validation
and test splits. We would further investigate these problems
and provide the effective solutions in future work.

In addition, we evaluate the detection performance on the
KITTT val split and list the 3D AP results on the main
car class in Table II. Our proposed method provides consis-
tent performance gains over the two baseline methods, and

C. Ablation Studies

Extensive ablation studies are conducted to evaluate the
effectiveness of each component in the proposed 3D-DFM.
Anchor-free pipeline, DFM, and 3D-DIoU loss are appended
into the one-stage (VoxelNet) and two-stage (Part-A?) base-
lines, respectively. Noted that all experiments are conducted
on the KITTI val set, and we only present the 3D detection
results in car class for convenience.

1) Anchor-Free Pipeline: We detach the traditional RPN
head in VoxelNet and Part-A? and adopt anchor-free archi-
tecture for bounding-box prediction. As shown in Table III,
anchor-free pipeline dramatically accelerates the inference
speed of two baselines by 13 and 8 FPS, respectively.
Moreover, it offers considerable AP gains at three difficulty
levels, indicating the effectiveness and efficiency of anchor-
free pipeline.

2) Dynamic Fusion Module: We introduce the image stream
into VoxelNet and Part-A? architectures and measure the
effect of different fusion approaches on detection performance






TABLE IV

ANALYSIS OF VARIOUS FUSION METHODS FOR VOXELNET AND
PART-A2 METHODS ON THE KITTI VAL SET. NOTED THAT “E,”
“M,” AND “H” DENOTE “EASY,” “MODERATE,” AND “HARD”
DIFFICULTY LEVELS, RESPECTIVELY. “C,” “@.” AND “@”
ARE FEATURE CONCATENATION, SUMMATION, AND
MULTIPLICATION OPERATIONS, RESPECTIVELY

Car (AP%)

Methods E M H FPS
VoxelNet (CVPR2018) 81.97 6546 6285 12
+1.25 +1.87 +229 -3

VoxelNet w. C 8322 6733 6514 9
+1.38 +1.71 +2.64 -3

VoxelNet w. @ 8335 6717 6549 9
+1.62 4293 +3.56 -3

VoxelNet w. @ 83.59 6839 6641 9
+2.08 +6.14 +4.92 -4

VoxelNet w. DFM 84.05 71.60 6777 8
Part- A2 (IEEE TPAMI2020) | 89.33 81.59 76.05 12
+0.73  +1.04 +1.66 -3

Part-42 w. C 90.06 82.63 77.71 9
+0.95 +1.30 +2.01 -3

Part-A% w. @ 90.28 82.89 7806 9
+1.22  +148 +237 -3

Part-A? w. @ 90.55 73.08 7842 9
+1.58 +1.91 +3.13 -4

Part-A2 w. DFM 9091 8350 79.18 8

using DFM, feature concatenation, feature summation, and
feature multiplication. As elaborated in Table IV, feature
aggregation methods sacrifice detection speed marginally
while providing substantial accuracy improvements. Specifi-
cally, concatenation, summation, and multiplication operations
improve the detection performance by 1%-3% AP boosts
in both VoxelNet and Part-A?. The proposed DFM results
in better performance gains particularly for 6.14% in Vox-
elNet and 3.13% in Part-A2, demonstrating the superiority of
dynamic fusion mechanism. Instead of simple concatenation
or multiplication in a local region, it interacts image with
point features adaptively at different locations using a sample-
specific filter, and more discriminative information can be
preserved to contribute to object localization.

3) 3D Distance Intersection-Over-Union: We further
replace the L1 loss in VoxelNet and Part-A2, with 3D-IoU,
3D-GlIoU, and 3D-DIoU losses to analyze their contribution
for box optimization, as shown in Table V. When com-
pared to 3D-IoU and 3D-GloU metrics, our 3D-DIoU loss
presents 0.5%-3.0% AP gains for VoxelNet and 0.9%-2.0%
AP improvements for Part-A?, suggesting its suitability for
3D box optimization. It considers the center-point distance,
overlapping area, and aspect ratio of two boxes in regression
and therefore receives more accurate box regression results.

D. Qualitative Results

1) Convergence of 3D-DIoU Loss: We investigate the con-
vergence and stability of 3D-DIoU loss with other loss func-
tions, i.e., L1 distance, 3D-IoU, and 3D-GIloU loss functions.
As shown in Fig. 4, 3D-DIoU loss converges much faster

TABLE V

ANALYSIS OF DIFFERENT LOSS FUNCTIONS FOR VOXELNET AND
PART-A2 METHODS ON THE KITTI VAL SET. NOTED THAT “E,”
“M,” AND “H” DENOTE “EASY,” “MODERATE,” AND
“HARD” DIFFICULTY LEVELS, RESPECTIVELY

Car (AP%)
Methods E M H FPS
VoxelNet (CVPR2018) 81.97 6546 62.85 12
+0.52 +1.81 +1.98 -2
VoxelNet w. 3D-IoU 82.49 67.27 64.83 10
+0.65 +2.23 +2.55 -2
VoxelNet w. 3D-GIoU 82.62 68.07 65.40 10
+0.74 +2.61 +3.06 -2
VoxelNet w. 3D-DIoU 8271 6994 6591 10
Part-A? (IEEE TPAMI2020) | 89.33 81.59 76.05 12
+0.28 +0.31 +0.69 -2
Part-A42 w. 3D-IoU 89.61 81.90 76.74 10
+0.61 +0.43 +1.24 -2
Part-A? w. 3D-GIoU 89.94 82.02 77.29 10
+0.90 +0.96 +2.08 -2
Part-A? w. 3D-DIoU 90.23 8255 78.13 10

than the other three losses and ends up with a smaller value.
The trend illustrates that the 3D-DIoU loss is preferable
for 3D object detection, which is consistent with the above
conclusion.

2) Detection Visualization: We finally visualize the results
predicted by our proposed method on the KITTI test set in
Fig. 5. Intuitively, 3D-DFM-Part-A? can accurately recognize
object category and localization, even in the severely occluded
or truncated cases, i.e., blue circles in Fig. 5. Nevertheless,
our proposed method still suffers from false positive or
low-confidence detection results, e.g., red circles in Fig. 5.
We would probe into these problems in the future to ensure
more robust and stable detection performance.

V. CONCLUSION

In this article, we incorporate an anchor-free pipeline with
multimodal 3D object detection task and design an end-to-end
architecture called 3D-DFM with DFM and 3D-DIoU loss.
DEM, in particular, performs adaptive image-point feature
aggregation using dynamically generated filters, whereas 3D-
DIoU loss considers geometric properties of two boxes for
better box optimization. Extensive experimental results on the
KITTI dataset demonstrate the superiority and universality of
3D-DFM architecture. Based on one-stage VoxelNet, it reports
real-time inference speed and considerable detection accuracys;
with two-stage Part-A2, 3D-DFM-Part-A? achieves the state-
of-the-art detection performance among all single-modal and
multimodal 3D detectors.

However, our 3D-DFM still fails to detect small or few
objects correctly, such as pedestrian, and occasionally pro-
duces false positive results in some challenging scenarios. It is
assumed that the data fusion mechanism and model robustness
remain to be further improved. In the future, we would
investigate these drawbacks and provide the solutions to pursue
more accurate and promising 3D detection performance.
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