
JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XX XXXX 1

Event-Triggered Distributed Data-driven Iterative
Learning Bipartite Formation Control for Unknown

Nonlinear Multi-agent Systems
Huarong Zhao, Hongnian Yu, Senior Member, IEEE, and Li Peng

Abstract—In this study, we investigate the event-triggering
time-varying trajectory bipartite formation tracking problem
for a class of unknown nonaffine nonlinear discrete-time multi-
agent systems (MASs). We first obtain an equivalent linear data
model with a dynamic parameter of each agent by employing
the pseudo partial derivative technique. Then we propose an
event-triggered distributed model-free adaptive iterative learning
bipartite formation control scheme by using the input/output
data of MASs without employing either the plant structure or
any knowledge of the dynamics. To improve the flexibility and
network communication resource utilization, we construct an
observer-based event-triggering mechanism with a dead-zone op-
erator. Furthermore, we rigorously prove the convergence of the
proposed algorithm, where each agent’s time-varying trajectory
bipartite formation tracking error is reduced to a small range
around zero. Finally, four simulation studies further validate the
designed control approach’s effectiveness, demonstrating that the
proposed scheme is also suitable for the homogeneous MASs to
achieve time-varying trajectory bipartite formation tracking.

Index Terms—Data-driven control, multi-agent systems, bipar-
tite formation, event-triggered control, iterative learning.

I. INTRODUCTION

THE past decades have witnessed the burgeoning devel-
opment of the multi-agent systems (MASs) formation

control approaches for the fact that most of these approaches
apply to a variety of space missions, such as target tracking,
satellite clustering, and environmental monitoring. The main
task of formation control is to construct and maintain a
prespecified position-orientation pattern of each agent in an
alliance. A number of general schemes of formation control
are studied in the literature [1]–[7]. The underactuation and
high nonlinearities problems for a group of quadrotors are
considered in [1] by formulating a robust formation control
approach, which includes a distributed robust controller and an
attitude controller to realize translational and rotational motion
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control. Furthermore, external disturbances [2], [3], switching
topologies [4]–[6], and communication delays [7]–[9] are
extensively researched, and other interesting problems are
surveyed in [10]–[12]. These demonstrate that the formation
control problem is a hot research topic of MASs.

On the other hand, increasing the number of agents exposes
the drawback of agents’ hardware, such as limited bandwidth
and communication channels among agents. The distributed
event-triggered strategies, which can ease this problem, have
received much attention from scholars in recent years [13]–
[19]. The objective of distributed event-triggered strategies is
to formulate an appropriate event-triggered condition (ETC)
and a distributed control protocol for the controlled plant. Vi-
olating the ETC will initiate the controlled system to transmit
the measurement data and update the control command. On the
other hand, compared with the traditional centralized manner,
the distributed event-triggered methods only depend on local
information exchanges among neighbors using the commu-
nication networks sharing technique. Hence, the distributed
event-triggered approaches not only ensure the desired control
performance but also save communication and computation
resources [13]. A dynamic event-triggered communication
strategy is designed in [14] for MASs to implements formation
control tasks, where the parameters of ETC are dynamically
adjustable according to a dynamic rule. Inspired by [14], the
authors in [15] propose an event-triggered consensus control
protocol for linear MASs, which can endure prolonged the
minimum interevention time between two consecutive trigger-
ing instants and avoid Zeno behavior. Moreover, the authors in
[16] introduce an adaptive parameter adjustment algorithm into
the event-triggered control strategy to meet the time-varying
formation control requirements of linear MASs. It is noted
that the resource-efficient formation control for MASs is still
a hot topic, and the related issues [13], [17]–[19] should be
further investigated. However, all the motivated works consider
the formation control for the MASs with known dynamics. In
other words, most existing proposed approaches belong to the
classic model-based control (MBC) domain. In practice, it is
hard to obtain the plant’s accurate mathematic model for a
large-scale and complicated modern practical controlled plant.
Furthermore, the traditional MBC schemes cannot directly
cope with the controlled systems without explicit or implicit
dynamics.

To address the above modeling problems, several data-
driven control (DDC) schemes have been developed, for ex-
ample, model-free adaptive control (MFAC) [20]–[22], model-
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free adaptive iterative learning control (MFAILC) [23]–[25],
virtual reference feedback tuning (VRFT) [26], [27], and
reinforcement learning (RL) [28]–[30]. The DDC approaches’
main characteristic is to design a controller for the controlled
plant without requiring knowledge of the controlled plant
structure, only utilizing the controlled system’s input/output
(I/O) measurement data. It is noted that MFAC, VRFT, and RL
are not suitable for the controlled plant to execute repeatable or
periodic tasks. However, there is a class of special production
requirements that control tasks are repeatable, and operation
errors should be avoided in the whole of the production pro-
cess, for instance, IC welding and wafer manufacturing [31].
To the best of our knowledge, the MFAILC approach is one of
the effective strategies for MASs with repeatable tasks. Since
the 1980s, the iterative learning control (ILC) scheme has been
extensively developed. The ILC method is initially employed
to solve the formation problem in [32] for affine nonlinear
MASs with a fixed communication topology. The method of
[32] is extended in [33] to improve the algorithm’s robustness
considering the communication delays. An MFAILC method
is proposed in [34] for MASs to implement time-varying tra-
jectory consensus tracking tasks. Considering [34], MFAILC
is extended to perform formation tracking tasks for MASs
with switching topologies in [35]. An enhanced model-free
iterative learning formation control approach is proposed in
[36]. Although several ILC methods have been developed, the
study for MASs with unknown nonaffine nonlinear dynamics
is still open from the above analysis. Therefore, research on
formation control for unknown nonaffine nonlinear MASs via
the ILC scheme under repetitive circumstances is useful, which
is also a motivation of our investigation.

The literature review shows that most published papers are
only forced on the collaborative relationship among agents to
develop consensus control or formation control approaches.
However, since multi-agent systems are derived from people’s
systematic abstraction of group behavior, it is inevitable that
agents cooperate and compete. Altafini [37] first introduces the
bipartite consensus concept for the MASs with antagonistic
interactions. The goal of bipartite formation is that all agents
deviate into two groups, and the two groups have the same
reference object except for signs. Although a few bipartite for-
mation algorithms have been developed [38]–[41], they require
an accurate mathematical model or need to establish a complex
nervous network. A dynamic event triggering mechanism for
linear MASs to realize bipartite output consensus control is
studied in [38]. A bipartite consensus protocol is considered
for the MASs with the switching topologies problem in [39].
The time-varying delay and the hybrid impulses problems for
MASs to perform bipartite formation tasks are investigated
in [40] and [41], respectively. Although many efforts have
been made in bipartite consensus or formation methods for
MASs, combining data-driven iterative learning approach to
design an appropriate event-triggered controller for MASs to
implement time-varying trajectory bipartite formation tracking
tasks has not yet received attention. Thus, this leads to the third
motivation for this article.

This paper addresses the event triggering time-varying
trajectory bipartite formation tracking problem for unknown

nonaffine nonlinear detected-time MASs under the repetitive
environment. The main contributions of this paper are:

1) Developing an equivalent linear data model with a dy-
namic parameter for each agent using the pseudo par-
tial derivative technique. The developed model is also
suitable for heterogeneous and time-varying parameters
MASs. Compared with the MBC approaches [1]–[20],
the model structure is simpler, and the computation costs
are reduced.

2) Proposing an observer to achieve event triggering control,
whose flexibility is further guaranteed by the designed
dead-zone operator. We only use the I/O data to for-
mulate the designed event-triggered distributed model-
free adaptive iterative learning bipartite formation control
(ET-DMFAILBFC) approach, which can reduce each
agent’s tracking errors to perform time-varying trajectory
tracking tasks. Although several effective algorithms for
the event-triggered problem are considered in [13]–[18]
and [38], [39], they are dependent on accurate dynamics,
which is not easy to be implemented practically.

3) Synthesizing elements of event triggering mechanism, it-
erative learning, cooperative and competitive interactions,
fixed and time-varying switching topologies for unknown
nonaffine nonlinear detected-time MASs to perform time-
varying trajectory bipartite formation tracking tasks. To
the best of our knowledge, only a small fraction of the
above elements are considered in [15], [34], and [38].

The rest of this article is structured as follows. Section II
introduces the signed graph theory and problem formulation.
Section III presents the proposed ET-DMFAILBFC algorithm
and gives rigorous mathematical proof. Section IV discusses
the time-varying switching topologies problem for MASs
to perform event-triggered bipartite formation tracking tasks.
Several simulations are presented in Section V to further verify
the designed ET-DMFAILBFC algorithm’s effectiveness and
practicability. Finally, Section VI presents the conclusion.

Notations: The set of real numbers, positive real numbers,
positive integers, and identify matrices with arbitrary dimen-
sion are expressed by R, R+, Z+, and I , respectively. diag(•),
sign(•), and b•c denote diagonal matrix, sign function, and
the floor function, respectively. ‖Θ‖ stands for the Euclidean
norm of vector Θ ∈ RN . Moreover, k ∈ {0, 1, ..., T} and
l = 0, 1, 2,... stand for time interval and iteration number,
respectively.

II. PRELIMINARY AND PROBLEM FORMULATION

A. signed graph theory

This paper considers a coopetition communication topology
of the MASs with N agents, which is denoted by a signed
graph G = (VG, EG, AG). VG = {v1, · · ·, vN}, EG =
{(vi, vj)|vi, vj ∈ VG} ⊆ VG × VG, and AG = [aij ] ∈ RN×N
stand for nodes, edges, and the weighted adjacency matrix with
-1, 0, 1 elements, respectively. The neighborhood of the node
i is expressed by Ni = {j ∈ VG|(j, i) ∈ EG}, and the degree
matrix of G is expressed by DG = diag{d1, · · ·, dN} with
di =

∑
j∈Ni |aij |. L = −AG + DG stands for the Laplacian

matrix of G. Generally, the virtual leader is considered as the
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node 0 to be added in the graph Ḡ. Hence, an augmentation
graph Ḡ = (V̄G, ĒG, AG) is introduced, where V̄G=VG∪{v0}
and ĒG=V̄G × V̄G. To describe the connecting relationship
between the virtual leader and the agent i, a connecting matrix
B = diag{b1, · · ·,bN} is defined, where bi = 1 denotes
that the virtual leader is directly connected with the agent
i. Moreover, if the graph Ḡ is strongly connected, the Ḡ has
a directed communication path from the virtual leader to any
other agents.

In addition, the graph Ḡ is also called structurally balanced,
where the whole nodes VG of Ḡ can be divided into two
subsets V1 and V2, and F is restricted by the following
conditions: 1) V1∪V2 = VG and V1∩V2 = ∅; 2) If ∀i, j ∈ Vz
with z ∈ {1, 2}, aij ∈ {0, 1}; 3) If ∀i ∈ Vz and j ∈ Vq
with z 6= q, (z, q ∈ {1, 2}), aij ∈ {−1, 0}. If (vj , vi) /∈ EG or
i = j, aij = 0. If vj ∈ Vq , vi ∈ Vz , z 6= q, and (vj , vi) ∈ EG,
aij = −1. A grouping matrix s = diag(s1, · · ·, sN ) is often
employed to describe the relationship between agents and
groups. If the agent i ∈ V1, si = 1; otherwise, si = −1.

In order to describe the time-varying switching topolo-
gies, an enhanced graph Ḡ(k) = (V̄G(k), ĒG(k), AG(k))
is introduced, and all of the possible topologies of MASs
are described by Ḡ(k) = Ḡp = {Ḡ1, · · · , Gκ}, κ ∈ Z+.
The Laplacian matrix of Ḡ(k) can be calculated by L(k) =
−AG(k) + DG(k), where AG(k) = [apij(k)] ∈ RN×N

and DG(k) = diag{dp1(k), · · ·, dpN (k)}. Moreover, the cor-
responding connecting matrix and grouping matrix become
B(k) = diag{bp1(k), · · ·, bpN (k)} and s(k) = diag(sp1(k), · ·
·, spN (k)), respectively. Furthermore, for facility of analysis,
Sn is often defined as the set of agents.

B. Problem Formulation

In this paper, we study a class of unknown non-
affine SISO (single-input-single-output) nonlinear discrete-
time MASs with N agents. The ith agent’s nonlinear dynamics
is considered as below.

yi(l, k + 1) =fi(yi(l, k), · · · , yi(l, k − ny),

ui(l, k), · · · , ui(l, k − nu))
(1)

where ny ∈ Z+ and nu ∈ Z+ are unknown. ui (l, k) ∈ R
represents the control input of the agent i with i ∈ Sn, and the
corresponding output is expressed by yi (l, k) ∈ R. fi (•) de-
notes an unknown nonlinear function, and Ḡ =

(
V̄G, ĒG, AG

)
denotes the communication topology among agents.

To facilitate the analysis, we introduce two assumptions of
agents’ dynamic below.

Assumption 1 ( [34]): fi(•) is a continuously differentiable
equation for ui (l, k).

Assumption 2 ( [35]): As the nonlinear dynamics (1) satis-
fies the generalized Lipschitz condition along the iteration axis,
|∆yi(l, k + 1)| ≤ r |∆ui(l, k)| holds for all k and l, where
r ∈ R+ is a constant, ∆yi (l, k+1) =yi(l, k+1)−yi(l−1, k+
1), ∆ui(l, k) = ui(l, k)− ui(l − 1, k) 6= 0, and |∆ui(l, k)| is
bounded by a ∈ R+.

Remark 1: Assumption 1 is a basic condition for developing
a control protocol. Assumption 2 implies that we can always
find a value of r to represent the relationship between the

changing rate of input and output at any point, and limit input
leads to limit output applying the principle of systems energy
conservation. More details can be found in [34] and [35].

Lemma 1 ( [23], [35], [42]): If the nonlinear dynamics (1)
meets the condition described in Assumptions 1 and 2, an
equivalent linear data model can be obtained below.

∆yi (l, k + 1) = Γi (l, k) ∆ui (l, k) (2)

where Γi (l, k) represents an iteration-dependent and time-
varying parameter, which is called pseudo-partial-derivative
(PPD) with |Γi (l, k)| ≤ r, and input gain |∆ui (l, k)| ≤ a,
for all k and l. Moreover, r and a are small positive constant,
and the details of them are discussed in [23], [35] and [42].

Next, the two fundamental Assumptions of the bipartite
formation control are presented below.

Assumption 3 ( [25], [34]): For all k and l, Γi (l, k) meets
that Γi (l, k) > ι > 0 (Γi (l, k) < −ι < 0), i ∈ Sn , where
ι ∈ R+ is arbitrarily small. Generally, suppose that Γi (l, k) >
ι > 0.

Assumption 4: The communication topology Ḡ or Ḡp is
structurally balanced. Meanwhile, Ḡ or Ḡp is strongly con-
nected. In other words, there is a directed communication path
between each agent and the virtual leader.

Lemma 2 ( [35]): If Ḡ or Ḡp satisfies Assumption 4, the
L+B of Ḡ or L(k) +B(k) of Ḡp is a positive definite and
irreducible matrix.

Definition 1: The goal of the bipartite formation con-
trol scheme is to formulate an appropriate control protocol
ui (l, k), which can generate a predicted formation and main-
tain it. For each agent i, the following conditions are satisfied.

lim
l→∞

(yi (l, k)− y0 (l, k)) = gi (l, k) (3)

where the agent i belongs to V1. If the agent i belongs to V2,

lim
l→∞

(yi (l, k) + y0 (l, k)) = gi (l, k) (4)

where gi (l, k) denotes desired gaps from the agent i to the
virtual leader, and y0 (l, k) is the position of the virtual leader.

In this paper, a grouping matrix s is introduced to de-
scribe the coopetition relationships among agents, where
s=diag (s1, s2, ..., sN ) and si ∈ {−1, 1}. If the agent i
belongs to V1, si = 1; otherwise, si = −1. Hence, the
conditions (3) and (4) can be expressed as

lim
l→∞

(yi (l, k)− siy0 (l, k)) = gi (l, k) (5)

Define ξi(l, k) as the local error of the agent i at the lth
iteration as below:

ξi(l, k) =
∑
j∈Ni

(aij ỹj(l, k)− |aij |ỹi(l, k))

+ bi(siy0(l, k)− ỹi(l, k)) (6)

where the valve of bi is dependent on the connected relation-
ship between the virtual leader and the agent i, that is, if the
agent i is directly connected with the virtual leader, bi = 1;
otherwise, bi = 0. Here, ỹi(l, k)=ŷi(l, k) − gi (l, k), where
ŷi(l, k) is the estimation of yi(l, k). Moreover, let ẽi(l, k) =
siy0(l, k) − ỹi(l, k) denotes the bipartite formation tracking
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estimation error, and ei(l, k) = siy0(l, k)− yi(l, k) + gi(l, k)
denotes the bipartite formation tracking error.

Remark 2: This article aims to design an appropriate dis-
tributed event-triggered control scheme such that ei(l, k) of
each agent can converge to a small constant when l→∞.

III. MAIN RESULTS

Sensor i

Actuator i ZOH i

Controller i

Storer i

Event
Detector i

Dead-zone
Operator i N

ei
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Bipartite Formation 
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Fig. 1. Diagram of agent i with the proposed ET-DMFAILBFC scheme.

Figure 1 shows a diagram of the unknown dynamics MASs
employing the proposed ET-DMFAILBFC scheme, where sen-
sor i, event generator i, which consists of event detector i and
dead-zone operator i, and store i are time-driven; bipartite
formation protocol i and zero-order-hold (ZOH) i are event-
driven. Hence, the output of the agent i is transmitted into the
event generator i, but store i, PPDs updater i, and controller
i cannot receive it anytime except that the difference between
the output of agent i and the value of store i violates the
event condition. Otherwise, the value of ZOH i will not
be updated, that is, actuator i will continually perform the
previous command.

The next several subsections will discuss how to realize
the ET-DMFAILBFC scheme and rigorously analyze the con-
vergence and stability of the ET-DMFAILBFC scheme for
unknown dynamics MASs to perform event-triggered bipartite
formation tracking tasks.

A. Event-triggered estimation of PPD

In the ET-DMFAILBFC scheme, the I/O data is only
transmitted when the pre-defined specific tolerable boundary is
exceeded. Hence, the update-law of PPD is formulated based
on the event-triggering mechanism.

Let Γ̂i (l − 1, k) denote the estimation of Γi (l − 1, k),
which can be optimized with the following objective function.

J
(

Γ̂i (l, k)
)

=
∣∣∣∆yi (l − 1, k + 1)− Γ̂i (l, k) ∆ui (l − 1, k)

∣∣∣2
+δ
∣∣∣(Γ̂i (l, k)− Γ̂i (l − 1, k)

)∣∣∣2
where δ > 0 is a weighted factor. Letting
∂J
(

Γ̂i (l, k)
)
/∂Γ̂i (l, k) = 0, we have

Γ̂i (l, k) =
∆ui (l − 1, k)

δ + |∆ui (l − 1, k)|2
(∆yi (l − 1, k + 1)

−Γ̂i(l − 1, k)∆ui(l − 1, k)) + Γ̂i (l − 1, k)

(7)

Then, according to (7), an event-triggered estimation
scheme of PPD is designed as

Γ̂i (l, k) = Q (l − 1, k)
ρ∆ui(l − 1, k)

2

δ + |∆ui (l − 1, k)|2
(Γi (l − 1, k)

−Γ̂i (l − 1, k)
)

+Γ̂i (l − 1, k) (8)

where 0 < ρ < 1 is a penalty factor, which is added to improve
the flexibility of law (8), and Q (l − 1, k) is defined as

Q (l − 1, k) =

{
1, T riggered. k = ki or k − ki ≥ k̄
0, Nottriggered. ki−1 < k < ki

(9)

where ki denotes the ith triggered instant, and k̄ ∈ Z+ stands
for the upper bound of untriggered times. Then, to improve
the parameter estimation performance of law (8), the following
reset scheme is designed.

Γ̂i(l, k) = Γ̂i(1, k), if |Γ̂i(l, k)| ≤ c or |∆ui(l − 1, k)| ≤ c
or sign(Γ̂i(l, k)) 6= sign(Γ̂i(1, k)) (10)

where c is often set as 10−3 or 10−4.
Remark 3: The existing MFAILC approaches [23]–[25]

require information among agents to be transmitted in real-
time, which causes energy costs and computational burden.
It is noted that the designed event-triggered ILC method can
relieve the above issues.

Theorem 1: When Γi(l, k) satisfies Assumptions 3, Γ̂i(l, k)
is governed by laws (8)-(10), and the estimation error of
Γ̂i(l, k) is expressed by Γ̃i(l, k) = Γ̂i(l, k) − Γi(l, k), there
is a r̂, which is the bound of Γ̂i(l, k).

Proof: Case1:Q(l − 1, k)=1. According to law (8), we have

Γ̃i(l, k) = (1− ρ|∆ui(l − 1, k)|2

δ + |∆ui(l − 1, k)|2
)Γ̃i(l − 1, k)−∆Γi(l, k)

(11)

where ∆Γi(l, k) = Γi(l, k) − Γi(l − 1, k). According
to Assumption 2, we have |∆ui (l − 1, k)| 6= 0. More-
over, since 0 < ρ < 1, δ > 0, and the function(
ρ|∆ui (l − 1, k)|2

/(
δ + |∆ui (l − 1, k)|2

))
is monotoni-

cally increasing and bounded with respect to |∆ui (l − 1, k)|2,
we can obtain a upper bound q1 such that

0 <

∣∣∣∣1− ρ|∆ui(l − 1, k)|2

δ + |∆ui(l − 1, k)|2

∣∣∣∣ < q1 < 1 (12)

From Lemma 1, we have |Γi (l, k)| ≤ r. According to
Assumption 3, we have

|∆Γi (l, k)| ≤ |Γi (l, k)− Γi (l − 1, k)|
≤ |Γi (l, k)| ≤ r

(13)

Then, from (11), (12), and (13), we have

|Γ̃i(l, k)| ≤ q1
l−1|Γ̃i(1, k)|+ r(1− q1

l−1)

1− q1

(14)

Hence, the bound of Γ̃i (l, k) is lim
l→∞

|Γ̃i(l, k)| = r
1−q1 . Then,

for all k and l, the boundedness of Γ̂i (l, k) is also guaranteed
since Γi (l, k) is bounded.
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Case2: Q (l − 1, k) =0. In this case, (8) becomes Γ̂i (l, k) =
Γ̂i (l − 1, k). Then, according to (10), we have Γ̂i (l, k) =
Γ̂i (l − 1, k) = · · ·=Γ̂i (1, k). Thus, Γ̂i (l, k) is bounded.

Hence, there is a constant r̂, which is the upper bound of
Γ̂i(l, k). �

B. Distributed event-triggered mechanism

An output observer is designed as follows.

ŷi(l, k + 1) = ŷi(l − 1, k + 1) + Γ̂i(l, k)∆
^
ui(l, k)

+ χ
^
εei(l − 1, k + 1)

(15)

where ŷi(l, k + 1) represents the output of observer i at time
interval k. Moreover, χ represents the feedback gain, which is
discussed later. ∆

^
ui(l, k) and ^

εei(l− 1, k+ 1) are defined as

∆
^
ui (l, k) =∆ui (l, ki) , ki ≤ k <ki+1 (16)

^
εei(l − 1, k + 1) = ŷi(l − 1, k + 1)− ^

y i(l − 1, k + 1) (17)

where ^
y i(l − 1, k + 1) is designed as

^
y i(l − 1, k + 1)=yi(l − 1, ki), ki ≤ k + 1 <ki+1 (18)

From (16) and (18), we can find that ∆
^
ui (l, k) and ^

y i(l −
1, k+1) maintain the last event-triggered instant’s values until
the next event-triggered instant. Moreover, the event-triggered
incremental input error εi(l, k) is described by

εi(l, k)=∆ui (l, k)−∆
^
ui (l, k) (19)

Moreover, the observer-based output estimation error is de-
scribed as

εei(l, k + 1) = ŷi(l, k + 1)− yi(l, k + 1) (20)

Then, the event-triggered condition is defined as

η (|εi(l, k)|) >

√
u(1− 4(1 + χ)

2
)

4r̂2
|εei(l − 1, k + 1)|

or k − ki ≥ k̄
(21)

where k̄ ∈ Z+ and r̂ is the bound of Γ̂i(l, k). Moreover, u
and χ are constants that are discussed in Theorem 2, and η (•)
denotes the dead-zone operator, which is designed as

η (|εi(l, k)|) =

{
|εi(l, k)| , |εei(l − 1, k + 1)| > τ

0, otherwise
(22)

where τ is the bound of εei(l, k) and it will be discussed later.
Remark 4: It is noted that (22) starts to consider the

changing rate of control input ui(l, k), only when the output
estimation error |εei(l − 1, k + 1)| exceeds the threshold τ .
When the changing rate of control input exceeds the stability
condition (21), the control input ui(l, k) will start to be
updated. The second event-triggered condition k − ki ≥ k̄ is
introduced to check whether something wrong with the trigger.
Moreover, the dead-zone operator can effectively improve the
flexibility of the proposed method and further avoid Zeno-like
behavior as [43].

Theorem 2: When Equation (1) satisfies Assumptions 1-3,
Γi (l, k) is estimated by laws (8)-(10), and the event-triggering
condition is selected as (21), then εei(l, k) is bounded.

Proof: Substituting (2), (15), and (17) into (20) leads to the
following equation

εei(l, k + 1) = (1 + χ)εei(l − 1, k + 1) + χEi(l − 1, k + 1)

− εi(l, k)Γ̂i(l, k) + Γ̃i(l, k)∆ui(l, k) (23)

where Ei(l − 1, k + 1)=yi(l − 1, k + 1) − ^
y i(l − 1, k + 1).

Since ∆yi(l, k + 1) = Γi(l, k)∆ui(l, k), 0 < Γi(l, k) < r,
and |∆ui(l, k)| < a, ∆yi(l, k) is bounded. Hence, existing a
constant α can guarantee that Ei(l − 1, k + 1) < α.

Then, the boundedness of εei(l, k) is considered in two
cases. One is k=ki, and other is ki < k < ki+1.

Case1:k=ki. We have ∆
^
ui(l, k) − ∆ui(l, k)= 0, ^

y i(l −
1, k+ 1) = yi(l− 1, k+ 1), and Ei(l− 1, k+ 1) = 0. Hence,
(23) can be rewritten as below.

εei(l, k + 1) = (1 + χ)εei(l − 1, k + 1)

+ Γ̃i(l, k)∆ui(l, k)
(24)

Let’s define the following Lyapunov function

Vi(l, k) = ε2
ei(l, k) (25)

Substituting (24) into (25) gives

∆Vi(l, k + 1) ≤ ϕ− (1− 2(1 + χ)2)ε2
ei(l − 1, k + 1) (26)

where ϕ= 2
(

r
1−q1

)2

a2. Therefore, in this case, the stability
condition is

|εei(l − 1, k + 1)| >
√

ϕ

1− 2(1 + χ)
2 =τ (27)

Case2: ki < k < ki+1. From (19), (23), (25), and Lemma
1, we have

∆Vi(l, k + 1) ≤ θ − (1− u)(1− 4(1 + χ)2)ε2
ei(l − 1, k + 1)

(28)

where θ ≥ 4χ2α2 + 4r̂2a2, 0 <u< 1 and u(1 −
4(1 + χ)2)ε2

ei(l− 1, k+ 1) ≥ 4r̂2ε2
i (l, k). Then, the condition

of event-triggered control can be obtained as

|εi(l, k)| ≤

√
u(1− 4(1 + χ)

2
)

4r̂2
|εei(l − 1, k + 1)| (29)

According to (25) and (28), we obtain the following inequality.

Vi(l, k + 1) ≤ (1− (1− u)(1− 4(1 + χ)2))
l−1

Vi(1, k + 1)

+
θ(1− (1− (1− u)(1− 4(1 + χ)

2
))
l−1

)

1− (1− (1− u)(1− 4(1 + χ)
2
))

(30)

If 0 < 1− (1− u)(1− 4(1 + χ)2) < 1, we have

lim
l→∞

|Vi(l, k + 1)| = θ

1− (1− (1− u)(1− 4(1 + χ2)))

Thus, we have that −1.5 < χ < −0.5. It ensures the
boundedness of εei(l, k). �
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C. Distributed event-triggered bipartite formation

In this part, an event-triggered distributed data-driven itera-
tive learning bipartite formation control approach is developed.
The convergence of the bipartite formation tracking error is
analyzed. Firstly, the event-triggered distributed data-driven
controller is designed as below.

ui(l, k) = ui(l − 1, k) +Q(l − 1, k)
βΓ̂i(l, k)

λ+
∣∣∣Γ̂i(l, k)

∣∣∣2
× ξi(l − 1, k + 1)

(31)

where ξi(l− 1, k+ 1) is the local error, which is given in (6).
Q(l− 1, k) is an index operator defined in (9). Γ̂i(l, k) is the
estimation of Γi(l, k), and λ > 0 is stability factor. β is a
penalty factor, which will be discussed later.

For the next analysis, we introduce the following Lemma.
Lemma 3 ( [44]): For φ = 1, 2, ..., i with i ∈ Z+, M(φ)

is an iteration varying irreducible substochastic matrix with
positive diagonal entries. Then, we have

‖M(φ)M(φ− 1) · · ·M(1)‖ ≤ λ̄

where 0 < λ̄ < 1 and φ ≤ i.
The convergence proof of the designed ET-DMFAILBFC

scheme is given in Theorem 3.
Theorem 3: Considering Equation (1) restrained by Assump-

tions 1-3, the MASs’ topology restrained by Assumption 4,
the PPD estimated by (8)-(10), and employing the proposed
distributed event-triggered controller (31), where the event-
triggering condition satisfies (21) and the β is selected as

β <
1

maxi∈Sn
N∑
j=1

|aij |+ bi

there is a λmin with λ > λmin > r2

4 such that ei(l, k) is
bounded.
Proof: Since ẽi(l, k) = siy0(l, k)− ỹi(l, k), (6) becomes

ξi(l, k) =
∑
j∈Ni

(aij ẽi(l, k)− |aij | ẽj(l, k)) + biẽi(l, k) (32)

To facilitate the analysis, we define that

u (l, k) = [u1 (l, k) , u2 (l, k) , · · · , uN (l, k)]
T
,

ξ (l, k) = [ξ1 (l, k) , ξ2 (l, k) , · · · , ξN (l, k)]
T
,

ẽ (l, k) = [ẽ1 (l, k) , ẽ2 (l, k) , · · · , ẽN (l, k)]
T
,

εe (l, k) = [εe1 (l, k) , εe2 (l, k) , · · · , εeN (l, k)]
T
.

Using (32), we have

ξ (l − 1, k + 1) = (L+B) ẽ (l − 1, k + 1) (33)

We consider two cases: k=ki and ki < k < ki+1. When
ki < k < ki+1, the control input ui(l, k) of MASs will keep
the same value of ui(l, ki) such that the closed-loop control
of MASs will be broken, and the tracking errors will increase.
However, when the tracking error exceeds the triggering
condition, the closed-loop control of MASs is recovered. Thus,
we only need to discuss the convergence of MASs when k=ki.

Since ẽi(l−1, k+ 1) = siy0(l−1, k+ 1)− ỹi(l−1, k+ 1),
ỹi(l−1, k+1)=ŷi(l−1, k+1)−gi (l − 1, k + 1), and y0(l, k)
and gi (l, k) are constants for all l, we have

ẽi(l, k + 1) = ẽi(l − 1, k + 1)−∆ŷi(l, k + 1) (34)

where ∆ŷi(l, k + 1) = ŷi(l, k + 1) − ŷi(l − 1, k + 1). Then,
according to (2), (15), (16), (33), and (34), we have

ẽ(l, k + 1) = (I − βΩ(l, k)(L+B))ẽ(l − 1, k + 1)

− χεe(l − 1, k + 1)

= (I − βψ(l, k))ẽ(l − 1, k + 1)

− χεe(l − 1, k + 1)

(35)

where ψ(l, k) = Ω(l, k)(L + B), Ω(l, k) =

diag(ϑ1, ϑ2, · · · , ϑN ), and 0 < ϑi = Γi(l,k)Γ̂i(l,k)

λ+|Γ̂i(l,k)|2 <

Γi(l,k)

2
√
λ

< r
2
√
λ

< r
2
√
λmin

< 1. Furthermore, using β,
presented in Theorem 3, we have that I − βψ(l, k) is an
irreducible substochastic matrix [34]–[36]. From Equation
(35), we have

‖ẽ(l, k + 1)‖
≤ ‖I − βψ(l, k)‖ · · · ‖I − βψ(2, k)‖ ‖ẽ(1, k + 1)‖

+ w + ‖I − βψ(l, k)‖w + · · ·
+ ‖I − βψ(l, k)‖ · · · ‖I − βψ(3, k)‖w

(36)

where w > ‖χεe(l − 1, k + 1)‖ can be obtained, since χ and
εe(l−1, k+ 1) are bounded. Then, employing Lemma 3, (36)
becomes

‖ẽ(l, k + 1)‖ ≤ (λ̄b
l−2
φ c + λ̄b

l−3
φ c + · · ·+ λ̄b

0
φc)w

+ λ̄b
l−1
φ c ‖ẽ(l, k + 1)‖

Moreover, let O(l) = λ̄b
lφ
φ c + λ̄b

lφ+1
φ c + · · · + λ̄b

(l+1)φ−1
φ c.

Then, these can be obtained that O(l) = φλ̄l and

lim
l→∞

‖ẽ(l, k + 1)‖

= lim
l→∞

(O(l) +O(l − 1) + · · ·+O(0))w

= lim
l→∞

(φλ̄l + φλ̄l−1 + · · ·+ φ)w

=
φ

1− λ̄
w

(37)

Furthermore, since ẽi(l, k) = siy0(l, k) − ỹi(l, k) and
ei(l, k) = siy0(l, k)− yi(l, k) + gi(l, k), we have

ei(l, k) = ẽi(l, k) + εei(l, k) (38)

Hence, according to Theorem 2 and Equations (37) and (38),
we have ei(l, k) is bounded. The designed ET-DMFAILBFC
scheme can govern the MASs with a fixed topology to perform
time-varying trajectory bipartite formation tracking tasks. �

Remark 5: From Equations (21), (22), and (38), we can
adjust the bounded of the tracking error by changing parameter
χ and the dead-zone operator. Hence, the proposed algorithm
provides flexibility for the operator by adjusting parameter
χ and the dead-zone operator to adapt the requirement of
some industrial processes under suitable communication and
computation resources. The proposed algorithm will have
broader application scenarios.



JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XX XXXX 7

IV. EXTENSIVE TO TIME-VARYING TOPOLOGIES
Here, the time-varying switching topologies problem for

MASs to implement event-triggered bipartite formation tasks
is discussed. Moreover, all topologies of MASs are expressed
by Ḡp, p = 1, 2, ..., κ, and (6) becomes

ξi(l, k) =
∑
j∈Ni

(apij(k)ỹj(l, k)− |apij(k)|ỹi(l, k))

+ bpi (k)(spi (k)y0(l, k)− ỹi(l, k)) (39)

Theorem 4: Considering Equation (1) restrained by As-
sumptions 1-3, the communication graph Ḡp, p = 1, 2, ..., κ
restrained by Assumption 4, and employing laws (8)-(10) and
(31) with β satisfying

β <
1

maxi∈Sn,l=1,2,...,κ

∑
N
j=1

∣∣apij (k)
∣∣+ bpi (k)

(40)

there is a λmin > r2

4 and λ > λmin, guaranteeing the
boundedness of ẽi(l, k + 1).

Proof: According to (39), (35) becomes

ẽ(l, k + 1) = (I − βΩ(l, k)(L (k) +B (k)))

× ẽ(l − 1, k + 1)− χεe(l − 1, k + 1)
(41)

From (40), we can obtain that the product of β and the arbi-
trarily diagonal entries of L (k) +B (k) is less than 1. Hence,
I − βψ (l, k) (L (k) +B (k)) is an irreducible substochastic
matrix with positive diagonal entries. According to the analysis
process of Theorem 3, we can easily obtain that ẽi(l, k + 1)
is bounded.

Hence, the proposed ET-DMFAILBFC algorithm also can
govern the MASs with switching topologies to perform time-
varying trajectory bipartite formation tracking tasks. �

Remark 6: Most designed bipartite formation algorithms
require a precise mathematical model to analyze controlled
systems’ convergence in the literature. However, during the
proof processes of Theorems 3 and 4, we can see that the
requirement is not needed in the designed ET-DMFAILBFC
algorithm. On the other hand, the existing data-driven ILC
schemes [34]–[36] are effective for MASs, but they don’t
consider the resource-efficient issues, especially combining
ILC and event-triggered for MASs.

V. SIMULATION
A. Fixed Topology

0

4 5

2

3 6

1 7

V1 V2

Fig. 2. Communication topology among agents (example 1).

Here, MASs include seven agents. Figure 2 shows the
communication topology of the MASs, where the nonlinear
dynamics of each agent are considered as

y1(l, k + 1) =
y2

1(l, k − 1)u2
1(l, k − 1)

1 + y1(l, k − 1)y1(l, k − 2) + y2
1(l, k − 3)

+
(1 + (k/165)u1(l, k − 1))

1 + y1(l, k − 1)y1(l, k − 2) + y2
1(l, k − 3)

y2(l, k + 1) =
y2

2(l, k − 2)u4
2(l, k − 2)

1 + y2(l, k − 1)y2(l, k − 2) + y2
2(l, k − 3)

+
(1 + (k/165)u2(l, k − 1))

1 + y2(l, k − 1)y2(l, k − 2) + y2
2(l, k − 3)

y3(l, k + 1) =
y3

3(l, k − 3)u3(l, k − 3)

1 + 2y2
3(l, k − 3)

+
(1 + (k/165)u3

3(l, k − 1))

1 + 2y2
3(l, k − 3)

y4(l, k + 1) =
y3

4(l, k − 2)u4(l, k − 2)

1 + y2
4(l, k − 1) + y2

4(l, k − 2)

+
(1 + (k/165)u4(l, k − 1))

1 + y2
4(l, k − 1) + y2

4(l, k − 2)

y5(l, k + 1) =
y4

5(l, k − 2)u5(l, k − 2)

1 + 2y5(l, k − 1)y5(l, k − 2)

+
(1 + (k/165)u5(l, k − 1))

1 + 2y5(l, k − 1)y5(l, k − 2)

y6(l, k + 1) =
y4

6(l, k − 1)u6(l, k − 2)

1 + y2
6(l, k − 1) + y2

6(l, k − 2)

+
(1 + (k/165)u6(l, k − 1))

1 + y2
6(l, k − 1) + y2

6(l, k − 2)

y7(l, k + 1) =
y3

7(l, k − 1)u7(l, k − 2)

1 + 2y7(l, k − 1)y7(l, k − 2)

+
(1 + (k/150)u2

7(l, k − 1))

1 + 2y7(l, k − 1)y7(l, k − 2)

Remark 7: The dynamics of MASs are heterogeneous,
including affine and nonaffine structures. The proposed ET-
DMFAILBFC algorithm only uses the above dynamics to
generate the I/O data.

Figure 2 shows that the vertex 0 represents the virtual
leader. Agents 2, 4, and 5 consist of the alliance V1, and the
alliance V2 is combined with agents 1, 3, 6, and 7. Besides,
the collaborative interactions among agents are represented by
the solid black line, and the red line represents antagonistic
interactions. Moreover, only agents 3, 4, 5, and 6 can acquire
data from the virtual leader directly, and the data only flows
along the arrow direction, whereas the virtual leader can
intervene in the two antagonistic groups by applying the
proposed ET-DMFAILBFC scheme. According to the signed
graph theory, we obtain that the reciprocal of the greatest
diagonal entry of L+B of Fig. 2 is about 0.33. Hence, we set
β = 0.24, which meets the convergence condition of Theorem
3. Moreover, the output of the virtual leader is governed by

y0 (l, k) = 0.5 sin (kπ/30) + 0.3 cos (kπ/10) , 0 ≤ k ≤ 100
(42)

The desired formation of this test is designed as g1(l, k) =
0.15, g2(l, k) = −0.15, g3(l, k) = 0.25, g4(l, k) = −0.25,
g5(l, k) = −0.35, g6(l, k) = 0.35, and g7(l, k) = 0.45,
where gi(l, k) denotes the desired gap between agent i and
the virtual leader, i = 1, 2, 3, 4, 5, 6, 7. Initial conditions
are set as ui(0, k)=0, Γ̂i (0, k) = Γ̂i (1, k) = 2, and
yi (l, 0) = rand [−0.05, 0.05] with k = 1, 2, 3, 4. Other param-
eters are selected as δ = 0.5, ρ = 0.9, λ = 0.5, c = 10−4, and
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(a) Output of the 8th iteration
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(b) Output of the 355th iteration

Fig. 3. Output of the MASs with fixed topology (example 1).
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Fig. 4. Tracking errors of MASs with fixed topology (example 1).

τ = 10−3. The simulation results of tracking performances at
the 8th iteration and the 355th iteration are presented in Fig.
3. The max bipartite formation tracking errors of each agent
are plotted in Fig. 4.

Figures 3-4 show that the vertical intervals among agents
are not the same at the beginning iteration, but the differences
are reduced dramatically, and the bipartite formation tracking
is well achieved after the 200th iteration. Furthermore, Fig.
3.b shows that agents can maintain the desired tracking gap of
the counter-trajectory. Figure 5 shows that the event-triggered
times of each agent are recorded as 31, 34, 29, 27, 14, 27, 24
at l = 355. The average number of the event-triggered is about
26.57, so the designed ET-DMFAILBFC scheme can reduce
about 73.43% energy costs of communication and computation
for MASs with a fixed communication topology.

Moreover, to further illustrate the advantages of combining
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Fig. 5. Even-Triggered signal at the 355th (example 1).
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Fig. 6. Calulation numbers for difference scheme (example 1).

the event-triggered mechanism and iterative learning scheme
for the designed approach, we have done a contrast experi-
ment shown in Fig. 6, where we can see that the proposed
event-triggered iterative method requires fewer computational
resources than the iterative method without the event-triggered
mechanism.

Remark 8: As we know, the iterative learning method
obtains the experiences from past information to improve
control performance. If the MASs consist of considerable
agents, it is an enormous burden for the calculating unit,
which may cause jamming issues for the system operation.
According to the proposed event-triggered mechanism, the
proposed iterative algorithm will not update the control input
if the current tracking error is lower than the event-triggered
condition. Hence, it can successfully relieve the memory space
and computational burden of the controlled system.

B. Time-varying Switching Topologies

Here, the bipartite formation tracking performance of the
MASs with time-varying switching topologies, which are
governed by the proposed ETDMFAILBFC algorithm, is pre-
sented. All of the parameters are selected the same as in
Section V.A, but the communication topologies are changed,
which are presented in Fig.7. Moreover, the change law of the
topologies is given as the following piecewise function. Ḡ1, 0 ≤ k ≤ 30

Ḡ2, 30 < k ≤ 60
Ḡ3, 60 < k ≤ 100
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Fig. 7. Time-varying topologies of MASs (example 2).
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Fig. 8. Output of the MASs with switching topologies (example 2).
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Fig. 9. Tracking errors of each agent (example 2).

From Fig. 8, we see that MASs have a similar performance
to the fixed topology results in Fig.3. Also, compared with
Fig.4, the bipartite formation tracking errors shown in Fig.9
have a similar convergence property. For example, both of
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Fig. 10. Even-Triggered signal at the 355th (example 2).

them converge to a small range around the origin after 245th
iterations. The changes of the communication topologies can
be seen in Fig. 8.b, where agent 4 betrays its alliance at
k = 30 and k = 60, repetitively. Nevertheless, it is noteworthy
that formation tracking performance and event-triggered times
only have small differences. The event-triggered times of seven
agents are about 44, 37, 39, 32, 43, 30, 34, and the average
number of the event-triggered is about 37, shown in Fig. 10.
Furthermore, the bipartite formation tracking errors of MASs
with switching topologies are presented in Fig. 9, which shows
the bipartite formation tracking errors rapidly converge to
a small range around zero. Generally, it further verifies the
correctness and effectiveness of the designed ET-DMFAILBFC
approach.

C. Realistic Direct-current Motors

To verify the proposed ET-DMFAILBFC approach’s appli-
cability, we employ seven direct-current motors to implement
event-triggered bipartite formation tracking tasks. It is noted
that the dynamics of the direct-current motor is identified and
investigated in [20], [22], and [34]. The mathematical model
is described below.

ẋ (t) =
u(t)−ff (t)−fr(t)

m
ff (t) =fvẋ (t)sign (ẋ (t))

+

fc + (fs − fc) e
−
(
ẋ (t)/ẋδ

)δ sign (ẋ (t))

fr (t) =o1 sin (w0x (t))
y (t) = ẋ (t)

(43)

where sign (•) is the sign function. During the simula-
tion tests, we set m = 0.59kg, ẋδ=0.1, δ=1, fc=10N ,
fs=20N , fv=10N · s · m−1, o1=8.5N , and w0=314s−1.
Furthermore, the objective velocity of the virtual leader is
governed the same as in Section V.A. Here, we design the
comparative experiments to verify the anti-jamming capability
of the designed ET-DMFAILBFC algorithm. One is output
measurement without any noise. Another one considers the
output with random measurement noise, which is bounded and
belongs to [−0.01, 0.01] for each direct-current motor. Here,
all parameters and communication topologies are set the same
as in Section V.A.
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Fig. 11. Tracking errors of each agent without noises (example 3).
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Fig. 12. Tracking errors of each agent with noises (example 4).

From Figs. 11 and 12, we can see both of the situations that
the bipartite formation tracking errors dramatically converge
to a small range around zero. Moreover, the event-triggered
times of seven direct-current motors are shown in Table I.

TABLE I
TRIGGERED NUMBER IN DIFFERENT EXAMPLES

Examples
Triggered Times of All Agents

Average
1 2 3 4 5 6 7

1 31 34 29 27 14 27 24 26.57

2 44 37 39 32 43 30 34 37

3 29 24 47 41 30 34 33 34

4 85 78 80 88 87 83 81 83.14

It is noted that random noise is directly added to each
direct-current motors’ output, directly affecting the bipartite
formation tracking errors and causing the event-triggered
times to increase. Fortunately, the designed method has good
robustness, where random noises do not destroy the stability
of MASs. Our future work will focus on reducing the effect
of external disturbance.

Remark 9: Generally, most machines are controlled by
direct-current motors, especially for the SISO systems. There-
fore, conducting the simulation on the MASs with several
direct-current motors is meaningful work.

Remark 10: From the tests, parameters β, λ, and τ affect
the convergence of the proposed method. If the value of β is
increased without exceeding the requirement of Equation (36),
the convergence rate will be increased. Generally, λ ∈ [1, 100]
and τ < 10−3. If the control performance is poor, increasing
λ and reducing τ are always useful.

VI. CONCLUSION

In this work, an ET-DMFAILBFC algorithm has been for-
mulated for unknown nonaffine nonlinear discrete-time MASs
with fixed and time-varying switching topologies. Moreover,
an observer-based event-triggering mechanism with a dead-
zone operation has been proposed, where both the collabora-
tive and antagonistic interactions among agents are considered.
Generally, this scheme is only dependent on each agent’s I/O
data and guarantees that all agents can track the desired trajec-
tory with an expected pattern. The convergence of the designed
approach has been proved by rigorous mathematical analysis.
The corresponding simulations of the designed approach have
shown that bipartite formation tracking errors converge to a
small range around the origin. Compared with the existing
data-driven control algorithms, the proposed algorithm doesn’t
need the full I/O data of each agent, which significantly
reduces communication and computing consumptions. Our
future work will consider the bipartite formation problems for
MASs with disturbance and data dropout.
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