
JOURNAL OF LATEX CLASS FILES, VOL. , NO. , 1

Dynamic Probabilistic Pruning: A general
framework for hardware-constrained pruning at

different granularities
Lizeth Gonzalez-Carabarin, Iris A.M. Huijben, Bastiaan S. Veeling, Alexandre Schmid and Ruud J.G. van Sloun

Abstract—Unstructured neural network pruning algorithms
have achieved impressive compression rates. However, the re-
sulting - typically irregular - sparse matrices hamper efficient
hardware implementations, leading to additional memory usage
and complex control logic that diminishes the benefits of un-
structured pruning. This has spurred structured coarse-grained
pruning solutions that prune entire filters or even layers, enabling
efficient implementation at the expense of reduced flexibility. Here
we propose a flexible new pruning mechanism that facilitates
pruning at different granularities (weights, kernels, filters/feature
maps), while retaining efficient memory-organization (e.g. prun-
ing exactly k-out-of-n weights for every output neuron, or
pruning exactly k-out-of-n kernels for every feature map). We
refer to this algorithm as Dynamic Probabilistic Pruning (DPP).
DPP leverages the Gumbel-softmax relaxation for differentiable
k-out-of-n sampling, facilitating end-to-end optimization. We
show that DPP achieves competitive compression rates and clas-
sification accuracy when pruning common deep learning models
trained on different benchmark datasets for image classification.
Relevantly, the non-magnitude-based nature of DPP allows for
joint optimization of pruning and weight quantization in order
to even further compress the network, which we show as well.
Finally, we propose novel information theoretic metrics that show
the confidence and pruning diversity of pruning masks within a
layer.

Index Terms—IEEE, IEEEtran, journal, LATEX, paper, tem-
plate.

I. INTRODUCTION

THE evident success of Deep Learning (DL) models is
accompanied by a steadfast growth in the number of

hyperparameters and computational cost. This has become a
bottleneck for hardware deployment, which is constrained to
certain computational and memory budgets. For instance, the
VGG-16 architecture occupies more than 500 MB of storage
and performs 1.6 x 1010 floating-point arithmetic operations
[1], [2]. In contrast, field-programmable gate array (FPGA)-
based platforms are constrained to a few thousands computing
operations, making them unsuitable for deployment of large
DL models.

To shrink such big models, different solutions have been
proposed such as quantization [3] (and in the extreme case
binarization [4]), knowledge distillation, [5], weight sharing
[6], and model pruning.

Pruning has gained notable attention since pruned model
performance was found to yield on par performance compared
with non-pruned counterparts. Remarkably, pruning has been
shown to prevent overfitting as well [7], [8]. Pruning algorithms
can result in either structured or unstructured pruning strategies.

(a)

(b)

Fig. 1: Illustration of memory sparse formats of custom hard-
ware for (a) unstructured fine-grained and (b) structured fine-
grained pruning. DPP learns sparse patterns that follow a regular
structure, facilitating memory organization by preventing zero-
padding, and therewith allowing efficient bandwidth usage.

Structured pruning methods remove model parts at the level of
e.g. layer, channels, or individual filters [9]. We refer to this
kind of pruning as structured coarse-grained pruning. Unstruc-
tured pruning, on the other hand, prunes individual weights (i.e.
it sets a fraction of weights to zero). We refer to this type of
pruning as unstructured fine-grained pruning. Unstructured
fine-grained pruning has achieved impressive compression
rates, nevertheless implementing fine-grained sparse matrices
in dedicated hardware is a challenging task due to the typically
irregular distribution of non-zero values. Usually, to avoid
storage of a large number of zeros, non-zero values are stored
in specific formats [10]. Several other works have proposed
more sophisticated compressing coding techniques for sparse
weights targeting hardware implementations [11], [12], [13].
For instance, COO format stores the indexes of columns and
rows of non-zero values, and the ELLPACK format stores only
the column indexes but a zero padding is required, wasting
a large amount of memory and leading to poor bandwidth
usage (see Fig.1a). Besides, additional control logic is required
to compute operations (e.g matrix multiplication) with such
formats, increasing the complexity and power consumption for

ar
X

iv
:2

10
5.

12
68

6v
1 

 [
cs

.L
G

] 
 2

6 
M

ay
 2

02
1



JOURNAL OF LATEX CLASS FILES, VOL. , NO. , 2

embedded applications [14], [15], [16]. Therefore, we propose
a framework that naturally generates structured sparsity for
several levels of granularity, by fixing the number of active
elements within a candidate set (comprising e.g. weights,
kernels, filters) to K.

Fig.1b illustrates the benefits of our approach for unstruc-
tured fine-grained vs structured fine-grained pruning (our
approach). The additional degree of freedom on selecting the
granularity level allows to chose the best pattern depending
on the network’s architecture and/or application. In addition,
the framework is capable of integrating both pruning and
quantization, to benefit from both techniques. The proposed
method exploits the notion of Deep Probabilistic Subsampling
(DPS) [17] to dynamically generate stochastic pruning masks
during training, which are independent of the magnitude of
the weights, allowing for direct applications to quantize and
even binarize weights in one run without the need of post-
training finetuning. The main contributions of this work are
the following:

• We propose Deep Probabilistic Pruning (DPP), which
learns to generate hardware-oriented sparse structures
for different levels of granularity: fine-grained (weights),
medium-grained (kernels) and coarse-grained (filters),
facilitating memory allocation and access for hardware
implementations. We adopt a layer-wise sparsity level that
can be selected by the user, which is beneficial in case
of hardware constraints that dictate a maximum memory
usage and specific patterns.

• Thanks to the fact that DPP is not a magnitude-based
pruning algorithm, it allows for joint optimization of
pruning masks and quantization (and even binarization) of
network parameters, producing ultra-compressed models
with low-memory and low-complexity, suitable for further
dedicated hardware.

• Leveraging the probabilistic nature of DPP, we propose
novel information-theoretic metrics that capture the confi-
dence and diversity of the pruning masks leveraged within
a network layer. We show how these metrics differ during
training and between fully-connected and convolutional
layers.

II. RELATED WORK

In this section we will give an overview on different pruning
strategies. Network pruning approaches can be coarsely divided
into single- and multi-stage strategies, strategies that prune
at different granularities, i.e. fine-grained (weights), medium-
grained (kernels), and coarse-grained (filters), and approaches
that do or do not result in hardware-friendly pruned models.

Hardware-friendly pruning is achieved when structure is
present in the pruning pattern, since an unstructured selection
results in memory storage using matrices that need (memory-
inefficient) zero-filling. When pruning entire filters (or even
layers), such structure is present, and therefore, conventionally,
the term coarse-grained pruning is often used analogously with
the term structured pruning. Similarly, fine-grained pruning
is often referred to as unstructured pruning. Following the
terminology introduced by [18], we slightly redefine terms and

use structured pruning for methods that result in hardware-
friendly pruned models at any granularity.

Our approach generalizes advantages of different methods
into one general framework that - opposed to other approaches
- facilitates single-stage, hardware-friendly pruning at any
granularity; fine-, medium- and coarse-grained. Additionally,
it allows for joint optimization of pruning and quantization
(and even binarization).

A. Unstructured fine-grained pruning
The early work of [19] proposed a three-stage pipeline for

unstructured fine-grained pruning, which was later extended to
deep compression [6]. These works were followed by single-
stage pruning approaches, that jointly/dynamically optimize
both the model parameters and pruning process. The authors of
[20], [21] e.g. prune weights based on the gradual increment
of sparsity during training, and a magnitude-based pruning
framework in which a minimal sparsity value is set, is proposed
at [22] propose.

Further the work of [23] proposes Dynamic Sparse Reparam-
eterization (DSR) based on an adaptive threshold for pruning
and an automatic reallocation of pruning parameters across
layers. The authors of [24] propose to select the weights with
highest momentum, which significantly improved accuracy. All
these works yield unstructured fine-grained pruning matrices,
which lead to inefficiencies in terms of memory access and
allocation in current hardware platforms [25], [26].

B. Structured coarse-grained pruning
To prevent unstructured pruning masks, previous work has

explored pruning at the architectural level (rather than the
weight level) such as pruning filters or layers. In fact, it
has been experimentally shown that rather than eliminating
weight connections, pruning at the architectural level may offer
more benefits to reduce memory, while retaining state-of-the-
art accuracy [9]. Most works adopt a multi-stage approach,
where pruning and model training happens disjointly [27],
[28], [29], [30], [31], [32]. Such multi-stage methods typically
suffer from performance drops after pruning, requiring fine-
tuning steps. The magnitudes of the weights are often used as
indicator whether or not to prune an entire structure, [28] e.g.
prunes filters based on the sum of the absolute magnitudes of
the corresponding weights, and [33] proposed the Structured
Sparsity Learning (SSL) method to prune filters, channels,
and depth structures. Different from the magnitude-based
approaches, [34] rely on the output of activation layers and
calculate an average percentage of zeros as a weighting for the
filter relevance. The authors of [35], [36] leverage, opposed to
the other methods, a single-stage approach. The work of [36]
most resembles our generalized framework, when applied on
the coarse level. However, we are guaranteed to exactly select
k-out-of-n filters, while this number k is only approximated
using a proxy for the `0 penalty during training in the work
of [36]. To conclude, all methods reviewed in this paragraph
prune at coarse-grained level (layers or filters), and have not
been transferred to prune models at fine-grained levels (i.e.
weights), making them more restricted than our generalized
framework that is suitable for pruning any of the granularities.



JOURNAL OF LATEX CLASS FILES, VOL. , NO. , 3

C. Structured fine-grained pruning

To the best of our knowledge only few works have addressed
the issue of structured pruning of fine-grained elements
(weights). The authors of [37] introduce convolutional sparse
patterns for hardware-oriented pruning, however this approach
limits the possible pruning patterns to only a few options,
reducing its flexibility. The work of [38] also introduces a
hardware-friendly sparse approach for kernel pruning, however
it requires several stages to achieve competitive results, which
contrasts with our single-stage approach. The authors of [39]
also proposed the generation of structured fine-grained pruning
by generating sparse patterns compatible with their GPU A100.
Their approach also considers a multi-stage approach, and it
is focused on fine-grained pruning, without exploring other
levels of granularity. Recently, [18] extended the work of [39]
to a single-stage approach, by jointly training the model to
generate structured fine-grained pruning from scratch. Their
method in its current form, however, is only applicable to
fine-grained pruning, since the pruning mask is directly created
from the magnitudes of the weights. Moreover, the authors
adopt the straight-through estimator (STE) to circumvent the
non-differentiable pruning procedure, while we adopt a more
principled gradient estimator, dedicated to differentiable subset
sampling [40].

D. Pruning and quantization

Works that optimize pruning and quantization offer ultra-
compressed models for higher memory savings for unstructured
pruning [41] [42], and structured pruning [43], [6], [42], [44],
[41], [45], [46], [43], [47]. Nevertheless, many of them require
several stages during training to achieve this integration; none
of these works has achieved joint optimization of quantization
and structured fine-grained pruning.

III. METHODOLOGY

A. Notation

We introduce a neural network with L layers, indexed with
i. Each layer is parameterised by a

matrix W (i) ∈ RN(i−1)×a×N(i)

, and a bias vector b(i) ∈
RN(i)

(which we ignore in the rest of the notations), where
N (i−1) and N (i) are the number of feature maps (or channels)
of layer i− 1 and i, respectively, and a (=

√
a×
√
a) denotes

the size of a 2D convolutional kernel.
The output of the ith layer can be defined as

x(i) = g
(i)
W (x(i−1)), where the functionality of g(i)W (), depends

on the layer being e.g. fully-connected or convolutional, and
linearly or non-linearly activated. Note that the fully-connected
layer is a special case of a convolutional layer with a = 1.

B. Dynamic masking based on probabilistic subsampling

We aim to jointly optimize the parameters of the model
while simultaneously learning to prune them. In this section
we explain how our framework, which we refer to as Dynamic
Probabilistic Pruning (DPP), achieves this joint learning.

For all layers g(i)W (), with i ∈ {1, . . . , L}, we introduce
a binary mask MΦ(i) ∈ {0, 1}, parameterised by Φ(i). By

Fig. 2: An illustration of deep probabilistic pruning (DPP) for
dynamically masking of weights W (i) with a binary mask
realization M̃Φ(i) . This mask is generated by sampling from
a categorical distribution with probabilities that are jointly
trained with the model weights W . The symbol ? indicates
element-wise multiplication.

means of element-wise multiplication it activates a subset of S
elements fromW (i). Generation of these masksMΦ(i) follows
the DPS-topK framework [17], on which we will elaborate
here.

The authors of [17] propose an end-to-end framework for
joint learning of a discrete sampling mask with a downstream
task model by introducing DPS; a parameterised generative
sampling model:

P (MΦ(i) |Φ(i)). (1)

Trainable parameters Φ(i) ∈ RN(i−1)×a×N(i)

denote unnor-
malized log-probabilities (logits). In order to generate a binary
sampling mask realization M̃Φ(i) from Φ(i), we select/sample
exactly K unique values over one axis of Φ(i). This implies
that pruning takes place over this same axis in W (i) (e.g.
pruning the N (i) channels of layer i, implies sampling over the
axis of length N (i)). As this pruning axis differs per case in
our experiment section, we denote it with p-axis (pruning axis)
for now. Each element in Φ(i) is thus the (unnormalized) log-
probability of activating the corresponding element in W (i).
Note that thanks to the fact that the binary mask M̃Φ(i) is
parameterised on Φ(i) rather than W (i), we can combine DPP
with quantization of the values in W (i), which we can jointly
learn as well.

Similarly as in [17], [48], we adopt Gumbel top-K sampling
[49], [50] to draw K unique elements from the elements in the
pruning axis. We denote this operation by topKp-axis(·), where
the subscript p-axis indicates that sampling is only performed
over the pruning axis. In order to create a binary sampling
mask of equivalent size as W(i), we transform the samples to
a K-hot vector, which contains K ones at the selected indices,
and zeros at the remaining/non-selected positions. Formally,
we define the binary mask realization M̃Φ(i) as:

M̃Φ(i) = Khotp-axis
{

topKp-axis(Φ
(i) + βE(i))

}
, (2)



JOURNAL OF LATEX CLASS FILES, VOL. , NO. , 4

where E ∈ RN(i−1)×a×N(i)

are i.i.d. Gumbel noise samples
from Gumbel(0, 1), scaled with a scalar 0 < β ≤ 1. Note that
the pruning axis relates to only one of the three axes of the
3-dimensional matrix M̃Φ(i) . Therefore, the total number of
active elements S in M̃Φ(i) does not equal K, but K times
the size of the two remaining axes.

If we would allow S ones to be distributed randomly within
M̃Φ(i) , it would result in unstructured pruning of the model
when applying this mask element-wise on W (i). However, by
demanding exactly K elements to be active over the pruning
axis, we enforce structure in the binary mask M̃Φ(i) . To define
structure at different granularities (e.g. pruning weights, kernels
or filters), we ‘tie’ together certain elements in Φ(i), such
that they all update equivalently during training. It effectively
reduces the number of trainable logits within Φ(i). As a result,
if for example all logits over the kernel axis with size

√
a×
√
a

are tied, a kernel will be either activated or deactivated as a
whole, rather than on weight level. Section III-C elaborates on
structured pruning at different granularities.

During backpropagation the Khotp-axis ◦ topKp-axis operation
must be relaxed as it is non-differentiable. The work of [48],
[17] proposes to adopt the Gumbel-softmax relaxation [51],
[52] for that. It relaxes the non-differentiable argmax operation
using a temperature (τ )-parameterised softmaxτ (·) function.
The authors of [50] showed that sampling K times without
replacement from the same distribution is equivalent to top-
K sampling, and [40] showed that iterative sampling without
replacement from its relaxed counterpart (using the softmax),
is a valid top-K relaxation. As such we can directly leverage
Gumbel-softmax sampling without replacement during back-
propagation in order to flow gradients to Φ(i) ∀i ∈ {1, . . . , L}.
Figure 2 and Algorithm 1 provide a schematic overview and
pseudocode, respectively, of the full training procedure.

C. DPP for pruning different levels of granularity

As explained in the previous section, DPP learns a binary
mask M̃Φ(i) that selects exactly S elements from W (i). By
connecting trainable log-probabilities in Φ(i) during training,
we enforce pruning at different granularaties. We define three
different pruning scenarios: a) Fine-grained pruning (DPP-F)
b) Medium-grained pruning (DPP-M) and c) Coarse-grained
pruning (DPP-C).

Figure 3 illustrates the three scenarios. DPP-F activates K out
of a kernel weights for each (2D) kernel within each (3D) filter.
DPP-M on the other hand activates K (out of N (i−1)) kernels
per N (i) feature maps of layer i. Finally, DPP-C activates K
entire filters per layer. Table I summarizes the three different
scenarios, and also indicates the number of values to be stored
in memory in case of hardware implementation of the pruned
model (e.g. on an FPGA). Additionally, for clarification we
indicate the effective number of trainable logits within Φ(i) as a
results of connecting logits over certain axes to enforce pruning
at different granularities. Taking DPP-M as an example; as we
prune K out of N (i−1) entire kernels, the weights axis (of
size a) has tied logits, as either all or none of the weights in a
kernel are activated by the binary mask. We can interpret the
resulting 2-dimensional logits matrix Φ(i) as containing the

Algorithm 1: Dynamic Probabilistic Pruning (DPP)
Input: Training dataset D, neural network with L layers, and

initialized trainable parameters {Φ}, W , b}, Number of
active elements K, Pruning axis p-axis, Gumbel noise
scaling β, temperature annealing settings
{τinit, τend} = {5.0, 0.5}, Loss scaling µ, number of epochs
niter.

Output: Model with trained parameters W and b, binary
mask realizations M̃Φ parameterised by Φ.
- Compute: ∆τ = τinit−τend

niter−1
for n = 1 to niter do

// Forward pass
- Draw random batch xn ∼ D
for i = 1 to L do

- Draw i.i.d. Gumbel noise samples: E(i)

- Sample binary mask:
M̃Φ(i) = Khotp-axis

{
topKp-axis(Φ

(i) + βE(i))
}

- Apply mask: W̃
(i)

= W (i)©∗ M̃Φ(i)

end for
- Compute output: x̂n = gL

W̃
◦ g1

W̃
(xn)

- Compute loss: LCE(x̂,x) + Le(Φ)
// Backward pass
- Set: τ = τinit − (i− 1) ·∆τ
- ∇ΦM̃Φ ∝ ∇ΦEE

[
softmaxp-axis{Φ+βE

τ }
]

- Update: {Φ,W , b} ∝ LCE(x̂,x) + µLe(Φ)
end for

log-probabilities of N (i) number of categorical distributions,
each containing N (i−1) classes. In order to generalize the three
scenarios, we define D as the number of such independent
categorical distributions, and C as the number of classes of
each of these distributions.

In the particular case of pruning connections within fully-
connected layers, DPP activates K (out of N (i−1)) input
neurons for each N (i) output neurons. Given the different
granularity definitions we proposed, this pruning situation fits
to DPP-M, with a = 1. However, as the weights of the input
neurons are the smallest possible entity to be pruned in fully-
connected layers, this case is in literature often referred to as
structured fine-grained pruning [18], [39]. In the rest of this
paper, we therefore use DPP-F when referring to the special
case of pruning connections in fully-connected layers.

D. Training details

Here we elaborate on training details of DPP. We jointly
train the model parameters {W , b} and the unnormalized logits
in Φ, by means of error back-propagation of the total loss
with respect to these parameters. The down-stream task model
loss is defined as the cross-entropy between the targets and
the predictions (denoted with LCE). Also, to encourage sparse
distributions in Φ, as proposed by [17] (eq. 8), we penalize
these unnormalized log-probabilities with an entropy penalty
Le, which we multiply by µ. During training, the unnormalized
log-probabilities Φ(i) (∀i ∈ L) are constantly being updated.
Also, the realization of the Gaussian noise matrix E(i) differs



JOURNAL OF LATEX CLASS FILES, VOL. , NO. , 5

TABLE I: DPP for structured pruning for different granularity levels, and their corresponding pruned axis. For the estimation of
the amount of stored values, the number of necessary indexes to point non-zero values plus the amount of non-zero elements
m is considered.

Granularity Pruning axis Effective nr of trainable D: nr of independent S: nr of active Stored values
level (K out of C) logits per layer i categorical distr. weights in W (i) per layer i

Fine Kernel weights N (i−1) × a×N (i) N (i−1) ×N (i) N (i−1) ×K ×N (i) 2S
(DPP-F) (K out of a)

Medium Kernels N (i−1) × 1 ×N (i) 1 ×N (i) K × a×N (i) S + KN (i)

(DPP-M) (K out of N (i−1))

Coarse Filters 1 × 1 ×N (i) 1 × 1 N (i−1) × a×K S

(DPP-C) (K out of N (i))

per element within a mini-batch and over training/epochs. As a
result, binary mask realizations vary during training and within
the mini-batches, allowing the model to efficiently explore
different pruned model instantiations. While in the original
Gumbel-max trick [49] the Gumbel noise is typically un-scaled
when sampling from the distribution, heuristically, we found
improved model performance when down-scaling the Gumbel
noise with a factor β. In the experiments where we combine
DPP with parameter quantization, we follow the quantization
procedure proposed by [53]. In all experiments we prune (and
in some cases quantize) only W , and not b, as the weights
in W contribute to the largest part of the parameters in the
model.

During inference, one binary mask M̃Φ(i) per layer is drawn
from the trained log-probabilities Φ(i), which is then used to
prune the model and compute the performance on the test set.

E. Information-theoretic metrics on sparsity confidence and
diversity

To get insight into the training dynamics of DPP, we are
interested in the change of confidence and diversity of the
pruning patterns as training progresses. The probabilistic nature
of DPP enables the use of the information theoretic measures,
entropy and mutual information, to evaluate this. We compute
these metrics per layer i due to the heterogeneity of the masks
between layers.

As defined in Section III-C, within each layer i, D (≥ 1)
number of independent categorical distributions, each with C
classes are being trained, from which we sample K out of
C elements (weights, kernels or filters) without replacement.
The average entropy of these D pruning distributions tells us
how confident the sparsity patterns on average are within this
layer; the lower this Average Pruning Entropy, the sparser
the distributions, and thus the more certain the model is about
the binary mask to be applied. Note, this metric can only be
computed for DPP-F and DPP-M, as DPP-C implies D = 1
(see Table I).

We can measure the average entropy from these D prun-
ing distributions in the ith-layer mask marginal probabilities
{π(i) ∈ RD×C : 0 ≤ π

(i)
d,c ≤ 1,

∑
c π

(i)
d,c = K}. No tractable

function exists to compute marginal probabilities π from the
unnormalized log-probabilities in Φ. Instead we can easily

take a Monte Carlo estimate by computing the average of T
realizations of MΦ(i) :

π(i) ≈ 1

T

T∑
t=1

M̃Φ(i) , M̃Φ(i) ∼ P (MΦ(i) |Φ(i)), (3)

which can effectively be estimated in parallel af-
ter every epoch for T = 100. It’s trivial to show
that the entropy of any Gumbel-top-K distributed vari-
able x can be computed using the typical Shannon en-
tropy H(x) = −

∑C
c=1 P (c ∈ x) logP (c ∈ x), and is upper

bounded by −K log(K/C). As such, we can compute the
Average Pruning Entropy for layer i:

H(MΦ(i) |d) =
1

D

D∑
d=1

[−
C∑
c=1

π
(i)
d,c logπ

(i)
d,c]. (4)

Furthermore, we can measure the diversity of the different
sparsity patterns (within layer i), that result from sampling from
the D independent categorical distributions. This diversity can
be measured as the mutual information between the different
masks in layer i.

This Pruning Diversity metric can be formalized as:

I(MΦ(i) , d) = H(MΦ(i))−H(MΦ(i) |d), (5)

where H(MΦ(i)) denotes the entropy of the average mask
in layer i:

H(MΦ(i)) = −
C∑
c=1

π̃(i)
c log π̃(i)

c , with

π̃(i) =
1

D

D∑
d=1

π
(i)
d ∈ R1×C . (6)

IV. EXPERIMENTS

We first assess DPP for pruning weights (FPP-F) on small
convolutional and fully-connected architectures (LeNet) for
the MNIST dataset. Additionally, we will demonstrate the
performance in LeNet architectures in combination with
quantized and binary weights based on [53]. Across these
experiments, we set a K value per layer, which determines
the exact number of non-pruned weights assigned to each
output neuron. In the case of convolutional layers, K is the



JOURNAL OF LATEX CLASS FILES, VOL. , NO. , 6

a. Fine-grained pruning (DPP-F): pruning weights

b. Medium-grained pruning (DPP-M): pruning kernels

c. Coarse-grained pruning (DPP-C): pruning filters

Fig. 3: Visualization for activating exactly K elements at three
different granularities (weights, kernels, filters). All adopted
values are illustrative. Black squares of masks denote selected
connections. We also show how the structure in our sparse
matrices enables efficient memory implementation for all three
cases.

number of non-pruned kernel weights per input feature map.
Second, we test DPP for structured medium- and coarse-grained
pruning (DPP-M and DPP-C) in medium-size convolutional
networks (VGG-16 and MobileNet v1). It is important to notice
that structured fine-grained pruning (DPP-F) is used for fully-
connected layers. For DPP-C, we use K as a selector of the
number of kernels or filters that must remain active in each
layer, while for DPP-M, K is the number of non-pruned kernels
per output feature map. Additionally, we integrate quantization
for medium-size datasets (VGG-16). We train all our models
from scratch, without using any pre-trained model. For the

results, non-pruned accuracy refers to the baseline accuracy
for non-pruned networks, while pruned accuracy refers to the
accuracy obtained after the network is pruned. ∆acc is obtained
after the network is pruned with the remaining parameters.
Since in some experiments, DPP is jointly integrated with
quantization [53], the bit representation is presented, as well
as the compression rate after pruning and quantization. For the
compression rate, we consider the additional required memory
to store the indexes of non-pruned values.

A. MNIST

We evaluate DPP first on MNIST benchmark dataset con-
sisting of a total of 70,000 grayscale images of handwritten
digits having a size of 28 × 28 pixels. We use 60,000 images
for training and 10,000 images for testing. We evaluate the
performance on 2 architectures. First, we use LeNet 300-100
[54], which consists of two fully-connected layers of 300 and
100 units, respectively. For this experiment, we use structured
fine-grained pruning or DPP-F. Second, we use LeNet-5 Caffe,
which consists on two convolutional layers (20 and 50 filters
respectively) followed by one fully-connected layer and a
classification layer [54]. Both, the convolutional and fully-
connected layer are pruned with DPP-F. We compare DPP-F
with one of the latest fine-grained pruning algorithms [55] and
show results in Table II.

Training details. For training both networks we use Adam
optimizer with a learning rate of 0.001, µ is set to 0.005, while
β is set to 1 . We used a batch size of 128, and all weights
are initialized with Xavier uniform initialization

B. CIFAR-10 and CIFAR-100

We evaluate DPP-C and DPP-M on VGG-16 [58] and
MobileNet v1 for both CIFAR-10 and CIFAR-100. For VGG-
16 trained on CIFAR-10, we evaluate DPP-M with PENNI-D.
PENNI-D was recently proposed by [38], and similarly provides
a method for kernel pruning. Notice that [38] provides a four-
stage pruning pipeline, therefore we based our comparison
with PENNI-D (without the additional shrinkage stage). DPP-
C is compared with the recent filter pruning algorithm of [56]
for both cases, CIFAR-10 and CIFAR-100. Finally, DPP-C is
compared with [57] that performs filter pruning. Relevantly,
for all fully-connected layers, DPP-F is applied, therefore the
networks are completely pruned in all stages (convolutional
and fully-connected layers), in comparison with most of
conventional structured pruning approaches. Results are shown
in Table II.

Training details. Training details for CIFAR-10 and CIFAR-
100 include a learning rate schedule, which halves the learning
rate every 40 epochs. µ is set to 0.005, while β is set to 0.1 SGD
optimizer is used with momentum=0.9. Data augmentation is
used for these experiments. All weights are initialized using
He normal initialization

C. ImageNet

We test DPP-C on ResNet18 trained on the ImageNet dataset
[59]. We train the model with an initial learning rate of 0.1,



JOURNAL OF LATEX CLASS FILES, VOL. , NO. , 7

TABLE II: Experimental results of DPP for MNIST dataset using LeNet architectures

Network Model Non-pruned Pruned ∆acc Remain. (%) Bits Compression
acc. (%) acc. (%) params. rate

[55] 98.16 98.03 -0.13 2.48 32 13,44x
DPP-F (This work) 98.19 97.90 -0.29 1.95 32 25.64x

LeNet300-100 DPP-F (This work) 98.19 97.82 -0.37 6.71 8 29.80x
DPP-F (This work) 98.19 96.81 -1.38 21 2 38.09x

[55] 99.18 99.11 -0.07 1.64 32 20.32x
DPP-F (This work) 99.23 99.23 0.0 2.5 32 20x

LeNet5-Caffe DPP-F (This work) 99.23 99.00 -0.23 4.1 8 48.78x
DPP-F (This work) 99.23 98.36 -0.87 4.1 2 195.12x

TABLE III: Experimental results of DPP for CIFAR-10 and CIFAR-100 datasets using VGG-16 and MobileNet v1 architectures

Dataset Network Model Non-pruned Pruned ∆acc Remain. (%) Bits Comp.
acc.(%) acc. (%) params. rate

CIFAR-10
VGG-16 [38] 93.49 93.14 -0.35 55.56 32 1.80x

DPP-M (This work) 93.50 93.60 +0.10 10.73 32 9.32x
DPP-M (This work) 93.50 93.52 +0.02 15.3 8 26.14x
[56] 93.25 93.18 -0.07 26.66 32 3.75x
DPP-C (This work) 93.50 93.52 +0.02 19.49 32 5.13x
DPP-C (This work) 93.50 93.10 -0.4 15.61 8 25.62x

MobileNet v1 [57] 92.3 91.77 -0.53 25 32 4x
DPP-C (This work) 93.6 93.14 -0.46 36,95 32 2.70x

CIFAR-100
VGG-16 [56] 73.26 73.33 +0.07 68 32 1.47x

DPP-C (This work) 70.32 70.40 +0.08 18.8 32 5.31x

MobileNet v1 [57] 69.1 68.52 -0.58 35 32 2.85x
DPP-C (This work) 72.35 72.50 -0.15 40 32 2.50x

which we decreased by a factor of 10 after 30 epochs. We use
the SGD optimizer with a momentum of 0.9. After training for
35 epochs, the top-1 test accuracy with 48.24% of the filters
dynamically pruned is 62.3%, which is only 0.2% lower than
its non-pruned counterpart.

D. Analysis of sparsity belief over time

To analyze the pruning behavior during training, we vi-
sualize the proposed metrics from Section III-E in Fig. 4,
where we normalized by the upper bound of the entropy
to facilitate straightforward comparison between layers. Re-
call that a low Average Pruning EntropyH(MΦ(i) |d) de-
notes a high confidence in pruning masks, whereas a high
Pruning DiversityI(MΦ(i) , d) indicates high mask diver-
sity/specialization.

We find interesting dynamics in Fig. 4a,b (VGG16 - CI-
FAR10), where convolutional layers seem to more quickly
learn a diverse set of sparse patterns (I(MΦ(i) , d) grows faster)
with high confidence (H(MΦ(i) |d) drops quicker) than fully-
connected layers.

Figure 4c shows the aforementioned metrics for the first two
layers of LeNet300-100. Both layers show similar behavior;
a quick improvement both in confidence (H(MΦ(i) |d)) and
diversity (I(MΦ(i) , d)) at the start of training, after which
both metrics stabilize.

(a) (b)

(c)

Fig. 4: H(MΦ(i) |d) and I(MΦ(i) , d) for VGG16 (CIFAR10)
are shown in (a) and (b) respectively. The plots correspond
to 5th, 8th, and 11th convolutional layers, and the 1st fully-
connected layer (FC). H(MΦ(i) |d) and I(MΦ(i) , d) for the
first two fully-connected layers of LeNet300-100 are shown in
(c).



JOURNAL OF LATEX CLASS FILES, VOL. , NO. , 8

V. CONCLUSION

In this paper, we propose dynamic probabilistic pruning
(DPP), an algorithm that enables training sparse networks
based on stochastic and dynamic masking. DPP is a general
framework that enables structured pruning for fully-connected
and convolutional layers, suitable for hardware implementations.
We demonstrated that DPP enables a larger hardware memory
saving by leveraging structured pruning at different levels
of granularities (fine, medium and coarse). Leveraging its
probabilistic nature, we showed how one can assess the
confidence and diversity of pruning masks among neurons
by monitoring proposed information-theoretic metrics.

Since DPP does not rely on magnitudes for determining the
relevance of weights, it can be straightforwardly integrated
with weight quantization (including binarization). This allows
for a larger model compression as it is observed in the results.
We test its performance for three benchmark datasets and
obtain competitive accuracies for different architectures. In
conclusion, our method generates ultra-compressed models,
allowing the integration of quantization (and even binarization)
and pruning, while providing a level of structured sparsity,
enabling a more efficient implementation on existing hardware
platforms. Further, the potential of DPP should be explored
to generate even more efficient sparsity patterns for hardware
such as tiling at different levels of granularities.

REFERENCES

[1] Y. Cheng, D. Wang, P. Zhou, and T. Zhang, “A Survey of Model Com-
pression and Acceleration for Deep Neural Networks,” arXiv:1710.09282
[cs], Sept. 2019.

[2] V. Sze, Y.-H. Chen, J. Emer, A. Suleiman, and Z. Zhang, “Hardware for
Machine Learning: Challenges and Opportunities,” 2017 IEEE Custom
Integrated Circuits Conference (CICC), Apr. 2017.

[3] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Quantized neural networks: Training neural networks with low precision
weights and activations,” Journal of Machine Learning Research, vol. 18,
09 2016.

[4] M. Courbariaux and Y. Bengio, “Binarynet: Training deep neural
networks with weights and activations constrained to +1 or -1,” CoRR,
vol. abs/1602.02830, 2016.

[5] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a
neural network,” in NIPS Deep Learning and Representation Learning
Workshop, 2015.

[6] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep
neural networks with pruning, trained quantization and huffman coding,”
2016.

[7] Y. LeCun, J. S. Denker, and S. A. Solla, “Optimal brain damage,” in
Advances in Neural Information Processing Systems 2 (D. S. Touretzky,
ed.), pp. 598–605, Morgan-Kaufmann, 1990.

[8] S. J. Hanson and L. Y. Pratt, “1811.01907ring biases for minimal network
construction with back-propagation,” in Advances in Neural Information
Processing Systems 1 (D. S. Touretzky, ed.), pp. 177–185, Morgan-
Kaufmann, 1989.

[9] Z. Liu, M. Sun, T. Zhou, G. Huang, and T. Darrell, “Rethinking the
value of network pruning,” in International Conference on Learning
Representations, 2019.

[10] R. Dorrance, F. Ren, and D. Marković, “A scalable sparse matrix-
vector multiplication kernel for energy-efficient sparse-blas on fpgas,”
in Proceedings of the 2014 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, FPGA ’14, (New York, NY, USA),
p. 161–170, Association for Computing Machinery, 2014.

[11] J. Fowers, K. Ovtcharov, K. Strauss, E. S. Chung, and G. Stitt, “A
high memory bandwidth fpga accelerator for sparse matrix-vector
multiplication,” in 2014 IEEE 22nd Annual International Symposium on
Field-Programmable Custom Computing Machines, pp. 36–43, 2014.

[12] D. Fujiki, N. Chatterjee, D. Lee, and M. O’Connor, “Near-memory data
transformation for efficient sparse matrix multi-vector multiplication,”
SC ’19, (New York, NY, USA), Association for Computing Machinery,
2019.

[13] M. Kreutzer, G. Hager, G. Wellein, H. Fehske, A. Basermann, and
A. R. Bishop, “Sparse matrix-vector multiplication on gpgpu clusters: A
new storage format and a scalable implementation,” in 2012 IEEE 26th
International Parallel and Distributed Processing Symposium Workshops
PhD Forum, pp. 1696–1702, 2012.

[14] L. Lu, J. Xie, R. Huang, J. Zhang, W. Lin, and Y. Liang, “An
efficient hardware accelerator for sparse convolutional neural networks
on fpgas,” in 2019 IEEE 27th Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM), pp. 17–25, 2019.

[15] S. Dey, D. Chen, Z. Li, S. Kundu, K. Huang, K. M. Chugg, and
P. A. Beerel, “A highly parallel fpga implementation of sparse neural
network training,” in 2018 International Conference on ReConFigurable
Computing and FPGAs (ReConFig), pp. 1–4, 2018.

[16] Y. Niu, H. Zeng, A. Srivastava, K. Lakhotia, R. Kannan, Y. Wang, and
V. K. Prasanna, “Spec2: Spectral sparse cnn accelerator on fpgas,” 2019
IEEE 26th International Conference on High Performance Computing,
Data, and Analytics (HiPC), pp. 195–204, 2019.

[17] I. A. Huijben, B. S. Veeling, and R. J. van Sloun, “Deep probabilistic
subsampling for task-adaptive compressed sensing,” in International
Conference on Learning Representations, 2020.

[18] A. Zhou, Y. Ma, J. Zhu, J. Liu, Z. Zhang, K. Yuan, W. Sun, and H. Li,
“Learning n:m fine-grained structured sparse neural networks from scratch,”
in International Conference on Learning Representations, 2021.

[19] S. Han, J. Pool, J. Tran, and W. J. Dally, “Learning both weights and
connections for efficient neural networks,” CoRR, vol. abs/1506.02626,
2015.

[20] M. Zhu and S. Gupta, “To prune, or not to prune: exploring the efficacy
of pruning for model compression,” 2017.

[21] S. Narang, G. F. Diamos, S. Sengupta, and E. Elsen, “Exploring sparsity
in recurrent neural networks,” CoRR, vol. abs/1704.05119, 2017.

[22] G. Bellec, D. Kappel, W. Maass, and R. A. Legenstein, “Deep rewiring:
Training very sparse deep networks,” 2018.

[23] H. Mostafa and X. Wang, “Parameter efficient training of deep convolu-
tional neural networks by dynamic sparse reparameterization,” 2019.

[24] T. Dettmers and L. Zettlemoyer, “Sparse networks from scratch: Faster
training without losing performance,” 2019.

[25] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Optimizing
fpga-based accelerator design for deep convolutional neural networks,” in
Proceedings of the 2015 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, p. 161?170, Association for Computing
Machinery, 2015.

[26] J. Zhang and J. Li, “Improving the performance of opencl-based fpga
accelerator for convolutional neural network,” in Proceedings of the
2017 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, p. 25?34, Association for Computing Machinery, 2017.

[27] Y. He, X. Zhang, and J. Sun, “Channel pruning for accelerating very deep
neural networks,” in 2017 IEEE International Conference on Computer
Vision (ICCV), pp. 1398–1406, 2017.

[28] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, “Pruning
Filters for Efficient ConvNets,” arXiv:1608.08710 [cs], Mar. 2017.

[29] Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, and C. Zhang, “Learning
efficient convolutional networks through network slimming,” CoRR,
vol. abs/1708.06519, 2017.

[30] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, “Learning structured
sparsity in deep neural networks,” in Advances in Neural Information
Processing Systems 29 (D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon,
and R. Garnett, eds.), pp. 2074–2082, Curran Associates, Inc.

[31] J. Luo, J. Wu, and W. Lin, “Thinet: A filter level pruning method for
deep neural network compression,” CoRR, vol. abs/1707.06342, 2017.

[32] X. Dong and Y. Yang, “Network pruning via transformable architecture
search,” 2019.

[33] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, “Learning Structured
Sparsity in Deep Neural Networks,” arXiv:1608.03665 [cs, stat], Oct.
2016.

[34] H. Hu, R. Peng, Y. Tai, and C. Tang, “Network trimming: A data-driven
neuron pruning approach towards efficient deep architectures,” CoRR,
vol. abs/1607.03250, 2016.

[35] M. Kang and B. Han, “Operation-aware soft channel pruning using
differentiable masks,” 2020.

[36] Y. Wang, X. Zhang, X. Hu, B. Zhang, and H. Su, “Dynamic network
pruning with interpretable layerwise channel selection,” in AAAI, 2020.



JOURNAL OF LATEX CLASS FILES, VOL. , NO. , 9

[37] X. Ma, F. Guo, W. Niu, X. Lin, J. Tang, K. Ma, B. Ren, and Y. Wang,
“PCONV: the missing but desirable sparsity in DNN weight pruning
for real-time execution on mobile devices,” CoRR, vol. abs/1909.05073,
2019.

[38] S. Li, E. Hanson, H. Li, and Y. Chen, “Penni: Pruned kernel sharing for
efficient cnn inference,” 2020.

[39] Nvidia, “A100 tensor core gpu architecture,” tech. rep., 2020.
[40] S. Xie and S. Ermon, “Reparameterizable subset sampling via continuous

relaxations,” in International Joint Conference on Artificial Intelligence,
2019.

[41] S. Ye, T. Zhang, K. Zhang, J. Li, J. Xie, Y. Liang, S. Liu, X. Lin, and
Y. Wang, “A unified framework of DNN weight pruning and weight
clustering/quantization using ADMM,” CoRR, vol. abs/1811.01907, 2018.

[42] F. Tung and G. Mori, “Clip-q: Deep network compression learning by
in-parallel pruning-quantization,” pp. 7873–7882, 06 2018.

[43] L. Yang, Z. He, and D. Fan, “Harmonious coexistence of structured
weight pruning and ternarization for deep neural networks,” Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 6623–6630,
Apr. 2020.

[44] K. Wang, Z. Liu, Y. Lin, J. Lin, and S. Han, “HAQ: hardware-aware
automated quantization,” CoRR, vol. abs/1811.08886, 2018.

[45] T. Wang, K. Wang, H. Cai, J. Lin, Z. Liu, and S. Han, “Apq: Joint search
for network architecture, pruning and quantization policy,” 2020.

[46] H. Yang, S. Gui, Y. Zhu, and J. Liu, “Learning sparsity and quantization
jointly and automatically for neural network compression via constrained
optimization,” CoRR, vol. abs/1910.05897, 2019.

[47] Y. Zhao, X. Gao, D. Bates, R. Mullins, and C.-Z. Xu, “Focused
quantization for sparse CNNs,” in Advances in Neural Information
Processing Systems 32 (H. Wallach, H. Larochelle, A. Beygelzimer,
F. d. AlchÃ©-Buc, E. Fox, and R. Garnett, eds.), pp. 5584–5593, Curran
Associates, Inc.

[48] I. A. Huijben, B. S. Veeling, and R. J. van Sloun, “Learning sampling
and model-based signal recovery for compressed sensing mri,” in ICASSP
2020-2020 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pp. 8906–8910, IEEE, 2020.

[49] E. J. Gumbel, “Statistical theory of extreme values and some practical
applications,” NBS Applied Mathematics Series, vol. 33, 1954.

[50] W. Kool, H. Van Hoof, and M. Welling, “Stochastic beams and where
to find them: The gumbel-top-k trick for sampling sequences without
replacement,” arXiv preprint arXiv:1903.06059, 2019.

[51] E. Jang, S. Gu, and B. Poole, “Categorical Reparameterization with
Gumbel-Softmax,” 5th International Conference on Learning Represen-
tations, ICLR 2017 - Conference Track Proceedings, 11 2016.

[52] C. J. Maddison, A. Mnih, and Y. W. Teh, “The concrete distribution:
A continuous relaxation of discrete random variables,” in International
Conference on Machine Learning, 2017.

[53] M. Courbariaux, Y. Bengio, and J. David, “Binaryconnect: Training
deep neural networks with binary weights during propagations,” CoRR,
vol. abs/1511.00363, 2015.

[54] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
pp. 2278 – 2324, 12 1998.

[55] J. Liu, Z. Xu, R. Shi, R. C. C. Cheung, and H. K.-H. So, “Dynamic
sparse training: Find efficient sparse network from scratch with trainable
masked layers,” in ICLR, 2020.

[56] C. Zhao, B. Ni, J. Zhang, Q. Zhao, W. Zhang, and Q. Tian, “Variational
convolutional neural network pruning,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), June
2019.

[57] E. S. Lubana and R. P. Dick, “A gradient flow framework for analyzing
network pruning,” 2020.

[58] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” CoRR, vol. abs/1409.1556, 2015.

[59] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in Neural
Information Processing Systems (F. Pereira, C. J. C. Burges, L. Bottou,
and K. Q. Weinberger, eds.), vol. 25, pp. 1097–1105, Curran Associates,
Inc., 2012.


	I Introduction
	II Related work
	II-A Unstructured fine-grained pruning
	II-B Structured coarse-grained pruning
	II-C Structured fine-grained pruning
	II-D Pruning and quantization

	III Methodology
	III-A Notation
	III-B Dynamic masking based on probabilistic subsampling 
	III-C DPP for pruning different levels of granularity
	III-D Training details
	III-E Information-theoretic metrics on sparsity confidence and diversity

	IV Experiments
	IV-A MNIST
	IV-B CIFAR-10 and CIFAR-100
	IV-C ImageNet
	IV-D Analysis of sparsity belief over time

	V Conclusion
	References

