
1

CARRNN: A Continuous Autoregressive Recurrent
Neural Network for Deep Representation Learning

from Sporadic Temporal Data
Mostafa Mehdipour Ghazi, Lauge Sørensen, Sébastien Ourselin, and Mads Nielsen

Abstract—Learning temporal patterns from multivariate lon-
gitudinal data is challenging especially in cases when data is
sporadic, as often seen in, e.g., healthcare applications where
the data can suffer from irregularity and asynchronicity as
the time between consecutive data points can vary across
features and samples, hindering the application of existing
deep learning models that are constructed for complete, evenly
spaced data with fixed sequence lengths. In this paper, a novel
deep learning-based model is developed for modeling multiple
temporal features in sporadic data using an integrated deep
learning architecture based on a recurrent neural network (RNN)
unit and a continuous-time autoregressive (CAR) model. The
proposed model, called CARRNN, uses a generalized discrete-
time autoregressive model that is trainable end-to-end using
neural networks modulated by time lags to describe the changes
caused by the irregularity and asynchronicity. It is applied to
multivariate time-series regression tasks using data provided for
Alzheimer’s disease progression modeling and intensive care unit
(ICU) mortality rate prediction, where the proposed model based
on a gated recurrent unit (GRU) achieves the lowest prediction
errors among the proposed RNN-based models and state-of-the-
art methods using GRUs and long short-term memory (LSTM)
networks in their architecture.

Index Terms—Deep learning, recurrent neural network, long
short-term memory network, gated recurrent unit, autoregressive
model, multivariate time-series regression, sporadic time series.

I. INTRODUCTION

THE rapid development of computational resources in re-
cent years has enabled the processing of large-scale tem-

poral sequences, especially in healthcare, using deep learning

©2021 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.

The corresponding author M. Mehdipour Ghazi (ghazi@di.ku.dk) was with
the Department of Medical Physics and Biomedical Engineering, University
College London, London, UK, and Biomediq A/S, Copenhagen, DK. He is
now with the Department of Computer Science, University of Copenhagen,
Copenhagen, DK.

L. Sørensen and M. Nielsen are with the Department of Computer Science,
University of Copenhagen, Copenhagen, DK. They are also with Biomediq
A/S and Cerebriu A/S, Copenhagen, DK.

S. Ourselin was with the Department of Medical Physics and Biomedical
Engineering, University College London, London, UK. He is now with
the School of Biomedical Engineering & Imaging Sciences, King’s College
London, London, UK.

Data used in the preparation of this article were obtained from
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database
(adni.loni.usc.edu). As such, the investigators within the ADNI contributed
to the design and implementation of ADNI and/or provided data but did not
participate in analysis or writing of this report. A complete listing of ADNI
investigators can be found at http://adni.loni.usc.edu/wp-content/uploads/
how to apply/ADNI Acknowledgement List.pdf

architectures. State-of-the-art multivariate sequence learning
methods such as recurrent neural networks (RNNs) have been
applied to extract high-level, time-dependent patterns from
longitudinal data. Moreover, different variants of RNNs with
gating mechanisms such as long short-term memory (LSTM)
[1] and gated recurrent unit (GRU) [2] were introduced to
tackle the vanishing and exploding gradients problem [3], [4]
and capture long-term dependencies efficiently.

However, RNNs are modeled as discrete-time dynamical
systems with evenly-spaced input and output time points,
thereby ill-suited to process sporadic data which is common
in many healthcare applications [5], [6]. This real-world data
problem, as shown in the left part of Figure 1, can, e.g., arise
from different acquisition dates and missing values and is
associated with irregularity and asynchronicity of the features
where the time between consecutive timestamps or visits can
vary across different features and subjects. To address this
issue, most of the existing approaches [7] use a two-step
process assuming a fixed interval and applying missing data
imputation techniques to complete the data before modeling
the time-series measurements using RNNs. On the other hand,
a majority of methods that can inherently model varied-length
data using RNNs without taking notice of the sampling time
information [8] fail to handle irregular or asynchronous data.

Recently, there have been efforts to incorporate the time
distance attribute into the RNN architectures for dealing with
sporadic data. For instance, the PLSTM [9], T-LSTM [10],
GRU-D [11], tLSTM [12], and DLSTM [13] have placed
exponential or linear time gates in LSTM or GRU architectures
heuristically as multiplicative time-modulating functions with
learnable parameters and achieved good results when applied
to sporadic data. However, none of these studies have analyti-
cally investigated the proposed models, nor have they provided
motivation for the RNN architecture modifications. In other
words, current studies mainly focus on the design of deep
architectures or loss functions or apply the proposed solutions
to only one specific type of RNN while the capability of the
method using different types of RNNs is not examined.

In this paper, a novel model is reported for modeling multi-
ple temporal features in sporadic multivariate longitudinal data
using an integrated deep learning architecture as represented in
Figure 2 based on an RNN, LSTM, or GRU to learn the long-
term dependencies from evenly-spaced data and a continuous-
time autoregressive (CAR) model implemented as a neural
network layer modulated by time lags to compensate for the
existing irregularities. The proposed model, called CARRNN,

ar
X

iv
:2

10
4.

03
73

9v
1

 [
cs

.L
G

]
 8

 A
pr

 2
02

1

http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf

2

CARRNN
1

• Variable sequence length (across all subjects/samples): normalized loss function
• Long-term dependencies: LSTM/GRU
• Irregularity: CAR(1)
• Asynchronicity: (dynamic) binning and aligning the features
• Missing values:

• Incomplete features: diagonal (independent) CAR(1) applied to the neighboring points of each feature
• Fully missing features: passing zeros by the normalized input array and loss function

𝜏

∆𝑡

∆𝑡

𝜏

𝑡𝑡
Fig. 1: Illustrative example of time-series data with irregularly-spaced time points and asynchronous events, and the proposed
CARRNN structure for modeling the binned time points. The left subfigure shows five feature sequences of a sample subject
aligned with a bin width of τ and a time gap of ∆tk defined between the two consecutive data points at time tk and tk−1.
The right subfigure shows the CARRNN model structure that learns the multivariate temporal dependencies from the binned
data. Note that the bottom feature includes only missing values.

3

CARRNNRNN CAR(1)

Fig. 2: Illustration of the proposed continuous-time autore-
gressive recurrent neural network model using an RNN and a
CAR(1) model simulated as a built-in linear neural network
layer for end-to-end learning.

introduces an analytical solution to the ordinary differential
equation (ODE) problem and utilizes a generalized discrete-
time autoregressive model which is trainable end-to-end. The
asynchronous events are aligned using data binning to reduce
the effects of missing values and noise. Finally, the remaining
missing values are estimated by using a univariate CAR(1)
model applied to the adjacent observations, and in cases when
the feature points are fully missing, as shown in the bottom
of the left part of Figure 1, the input array and loss function
are normalized with the number of available data points [8].

II. THE PROPOSED METHOD

The proposed continuous-time autoregressive recurrent neu-
ral network model, which is trainable end-to-end as shown in
Figure 2, applies an RNN to learn the long-term dependencies
from evenly-spaced temporal data and uses a CAR(1) model
as a neural network layer to compensate for the existing
irregularities.

A. CAR Model

Assume that xt ∈ RN×1 is a feature vector at time t and
can be predicted using a multivariate discrete autoregressive
(AR) model of order one based on its evenly-spaced previous
observations as follows

xt = φxt−1 + c+ εt ,

where φ ∈ RN×N is the matrix of the slope coefficients of
the model, c ∈ RN×1 is the vector of the regression constants
or intercepts, and εt ∈ RN×1 is white noise as the prediction
error. In general, the time interval between the consecutive
observations can vary, making the sequence seem like an
irregularly-sampled data. Therefore, the aforementioned AR(1)
model can be rewritten as

x(tk) = φ(∆tk)x(tk−1) + c(∆tk) + ε(tk) ,

where ∆tk = tk − tk−1 is the time gap between the two
consecutive data points at time tk and tk−1, as shown in
Figure 1, and the matrix φ(·), modulated by ∆tk, contains
the autoregressive effects in the main diagonal and cross-
lagged effects in the off-diagonals. The model can then be
expressed by the first-order differential equation [14], [15]
using continuous-time autoregressive parameters (drift matrix
and bias vector) of Φ ∈ RN×N and ς ∈ RN×1 with an
exponential solution as

dx(t)

dt
= Φx(t) + ς + Γ

dε(t)

dt
,

x(tk) = eΦ∆tkx(tk−1) + Φ−1
[
eΦ∆tk − IN

]
ς + η(tk) ,

where IN is the identity matrix of size N ×N , Γ ∈ RN×N is
the Cholesky triangle of the innovation covariance or diffusion
matrix Ψ (Ψ = ΓΓT, where T is the transpose operator), and
η(tk) ∈ RN×1 is the continuous-time error vector at time tk
which can be obtained as

η(tk) =

∫ tk

tk−1

e(tk−s)ΦΓdε(s) .

To avoid evaluating the matrix exponential function and its
derivative, a power-series expansion can be used as follows

eΦ∆tk =

∞∑
p=0

(Φ∆tk)p

p!
≈ IN + Φ∆tk ,

x(tk) ≈
[
IN + Φ∆tk

]
x(tk−1) + ς∆tk + η(tk) . (1)

3

• 𝜎

•

 𝜎

 𝜎

+ 𝜎 • +

+

 𝜎

++

+

+

𝒄
𝒉

𝒙

𝒙 𝒄 𝒉

𝒉
𝒙

𝒄
𝒉

𝒙

𝒄

𝒉
𝒄

𝒃

𝒃

𝒃

𝒃

𝝇 Δ𝑡
𝝇 Δ𝑡

𝑰 + 𝚽 Δ𝑡
𝑰 + 𝚽 Δ𝑡

𝑾𝑽𝑼

𝑾𝑽𝑼

𝑾
𝑼

𝑾 𝑽 𝑼

Forget gate

Input modulation

Output gate

Input gate

Cell
Hidden

autoregression

Cell
autoregression

CAR-LSTM

• 𝜎+𝒉
𝒙

𝒙

𝒉

𝒃

𝒃

𝑾
𝑼

𝑾

Update gate

+ + 𝒉
𝝇 Δ𝑡

𝑰 + 𝚽 Δ𝑡
Hidden

autoregression

•

+

 𝜎
 𝜎+𝒉

𝒙
𝒃

𝑾
𝑼 •

𝒉
Reset gate

 1
Cell

CAR-GRU

 𝜎 ++𝒉
𝒙

𝒉
𝒃 𝝇 Δ𝑡

𝑰 + 𝚽 Δ𝑡𝑾
𝑼 Hidden

autoregression

CAR-RNN

+
• 𝜎

Weighted connection

Unweighted connection

Delay connection

Addition

Pointwise product

Activation function

Fig. 3: Illustration of the proposed network architectures with built-in continuous autoregressive models.

B. RNN Model

Simple recurrent networks [16] are widely used for se-
quence prediction tasks by storing the previous values of the
hidden units based on the following equation

ht = σh(Whxt +Uhht−1 + bh) , (2)
yt = σy(Wyht + by) ,

where ht ∈ RM×1 and yt ∈ RQ×1 are the hidden (recurrent)
and output layer vectors with M and Q nodes, respectively, at
an evenly-spaced instant t, Wh ∈ RM×N and Uh ∈ RM×M
are the input and hidden weight matrices with N input nodes,
bh ∈ RM×1 is the hidden bias vector, Wy ∈ RQ×M and
by ∈ RQ×1 are the output weight matrix and bias vector, and
σh and σy are the hidden and output layer activation functions,
respectively. In a regression problem, Q is set equal to N and
an identity function is applied to σy , while in a classification
task, Q is chosen equal to the number of classes and a Softmax
function is used for σy .

C. CARRNN Model

The proposed CARRNN model can be obtained based on
an integration of the CAR(1) model and one of the recursive
neural network types. To avoid confusion, hereinafter the
CARRNN model using an RNN, LSTM, and GRU are referred
to as CAR-RNN, CAR-LSTM, and CAR-GRU, respectively.

1) CAR-RNN: Taking the advantages of the CAR(1) model
introduced in Equation (1) and the deep learning-based RNN
model in Equation (2) into account, the proposed learning-
based model for irregularly-spaced sequence prediction can
be obtained as follows

h̃k = σh(Whxk +Uhhk−1 + bh) ,

hk =
[
IM + (∆tk − τ)Φh

]
h̃k + (∆tk − τ)ςh , (3)

where h̃k ∈ RM×1 is the regularized recurrent vector about
time point tk, Φh ∈ RM×M and ςh ∈ RM×1 are the
autoregressive weight matrix and bias vector, and ∆tmin ≤
τ ≤ ∆tmax is the RNN time-step hyperparameter. The right
subfigure in figure 3 shows a schematic of the proposed
CARRNN architecture.

It should be noted that when data is evenly-spaced, i.e.,
∆tk = τ , the model is simply generalized to a standard RNN.

In addition, to train the model in an end-to-end fashion, as
it can also be seen in Figure 2, CAR(1) model is simulated
as a linear neural network layer with parameters modulated
(multiplied) by the time lags. Also, although most of the cur-
rent deep learning frameworks can approximate the parameter
gradients using the automatic differentiation, we provide the
details of calculating the gradients in Appendix A for a fast
and accurate evaluation of them during the network training.

2) CAR-LSTM: The abovementioned model can be gener-
alized to the LSTM units for long-term prediction of unevenly-
spaced sequences. To this end, the feedforward pass of the
proposed model using a peephole LSTM unit [17] can be
expressed as

f̃k = σg(Wfxk +Ufhk−1 + Vfck−1 + bf) ,

ĩk = σg(Wixk +Uihk−1 + Vick−1 + bi) ,

z̃k = σc(Wzxk +Uzhk−1 + bz) ,

c̃k = σh(f̃k � ck−1 + ĩk � z̃k) ,

õk = σg(Woxk +Uohk−1 + Vock + bo) ,

h̃k = õk � c̃k ,

where the hidden vector hk and cell state ck can be obtained
in a similar way as mentioned in Equation (3) using Φh,
ςh, Φc, and ςc as the parameters and h̃k and ˜̄ck as input
vectors to the regularization functions in (3), where the latter
stands for the regularized cell state before activation about
time point tk. As can be seen, no activation function is
applied to the recurrent vector in the LSTM unit. Also,
{f̃k, ĩk, z̃k, c̃k, õk, h̃k} ∈ RM×1 are the regularized vectors
of forget gate, input gate, modulation gate, cell state, output
gate, and hidden layer about time point tk, respectively. In
addition, {Wf ,Wi,Wz,Wo} ∈ RM×N are weight matrices
connecting the LSTM input to the gates, {Uf ,Ui,Uz,Uo} ∈
RM×M are weight matrices connecting the recurrent input to
the gates, {Vf ,Vi,Vo} ∈ RM×M are diagonal weight matrices
connecting the cell to the gates and can be set to zeros in
case of using a standard LSTM unit, {bf , bi, bz, bo} ∈ RM×1

denote corresponding biases of the nodes, and � is the
Hadamard product. The activation functions allocated to the
gates, input modulation, and hidden layer are represented by
σg , σc, and σh, respectively.

4

3) CAR-GRU: Likewise, the generalized model can be
applied to the GRUs. The feedforward pass of the proposed
model using a GRU [2] can be expressed as

z̃k = σg(Wzxk +Uzhk−1 + bz) ,

r̃k = σg(Wrxk +Urhk−1 + br) ,

c̃k = σh(Wcxk +Uc(r̃k � hk−1) + bc) ,

h̃k = (1− z̃k)� c̃k + z̃k � hk−1 ,

where hidden vector hk can be obtained using Equation (3).
Also, {z̃k, r̃k, c̃k, h̃k} ∈ RM×1 are the regularized vectors of
update gate, reset gate, candidate state, and hidden layer about
time point tk, respectively. In addition, {Wz,Wr,Wc} ∈
RM×N are weight matrices connecting the GRU input to the
gates and candidate state, {Uz,Ur,Uc} ∈ RM×M are weight
matrices connecting the recurrent input to the gates and can-
didate state, and {bz, br, bc} ∈ RM×1 denote corresponding
biases of the nodes.

D. Time Binning

Time binning is used to discretize and align the continuous
features within small intervals (bins) [18]. This will reduce the
effects of noise and missing values for effective learning of the
multivariate temporal dependencies from asynchronous data
using the abovementioned deep learning models. Therefore,
as also illustrated in Figure 1, the features are allowed to be
matched within a given bin width which is equal to the RNN
time step τ .

E. Handling Missing Values

The proposed CARRNN model can also be developed
for estimating missing values of incomplete features during
training. To be more precise, a diagonal autoregressive matrix
can be used in Equation (1) to impute the missing values of
each feature based on its adjacent or previous observations.
This can be interpreted as variants of the nearest-neighbor
(NN) imputation [19] or the last-observation-carried-forward
(LOCF) method [20], but the time intervals of the consecutive
points are taken into account to adjust the replicated values
using an independent (univariate) version of Equation (1)
during training, i.e.,

xn,k =
[
1 + (tk − tj)ϕ(n)

]
xn,j + (tk − tj)ζ(n) ,

where ϕ ∈ RN×1 and ζ ∈ RN×1 are the univariate continuous
autoregressive model parameters, and xn,k is the value of the
nth feature at timestamp tk estimated based on its neighboring
observation at timestamp tj .

However, missing values remains a problem in features
with missing values at the beginning of the sequence or fully
missing features in the input and target vectors. To deal with
the remaining missing data, we use a weighted input array
and loss function to regularize the network according to the
number of available data points [8]. This can be seen as the
dropout technique [21] where the network nodes are randomly
skipped during training so that the network only learns and
updates some of the weights per iteration. However, instead
of a random selection of nodes, it is assumed that the missing

CARRNN
2

• Variable sequence length (across all subjects/samples): normalized loss function
• Long-term dependencies: LSTM/GRU
• Irregularity: CAR(1)
• Asynchronicity: (dynamic) binning and aligning the features
• Missing values:

• Incomplete features: diagonal (independent) CAR(1) applied to the neighboring points of each feature
• Fully missing features: passing zeros by the normalized input array and loss function

 2 3
 2 3

 0

𝑥
𝑥
𝑥

 0
 0

 3 1

𝛿𝑦
𝛿𝑦
𝛿𝑦

…
Input TargetHidden

Fig. 4: Handling missing values using a weighted feedforward
and backpropagation. In this example, Q = N = 3 and
one input value and two output values are missing, indicated
by crosses. The network nodes, and hence, their connected
weights associated with the missing input and target values are
set to zero, indicated by dashed lines, while the input values
are scaled by 2/3, which forms the ratio of the number of
available input points to the total number of input features N ,
and the output gradients are scaled by 3/1, which accounts
for the ratio of the total number of target features Q to the
number of available target points.

nodes and their connected weights are dropped out from the
learning process on purpose. This is equivalent to setting the
input nodes associated with the missing input points to zero
and multiplying the rest of the input values by the ratio of the
number of available points in the input array per timestamp to
the total number of input features N during the feedforward
process, and setting the output nodes associated with the
missing target points to zero and multiplying the rest of the
output gradients by the ratio of the total number of target
features Q to the number of available points in the target array
per timestamp during the backpropagation procedure. Figure
4 represents how the network nodes, and consequently, their
connected weights are scaled to forward the input array and
to propagate the output gradients associated with the available
input and target values.

III. EXPERIMENTS AND RESULTS

A. Data

Two real-world datasets are used to train different time-
series models with irregularity and asynchronicity. These lon-
gitudinal datasets are multivariate and contain missing data.
The first dataset is obtained from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) cohort [5] for disease pro-
gression modeling using multimodal biomarkers obtained from
T1-weighted brain magnetic resonance imaging (MRI) and
positron emission tomography (PET) scans, cerebrospinal fluid
(CSF) data, and cognitive tests. The ADNI was launched in
2003 as a public-private partnership, led by principal inves-
tigator Michael W. Weiner, MD. The primary goal of ADNI
has been to test whether serial MRI, PET, other biological
markers, and clinical and neuropsychological assessment can
be combined to measure the progression of mild cognitive
impairment and early Alzheimer’s disease. The data was pre-
processed and cleaned based on the criteria presented in [22].

http://adni.loni.usc.edu/data-samples/access-data/

5

TABLE I: Statistics of the utilized datasets after cleaning.

subjects Visit interval # features per visit # visits per subject
(stable — converting) (mean±SD) — [min max] (mean±SD) — [min max] (mean±SD) — [min max]

ADNI 471 — 313 0.74±0.43 — [0.05 4.82] year 9.78±3.38 — [1 16] 5.99±2.37 — [2 13]
PhysioNet 10,275 — 1,706 0.64±0.52 — [0.017 31] hour 5.36±2.44 — [1 27] 73.63±22.55 — [2 210]

In ADNI, stable or converting refer to the patients with a baseline mild cognitive impairment diagnosis staying the same or converting to Alzheimer’s
dementia in the later follow-ups, respectively. In PhysioNet, stable and converting denote the surviving and dead cases after at least two days from
their admission to ICU.

The utilized data includes 16 temporal biomarkers acquired
from 1,518 subjects (854 males and 664 females aged between
55 and 98) in 9,098 timestamps or visits between 2005 and
2017.

The second dataset is obtained from the PhysioNet Com-
puting in Cardiology (PhysioNet/CinC) challenge [6], [23]
to predict mortality rates of in-hospital patients using their
physiological measurements including laboratory (blood) re-
sults and vital signs recorded from the first 48 hours of
intensive care unit (ICU) stays. We discarded three biomarkers
(ventilation, cholesterol, and troponin-I) with constant values
and a very limited number of data points, and removed subjects
with less than two distinct timestamps for sequence learning
purposes. The remaining 33 time-series variables are collected
from 11,981 subjects (6,713 males and 5,257 females aged
between 15 and 90) in 882,207 timestamps during the first
two days of ICU admissions. Table I summarizes statistics of
the used datasets after cleaning. Note that both datasets also
include missing values after cleaning.

To facilitate future research in time-series modeling and
comparison with the current study, all source code and
data splits are available online at https://github.com/Mostafa-
Ghazi/CARRNN.

B. Experimental Setup

The proposed CARRNN models were applied to regression
problems using an identity function, hyperbolic tangent, and
logistic sigmoid as activation functions for σh, σc, and σg ,
respectively. Since initialization is a key for faster convergence
and stability of deep network training, the network biases and
autoregressive weights were initialized to zero, and values of
the RNN weight matrices were selected according to the rules
and assumptions proposed in [24].

The data was standardized to have zero mean and unit
variance per feature dimension, and time intervals were nor-
malized with the interquartile range (IQR) of the timestamps.
In ADNI, 80% of the samples were randomly selected for
training and validation, and the remaining 20% were used for
testing the unseen test subset. The mini-batch size was set to
90% of the training samples, and the number of hidden nodes
was set to 10 times the number of input nodes. In PhysioNet,
7,986 samples were allotted for training and validation, and
3,995 samples were assigned for testing the unseen test subset.
The mini-batch size was set to 25% of the training samples,
and the number of hidden nodes was set to 5 times the number
of input nodes.

The first to penultimate time points were utilized to estimate
the second to last time points with a prediction horizon of one
step using the following methods
• GRU-Mean, a standard GRU with missing values filled

in using the mean values [25].
• GRU-Forward, a standard GRU with missing values filled

in using the previous observations [20].
• GRU-Concat, a standard GRU with missing values filled

in using the nearest neighbors [19], and input features
concatenated with corresponding time intervals.

• GRU-D, a state-of-the-art method [11] that uses a mod-
ified GRU to impute missing value by the weighted
combination of the last observation, mean value, and
recurrent component.

• CAR-RNN, the proposed CARRNN model using an RNN
unit in the architecture.

• CAR-LSTM, the proposed CARRNN model using an
LSTM unit in the architecture.

• CAR-GRU, the proposed CARRNN model using a GRU
in the architecture.

A normalized L2-norm loss was used as the cost function
and the Adam optimizer [26] was applied as a gradient
descent-based optimization algorithm to update the network
parameters with a gradient decay factor of 0.85, a squared
gradient decay factor of 0.95, and a base learning rate of
5 × 10−3. An L2-norm regularization was applied to the
weights with a weight decay factor of 5 × 10−5. Different
values of the time step τ (histogram bin width) were examined,
and a grid search was used to find the optimal values of
the hyperparameters according to the validation set error
across different experiments and methods. Hence, the reported
results are based on the selected (optimal) parameter values
subsequently applied to the unseen test subsets.

The networks were trained for at most 100 epochs in a
10-fold nested cross-validation setup using the early-stopping
method [27] with 10-iterations patience. Since both datasets
contain outliers, beside the mean squared error (MSE), the
mean absolute error (MAE) was used [28] to evaluate the
modeling performance in terms of the absolute differences
between actual and estimated values.

C. Results and Discussion

1) Validation performance for various time steps: As the
first set of experiments, we compare the validation prediction
performance of the proposed models applied to the obtained

https://www.physionet.org/content/challenge-2012/1.0.0/
https://github.com/Mostafa-Ghazi/CARRNN
https://github.com/Mostafa-Ghazi/CARRNN

6

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
 (year)

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

V
al

id
at

io
n

M
A

E
ADNI

CAR-GRU
CAR-LSTM
CAR-RNN

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
 (hour)

0.28

0.34

0.4

0.46

0.52

0.58

0.64

0.7

V
al

id
at

io
n

M
A

E

PhysioNet

CAR-GRU
CAR-LSTM
CAR-RNN

Fig. 5: Validation prediction performance for the proposed
models applied to the utilized datasets with different time
steps. The error bars are calculated based on a 95% confidence
interval for population standard deviation in 10-fold nested
cross-validation per time step.

datasets in a 10-fold nested cross-validation setup using dif-
ferent time steps (τ) including the mean and IQR of the time
intervals. Figure 5 shows the validation results of the proposed
models for different time steps and datasets. As can be seen, all
models show good stability to the variations of time steps when
applied to both ADNI and PhysioNet. In all cases, CAR-GRU
achieves the lowest prediction error, while CAR-RNN obtains
the largest error with larger deviations across different runs,
especially in PhysioNet which involves very long sequences.
Moreover, except for the CAR-RNN, the optimal errors are
achieved at the middle point where the time step is set to
the average value of time intervals. These optimal values are
selected to be used in the later experiments.

2) Validation performance versus iteration: Additionally,
we draw the validation loss of the proposed models mon-
itored during the 10-times training with the early-stopping
approach. Figure 6 demonstrates the tracked validation loss
of the proposed models applied to the two datasets using

5 10 15 20 25 30 35 40 45 50 55
Iteration

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

V
al

id
at

io
n

L
os

s

ADNI

CAR-GRU
CAR-LSTM
CAR-RNN

5 10 15 20 25 30 35 40 45
Iteration

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

V
al

id
at

io
n

L
os

s

PhysioNet

CAR-GRU
CAR-LSTM
CAR-RNN

Fig. 6: Validation performance of the proposed models applied
to the utilized datasets in the optimal time steps. The shaded
areas display the 95% confidence interval for population stan-
dard deviation of 10-fold nested cross-validation per iteration
about the average curves.

the optimal time steps. It can be seen that the models are
robust to initialization and data subsets with the lowest error
achieved for the CAR-GRU. It can also be deduced that the
CAR-RNN model cannot perform well for learning long-
term dependencies, most probably due to the simplicity of its
architecture and lack of gating structures to avoid exploding
and vanishing gradients during backpropagation.

3) Test performance for various time points: Practically, it
is important to see how the trained models would generalize
to test data with various numbers of time points or visits.
Therefore, we apply the cross-validated models to the test
subsets using only a few visits of each subject to sequentially
predict the later follow-ups. The results of this experiment
using the optimal time steps are presented in Figure 7. As
depicted in the figure, the trained models are generalizable to
the test data to a very good extent, even when using very few
time points per subject. Once again the CAR-GRU models
obtain the lowest prediction errors among the other models in

7

2 4 6 8 10
Time Point

0.25

0.3

0.35

0.4

0.45

0.5

T
es

t M
A

E
ADNI

CAR-GRU
CAR-LSTM
CAR-RNN

20 40 60 80 100
Time Point

0.3

0.4

0.5

0.6

0.7

0.8

0.9

T
es

t M
A

E

PhysioNet

CAR-GRU
CAR-LSTM
CAR-RNN

Fig. 7: Generalization performance of the proposed models applied to the utilized datasets in the optimal time steps based on
different numbers of time points used for the follow-up predictions per subject. The error bars are calculated based on a 95%
confidence interval for population standard deviation in 10-fold nested cross-validation at each point.

TABLE II: Generalization errors (mean±SD) in predicting the test feature values using the trained models based on 10-fold
nested cross-validation. The best results which are boldfaced have a statistically significant difference (p < 0.05) from those
of the other methods.

Method GRU-Mean GRU-Forward GRU-Concat GRU-D CAR-RNN CAR-LSTM CAR-GRU

ADNI 0.453±0.007 0.323±0.002 0.304±0.002 0.315±0.002 0.386±0.004 0.297±0.002 0.286±0.002

M
A

E

PhysioNet 0.546±0.006 0.456±0.003 0.334±0.002 0.371±0.002 0.606±0.002 0.339±0.002 0.326±0.002

ADNI 0.373±0.011 0.206±0.002 0.189±0.002 0.181±0.002 0.319±0.006 0.178±0.003 0.167±0.002

M
SE

PhysioNet 0.589±0.008 0.494±0.003 0.375±0.002 0.402±0.002 0.739±0.003 0.319±0.002 0.308±0.002

all cases.

4) Comparison to the state-of-the-art: Table II compares
the test results in predicting the feature values using different
models applied to the two datasets. As can be seen, the
CAR-GRU model achieves the lowest errors in modeling the
sporadic data, and these results have a statistically significant
difference (p < 0.05) from the findings of the other methods
according to the two-sided Wilcoxon signed-rank sum test
[29]. Note that the methods are applied to the data after
aligning the data points using the optimal time steps.

5) Trajectory prediction and classification: As the last
experiment, we investigate the feature trajectory prediction and
discrimination capabilities of the optimal model. To do so, the
trained CAR-GRU models are applied to the first 2 years of
data from ADNI subjects and to the first 30 hours of data from
PhysioNet patients to predict later follow-ups of the measure-
ments for both stable and converting cases. Figures 8 and 9
display the predicted trajectories of four important biomarkers
from each of the test datasets using the trained CAR-GRU
models. As can be seen, the prediction errors stay low in
the defined horizon for both stable and converting groups.
Moreover, some biomarkers such as the mini-mental state
exam (MMSE) cognitive score, the normalized hippocampal
volume of the T1-weighted MRI scan (Hippocampus/ICV),

blood urea nitrogen (BUN), and heart rate (HR) become more
abnormal in the disease course of the converting cases, which
can help us to better distinguish between the two groups.

D. General Discussion and Conclusion

In this paper, a novel deep learning method was proposed
for modeling multiple temporal features in sporadic data
using an integration of a continuous-time autoregressive model
and an RNN to handle irregularity and asynchronicity of
measurements and capture long-term dependencies. The model
was applied to multivariate time-series regression within two
sporadic medical datasets and the obtained results showed that
the CAR-GRU method achieved a lower generalization error
in predicting the feature values compared to the alternatives.

One of the benefits of the proposed model is the gen-
eralizability of the architecture where any type of discrete-
time models such as RNNs, and continuous-time models such
as Gaussian processes [30] can be utilized. Nevertheless, a
CAR(1) model with a linear transformation allows for its
simulation as a simple neural network modulated by time lags,
and hence, its application in deep learning frameworks and
architectures including convolutional layers.

The flexibility of the proposed model in generalization to
different deep learning architectures provided us an opportu-

8

3 4 5 6 7 8 9
Prediction Horizon (year)

0

5

10

15

20

25

30

35

B
io

m
ar

ke
r

V
al

ue
ADNI (MMSE)

3 4 5 6
Prediction Horizon (year)

400

600

800

1000

1200

1400

1600

1800

2000

B
io

m
ar

ke
r

V
al

ue

ADNI (Amyloid beta)

3 4 5 6 7
Prediction Horizon (year)

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

B
io

m
ar

ke
r

V
al

ue

ADNI (FDG-PET)

3 4 5 6 7
Prediction Horizon (year)

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

1

B
io

m
ar

ke
r

V
al

ue

ADNI (Hippocampus/ICV)

3 4 5 6 7 8 9
-2

0

2

4

6

8

10

12

14

16

18

B
io

m
ar

ke
r

V
al

ue

ADNI (CDR-SB)

Actual Converting Actual Stable Predicted Converting Predicted Stable

Fig. 8: Prediction results for the ADNI test subjects per visit using the trained CAR-GRU models. The error bars are calculated
based on a 95% confidence interval for population standard deviation per visit.

nity to compare various types of RNNs applied to the utilized
data. The GRU model obtained very decent results while its
architecture was simpler than the LSTM one. Moreover, in
all experiments, RNN resulted in a larger prediction error
compared to LSTM and GRU. There could be two main
reasons for such behavior. First, RNNs can suffer from the
exploding and vanishing gradients problem as they lack a
gating architecture, and therefore, cannot capture long-term
dependencies. Second, they use a relatively simple architecture
with fewer parameters which can cause underfitting.

We developed an analytical model with a generic solution
to deal with irregularity and missing values in temporal data,
which explains why the existing deep learning methods [9],
[10], [11], [12], [13], [31], [32] apply exponential or linear
time gates to handle the issue as hk = f(xk,hk−1, g(∆tk)),
where g(∆tk) is the time interval function and can be de-
fined as [Φh, ςh]∆tk based on the proposed method. This
method can also be compared with ODE-RNNs [33], [34]
that attempt to model continuous time-series using RNNs as

hk = hk−1 + f(hk−1, tk)∆tk, where f(h(t), t) = dh(t)/dt
is the ODE function and can be approximated by the proposed
linearized solution of [Φhh(t) + ςh]∆tk. More interestingly,
the proposed way of missing data imputation can be seen as
a learning-based alternative to linear interpolation defined by
x(tk) = x(tj) + (tk − tj)dx(tj)/dt [35], where the slope at
tj , i.e., dx(tj)/dt, is evaluated by ϕx(tj) + ζ in the proposed
method. On the other hand, CARRNN can be seen as a deep
learning-based, recursive alternative to structural equation
modeling (SEM) [14], [36] defined by h = Bh + ψ, where
ψ contains prediction errors and matrix B is a concatenation
of a diagonal matrix with I + Φ∆tk elements and a vector
containing ς∆tk values.

The proposed network can be implemented using any deep
learning frameworks in three different ways, i.e., a single
model with built-in architecture as was proposed in this paper
shown in Figure 2, two separate models with a CAR(1) model
proceeding the RNN model or a CAR(1) model preceding
the RNN model. Although the separate models provide an

9

32 34 36 38 40 42 44 46 48
Prediction Horizon (hour)

15

20

25

30

35

40

45

50

55

B
io

m
ar

ke
r

V
al

ue
PhysioNet (BUN)

32 34 36 38 40 42 44 46 48
Prediction Horizon (hour)

110

120

130

140

150

160

170

180

190

B
io

m
ar

ke
r

V
al

ue

PhysioNet (Glucose)

32 34 36 38 40 42 44 46 48
Prediction Horizon (hour)

84

86

88

90

92

94

96

B
io

m
ar

ke
r

V
al

ue

PhysioNet (HR)

32 34 36 38 40 42 44 46 48
Prediction Horizon (hour)

18

19

20

21

22

23

24

25

26

27

B
io

m
ar

ke
r

V
al

ue

PhysioNet (RespRate)

3 4 5 6 7 8 9
-2

0

2

4

6

8

10

12

14

16

18

B
io

m
ar

ke
r

V
al

ue

ADNI (CDR-SB)

Actual Converting Actual Stable Predicted Converting Predicted Stable

Fig. 9: Prediction results for the PhysioNet test subjects per visit using the trained CAR-GRU models. The error bars are
calculated based on a 95% confidence interval for population standard deviation per visit.

opportunity for implementing the methods without changing
the RNN architectures, we found no significant improvements
in the performance in either case.

APPENDIX A
BACKPROPAGATION THROUGH TIME

Let L ∈ R be the loss function defined based on the actual
target S ∈ RQ×K and the network output Y ∈ RQ×K ,
where Q and K stand for the number of output feature nodes
and sequence length, respectively. The goal is to derive the
partial derivatives of the loss function with respect to the
learnable parameters (δθ = ∂L/∂θ) using the chain rule. By
assuming an L2-norm loss function for regression, the output
layer gradients can be obtained as

L = 1
KQ

∥∥Y − S∥∥2

2
,

δyk = 1
2KQ

(
yk − sk

)
,

δȳk = δyk � σ′y(ȳk) ,

where σ′(·) is the derivative of the activation function σ(·),
and ȳk ∈ RQ×1 is the output layer vector before activation at
time point tk.

A. CAR-RNN

The backpropagation calculations through time for the
CARRNN model using an RNN with full gradients are as
follows

δhk = W T
y δȳk +UT

h δ
˜̄hk+1 ,

δh̃k =
[
IM + (∆tk − τ)ΦT

h

]
δhk ,

δ ˜̄hk = δh̃k � σ′h(˜̄hk) ,

δxk = W T
h δ

˜̄hk ,

where ˜̄hk ∈ RM×1 is the regularized recurrent vector before
activation about time point tk. Finally, the gradients of the loss

10

function with respect to the learnable parameters are obtained
as

δWy =
∑
k δȳkh

T
k ,

δby =
∑
k δȳk ,

δWh =
∑
k δ

˜̄hkx
T
k ,

δUh =
∑
k δ

˜̄hk+1h
T
k ,

δbh =
∑
k δ

˜̄hk ,

δΦh =
∑
k(∆tk − τ)δhkh̃

T
k ,

δςh =
∑
k(∆tk − τ)δhk .

Note that the abovementioned gradients are obtained assum-
ing that the utilized data is complete. Therefore, they need to
be modified properly according to the explanations in Section
II-E in the cases when the data after binning includes any
missing values.

B. CAR-LSTM

The backpropagation calculations through time for the
CARRNN model using a peephole LSTM unit with full
gradients are as follows

δhk = W T
y δȳk +UT

f δ
˜̄fk+1 +UT

i δ
˜̄ik+1 +UT

z δ ˜̄zk+1 +UT
o δ ˜̄ok+1 ,

δh̃k =
[
IM + (∆tk − τ)ΦT

h

]
δhk ,

δõk = δh̃k � c̃k ,
δ ˜̄ok = δõk � σ′g(˜̄ok) ,

δc̃k = δh̃k � õk ,

δck = V T
f δ

˜̄fk+1 + V T
i δ

˜̄ik+1 + V T
o δ ˜̄ok + δ˜̄ck+1 � f̃k+1 ,

δ˜̄ck =
[
IM + (∆tk − τ)ΦT

c

]
δck + δc̃k � σ′h(˜̄ck) ,

δz̃k = δ˜̄ck � ĩk ,
δ ˜̄zk = δz̃k � σ′c(˜̄zk) ,

δĩk = δ˜̄ck � z̃k ,

δ˜̄ik = δĩk � σ′g(˜̄ik) ,

δf̃k = δ˜̄ck � ck−1 ,

δ ˜̄fk = δf̃k � σ′g(˜̄fk) ,

δxk = W T
f δ

˜̄fk +W T
i δ

˜̄ik +W T
z δ ˜̄zk +W T

o δ ˜̄ok ,

where { ˜̄fk, ˜̄ik, ˜̄zk, ˜̄ck, ˜̄ok} ∈ RM×1 are the regularized vectors
of forget gate, input gate, modulation gate, cell state, and
output gate before activation about time point tk, respectively.
Finally, the gradients of the loss function with respect to the
learnable parameters are obtained as

δWπ∈{f,i,z,o} =
∑
k δ ˜̄πkx

T
k ,

δUπ∈{f,i,z,o} =
∑
k δ ˜̄πk+1h

T
k ,

δVπ∈{f,i} =
∑
k diag(δ ˜̄πk+1 � ck) ,

δVo =
∑
k diag(δ ˜̄ok � ck) ,

δbπ∈{f,i,z,o} =
∑
k δ ˜̄πk ,

δΦπ∈{h,c} =
∑
k(∆tk − τ)δπk ˜̄πT

k ,

δςπ∈{h,c} =
∑
k(∆tk − τ)δπk .

C. CAR-GRU

The backpropagation calculations through time for the
CARRNN model using a GRU with full gradients are as
follows

δhk = W T
y δȳk +UT

z δ ˜̄zk+1 +UT
r δ˜̄rk+1

+δh̃k+1 � z̃k+1 + r̃k+1 � (UT
c δ˜̄ck+1) ,

δh̃k =
[
IM + (∆tk − τ)ΦT

h

]
δhk ,

δc̃k = δh̃k � (1− z̃k) ,

δ˜̄ck = δc̃k � σ′h(˜̄ck) ,

δr̃k = hk−1 � (UT
c δ˜̄ck) ,

δ˜̄rk = δr̃k � σ′g(˜̄rk) ,

δz̃k = δh̃k � (hk−1 − c̃k) ,

δ ˜̄zk = δz̃k � σ′g(˜̄zk) ,

δxk = W T
z δ ˜̄zk +W T

r δ˜̄rk +W T
c δ˜̄ck ,

where {˜̄zk, ˜̄rk, ˜̄ck} ∈ RM×1 are the regularized vectors of
update gate, reset gate, and candidate state before activation
about time point tk, respectively. Finally, the gradients of
the loss function with respect to the learnable parameters are
obtained as

δWπ∈{z,r,c} =
∑
k δ ˜̄πkx

T
k ,

δUπ∈{z,r} =
∑
k δ ˜̄πk+1h

T
k ,

δUc =
∑
k δ˜̄ck+1(r̃k+1 � hk)T ,

δbπ∈{z,r,c} =
∑
k δ ˜̄πk ,

δΦh =
∑
k(∆tk − τ)δhkh̃

T
k ,

δςh =
∑
k(∆tk − τ)δhk .

ACKNOWLEDGMENT

This project has received funding from the European
Union’s Horizon 2020 research and innovation programme un-
der the Marie Skłodowska-Curie grant agreement No. 721820,
No. 643417, No. 681043 and No. 825664, and VELUX
FONDEN and Innovation Fund Denmark under the grant
number 9084-00018B.

Data collection and sharing for this project was funded
by the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
(National Institutes of Health Grant U01 AG024904) and DOD
ADNI (Department of Defense award number W81XWH-12-
2-0012). ADNI is funded by the National Institute on Aging,
the National Institute of Biomedical Imaging and Bioengineer-
ing, and through generous contributions from the following:
AbbVie, Alzheimer’s Association; Alzheimer’s Drug Discov-
ery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen;
Bristol-Myers Squibb Company; CereSpir, Inc.; Cogstate; Ei-
sai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company;
EuroImmun; F. Hoffmann-La Roche Ltd. and its affiliated
company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO
Ltd.; Janssen Alzheimer Immunotherapy Research & Devel-
opment, LLC.; Johnson & Johnson Pharmaceutical Research
& Development LLC.; Lumosity; Lundbeck; Merck & Co.,
Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Neu-
rotrack Technologies; Novartis Pharmaceuticals Corporation;

11

Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharmaceu-
tical Company; and Transition Therapeutics. The Canadian
Institutes of Health Research is providing funds to support
ADNI clinical sites in Canada. Private sector contributions
are facilitated by the Foundation for the National Institutes
of Health (www.fnih.org). The grantee organization is the
Northern California Institute for Research and Education,
and the study is coordinated by the Alzheimer’s Therapeutic
Research Institute at the University of Southern California.
ADNI data are disseminated by the Laboratory for Neuro
Imaging at the University of Southern California.

REFERENCES

[1] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[2] K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations using
RNN encoder–decoder for statistical machine translation,” in Proceed-
ings of the 2014 Conference on Empirical Methods in Natural Language
Processing, 2014, pp. 1724–1734.

[3] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependen-
cies with gradient descent is difficult,” IEEE Transactions on Neural
Networks, vol. 5, no. 2, pp. 157–166, 1994.

[4] S. Hochreiter, Y. Bengio, P. Frasconi, and J. Schmidhuber, “Gradient
flow in recurrent nets: The difficulty of learning long-term dependen-
cies,” in A Field Guide to Dynamical Recurrent Neural Networks. IEEE
Press, 2001.

[5] R. C. Petersen, P. S. Aisen, L. A. Beckett, M. C. Donohue, A. C. Gamst,
D. J. Harvey, C. R. Jack, W. J. Jagust, L. M. Shaw, A. W. Toga, J. Q.
Trojanowski, and M. W. Weiner, “Alzheimer’s Disease Neuroimaging
Initiative (ADNI): clinical characterization.” Neurology, vol. 74, pp.
201–209, 2010.

[6] I. Silva, G. Moody, D. J. Scott, L. A. Celi, and R. G. Mark, “Predict-
ing in-hospital mortality of ICU patients: The physionet/computing in
cardiology challenge 2012,” in 2012 Computing in Cardiology. IEEE,
2012, pp. 245–248.

[7] Z. C. Lipton, D. C. Kale, and R. Wetzel, “Modeling missing data in
clinical time series with RNNs,” in Proceedings of Machine Learning
for Healthcare, 2016.

[8] M. Mehdipour Ghazi, M. Nielsen, A. Pai, M. J. Cardoso, M. Modat,
S. Ourselin, and L. Sørensen, “Training recurrent neural networks robust
to incomplete data: Application to Alzheimer’s disease progression
modeling,” Medical Image Analysis, vol. 53, pp. 39–46, 2019.

[9] D. Neil, M. Pfeiffer, and S.-C. Liu, “Phased LSTM: Accelerating recur-
rent network training for long or event-based sequences,” in Advances
in Neural Information Processing Systems, 2016, pp. 3882–3890.

[10] I. M. Baytas, C. Xiao, X. Zhang, F. Wang, A. K. Jain, and J. Zhou,
“Patient subtyping via time-aware LSTM networks,” in Proceedings
of the 23rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2017, pp. 65–74.

[11] Z. Che, S. Purushotham, K. Cho, D. Sontag, and Y. Liu, “Recurrent
neural networks for multivariate time series with missing values,”
Scientific Reports, vol. 8, no. 1, p. 6085, 2018.

[12] R. Santeramo, S. Withey, and G. Montana, “Longitudinal detection
of radiological abnormalities with time-modulated LSTM,” in Deep
Learning in Medical Image Analysis and Multimodal Learning for
Clinical Decision Support. Springer, 2018, pp. 326–333.

[13] R. Gao, Y. Huo, S. Bao, Y. Tang, S. L. Antic, E. S. Epstein, A. B.
Balar, S. Deppen, A. B. Paulson, K. L. Sandler, P. P. Massion, and B. A.
Landman, “Distanced LSTM: Time-distanced gates in long short-term
memory models for lung cancer detection,” in International Workshop
on Machine Learning in Medical Imaging. Springer, 2019, pp. 310–
318.

[14] M. C. Voelkle, J. H. Oud, E. Davidov, and P. Schmidt, “An SEM
approach to continuous time modeling of panel data: Relating authori-
tarianism and anomia,” Psychological Methods, vol. 17, no. 2, p. 176,
2012.

[15] S. de Haan-Rietdijk, M. C. Voelkle, L. Keijsers, and E. L. Hamaker,
“Discrete-vs. continuous-time modeling of unequally spaced experience
sampling method data,” Frontiers in Psychology, vol. 8, p. 1849, 2017.

[16] J. L. Elman, “Finding structure in time,” Cognitive Science, vol. 14,
no. 2, pp. 179–211, 1990.

[17] F. A. Gers, N. N. Schraudolph, and J. Schmidhuber, “Learning precise
timing with LSTM recurrent networks,” Journal of Machine Learning
Research, vol. 3, pp. 115–143, 2002.

[18] J. Anumula, D. Neil, T. Delbruck, and S.-C. Liu, “Feature representa-
tions for neuromorphic audio spike streams,” Frontiers in Neuroscience,
vol. 12, p. 23, 2018.

[19] L. Beretta and A. Santaniello, “Nearest neighbor imputation algorithms:
A critical evaluation,” BMC Medical Informatics and Decision Making,
vol. 16, no. 3, pp. 197–208, 2016.

[20] F. J. Molnar, B. Hutton, and D. Fergusson, “Does analysis using “last
observation carried forward” introduce bias in dementia research?”
Canadian Medical Association Journal, vol. 179, no. 8, pp. 751–753,
2008.

[21] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: A simple way to prevent neural networks from over-
fitting,” The journal of machine learning research, vol. 15, no. 1, pp.
1929–1958, 2014.

[22] M. Mehdipour Ghazi, M. Nielsen, A. Pai, M. Modat, M. J. Car-
doso, S. Ourselin, and L. Sørensen, “Robust parametric modeling of
Alzheimer’s disease progression,” NeuroImage, vol. 225, p. 117460,
2021.

[23] A. L. Goldberger, L. A. Amaral, L. Glass, J. M. Hausdorff, P. C.
Ivanov, R. G. Mark, J. E. Mietus, G. B. Moody, C.-K. Peng, and H. E.
Stanley, “PhysioBank, PhysioToolkit, and PhysioNet: Components of a
new research resource for complex physiologic signals,” Circulation,
vol. 101, no. 23, pp. e215–e220, 2000.

[24] M. Mehdipour Ghazi, M. Nielsen, A. Pai, M. Modat, M. J. Cardoso,
S. Ourselin, and L. Sørensen, “On the initialization of long short-term
memory networks,” in International Conference on Neural Information
Processing. Springer, 2019, pp. 275–286.

[25] P. J. Garcı́a-Laencina, J.-L. Sancho-Gómez, and A. R. Figueiras-Vidal,
“Pattern classification with missing data: A review,” Neural Computing
and Applications, vol. 19, no. 2, pp. 263–282, 2010.

[26] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[27] L. Prechelt, “Early stopping–but when?” in Neural Networks: Tricks of
the Trade, 1998, pp. 55–69.

[28] T. Chai and R. R. Draxler, “Root mean square error (RMSE) or mean
absolute error (MAE)? – Arguments against avoiding RMSE in the
literature,” Geoscientific Model Development, vol. 7, no. 3, pp. 1247–
1250, 2014.

[29] F. Wilcoxon, “Individual comparisons by ranking methods,” Biometrics
Bulletin, vol. 1, no. 6, pp. 80–83, 1945.

[30] J. Futoma, S. Hariharan, and K. Heller, “Learning to detect sepsis with a
multitask Gaussian process RNN classifier,” in Proceedings of the 34th
International Conference on Machine Learning-Volume 70. JMLR. org,
2017, pp. 1174–1182.

[31] S. O. Sahin and S. S. Kozat, “Nonuniformly sampled data processing
using LSTM networks,” IEEE Transactions on Neural Networks and
Learning Systems, vol. 30, no. 5, pp. 1452–1461, 2018.

[32] S. Wu, S. Liu, S. Sohn, S. Moon, C.-i. Wi, Y. Juhn, and H. Liu,
“Modeling asynchronous event sequences with RNNs,” Journal of
Biomedical Informatics, vol. 83, pp. 167–177, 2018.

[33] R. T. Chen, Y. Rubanova, J. Bettencourt, and D. Duvenaud, “Neural
ordinary differential equations,” arXiv preprint arXiv:1806.07366, 2018.

[34] Y. Rubanova, T. Q. Chen, and D. K. Duvenaud, “Latent ordinary
differential equations for irregularly-sampled time series,” in Advances
in Neural Information Processing Systems, 2019, pp. 5321–5331.

[35] P. Kokic, “Standard methods for imputing missing values in financial
panel/time series data,” Working Paper Series 2, QANTARIS GmbH,
Frankfurt am Main, Germany, Tech. Rep., 2001.

[36] K. Van Montfort, J. H. Oud, and M. C. Voelkle, Continuous time
modeling in the behavioral and related sciences. Springer, 2018.

	I Introduction
	II The Proposed Method
	II-A CAR Model
	II-B RNN Model
	II-C CARRNN Model
	II-C1 CAR-RNN
	II-C2 CAR-LSTM
	II-C3 CAR-GRU

	II-D Time Binning
	II-E Handling Missing Values

	III Experiments and Results
	III-A Data
	III-B Experimental Setup
	III-C Results and Discussion
	III-C1 Validation performance for various time steps
	III-C2 Validation performance versus iteration
	III-C3 Test performance for various time points
	III-C4 Comparison to the state-of-the-art
	III-C5 Trajectory prediction and classification

	III-D General Discussion and Conclusion

	Appendix A: Backpropagation Through Time
	A-A CAR-RNN
	A-B CAR-LSTM
	A-C CAR-GRU

	References

