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Abstract—Tensor completion is a fundamental tool for in-
complete data analysis, where the goal is to predict missing
entries from partial observations. However, existing methods
often make the explicit or implicit assumption that the observed
entries are noise-free to provide a theoretical guarantee of exact
recovery of missing entries, which is quite restrictive in practice.
To remedy such drawback, this paper proposes a novel noisy
tensor completion model, which complements the incompetence
of existing works in handling the degeneration of high-order and
noisy observations. Specifically, the tensor ring nuclear norm
(TRNN) and least-squares estimator are adopted to regularize
the underlying tensor and the observed entries, respectively. In
addition, a non-asymptotic upper bound of estimation error is
provided to depict the statistical performance of the proposed
estimator. Two efficient algorithms are developed to solve the
optimization problem with convergence guarantee, one of which
is specially tailored to handle large-scale tensors by replacing the
minimization of TRNN of the original tensor equivalently with
that of a much smaller one in a heterogeneous tensor decom-
position framework. Experimental results on both synthetic and
real-world data demonstrate the effectiveness and efficiency of
the proposed model in recovering noisy incomplete tensor data
compared with state-of-the-art tensor completion models.

Index Terms—Tensor completion, tensor ring decomposition,
low-rank tensor recovery, image/video inpainting

I. INTRODUCTION

ATENSOR is an array of numbers, giving a faithful and
effective representation to maintain the intrinsic structure

of multi-dimensional data [1]. Many data collected in real-
world applications can be naturally expressed as high-order
tensors. For example, a color video sequence can be viewed
as a fourth-order tensor due to its spatial, color and temporal
variables; a light field image can be formulated as a fifth-
order tensor indexed by one color, two spatial, and two
angular variables. For this reason, numerous theoretical and
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numerical tools for tensor data analysis have been developed
and applied in many fields, including computer vision [2],
multi-view clustering [3], [4], blind source separation [5],
bio-informatics [6], pattern recognition [7], etc. Among them,
tensor completion is one of the most practical and significant
problems, which aims at predicting the missing entries of
a low-rank tensor with partial observations. Recent works
have demonstrated that the incomplete low-rank tensor can
be exactly or approximately recovered under some appropriate
assumptions, and have been successfully implemented to broad
tensor completion applications [8]–[10], such as, images and
videos inpainting [11]–[13], multi-relational link prediction
[14], [15], and achieve promising performance.

Low-rank tensor completion (LRTC) can be viewed as a
multi-dimensional extension of low-rank matrix completion
(LRMC) which aims at recovering the intrinsic low-rank
matrix with incomplete observations [16]–[20]. However, this
extension is rather nontrivial since it is difficult to find a
well-defined tensor rank for complex multilinear structure.
Two most popular tensor rank definitions are CANDECOM-
P/PARAFAC (CP) rank [21] and Tucker rank [22]. For a
given tensor, CP decomposition factorizes a tensor into the
sum of rank-1 components, and the minimum number of these
rank-1 components is defined as the CP rank. However, CP
decomposition often suffers from the issue of ill-posedness,
i.e., the optimal low-rank approximation does not always exist,
which may lead to a poor fit in practical applications [23],
[24]. Compared with CP rank, Tucker rank is a more promising
alternative, which is defined on the rank of unfolding matrices
along each mode [1]. Such treatment is often convenient and
reasonable, since it can obtain multi-dimensional low-rank
structure maintained in high-order tensors [25]–[27]. However,
this unbalanced (i.e., one versus the others) unfolding scheme
often yields fat matrices that have been blamed for their poor
restoration performance in LRMC problem. As a result, the
performance of Tucker rank based tensor completion methods
often tends to degrade due to this inevitable issue [8], [28].

In recent years, several novel tensor rank definitions have
been proposed to achieve state-of-the-art tensor completion
performance, e.g., tensor train (TT) rank [29], tensor tree rank
[30], and tensor ring (TR) rank [31]. Particularly, TR rank is
one of the most promising methods. According to the circular
structure of TR decomposition, given a high-order tensor, the
TR rank minimization problem can be squared to multiple rank
minimization subproblems of square unfolding matrix [32],
which can conceptually solve the existing issues of Tucker
and TT rank. Fig. 1 shows the intuitive representation of
TR decomposition and differences between three unfolding
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1 2 3 10 … 6553 6554 6555
4 5 6 13 … 6556 6557 6558
7 8 9 16 … 6559 6560 6561

1 10 19 28 … 6517 6526 6535
2 11 20 29 … 6518 6527 6536
3 12 21 30 … 6519 6528 6537

7 16 25 34 … 6523 6532 6541
8 17 26 35 … 6524 6533 6542
9 18 27 36 … 6525 6534 6543

1 10     19     28     … 703   712   721
730   739   748   757   … 1432 1441 1450
1459 1468 1477 1486 … 2161 2170 2179

4383 4392 4401 4410 … 5085 5094 5103
5112 5121 5130 5139 … 5814 5823 5832
5841 5850 5859 5868 … 6543 6552 6561

! ! ∈ ℝ"×!$%& ! ! ∈ ℝ'×&!' ! !,) ∈ ℝ%$×%$

… … … …

Fig. 1. Illustration of TR decomposition and different unfolding matrices. (a) A graphical representation of TR decomposition; (b) comparisons of different
unfolding matrices on an eighth-order tensor T ∈ R3×3×3×3×3×3×3×3 where the rank of unfolding matrices is associated with its Tucker, TT and TR rank,
respectively. The synthetic tensor T is generated by MATLAB command: T = reshape(1 : 6561, [3, 3, · · · , 3]).

schemes. In [33], Wang et al. first introduced a low-rank
TR completion model by alternatively minimizing the core
tensors. To avoid manually adjusting TR rank, Yuan et al.
[34] established a new TR rank minimization scheme by
minimizing nuclear norm on all core tensors. In [32], Yu et
al. proposed a tensor ring nuclear norm (TRNN) minimization
model for LRTC. To guarantee the completion performance
of TRNN, Huang et al. [10] further demonstrated that given a
tensor satisfied strong TR incoherence condition, it can be
exactly recovered with high probability. In [35], Yu et al.
proposed a parallel matrix factorization based method for low-
TR-rank tensor completion.

Most LRTC methods mentioned above assume that the
observed entries are noiseless. However, in real-world appli-
cations, data with missing issue caused by sensor failures,
storage errors, or other mistakes also usually suffers from noise
corruptions. Thus, it is rather desirable to predict tensor data
from both noisy and incomplete observations. Although noisy
tensor completion problem is more practical and worthwhile,
there is very limited literature and only a few related works on
this aspect. Tensor decomposition or total variation regulariza-
tion based models have been proposed to alleviate the noisy
completion problems [12], [36], [37], however the statistical
performance of all these methods is still unclear. For this
reason, Wang et. al introduced several tensor tubal rank based
methods to solve third-order noisy tensor completion problem
with theoretical guarantee [38]–[40]. Albeit interesting and
promising, tensor tubal rank is very sensitive to the choice of
the third-mode, and particularly difficult to capture complex
intra-mode and inter-mode correlations for high-order tensors.

In this paper, we propose to recover tensor data from
incomplete noisy observations, which substantially generalize
noisy matrix completion problem by not only deriving theo-
retical results and practical applications of noisy completion
to high-order tensors, but also providing more scalable and
efficient algorithms. The main contributions of this paper can
be summarized as following.

1) We propose a novel tensor completion model to predict
the missing entries with noisy observations based on
low-rank TR model, which complements the incompe-
tence of existing works in handling the degeneration of
high-order and noisy observations. We analyze a non-
asymptotic upper bound of the estimation error to reveal
the statistical performance of the proposed model, which

TABLE I
NOTATIONS USED IN THIS PAPER

Notations Descriptions
A, A, A(:, r), A(i, r) A tensor, matrix, the rth column and (i, r)th entry

of A, respectively.
IRk

An identity matrix of size Rk ×Rk .
〈A,B〉 Inner product of two tensor A and B: 〈A,B〉 =∑

i1

∑
i2
· · ·

∑
iK

A(i1i2 · · · iK)B(i1i2 · · · iK).
vec(A) Vectorizing a matrix A into a vector.
‖A‖ Spectral norm of A.
‖A‖∗ Nuclear norm of A.
‖A‖∞ `∞ norm of A: ‖A‖∞ = ‖vec(A)‖∞.
‖A‖F Frobenius norm of A: ‖A‖F =

√
〈A,A〉.

‖A‖trnn Tensor ring nuclear norm of A.
‖A‖∗trnn The dual norm of tensor ring nuclear norm.
ranktr(A) TR rank of A.
[K] The set of all positive integer less than K, i.e., [K] =

{1, 2, · · · ,K}.
⊗ The Kronecker product.

has been further proved to be optimal up to a logarithm
factor in a minimax sense.

2) We derive two algorithms based on alternating direc-
tion method of multipliers (ADMM) to solve the opti-
mization problem with convergence guarantee, namely,
noisy tensor ring completion (NTRC) and Fast NTRC
(FaNTRC). For FaNTRC, we minimize the TRNN
equivalently on a much smaller tensor in a hetero-
geneous tensor decomposition framework, which has
been shown to significantly improve the computational
efficiency, especially dealing with large-scale low-TR-
rank tensor data.

3) The proposed NTRC and FaNTRC are successfully
implemented in various noisy tensor data completion
problems, the experimental results demonstrate their su-
periority compared with state-of-the-art LRTC methods.

The remainder of this paper is organized as follows. Section
II presents a brief review on some notations and preliminaries.
In Section III, we introduce the noisy tensor ring completion
model, and analyze its non-asymptotic upper bound on Frobe-
nius norm, which has been further proved to be near-optimal
in a minimax sense. In Section IV, we develop two efficient
algorithms to solve the optimization problem with convergence
guarantee. Section V gives experimental results of noisy tensor
completion tasks on both synthetic and real-world tensor data.
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II. NOTATIONS AND PRELIMINARIES

A. Notations

We list some notations and their corresponding abbrevia-
tions in Table I. Let ε ∈ RN be i.i.d. Rademacher sequences.
Let c and its derivatives like c0, c1, etc., be the generic
absolute constants. Let D be the number of total entries of
the given tensor, i.e., D =

∏K
k=1 dk. For any a, b ∈ R, we let

a ∧ b = min{a, b}, and a ∨ b = max{a, b}. For the circular
mode-(k, s) unfolding matrix T(k,s) of size d1,k × d2,k, we
let d̃k = d1,k + d2,k, d̂k = d1,k ∧ d2,k, ďk = d1,k ∨ d2,k, and
k∗ = arg mink∈[K](d1,k ∧ d2,k).

B. Tensor Preliminaries

Definition 1 (TR decomposition [31]). The tensor ring (TR)
decomposition represents a Kth-order tensor T ∈ Rd1×···×dK
by the circular multilinear product over a sequence of third-
order core tensors, i.e., T = TR(G(1), · · · ,G(K)), where
G(k) ∈ Rrk×dk×rk+1 , k ∈ [K], and rK+1 = r1. Element-
wisely, it can be represented as

T(i1, i2, · · · , iK) =

r1,··· ,rK∑
υ1,··· ,υK

K∏
k=1

G(k)(υk, ik, υk+1). (1)

The size of cores, rk, k = 1, · · · ,K, denoted by a vector
[r1, · · · , rK ], is called TR rank.

Remark 1 (Multiple states in TR decomposition). TR decom-
position can be divided into three states, i.e., supercritical
(dk < rkrk+1), critical (dk = rkrk+1), and subcritical
(dk > rkrk+1) states [41]. Previous work [33] has also
experimentally found this fact in some real-world tensor data
in the sense that letting rkrk+1 > dk to achieve more
favorable recovery performance.

Lemma 1. Tensor data with TR supercritical or critical states
is full-Tucker-rank.

Proof of Lemma 1 is a part of proof of Lemma 3, it can be
found in Appendix I of supplementary material. According to
Lemma 1, incomplete tensor with TR supercritical or critical
states may not be recovered by Tucker rank minimization-
based methods, since it is a full-Tucker-rank approximation
problem.

Next, we give three tensor-matrix unfolding schemes, and
show their relationship with tensor ranks.

Definition 2 (Multi-index operation [42]). The multi-index
operation is given by

i1, i2, · · · , iK =i1 + (i2 − 1)d1 + (i3 − 1)d1d2 + · · ·
+ (iK − 1)d1 · · · dK−1,

(2)

where ik ∈ [dk], k ∈ [K].

Definition 3 (Canonical mode-k unfolding [1]). Let T be a
Kth-order tensor, its canonical mode-k unfolding is denoted
by T(k) of size dk ×

∏K
j 6=k dj , whose elements are given by

T(k)(ik, i1 · · · ik−1ik+1 · · · iK) = T(i1, i2, · · · , iK). (3)

Definition 4 (First k-modes unfolding [29]). Let T be a Kth-
order tensor, its first k-modes unfolding is denoted by T[k] of
size

∏k
i=1 di ×

∏K
j=k+1 dj , whose elements are given by

T[k](i1i2 · · · ik, ik+1 · · · iK) = T(i1, i2, · · · , iK). (4)

Definition 5 (Circular mode-(k, s) unfolding [32]). Let T be
a Kth-order tensor, its circular mode-(k, s) unfolding is a
matrix, denoted by T(k,s) of size d1,k × d2,k, where d1,k =∏k−1
u=l+1 du, d2,k =

∏l
v=k dv , and s is the number of indexes

included in d2,k, and

l =

{
k + s− 1, k + s ≤ K,
k + s− 1−K, otherwise.

(5)

Alternatively, its element-wise form is given by
T(k,s)(il+1 · · · ik−1, ik · · · il︸ ︷︷ ︸

s indexes

) = T(i1, i2, · · · , iK).

Given an arbitrary tensor T ∈ Rd1×d2×···×dK , the circular
mode-(k, s) unfolding of T can be easily implemented by
functions reshape and permute in MATLAB, i.e.,

T(k,s) = reshape(permute(T, [l + 1, · · · , k − 1, k, · · · , l︸ ︷︷ ︸
s indexes

]),

k−1∏
u=l+1

du,

l∏
v=k

dv).

Remark 2 ( Relationship between different tensor ranks and
unfolding schemes). Given an arbitrary Kth-order tensor with
TR rank [r1, · · · , rK ], the rank of each circular mode-(k, s)
unfolding matrix is bounded by rkrk+s [32]. This relationship
can also be found in Tucker (or TT) rank between canonical
mode-k (or first k-modes) unfolding [1], [29]. Therefore, the
complex tensor rank minimization problem can be equivalently
reduced to a series of matrix rank minimization subproblems.

According to Remark 2, to minimize TR rank, a natural
option is to consider the sum of rank of unfolding matrices:

min
T

K∑
k=1

αkrank(T(k,s)). (6)

However, problem (6) is computational intractable in general.
Motivated by the proxy of rank function, the sum of nuclear
norm has been adopted as a convex surrogate of (6), and
revealed in the following definition.

Definition 6 (Tensor ring nuclear norm (TRNN) [32]). Let T
be a tensor with TR rank [r1, · · · , rK ], then its TRNN is given
by:

‖T‖trnn =

K∑
k=1

αk‖T(k,s)‖∗, (7)

where αk ∈ [0, 1] and
∑K
k=1 αk = 1 corresponds to the weight

of mode-(k, s) unfolding.

TRNN is defined by the sum of nuclear norm on circular
mode-(k, s) unfolding matrices, which is similar with Tucker
nuclear norm (TcNN) [25] and tensor train nuclear norm
(TTNN) [28]. TcNN always minimizes the nuclear norm on
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multiple fat matrices due to its one versus the others unfolding
(see Definition 3), while the unfolding matrices of TTNN are
usually fat or thin matrices when k approaches to one or K
(see Definition 4). Instead, by simply setting s = dK/2e,
TRNN is defined on a series of square matrices. Interestingly,
minimizing nuclear norm on these square matrices often tends
to obtain exact recovery guarantee with small number of
observations in LRMC problem [43], since it is easier to
achieve rank(T) � d1 ∧ d2 than the fat or thin matrices
with d1 ∧ d2 � d1 ∨ d2. Additionally, according to Lemma 1,
incomplete tensor with TR supercritical state and TR critical
state may not be recovered via TcNN. However, TRNN can
avoid such issue, since the number of column and row of
the circular unfolding matrix is of order O(ddK/2e) and
O(dbK/2c), respectively, while the rank is merely of order
O(r2), indicating the sufficient low-rank structure in circular
unfolding matrix. Moreover, due to the square unfolding on
each order, the weights αk, k ∈ [K] of TRNN can be simply
set to 1/K rather than carefully adjusting the optimal value
as TcNN and TTNN.

Next, we give the dual norm of TRNN in the following
Lemma, which will play a significant role in statistical analysis
of the proposed estimator.

Lemma 2. The dual norm of TRNN is defined by

‖T‖∗trnn = inf
Y1+···+YK=T

max
k=1,··· ,K

αk
−1‖Yk

(k,s)‖, (8)

where Yk denotes the kth latent component.

The proof of the Lemma 2 is given in Appendix B of
supplementary material.

Definition 7 (Tensor uniform sampling). The sampling tensors
Xn are i.i.d. random tensor bases drawn from uniform distri-
bution Π on the set {ei1 ◦ ei2 ◦ · · · ◦ eiK : ∀(i1, i2, · · · , iK) ∈
[d1]× [d2]× · · · × [dK ]}.

III. NOISY TENSOR COMPLETION VIA LOW-RANK
TENSOR RING

Herein, we introduce a noisy LRTC model based on low-
rank tensor ring. Subsequently, we analyze its statistical
performance by establishing a non-asymptotic upper bound
of estimation error on Frobenius norm. Before giving the
proposed model, we first introduce two assumptions on the
unknown tensor and the distribution of noise, respectively.

A 1. Suppose `∞ norm of T is upper bounded by a positive
constant δ, that is, ‖T‖∞ ≤ δ.

A 2. Suppose random variables ξn, n ∈ [N ], are indepen-
dent and centered sub-exponential variables with unit vari-
ance, that is, there exists a constant Kξ > 0, such that,
maxn∈[N ] E[|ξn|/Kξ] <∞.

Note that these assumptions have also been widely used
for noisy matrix and tensor completion problems in previous
works [40], [44]–[46]. Assumption 1 reveals that the entries
of T are non-spiky, which is a common phenomenon in real-
world tensor data, such as images, video sequences, and rec-
ommendation systems. For assumption 2, the sub-exponential

distribution is a general distribution class, including Gaussian,
sub-Gaussian exponential, and Poisson distributions.

A. The Problem Formulation

Recovering a Kth-order tensor from N noisy and partially
observed entries can be formulated as the following noisy
tensor completion problem:

yn = 〈T,Xn〉+ σξn, n ∈ [N ], (9)

where yn is the n-th observed entry, T ∈ RI1×···×IK denotes
the unknown low-rank tensor, Xn, n ∈ [N ], are i.i.d. random
tensor basis drawn from uniform distribution, ξn and σ are the
random noise and standard deviation, respectively.

Note that (9) is an ill-posed problem without introducing
any priors in T. Such dilemma can be handled by the following
TR rank minimization problem:

min
T

ranktr(T),

s.t.
1

2
‖y − X(T)‖22 ≤ ε, ‖T‖∞ ≤ δ,

(10)

where ε controls the noise level, and ranktr(·) denotes the
TR rank. X(·) is the tensor uniform sampling operator, given
by X(T) = (〈X1,T〉, 〈X2,T〉, · · · , 〈XN ,T〉)> ∈ RN . Since
(10) is an NP-hard problem, according to (7), we relax it by
minimizing the following convex TRNN function:

min
T
‖T‖trnn,

s.t.
1

2
‖y − X(T)‖22 ≤ ε, ‖T‖∞ ≤ δ.

(11)

Furthermore, we can equivalently formulate the inequality
constraint to the following regularization problem:

min
T

1

2
‖y − X(T)‖22 + λ‖T‖trnn,

s.t. ‖T‖∞ ≤ δ,
(12)

where λ is a positive scalar to achieve a trade-off between the
degree of fitting error of the observed entries and low-TR-rank
penalty.

B. Non-asymptotic Upper Bound

Based on the above noisy tensor completion problem, we
analyze a non-asymptotic upper bound of the estimation error
on the Frobenius norm to reveal the statistical performance of
the proposed estimator (12).

Theorem 1. Let X(·) be a tensor uniform sampling op-
erator, the true low-TR-rank tensor T∗ and random noise
variables ξn satisfy Assumptions 1 and 2, respectively. If

λ ≥ c0σ

√
N log(d̃k∗)/d̂k∗ , then we have probability at least

1− 3/d̃k∗ , such that

‖T∗ − T̂‖2F
D

≤ c1 max

{
(δ2 ∨ σ2)

Kďk∗Rtr log(d̃k∗)

N
,

δ2

√
log d̃k∗

N

 ,

(13)
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where Rtr = (
∑K
k=1 αk

√
rkrk+s)

2, co and c1 denote positive
constants, T̂ is the flexible solution of problem (12).

We leave the proof of Theorem 1 in Appendix C of supple-
mentary material. The result shows that for incomplete low-
TR-rank tensor, the per-entry estimation error can be upper
bounded by the righ-hand side of (13) with high probability.
Note that when K = 2, TRNN reduces to matrix nuclear
norm. Thus, the noisy matrix completion is a special case of
the proposed method, and the non-asymptotic upper bound of
noisy matrix completion in Theorem 7 in [20] is a special
case of our Theorem 1. Additionally, the tensor algebras are
more complicated than those in noisy matrix cases, making
the proofs different from [20]. For example, our proofs require
establishing the upper bound of the spectral norm on random
tensors (see Lemmas 6 and 7). It is more challenging than
matrix completion since some important results in matrix’s
case, e.g., Bernstein inequality, do not have equivalent form
for high-order tensors. The proofs of Theorem 1 also require
generalizing several important properties of TRNN, such as
the decomposability of TRNN and inequality relationship
between Frobenius norm and TRNN on tensors. Furthermore,
as discussed in the following paragraph, our result in Theorem
1 is more promising than that of matrix and Tucker rank-based
methods.

For simplicity, we assume rk = r, dk = d and αk =
1/K, k ∈ [K], Theorem 1 states that the estimation error
satisfies

‖T∗ − T̂‖2F
D

.
r2Kdd

K
2 e log(db

K
2 c + dd

K
2 e)

N
, (14)

with high probability. Thus, the sample complexity of the
proposed estimator is

O(r2Kdd
K
2 e log(db

K
2 c + dd

K
2 e)). (15)

Note that (15) is suboptimal when compared to TR decom-
position with degree of freedom O(r2dK). This is actually
a common issue in sum of nuclear norm convex surrogates
for low-rank tensor recovery problems [47]–[50]. Neverthe-
less, the result in Theorem 1 is still promising. The sample
complexity is substantially much lower than the number of
tensor entries dK . Additionally, even when r approaches d, the
sample complexity of our estimator is still significantly lower
than dK . This result is surprising since it is not aligned with
matrix and Tucker rank-based methods which require even full
observations as the rank approaches to d.

C. Minimax Lower Bound

In this section, we present a minimax lower bound of the
proposed Theorem 1. We let inf

T̂
be the infimum over all the

flexible solution of our model, and supT∗ be the supremum
over all the ”true” tensor T∗. We come up with the following
theorem.

Theorem 2. Suppose that the random variables ξn are i.i.d.
Gaussian N (0, σ2), n ∈ [N ], and σ > 0. Then there exist
absolute constants % ∈ (0, 1) and c > 0, such that

inf
T̂

sup
T∗

PT∗

(
‖T∗ − T̂‖2F

D
> c(δ2 ∧ σ2)

Kďk∗Rtr
N

)
≥ %,

(16)
where Rtr = (

∑K
k=1 αk

√
rkrk+s)

2.

The proof of Theorem 2 can be found in Appendix H of
supplementary material. Comparing (13) and (16), we can
observe that the rate is minimax optimal up to a logarithm
factor.

D. Comparisons with Previous Work

Both tensor ring with balanced unfolding (TRBU) [10] and
the proposed estimator are able to give statistical or exact
recovery performance for low-TR-rank tensor completion.
Here, we analyze the superiority of the proposed estimator.

1) TRBU requires structural assumption on core tensors,
which extends matrix strong incoherence conditions by
letting canonical mode-2 unfolding of core tensors not
be aligned with the standard basis, that is,

‖G(k)
(2)G

(k)
(2)

>
− rkrk+1

dk
Idk‖∞ ≤ µk

√
rkrk+1

dk
, k ∈ [K],

(17)
where µk > 0, k ∈ [K]. Compared with TRBU,
priors on our estimator are significantly mild. The only
assumption on unknown tensor is its upper bound on
`∞ norm, which can be easily verified in real-world data.
However, it is still unclear how to estimate the existence
of strong TR incoherence conditions on incomplete
tensor data. Furthermore, even if the incomplete tensor is
coherent, the proposed model can still be reliable since
it haven’t involved with the structure assumption on the
intrinsic low-TR-rank tensor.

2) TRBU can only obtain exact recovery performance with
high probability in noiseless tensor completion case. The
proposed model achieves the statistical performance for
noisy observations, which is more practical and feasible
in real-world applications.

We show the superiority of the proposed estimator compared
with tensor completion (tensor recovery) methods based on
CP rank, Tucker rank and TT rank, respectively.

1) In [51], Yuan and Zhang claimed that recovering incom-
plete third-order tensor of size d× d× d with CP rank
rcp required sample size r1/2

cp (d log d)3/2. However, the
optimal low-CP-rank approximation is NP-complete and
is typically intractable.

2) Tomioka et al. [48] claimed that recovering Kth-order
tensor of size d× · · ·× d with Tucker rank [rtc, · · · , rtc]
requires O(rtcd

K−1) Gaussian measurements for tensor
compressive sensing problem, and Mu et. al further
reduced the complexity to O(r

bK2 c
tc dd

K
2 e). However,

Tucker rank-based method suffers from the similar flaw
as LRMC, that is, as rtc approaches d, nearly full obser-
vations are required to recover the incomplete tensor.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

3) Rauhut et al. [52] proposed to solve low-TT-rank tensor
compressive sensing using iterative hard thresholding
(IHT) algorithm, and provided a convergence result
based on tensor restricted isometry property (TRIP).
The authors claimed that recovering a K-order tensor
of size d× d× · · · × d with TT rank [rtt, · · · , rtt] using
sub-Gaussian linear maps satisfied TRIP with level δr
required O((δ−2

r (K−1)r3
tt +Kdrtt) log(Krtt)) measure-

ments. Unfortunately, the sampling condition for tensor
completion does not hold for the TRIP. Additionally, the
optimal low-rank projection for IHT algorithm is also
intractable in practice.

Now, we demonstrate the advantages of the proposed model
over noisy tubal rank tensor completion models.

1) Tensor tubal rank based models [38]–[40], transform a
tensor into Fourier domain in the specific third-order and
then estimate its low-rank approximation on all frontal
slice matrices. In contrast, the proposed model can not
only be easily extended to high-order tensor, but also be
insensitive to the dimensional orientation.

2) As mentioned in previous works [1], [29], [31], high-
order tensors usually maintain low-rank structure in
multiple orders. The proposed method can efficiently
exploit the low-rank structure in high-order tensors,
which is seen as one of the most effective advantages
compared with matrix and tubal rank based methods.
The experimental results in Section V also verified this
statement.

IV. OPTIMIZATION ALGORITHMS

In this section, we introduce two ADMM based algorithms,
namely, noisy tensor ring completion (NTRC) and fast NTRC
(FaNTRC) to solve the optimization problem.

A. NTRC Optimization Algorithm
In problem (12), the variable {T(k,s)}Kk=1 shares the same

entries K times in computing TRNN, which makes it difficult
to solve the optimization problem directly. Thus, we introduce
K auxiliary variables {Mk}Kk=1 to relax such constraint:

min
T

1

2
‖y − X(T)‖22 + λ

K∑
k=1

αk‖Mk
(k,s)‖∗ + κ∞δ (T),

s.t. Mk = T, k ∈ [K],

(18)

where Mk ∈ Rd1×d2×···×dK denotes the kth auxiliary vari-
able. The κ∞δ (·) denotes the `∞ norm indicator function:

κ∞δ (T) =

{
0, if T ∈ Sδ,
∞, otherwise,

(19)

where Sδ := {T ∈ Rd1×d2···×dK , ‖T‖∞ ≤ δ}. In order to
solve the equality constraints, we formulate the augmented
Lagrangian function of (18) as

`1µ

(
{Mk}Kk=1, {Q

k}Kk=1,T
)

=
1

2
‖y − X(T)‖22 + κ∞δ (T)

+

K∑
k=1

(
λαk‖Mk

(k,s)‖∗ + 〈Qk,Mk − T〉+ µ

2
‖Mk − T‖2F

)
,

(20)

Algorithm 1 NTRC Optimization Algorithm
Input: y, {Xn}Nn=1.

Initialisation: {αk}Kk=1, µ
0 = 10−4, ν = 1.1, µmax =

1010, tol = 10−6, zero filled with Mk,Qk, k ∈ [K], t=1.
1: while not convergenced do
2: for k = 1, · · · ,K do
3: Update Mk,t+1 using (21).
4: end for
5: Update Tt+1 using (25).
6: for k = 1, · · · ,K do
7: Update Qk,t+1 using (26) .
8: end for
9: µt+1 = min(µmax, νµ

t).

10: Check the convergence condition: ‖T
t+1−Tt‖F
‖Tt‖F ≤ tol.

11: t = t+ 1.
12: end while

where Qk denotes the kth dual variable, and µ is a positive
penalty scalar. Note that it is rather difficult to simultaneously
optimize multiple sets of variable in this objective function.
An alternative scheme is to solve each set of variables using
alternating direction method (ADM) [53].

1) The {Mk}Kk=1-subproblems: For {Mk
(k,s)}Kk=1 subprob-

lems, they can be solved by updating Mk
(k,s) while fixing the

others:

Mk,t+1
(k,s) = arg min

Mk
(k,s)

τ‖Mk
(k,s)‖∗

+
1

2
‖Mk

(k,s) −Tt
(k,s) +

1

µ
Qk,t

(k,s)‖
2
F

= P∗τ (Tt
(k,s) −

1

µt
Qk,t

(k,s)), (21)

where τ = λαk/µ
t, and P∗τ (A) denotes the singular value

thresholding (SVT) [54] method:

P∗τ (A) = Umax(Σ− τ, 0)V>, (22)

where [U,Σ,V] = SVD(A).
2) The T-subproblem: The T-subproblem can be equiva-

lently formulated as the following vectorization form:

vec(Tt+1) = arg min
T
κ∞δ (vec(T)) (23)

+‖vec(T)−(X>X + µtKID)−1

(µt
K∑
k=1

vec(Qk,t + Mk,t)−Xy)‖22, (24)

which can be solved by deriving the KKT condition:

vec(Tt+1) = P∞δ (f t+1) = sgn(f t+1)�min(|f t+1|, δ), (25)

where f t+1 = (X>X + µtKID)−1(µt
∑K
k=1 vec(Qk,t +

Mk,t+1)−Xy), and X(:, n) = vec(Xn).
3) The {Qk}Kk=1-subproblems: The dual variables

{Qk}Kk=1 can be updated by the gradient ascent method:

Qk,t+1 = Qk,t + µt(Mk,t+1 − Tt+1), k ∈ [K]. (26)

The details of the optimization procedure are summarized in
Algorithm 1.
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Algorithm 2 FaNTRC Optimization Algorithm
Input: y, {Xn}Nn=1.

Initialisation: {αk}Kk=1, η = 10−4, ν =1.1, ηmax = 1010,
tol = 10−6, zero filled with Mk,Qk, k ∈ [K], t = 1.

1: while not convergenced do
2: for k = 1, · · · ,K do
3: Update Ut+1

k via solving (31).
4: end for
5: Update T̃

t+1
using (33).

6: for k = 1, · · · ,K do
7: Update Lk,t+1 using (34).
8: end for
9: Update Tt+1 using (35).

10: Update Pt+1 and Rk,t+1, k ∈ [K], using (36).
11: η = min(ηmax, νη).

12: Check the convergence condition: ‖T
t+1−Tt‖F
‖Tt‖F ≤ tol.

13: t = t+ 1.
14: end while

B. Fast NTRC Optimization Algorithm

The main computational cost of NTRC is singular value
decomposition (SVD) for nuclear norm minimization on un-
folding matrices, which may prevent its applications in large-
scale tensor completion problem. In order to alleviate such
bottleneck, we introduce a fast NTRC (FaNTRC) algorithm,
i.e., to minimize TRNN equivalently on a much smaller tensor.
To establish the relationship between these two algorithms, we
further show that its global optimal solution is exactly the same
as that of NTRC.

We first explore the relationship between TR and Tucker
decomposition.

Lemma 3. Given an arbitrary tensor T ∈ Rd1×···×dK . If
the TR decomposition of T is T = TR(G(1), · · · ,G(K)),
and G ∈ Rrk×dk×rk+1 , k ∈ [K]. Then T can be equiv-
alently represented by Tucker decomposition format T =
T̃ ×1 U1 · · · ×K UK , where Uk ∈ Rdk×Rk , k ∈ [K], and
Rk = (rkrk+1 ∧ dk), denote the column orthogonal matrices.

We leave the proof of Lemma 3 in Appendix I of supple-
mentary material. Lemma 3 depicts that given a tensor with
TR rank [r1, · · · , rK ], it can be also represented by the Tucker
decomposition format, which motivates us to come up with the
following theorem.

Theorem 3. Given a tensor T ∈ Rd1×d2···×dK with TR rank
[r1, · · · , rK ], Uk ∈ St(dk, Rk), (rkrk+1 ∧ dk) ≤ Rk ≤ dk,
k ∈ [K] and T̃ satisfy T = T̃ ×1 U1 ×2 U2 · · · ×K UK , then
we have:

‖T‖trnn = ‖T̃‖trnn, (27)

where St(dk, Rk) := {Uk,Uk ∈ Rdk×Rk ,U>k Uk = IRk
}

denotes the Stiefel manifold.

The proof of Theorem 3 can be found in Appendix J of
supplementary material.

Equipped with Theorem 3, we can solve the high com-
putational TRNN minimization problem in a more efficient
manner than the existing methods, i.e., computing SVD on a

much smaller circular unfolding matrix T̃(k,s) ∈ RR1,k×R2,k ,
where R1,k =

∏k−1
j=l+1Rj and R2,k =

∏l
i=k Ri. Though this

similar strategy has been used in Tucker tensor nuclear norm
minimization problem [26], [55], our method is very different
from that of these works since our method is implemented
in a heterogeneous framework in the sense that equivalently
minimizing TRNN in a Tucker decomposition format. For
example, we have to explore the connection between TR and
Tucker decomposition to meet our analysis. Moreover, it is
also crucial for us to establish the relationship of circular
unfolding between the original tensor and its Tucker decom-
position format. Therefore, these dilemmas make our analysis
more complicated than those homogeneous frameworks that
directly performing Tucker tensor nuclear norm on its Tucker
decomposition format. Note also that these results are very
fundamental and crucial to break the gap between different
tensor decomposition models, and are also very promising to
extend to other tensor decomposition models, e.g., tensor train
and tensor tree decomposition.

Consequently, according to Theorem 3, problem (12) can
be equivalently reformulated as

min
T,T̃,{Uk}Kk=1

1

2
‖y − X(T)‖22 + λ‖T̃‖trnn + κ∞δ (T),

s.t. T = T̃ ×U1 · · · ×K UK ,

Uk ∈ St(dk, Rk), k ∈ [K].

(28)

Now we show that with appropriate choice of Rk, k ∈ [K],
the global optimal solution of (28) is the same as that of (12).

Theorem 4. Suppose ({U′k}Kk=1, T̃
′
) and T′ are the global

optimal solutions of problem (28) and problem (12) with
(rkrk+1 ∧ dk) ≤ Rk ≤ dk, k ∈ [K], respectively, then
T̃
′
×1 U′1 · · · ×K U′K is also the optimal solution of problem

(12).

The proof of Theorem 4 can be found in Appendix K of
supplementary material.

To tackle the constrained optimization problem (28), we
formulate its augmented Lagrangian function as

`2η(T, T̃,{Uk}Kk=1, {L
k}Kk=1,P, {R

k}Kk=1) =
1

2
‖y − X(T)‖2F

+〈P,T − T̃ ×1 U1 · · · ×K UK〉+ κ∞δ (T)

+
η

2
‖T − T̃ ×1 U1 · · · ×K UK‖2F + λ

K∑
k=1

αk‖Lk(k,s)‖∗

+

K∑
k=1

(
〈Lk − T̃,Rk〉+

η

2
‖Lk − T̃‖2F

)
,

s.t. Uk ∈ St(dk, Rk), k ∈ [K],
(29)

where P and {Rk}Kk=1 are dual variables, η > 0 is penalty
parameter. Based on the augmented Lagrangian function (29),
we solve each subproblem alternatively by fixing the others.

1) The {Uk}Kk=1-subproblems: According to (29), the Uk-
subproblem can be formulated as the following maximization
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problem over factor matrix Uk:

max
Uk

〈T̃
t
×m6=kUt

m, (
1

ηt
Pt+Tt)×kU>k 〉, s.t. Uk ∈ St(dk, Rk),

(30)
where T̃

t
×m 6=kUt

m denotes T̃
t
×1U

t+1
1 · · ·×m−1U

t+1
m−1×m+1

Ut
m+1 · · · ×K Ut

K , and it can be further reformulated as

Ut+1
k = arg max

Uk

Tr(U>k (
1

ηt
Pt

(k) + Tt
(k))B

t
(k)),

s.t. Uk ∈ St(dk, Rk),
(31)

where Bt
(k) denotees the canonical mode-k unfolding of

T̃
t
×m6=kUt

m. Note that (31) is actually a well-known orthog-
onal procrustes problem [56], whose global optimal solution is
given by SVD, i.e., Ut+1

k = Ũ
t

kṼ
t>
k , where Ũ

t

k and Ṽ
t>
k de-

note left and right singular vectors of (1/ηtPt
(k) +Tt

(k))B
t
(k),

respectively. By alternatively solving the maximization prob-
lem (31), we can obtain the optimal solution of {Uk}Kk=1.

2) The T̃-subproblem: By fixing all the other variables, the
T̃-subproblem is given by:

min
T̃

‖( 1

ηt
Pt + Tt+1)− T̃ ×1 Ut+1

1 · · · ×K Ut+1
K ‖

2
F

+

K∑
k=1

‖ 1

ηt
Rk,t + Lk,t − T̃‖2F ,

(32)

whose closed-form solution can be obtained directly:

T̃
t+1

=
1

K + 1
(

1

ηt
Pt + Tt)×1 Ut+1,>

1 · · · ×K Ut+1,>
K

+
1

K + 1

K∑
k=1

1

ηt
Rk,t + Lk,t.

(33)

3) The {Lk}Kk=1-subproblems: The Lk can be solved by
minimizing the following subproblem:

Lk,t+1
(k,s) = arg min

Lk
(k,s)

λαk
ηt
‖Lk(k,s)‖∗

+
1

2
‖Lk(k,s) +

1

ηt
Rk,t

(k,s) − T̃
t+1

(k,s)‖2F .
(34)

Similar to (s), it can be easy to obtain its closed-form solution
by the SVT method.

4) The T-subproblem: We update the variable T by fixing
the others:

vec(Tt+1) = arg min
T
κ∞δ (T) + ‖vec(T)− (X>X + ηID)−1

(Xy − vec(Pt − ηtT̃
t+1
×1 Ut+1

1 · · · ×K Ut+1
K ))‖22,

(35)

whose closed-form solution can be obtained as (23).
5) The (P, {Rk}Kk=1)-subproblems: The dual variables P

and {Rk}Kk=1 can be updated by the gradient ascent method:

Pt+1 = Pt + ηt(Tt+1 − T̃
t+1
×1 Ut+1

1 · · · ×K Ut+1
K ),

(36)

Rk,t+1 = Rk,t + ηt(Lk,t+1 − T̃
t+1

), k ∈ [K]. (37)

The details of the optimization procedure are summarized in
Algorithm 2.

C. Computational Complexity Analysis

For simplicity, we assume that the observed tensor is of
size d1 = · · · = dK = d, the given rank satisfies R1 =
· · · = RK = R, and s = dK/2e. For Algorithm 1, the
main per-iteration cost lies in (21), which requires computing
SVD of dK/2 × dK/2 matrices. Therefore, the per-iteration
complexity is O(Kd3K/2). For Algorithm 2, the main per-
iteration cost lies in computing multiplication operation in
(30) and (35), and calculating SVD in (31) and (34). The
multiplication operations in (30) and (35) involve complexity
O(KRdK) and O(

∑K
k=1R

K−k+1dk), respectively. The com-
putational costs of SVD in (31) and (34) are O(KR2dK−1)
and O(KR3K/2), respectively. Hence, the total computational
cost in one iteration of Algorithm 2 are given by

O(KRdK +KR2dK−1 +

K∑
k=1

RK−k+1dk +KR3K/2). (38)

Note that when R � d, the computational cost of Algorithm
2 is significantly lower than that of Algorithm 1 and the other
TRNN based methods.

D. Convergence Analysis

The proposed NTRC is the classical two-block convex
ADMM optimization algorithm, and the convergence results
can be directly induced according to previous works [57], [58].
FaNTRC is a nonconvex ADMM algorithm for which the
theoretical convergence guarantee is difficult to derive. Instead,
we provide weak convergence results for FaNTRC under mild
condition.

Theorem 5. Let (Tt, T̃
t
, {Ut

k}Kk=1, {L
k,t}Kk=1,P

t, {Rk,t}Kk=1)
be the sequences generated by Algorithm 2 (FaNTRC).
Suppose that the sequence {Pt} is bounded, then we have
the following conclusions.

1) (Tt, T̃
t
, {Ut

k}Kk=1, {L
k,t}Kk=1) are Cauchy sequences.

2) Any accumulation point of sequences
(Tt, T̃

t
, {Ut

k}Kk=1, {L
k,t}Kk=1) satisfy the KKT

conditions for problem (28).

The proof sketches of Theorem 5 can be found in Ap-
pendix L of the supplementary material. In addition, we also
experimentally investigate the RE and PSNR values versus the
iteration number for the proposed NTRC and FaNTRC in Fig.
12. We can clearly observe that the proposed methods usually
converge after only approximately 50 iterations, indicating the
effective convergence behavior of the proposed algorithms.

V. EXPERIMENTAL RESULTS

In this section, we conduct four experiments to evaluate
noisy tensor completion performance of the proposed NTRC
and FaNTRC on synthetic and real-world data sets including
color images, light field images, and video sequences. All
experiments are run in MATLAB 9.4 on a Linux personal
computer equipped with dual Intel E5 2640v4 and 128GB
of RAM. We then present numerical results to compare with
several state-of-the-art tensor completion methods including
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Fig. 2. Comparison of estimation error on different synthetic tensor. (a) Plots
of estimation error versus the observation numbers N = pd4 with d ∈
{10, 20, 30}; (b) Plots of estimation error versus the normalized observation
numbers N0 = N/(r2Kdd

K
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Fig. 3. Plots of estimation error versus the square of TR rank. (a) Estimation
error versus the square of TR rank on synthetic tensor of size R10×10×10×10;
(b) Estimation error versus the square of TR rank on synthetic tensor of size
R20×20×20×20.

TMac-inc [27] 1 , HaLRTC [25] 2, SiLRTC-TT [28] 3, TRLRF
[34] 4, TRNNM [32] 5, and NoisyTNN [40] 6. Due to space
limitation, further experimental results are included in the
supplementary material.

The sampling method of all experiments is random sampling
with respect to different sampling ratios (SR), which is given
by SR = N/D × 100%, where N denotes the number of
observed entries. To evaluate all the compared methods in
terms of tensor completion performance, we adopt two mea-
sure metrics, namely relative error (RE), and peak signal-to-
noise ratio (PSNR). The RE is a common metric for recovery
performance between the approximated tensor T̂ and the
original one T∗, which is given by RE = ‖T̂−T∗‖F /‖T∗‖F .
The PSNR denotes the ratio between maximum possible power
of a signal and the power of corrupted noise, and is given by

PSNR = 10 log10(
D‖T̂‖∞
‖T̂ − T∗‖F

). (39)

A. Application to Synthetic Tensor Completion
We conduct two experiments on synthetic data to evaluate

the recovery performance of the proposed NTRC and FaNTRC

1https://xu-yangyang.github.io/TMac/
2https://www.cs.rochester.edu/u/jliu/publications.html
3https://sites.google.com/site/jbengua/home
4https://github.com/yuanlonghao/TRLRF
5The code was provided by Dr. Jinshi Yu
6The code was provided by Dr. Andong Wang
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Fig. 4. Plots of RE under different noise distributions versus SR on synthetic
tensors. (a) RE versus SR on synthetic tensor of size R10×10×10×10 with
TR rank rk = dlog1/2 dke, k ∈ [4]; (b) RE versus SR on synthetic tensor
of size R20×20×20×20 with TR rank rk = dlog1/2 dke, k ∈ [4].
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Fig. 5. Plots of RE of different methods versus varying TR rank. (a) RE
versus TR rank on synthetic tensor of size R30×30×30×30 with noise level
c = 0.01; (b) RE versus TR rank on synthetic tensor of size R30×30×30×30

with noise level c = 0.05.

for recovering incomplete and noisy low-rank tensors. We
generate a fourth-order tensor T ∈ Rd1×d2×d3×d4 with TR
rank [r1, r2, r3, r4] as follows. First, we produce four TR
cores G(k) ∈ Rrk×dk×rk+1 , k ∈ [4], using Matlab command
G(k) =rand(rk, dk, rk+1). For simplicity, we let dk = d and
rk = r, k ∈ [4], in all experiments below. Then we construct
a synthetic tensor by using tensor circular product T∗ =
TR(G(1),G(2),G(3),G(4)). In order to meet noisy condition,
we produce an additive noise tensor from N (0, σ2) distribu-
tion, where we set the standard deviation σ = c‖T∗‖F /

√
D to

keep a constant signal noise ratio. Finally, we sample N = pd4

entries uniformly to form the partially observed noisy tensor,
where p denotes the SR.

1) Sharpness of the Proposed Upper Bound: In this exper-
iment, we set the tensor size dk = d, d ∈ {10, 20, 30}, k ∈
[4] and TR rank rk = dlog1/2 dke, k ∈ [4] following by

[38]. For the parameter λ, we let λ0 = σ

√
N log(d̃k∗)/d̂k∗

and chose the optimal one by scaling it λ = aλ0,
where a is experimentally selected in the candidate set
{10−3, 10−2, 10−1, 1, 10, 102, 103}. To fix the signal-to-noise
ratio (SNR) regardless of tensor size [59], we normalize T∗

to have unit Frobenius norm, and set the noise level c = 0.01.
We repeat 25 trials using the proposed NTRC algorithm and
compute the mean of estimation error ‖T∗ − T̂‖2F over all
the trials. Fig. 2 (a) depicts the estimator error obtained by
NTRC algorithm versus the observation numbers, The curves
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Fig. 6. Plots of RE of FaNTRC versus different given rank R. (a) RE versus
given rank on synthetic tensor of size R30×30×30×30; (b) RE versus given
rank on synthetic tensor of size R50×50×50×50.
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Fig. 7. 20 benchmark color images whose sizes are all 512× 512× 3.

of Fig. 2 (a) decreases as the observation number N increases
with . Additionally, synthetic tensor with larger size required a
larger number of observations. According to the constant SNR
settings, we substitute σ = 0.01‖T∗‖F /

√
D to the the right

hand-side of (13), and obtain

‖T̂ − T∗‖2F ≤ c(10−4 ∨Dδ2)
r2Kdd

K
2 e log(db

K
2 c + dd

K
2 e)

N
(40)

holds with high probability. Following by [59], the proposed
upper bound is sharp if the estimation error should scale like

‖T̂ − T∗‖2F = O(
r2Kdd

K
2 e log(db

K
2 c + dd

K
2 e)

N
). (41)

By setting the rescaled observation number N0 defined by

N0 :=
N

r2Kdd
K
2 e log(db

K
2 c + dd

K
2 e)

, (42)

the curves should be relatively aligned regardless of tensor
sizes. We re-plot the estimation error versus the rescaled
observation number in Fig. 2 (b), and observe that all the three
curves are well-aligned, which demonstrates the sharpness of
the proposed upper bound.

2) Effects of Varying TR ranks: In this experiment, we
investigate the influence of TR rank on the estimation error as
well as the noise distribution on RE. The experiments are con-
ducted on synthetic tensor with size dk = d, d ∈ {10, 20}, k ∈
[4], TR rank rk = r, r = {1, 2, 3, 4, 5, 6}, k ∈ [4]. We set
noise level c = 0.01 and SR = 40%. We repeat 25 trials
using the proposed NTRC algorithm and compute the mean

Buddha Buddha2 Mona Papillon

Fig. 8. Center view of four light field images.

of estimation error over all the trials. We plot the estimation
error versus the square of TR rank in Fig. 3. It can be seen
that the estimation error scales linearly against the square of
TR rank, which agrees with the result in (41).

3) Effects of Different Sub-exponential Noises: In this ex-
periment, we investigate the effectiveness of the proposed
estimator for dealing with different sub-exponential noises.
We generate the synthetic tensor of size dk = d, d ∈
{10, 20}, k ∈ [4] and TR rank rk = dlog1/2 dke, k ∈ [4]. We
generate three types of noises include Gaussian noise, sub-
Gaussian noise, and Poisson noise. For Gaussian distribution
noise, we produce the noise tensor from N (0, σ2), where
σ = 0.01‖T∗‖F /

√
D. For sub-Gaussian distribution noise,

we generate the noise using Uniform distribution U [−0.5, 0.5].
For Poisson distribution noise, we generate the noise tensor
from Pois(0.01). The incomplete tensors are generated by
uniformly selecting entries at random with SR from 10% to
90%. We repeat 25 trials using NTRC algorithm and compute
the mean of RE. Fig. 4 shows the RE versus varying SR. We
can see that the RE on different noise distributions on two
distinct tensor sizes is relatively low and decreases as the SR
increases, which indicates the effectiveness of the proposed
estimator for recovering incomplete tensors with different sub-
exponential noises.

4) Effects of Multiple TR States: To verify the effectiveness
of the proposed methods in multiple TR states, we investigate
the RE of different methods versus varying TR ranks. We
consider the synthetic tensor of size R30×30×30×30, TR rank
rk = r, r ∈ {2, 3, 4, 5, 6, 7}, k ∈ [4]. The zero-mean Gaussian
noise is generated with noise levels c = 0.01 and c = 0.05,
and the SR is set to 40%. We repeat 25 trials and compute the
mean of RE. Fig. 5 depicts the RE of different methods on
different noise levels versus varying TR rank r. The proposed
NTRC achieves the lowest RE in all the cases, especially when
the noise level is large. When r ≤ 5, HaLRTC can well
approximate the incomplete tensor. However, when r ≥ 6,
the synthetic tensor is supercritical (r2 > d), i.e., full-Tucker-
rank, the RE of HaLRTC grows dramatically as r increases,
which verifies the results revealed in Lemma 1.

5) Effects of the Given Rank for FaNTRC: We investigate
the effects of the given rank for FaNTRC. We consider the
synthetic tensor of size dk = d, d ∈ {30, 50}, k ∈ [4],
TR rank rk = r, r ∈ {3, 4, 5, 6}, k ∈ [4]. We produce the
noise tensor using zero-mean Gaussian distribution with noise
level c = 0.01 as in the above experiment, and sample the
incomplete tensor using uniform distribution with SR = 40%.
Fig. 6 presents the RE of FaNTRC on different low-rank
synthetic tensor versus the given rank Rk, where we set Rk =
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Fig. 9. Comparison of the RE, PSNR and the algorithm running time (seconds) on the benchmark images. (a) Comparison of the PSNR values; (b) comparison
of the RE values; (c) comparison of the algorithm running time ( seconds).

R, k ∈ [4], and R = round(ĉr2), ĉ ∈ {0.7, 0.8, · · · , 1.5}. We
can observe that when R < r2, the RE value is relatively
large; and as long as R ≥ r2, the RE of FaNTRC tends to be
stable with small RE value, which verifies the correctness of
Theorem 3.

B. Application to Color Image Inpainting

In this part, we evaluate the proposed NTRC and FaNTRC
against state-of-the-art LRTC methods on 20 benchmark im-
ages7 which are shown in Fig. 7. Each image can be treated
as a third-order tensor of 512× 512× 3 entries. For each
image, 40% of pixels are sampled uniformly at random to-
gether with additive Gaussian noise with standard deviation
σ = 0.25‖T‖F /

√
D. For TMac-inc, we set αk = 1/3,

rmaxn = 60 and maximum iteration to 500. For HaLRTC,
SiLRTC-TT and TRNNM, we employ their default parameter
settings which lead to good performance. For TRLRF, we
set the rank to [5, 5, 5] as suggested in [34]. Note that for
SiLRTC-TT, TRNNM and the proposed methods, we convert

7http://decsai.ugr.es/cvg/dbimagenes/c512.php

the images to fifth-order tensors of size 16× 16× 32× 32× 3
by using visual data tensorization (VDT) technique [28], [60].
This simple and efficient trick has been shown to boost the
tensor completion performance for TT-rank and TR-rank based
methods [28], [60]. For the proposed NTRC and FaNTRC, we
simply set the weights αk = 1/K, k ∈ [K], and the given rank
of FaNTRC is set equal to [10, 10, 18, 18, 3] empirically. For
NoisyTNN, NTRC and FaNTRC, the penalty parameter λ is
selected as in Section V-A1.

Fig. 9 depicts the results of applying the compared methods
to the noisy and incomplete benchmark images. From Fig. 9
(a) and 9 (b), it can be observed that the proposed NTRC and
FaNTRC perform the first and second best in terms of RE
and PSNR metrics in most cases, verifying their superiority
in completing the real-world colorful images. Compared with
NoisyTNN, our methods can estimate more complex low-
rank structure residing along each order of images. Thus, our
methods achieve more promising recovery results. Though
both SiLRTC-TT and TRNNM utilize the fifth-order VDT
images, TRNNM performs a little better than SiLRTC-TT.
TMac-inc is a Tucker rank-based noisy tensor completion
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Fig. 10. Comparison of performance (RE and PSNR) for all benchmark light field images, and for various SRs (from 10% to 70%) obtained utilizing the
proposed methods and state-of-the-art algorithms. (a) Comparison of the PSNR values; (b) comparison of the RE values.

method, and achieves better completion performance than
HaLRTC in most cases. We also report the running time
of each image in Fig. 9 (c). The proposed FaNTRC is the
fastest method, at least three times faster than the existing
counterparts, which shows its scalability on such high spatial
resolution images. We also observed that our methods are
much faster than TRLRF, since it requires time-consuming
TR reconstruction operation at each iteration. Conversely, our
methods merely approximate the low-TR-rank tensor on its
unfolding matrices and avoid frequently estimating TR core
tensors explicitly.

C. Application to Light Field Image Inpainting

Different from the conventional image that only records
light intensity, light field image contains both light inten-
sity and light direction in space, giving a high-dimensional
representation of visual data for various computer vision
applications. In this experiment, we choose four light field
images from the HCI light field image data set8. Each light
field image can be represented as a fifth order tensor of size
768×768×3×9×9, where 768×768 and 9×9 denote spatial
and angular resolution, respectively. For the sake of compu-
tational efficiency, we downsample the spatial dimension to
192×192, and convert each image to the grayscale. Thus, we
can form a fourth-order tensor of size 192× 192× 9× 9. The
input incomplete tensors are generated by uniformly selecting
pixels at random with SRs from 10% to 70% with increment
5%, and the additive noises are produced by i.i.d. Gaussian
distribution with standard deviation σ = 0.05‖T‖F /

√
D. For

TMac-inc, we let αk = 1/4 and rmaxn = 40 empirically.
For HaLRTC, λ is set to equal [2, 2, 10, 10], since it achieves

8http://lightfieldgroup.iwr.uni-heidelberg.de

TABLE II
SUMMARY OF AVERAGE RUNNING TIME (SECONDS) OF ALL SRS FOR

FOUR LIGHT FIELD IMAGES (BEST).

Methods Buddha Buddha2 Mona Papillon Avg.
TMac-inc 58.43 58.92 58.55 58.81 58.68
HaLRTC 15.33 16.68 14.62 16.38 15.75
SiLRTC-TT 56.37 60.73 54.96 54.48 56.64
TRLRF 817.30 893.25 774.59 868.93 838.52
TRNNM 242.83 247.72 236.56 236.20 240.83
NoisyTNN 92.69 92.20 90.53 93.69 92.28
NTRC (ours) 196.36 193.93 198.38 191.75 195.11
FaNTRC (ours) 28.97 29.15 28.25 28.62 28.75

the best performance in most cases. For TRLRF, we let
r1 = r2 = r and r3 = r4 = 5, and select the optimal r in
the set {11, 12, · · · , 17} to achieve the best performance. For
FaNTRC, we simply let R1 = R2 = 110 and R3 = R4 = 5
in all cases of these experiments. To use NoisyTNN, we
concatenate the angular dimensions by reshaping the light field
images into the third-order tensors of size 192×192×81. The
remaining parameters are set to the same as the above section.

Fig. 10 (a) and 10 (b) show the recovery performance
with various SRs in terms of RE and PSNR metrics, re-
spectively. The proposed FaNTRC and NTRC achieve the
first and second best recovery performance with incomplete
and noisy observations compared with state-of-the-art tensor
completion methods on four light field images. Both TRLRF
and NoisyTNN behave well in some cases of low SR, however
their performance tends to improve very slowly as SR in-
creases. TRNNM also achieves remarkable performance in this
experiment, it performs only a little lower than NoisyTNN, and
consistently outperforms SiLRTC-TT and HaLRTC, demon-
strating the advantages of low-TR-rank model in representing
the high-order light field tensor data. We also report the
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(k) RE, PSNR and running time (seconds) on the above videos

(c) TMac-inc

Fig. 11. Performance comparison for video inpainting on four video sequences. From top to down are. (a) Original frame; (b) observed frame; (c)-(i) inpainting
result obtained by HaLRTC, SiLRTC-TT, TRLRF, TRNNM, NoisyTNN, NTRC, FaNTRC, respectively; (j) comparison of RE, PSNR and running time on
the four videos.

average running time of all SRs for four light field images
in Tabel II. Despite the fact that FaNTRC only achieves the
second best performance in terms of running time, it is still
much faster than most of the other methods, especially TR-
based methods, e.g., TRLRF and TRNNM.

D. Application to Video Inpainting

Finally, we evaluate our methods on publicly available
YUV color video sequences9, which have been widely used
for tensor completion applications. In this part, we test our
methods and the other compared methods on four of these
sequences, namely, Akiyo, Carphone, Hall, and Suzie. For
each video sequence, we adopt its first 50 frames, and each
frame contains 144× 176× 3 pixels. Therefore, the evaluated
video sequences can be treated as the fourth order tensors
of size 144× 176× 3× 50. We randomly select 40% of
pixels and add i.i.d. Gaussian noise with standard devia-
tion σ = 0.1‖T‖F /

√
D. For TMac-inc, we simply set

αk = 1/4 and rmaxn = 40. For HaLRTC, we empirically let
λ = [1, 1, 10−3, 102]. For TRLRF and FaNTRC, we set the
rank to [20, 20, 20, 20] and [40, 40, 3, 20], respectively. To use
NoisyTNN, we reshape the video sequences to 144×176×150
tensors. All the other parameters are consistent with the above
section.

We present the inpainting result of the 21st frame in Fig.
11 of four video sequences, respectively. It can be observed

9http://trace.eas.asu.edu/yuv/
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Fig. 12. RE and PSNR history during iterations on Akiyo video sequence.

that both NTRC and FaNTRC obtain more favorable per-
formance in terms of RE and PSNR metrics than the other
compared methods. More specifically, the proposed method
can reconstruct more details of video frames. From the recov-
ered frames of Hall and Suzie, it can be observed that the
proposed methods can present more clean background than
the other LRTC methods. Moreover, for Akiyo, Carphone,
and Suzie, the additive noise on the clothes and face can
be efficiently removed by the proposed methods. Analog to
the experimental results in the above sections, TR based
methods consistently outperform the Tucker and TT methods.
FaNTRC and TRNNM are the first and second fastest methods,
respectively. Note that TRLRF is still the slowest method,
where the reason has been analyzed above. We also present
the RE and PSNR history over iterations of our methods on
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Akiyo video in Fig. 12. It can be observed that both NTRC
and FaNTRC in terms of two metrics tend to be stable within
merely 50 iterations.

VI. CONCLUSIONS

We proposed a novel noisy tensor completion model to
predict the missing entries with noisy observations based
on low-rank TR model. In order to illustrate the statistical
performance of the proposed model, we theoretically analyze
a non-asymptotic upper bound of the estimation error. More-
over, we propose two algorithms to solve the optimization
problem with convergence guarantee, namely NTRC and its
fast version FaNTRC. The FaNTRC can significantly reduce
the high-computational cost of SVD on the large-scale circular
unfolding matrix by equivalently minimizing TRNN on a
much smaller one in a heterogeneous tensor decomposition
framework, and thus accelerates the algorithm. Extensive
experiments on both synthetic and visual data evidence the
merits of low-TR-rank model for modeling a tensor, the
ability of noisy completion setting in recovering incomplete
data with noise corruption, and the computational efficiency
of heterogeneous tensor decomposition strategy for TRNN
minimization.
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APPENDIX A
MORE EXPERIMENTAL RESULTS

A. Experiments on Synthetic Data

1) Synthetic experiments on different tensor sizes and noise levels: We investigate RE and running time of different methods
on fourth-order tensors with fixing SR p = 20% and varying tensor size, TR rank, and noise level. Due to the computational
efficiency, all the experiments are conducted twice, and their mean values of RE and running time are reported in Table III. The
given rank of FaNTRC is set to Rk = R, k ∈ [K] and R = round(1.2r2). The remaining parameters are followed in Section
V-A. It can be observed that both NTRC and FaNTRC obtain lower RE in all experimental settings. HaLRTC provides the
lowest running time, while the proposed methods are comparable. However, the RE of HaLRTC is significantly higher than the
other methods in most cases. In addition, FaNTRC is significantly faster than the TR-based methods, especially when TR rank
is small, which is consistent with the analysis in Section IV-C. However, when r2 increases to close to d, the computational
efficiency of FaNTRC degrades to that of TRNNM and NTRC.

TABLE III
COMPARISON OF RE AND RUNNING TIME (SECONDS) FOR SYNTHETIC NOISY TENSOR COMPLETION (BEST).

tensor size c r HaLRTC TRNNM SiLRTC-TT NTRC (ours) FaNTRC (ours)
RE Time RE Time RE Time RE Time RE Time

40× 40× 40× 40

0.01
2 9.09E-3 2.00E1 5.08E-3 7.69E2 5.36E-3 4.14E2 2.01E-3 2.99E2 2.03E-3 1.70E1
4 2.19E-2 1.73E1 5.46E-3 7.71E2 7.71E-3 4.23E2 2.44E-3 5.65E2 2.48E-3 7.20E1
6 2.30E-2 1.39E1 5.73E-3 7.86E2 8.47E-3 4.35E2 3.25E-3 5.22E2 3.42E-3 8.20E2

0.05
2 4.32E-2 1.54E1 2.54E-2 8.75E2 6.17E-2 4.47E2 2.00E-2 4.14E2 2.28E-3 3.20E1
4 4.99E-2 1.23E1 2.63E-2 9.00E2 2.70E-2 4.33E2 2.03E-2 4.39E2 1.14E-2 6.31E1
6 4.16E-2 1.12E1 2.66E-2 8.89E2 2.30E-2 4.42E2 2.00E-2 4.20E2 1.98E-2 8.77E2

60× 60× 60× 60

0.01
3 1.07E-2 7.79E1 5.09E-3 7.47E3 8.26E-3 3.40E3 1.31E-3 7.44E3 1.25E-3 8.31E1
5 1.55E-2 6.98E1 5.30E-3 7.77E3 2.89E-2 3.42E3 2.72E-3 8.13E3 2.62E-3 4.52E2
7 1.56E-2 6.51E1 5.38E-3 6.67E3 1.88E-2 3.32E3 3.46E-3 8.34E3 4.59E-3 1.07E4

0.05
3 4.07E-2 6.25E1 2.52E-2 7.18E3 2.68E-2 3.39E2 1.07E-2 8.01E3 3.03E-3 9.50E1
5 4.11E-2 5.46E1 2.56E-2 7.13E3 3.83E-2 3.55E3 1.62E-2 6.57E3 6.63E-3 3.90E2
7 3.53E-2 4.64E1 2.56E-2 7.21E3 2.99E-2 3.43E3 1.40E-2 6.66E3 1.40E-2 1.06E4

80× 80× 80× 80

0.01
4 1.12E-2 2.34E2 5.11E-3 2.81E4 3.92E-2 1.58E4 2.86E-3 1.70E4 2.93E-4 4.72E2
6 1.23E-2 2.25E2 5.24E-3 3.03E4 2.11E-2 1.55E4 1.67E-3 2.80E4 8.97E-4 3.07E3
8 1.25E-2 1.80E2 5.25E-3 2.99E4 1.43E-2 1.55E4 2.21E-3 3.06E4 2.18E-3 4.40E4

0.05
4 3.81E-2 1.61E2 2.52E-2 3.04E4 4.78E-2 1.51E5 1.97E-2 1.83E4 2.04E-4 3.33E2
6 3.61E-2 1.70E2 2.52E-2 2.75E4 3.41E-2 1.54E4 2.00E-2 1.89E4 1.83E-2 2.17E3
8 3.22E-2 1.34E2 2.53E-2 2.99E4 2.90E-2 1.44E4 1.87E-2 2.05E4 1.89E-2 2.82E4

2) Synthetic experiments on different tensor orders: We also verify the effectiveness of the proposed NTRC and FaNTRC in
recovering the high-order incomplete tensor with noise corruptions. We generate the low-rank tensor T∗ with different orders
and sizes, namely, 20× 20× 20 (3D), 20× 20× 20× 20 (4D), 10× 10× 10× 10× 10 (5D), 10× 10× 10× 10× 10× 10
(6D) and 10× 10× 10× 10× 10× 10× 10 (7D). The TR rank of synthetic tensors are given as rk = 3, k ∈ [K] for 3D, 4D,
5D and 6D tensor, and as rk = 2, k ∈ [K] for 7D tensors. The observed entries is sampled uniformly with SR 30% and the
additive noise tensor is produced by distribution N (0, σ2), where σ = 0.01‖T∗‖∗F /

√
D. The remaining parameters are set as

the above paragraph. From Table IV we can see that the proposed methods can recover the noisy and incomplete tensor with
the lowest RE in all the cases. Moreover, the proposed methods perform better than the compared methods especially when
tensor order is relatively high, which indicates the efficiency of the proposed methods in dealing with high-order and noisy
tensor.

TABLE IV
THE RE COMPARISON OF DIFFERENT TENSOR COMPLETION METHODS TO 3D, 4D, 5D, 6D AND 7D SYNTHETIC TENSORS (BEST).

Tensor Order and Tensor Size TMac-inc HaLRTC SiLRTC-TT TRLRF TRNNM NoisyTNN NTRC (ours) FaNTRC (ours)
3D (20× 20× 20) 0.0485 0.0531 0.0515 0.0228 0.0401 0.0461 0.0420 0.0134

4D (20× 20× 20× 20) 0.0180 0.0284 0.0102 0.0057 0.0067 - 0.0039 0.0021
5D (10× 10× 10× 10× 10) 0.0207 0.0552 0.0082 0.0058 0.0068 - 0.0051 0.0051

6D (10× 10× 10× 10× 10× 10) 0.0174 0.1342 0.0065 0.0056 0.0059 - 0.0016 0.0025
7D (10× 10× 10× 10× 10× 10× 10) 0.0132 0.1308 0.0062 0.0055 0.0055 - 0.0014 0.0012

B. Application to Real-world Noisy Images Inpainting

In this part, we compared the proposed methods and state-of-the-art LRTC methods on real-world noisy tensor data. We
chose the newly proposed real-world noisy images benchmark [s1]. The authors record the real-world images of different
natural scenes. To obtain the corresponding ”ground truth” images, the authors capture the same scenes for many times, and



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

Mean Image 33.35/0.0621 33.61/0.0603 33.66/0.0600 33.38/0.0619 33.66/0.0599 34.49/0.0545 34.94/0.0518 35.76/0.0471

35.13/0.0529 34.65/0.0559 34.72/0.0554 32.82/0.0689 35.24/0.0522 35.08/0.0531 36.03/0.0476 34.26/0.0584

36.79/0.0367 36.36/0.0385 36.41/0.0383 35.56/0.0423 36.69/0.0371 37.14/0.0352 37.71/0.0330 36.94/0.0360

37.34/0.0254 37.14/0.0259 37.33/0.0254 36.69/0.0273 37.51/0.0249 38.39/0.0224 38.86/0.0213 38.19/0.0230

38.30/0.0233 38.35/0.0232 38.15/0.0237 37.97/0.0242 38.25/0.0235 39.50/0.0203 39.70/0.0198 39.19/0.0210

TMac-inc HaLRTC SiLRTC-TT TRLRF TRNNM NoisyTNN NTRC (ours) FaNTRC (ours)
Observed ImageReal Image (noisy)

Mean Image Observed ImageReal Image (noisy)

Mean Image Observed ImageReal Image (noisy)

Mean Image Observed ImageReal Image (noisy)

Mean Image Observed Image Real Image (noisy)

Fig. 13. Comparison of PSNR/RE results of the real-world noisy image by different methods (Best).

average these images as the ”ground truth” image. In our experiment, we use five of the cropped images produced by the
authors10. These images cane be viewed as a third-order tensor of size 512× 512× 3. We generate the incomplete tensor by
uniformly sample the pixels with SR = 40%. Similar with the experimental setting in Section V-B, we transpose the incomplete
tensor into fifth-order tensor of size 16× 16× 32× 32× 3 using VDT technique for SiLRTC-TT, TRNNM and the proposed
methods. The remaining parameters are set to the same as Section V-B. Fig 13 depicts the visual quality as well as the PSNR
and RE of different images. We can see that the proposed methods achieve the best completion performance in terms of PSNR
and RE. Additionally, from the recovered images, we can observe that the proposed methods can effectively eliminate most
of the noise while recovering the missing pixels.

APPENDIX B
PROOF OF LEMMA 2

According to the definition of dual norm, we give the following maximization problem

‖T‖∗trnn := sup
W

〈T,W〉 , s.t. ‖W‖trnn ≤ 1. (43)

Since the maximization problem satisfies the Slater’s condition, the strong duality holds. We only need to prove that its dual
problem satisfies

inf∑K
k=1 Yk=T

max
k

α−1
k ‖Y

k
(k,s)‖. (44)

According to the Fenchel’s duality theorem, we have

sup
W

〈T,W〉 − κ(‖W‖trnn ≤ 1) = inf
{Yk}Kk=1

(
κ(

K∑
k=1

Yk = T) + max
k

α−1
k ‖Y

k
(k,s)‖

)
, (45)

where κ(·) denotes the indicator function:

κ(x) =

{
0, x is true,
+∞, otherwise.

(46)

The right-hand side of (45) meets (44), thus the proof of Lemma 2 is completed.

10https://github.com/csjunxu/PolyU-Real-World-Noisy-Images-Dataset
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APPENDIX C
PROOF OF THEOREM 1

In this section, we give the proof for Theorem 1 by first introducing the estimation error bound of observation entries in
Lemma 4, then presenting the overall estimation error with specific setting of regularization parameter λ in Lemma 5, finally
giving the upper bound of tensor ring spectral norm of two random variables in Lemmas 6 and 7.

Lemma 4. Let λ ≥ 2σ‖X∗(ξ)‖∗trnn, we have:

1

2
||X(E)||2F ≤

3

2

√
2λ‖E‖F

K∑
k=1

αk
√
rkrk+s, (47)

where X∗(ξ) =
∑N
n=1 ξnXn, and E denotes the residual error E = T̂ − T∗.

Lemma 4 denotes the estimation error of observations can be upper bound by weighted sum of square root of TR rank.
Next, we present a general upper bound on the estimation error based on (12).

Lemma 5. Suppose λ ≥ 2σ‖X∗(ξ)‖∗trnn, then we have probability at least 1− 2/d̃∗, such that the estimation error satisfies

‖E‖2F ≤ max

c2δ2D

√
64 log d̃k∗

log(6/5)N
, c3

(
D

N

K∑
k=1

αk
√
rkrk+s

)2 (
λ2 + δ2E2[‖X∗(ε)‖∗trnn]

) . (48)

It can be observed that there are two stochastic variables needed to be bounded. We present two results in following lemmas.

Lemma 6. Suppose N ≥ 2d̂k∗ log3(d̃k∗), then with probability at least 1− 1/d̃k∗ , we have

‖X∗(ξ)‖∗trnn ≤ c5

√
N log(d̃k∗)

d̂k∗
. (49)

Lemma 7. Suppose N ≥ 2d̂k∗ log3(d̃k∗), then we have

E[‖X∗(ε)‖∗trnn] ≤ c6

√
N log(d̃k∗)

d̂k∗
. (50)

Combining Lemmas 4 to 7, we can directly obtain the result of Theorem 1.
Proof of Theorem 1 is completed.

APPENDIX D
PROOF OF LEMMAS 4 AND 5

A. Proof of Lemma 4

Proof of Lemma 4. From (12), we have

1

2
‖y − X(T̂)‖2F + λ‖T̂‖trnn ≤

1

2
‖y − X(T∗)‖2F + λ‖T∗‖trnn, (51)

where T̂ and T∗ denote the flexible solution of the proposed model and the true tensor, respectively. By performing some
algebra, it can be easy to see that

1

2
||X(E)||22 + 〈X∗(σξ),E〉+ λ‖T̂‖trnn ≤ λ‖T∗‖trnn. (52)

According to Lemma 2, we can obtain that

1

2
||X(E)||22 + λ‖T̂‖trnn ≤ λ‖T∗‖trnn + ‖X∗(σξ)‖∗trnn‖E‖trnn. (53)

Let PT∗k
(·) and P⊥T∗k(·) be the kth orthogonal and orthogonal complement projection of T∗, respectively, and is given by

PT∗k
(A) = (Id1,k −UkU

>
k )A(Id2,k −VkV

>
k ), (54)

P⊥T∗k(A) = A− (Id1,k −UkU
>
k )A(Id2,k −VkV

>
k ), (55)



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

where Uk and Vk are left and right singular vectors of T∗(k,s). Then we have

‖T̂‖trnn =

K∑
k=1

αk||T∗(k,s) + PT∗k
(E(k,s)) + P⊥T∗k(E(k,s))||∗

≥
K∑
k=1

αk(||T∗(k,s) + P⊥T∗k(E(k,s))||∗ − ||PT∗k
(E(k,s))||∗)

=

K∑
k=1

αk(‖T∗(k,s)‖∗ + ‖P⊥T∗k(E(k,s))‖∗ − ‖PT∗k
(E(k,s))‖∗). (56)

Combining (53) and (56), we obtain that

1

2
||X(E)||22 ≤ λ

K∑
k=1

αk(‖PT∗k
(E(k,s))‖∗ − ‖P⊥T∗k(E(k,s))‖∗) + ‖X∗(σξ)‖∗trnn‖E‖trnn (57)

=λ

K∑
k=1

αk(
3

2
‖PT∗k

(E(k,s))‖∗ −
1

2
‖P⊥T∗k(E(k,s))‖∗) (58)

≤3

2
λ

K∑
k=1

αk
√

2rkrk+s‖E‖F . (59)

Proof of Lemma 4 is completed.

B. Proof of Lemma 5
We assume that the residual error E drops in a restricted set as follows:

C(r) =

E ∈ Rd1×d2×···×dK : ‖E‖trnn ≤
K∑
k=1

αk
√
rkrk−s‖E‖F , ||E||∞ = 1, ‖E‖2F ≥ D

√
64 log d̃k∗

log(6/5)N

 ,

where r = [r1, · · · , rK ]. Next, we show that any tensor E in the above set C(r), the following lemma holds.

Lemma 8 (Restricted Strong Convexity). Suppose E ∈ C(r), then we have probability at least 1− 2/d̃k∗ , such that

1

N
‖X(E)‖2F ≥

1

D
‖E‖2F − 44

D

N2

(
E[‖X∗(ε)‖∗trnn]

K∑
k=1

αk
√
rkrk+s

)2

. (60)

We present the proof of Lemma 8 in Appendix F, and give the proof of Lemma 5 as follows.

Proof of Lemma 5. From (58), we can observe that ‖P⊥T∗k(E)‖trnn ≤ 3‖PT∗k
(E)‖trnn. Therefore, it is easy to see that

‖E‖trnn = ‖P⊥T∗k(E)‖trnn + ‖PT∗k
(E)‖trnn ≤ 4‖PT∗k

(E)‖trnn

≤ 4

K∑
k=1

αk
√

2rkrk−s‖PT∗k
(E)‖F ≤

K∑
k=1

αk
√

32rkrk+s‖E‖F . (61)

According to assumption A1, we can obtain that ||E||∞ ≤ ||T∗||∞+ ||T̂||∞ < 2δ. In order to bound ‖E‖2F , we discuss whether
the normalized residual error tensor (2δ)−1E is in the set C

(
4
√

2r
)

in the following two cases.
Case 1: If (2δ)−1E is not in the constrained set C

(
4
√

2r
)
, then we have

‖E‖2F ≤ 4δ2D

√
64 log d̃k∗

log(6/5)N
. (62)

Case 2: If (2δ)−1E is in the constrained set C
(
4
√

2r
)
, according to Lemma 4 and Lemma 8 we have

‖E‖2F ≤
D

N
3
√

2λ‖E‖F
K∑
k=1

αk
√
rkrk+s +

44D2

N2

(
E[‖X∗(ε)‖∗trnn]

K∑
k=1

αk
√

32rkrk+s

)2

, (63)

with probability at least 2/d̂k∗ . Then by performing some algebra, we have

‖E‖2F ≤ c3

(
D

N

K∑
k=1

αk
√
rkrk+s

)2 (
λ2 + δ2E2[‖X∗(ε)‖∗trnn]

)
. (64)

Combining the above two cases, we can obtain Lemma 5 directly. Proof of Lemma 5 is completed.
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APPENDIX E
PROOF OF LEMMAS 6 AND 7

A. Proof of Lemma 6

According to the definition of dual norm of tensor ring nuclear norm, we have

‖X∗(ξ)‖∗trnn = inf
Y1+···+YK=X∗(ξ)

max
k=1,··· ,K

1

αk
‖Yk

(k,s)‖, (65)

it can be easy to see that the decomposition of noise tensor X∗(ξ) into the sum X∗(ξ) =
∑K
k=1 Y

k is arbitrary. Similar to
[s2], we can simply set a singleton decomposition of X∗(ξ) on one mode as

Yk
′

=

{
X∗(ξ) if k′ = arg max

k
‖Yk

(k,s)‖,

0.
(66)

Lemma 9. For independent centered random tensor sequence Z1, · · · ,ZN of size d1×d2×· · ·×dK , suppose their unfolding
matrices Z1

(k,s),Z
2
(k,s), · · · ,Z

N
(k,s) of size d1,k × d2,k satisfy

σk0 ≥

{
‖ 1

N

N∑
n=1

E[Zn(k,s)Z
n,>
(k,s)]‖

1/2, ‖ 1

N

N∑
i=1

E[Zn,>(k,s)Z
n
(k,s)]‖1/2

}
, k ∈ [K], (67)

and ∀n ∈ [N ], Un = inf{K0 > 0 : E[exp(‖Zn(k,s)‖/K0)] ≤ e}. Let U > Un,∀n ∈ [N ], then there exist an absolute constant
c4, such that, for all t > 0, with probability at least 1− e−t we have

‖ 1

N

N∑
n=1

Zn(k,s)‖ ≤ c4 max{σk0

√
t+ log(d̃k)

N
,U log(

U

σk0
)
t+ log(d̃k)

N
}. (68)

Lemma 9 is an extension of standard matrix version of Bernstein’s inequality [s3], [s4] defined on circular unfolding matrix.

Proof of Lemma 6. We let Zn = ξnXn and U = Kξ. Since E[Zn(k∗)] = 0, we have

‖ 1

N

N∑
n=1

E[Zn(k∗)Z
n>
(k∗)]‖ =

1

d1,k∗
, ‖ 1

N

N∑
n=1

E[Zn>(k,s)Z
n
(k,s)]‖ =

1

d2,k∗
, (69)

therefore we can choose σk0 = 1/
√
d̂k∗ . According to Lemma 9 and (66), it holds that

‖X∗(ξ)‖∗trnn = ‖X∗(ξ)(k′,s)‖ = ‖
N∑
n=1

Zn(k′,s)‖

≤ c2 max{

√
N(t+ log(d̃k∗))

d̂k∗
,Kξ log(Kξ

√
d̂k∗)(t+ log(d̃k∗))}.

(70)

By letting t = log(d̃k∗), with probability at least 1− 1/d̃k∗ , we have

‖X∗(ξ)‖∗trnn ≤ c4 max{

√
2N log(d̃k∗)

d̂k∗
, 2Kξ log(Kξd̂k∗) log(d̃k∗)}. (71)

Therefore, suppose N ≥ 2d̂k∗K
2
ξ log2(Kξd̃k∗) log(d̃k∗), with probability at least 1− 1/d̃k∗ , we have

‖X∗(ξ)‖∗trnn ≤ c5

√
N log(d̃k∗)

d̂k∗
, (72)

where c5 depends on Kξ. Proof of Lemma 6 is completed.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

B. Proof of Lemma 7

Proof. The proof sketch is similar with that of Lemma 6 in [s4]. For the sake of completeness, we give the proof details here.
Similar to (70), for any t > 0, there exists a constant c̃ such that

‖X∗(ε)‖∗trnn ≤ c̃max{

√
N(t+ log(d̃k∗))

d̂k∗
, log(d̂k∗)(t+ log(d̃k∗))}, (73)

holds with probability at least 1− e−t. By letting the equality of the right hand-side of (73), we set t∗ = N/(d̂k∗ log2(d̂k∗))−
log(d̃k∗), which implies that

P(‖X∗(ε)‖∗trnn > t) ≤ d̃k∗ exp(−t2d̂k∗/(c̃2N)) t ≤ t∗, (74)

and
P(‖X∗(ε)‖∗trnn > t) ≤ d̃k∗ exp(−t/(c̃ log(d̂k∗))) t ≥ t∗. (75)

By letting ς1 = d̂k∗/(c̃
2N) and ς2 = 1/(c̃ log(d̂k∗)). According to Hölder’s inequality, we have

E[‖X∗(ε)‖∗trnn] ≤
(
E[‖X∗(ε)‖∗trnn]2 log(d̃k∗ )

)1/(2 log(d̃k∗ ))

. (76)

According to (74) and (75), we have(
E[‖X∗(ε)‖∗trnn]2 log(d̃k∗ )

)
1/(2 log(d̃k∗))

=

(∫ +∞

0

P
(
‖X∗(ε)‖∗trnn > t1/(2 log(d̃k∗ ))

)
dt
)1/(2 log(d̃k∗ ))

≤
(
d̃k∗

∫ +∞

0

exp(−t1/ log(d̃k∗ )ς1)dt+ d̃k∗

∫ +∞

0

exp(−t1/(2 log(d̃k∗ ))ς2)dt
)1/(2 log(d̃k∗ ))

≤
√
e
(

log(d̃k∗)ς
− log(d̃k∗ )
1 Γ(log(d̃k∗)) + 2 log(d̃k∗)ς

−2 log(d̃k∗ )
2 Γ(log(d̃k∗))

)1/(2 log(d̃k∗ ))

.

(77)

According to (47) in [s5], the Gamma function satisfies the bound:

for x ≥ 2, Γ(x) ≤ (
x

2
)x−1. (78)

Therefore, combining (77) and (78), we have

E[‖X∗(ε)‖∗trnn] ≤
√
e
(

(log(d̃k∗))
log(d̃k∗ )ς

− log(d̃k∗ )
1 21−log(d̃k∗ ) + 2(log(d̃k∗))

2 log(d̃k∗ )ς
−2 log(d̃k∗ )
2

)1/(2 log(d̃k∗ ))

. (79)

By setting t = log(d̃k∗) and letting the first term of (73) be the maximum, we have N ≥ 2d̂k∗ log2(d̂k∗) log(d̃k∗). Substituting
it to ς1, we can obtain ς1 log(d̃k∗) ≤ ς22 , and reformulate (79) as

E[‖X∗(ε)‖∗trnn] ≤ c6

√
N log(d̃k∗)

d̂k∗
. (80)

Proof of Lemma 7 is completed.

APPENDIX F
PROOF OF LEMMA 8

Proof. We define the absolute deviation between the estimation error of observed entries ‖X(E)‖22/N between the overall
estimation error ‖E‖2F /D as

ZT := sup
E∈C(r,T )

∣∣∣∣‖X(E)‖22
N

− ‖E‖
2
F

D

∣∣∣∣ , (81)

where C(r, T ) is given as

C(r, T ) :=

{
E : E ∈ C(r),

‖E‖2F
D

≤ T
}
. (82)

Then we show that the variable ZT concentrates around its expectation in the following Lemma and give the proof in Appendix
G.
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Lemma 10. There exists a constant c7 such that

P(ZT >
5

12
T +

44D2

N2

(
E[‖X∗(ε)‖∗trnn]

K∑
k=1

αk
√
rkrk+s

)2

) ≤ exp(−c7NT 2), (83)

with c7 = 1
128 .

We first define the disjoint subsets of set C(r) as

C(r, l) := {E : E ∈ C(r), ζρl−1 ≤ ‖E‖
2
F

D
≤ ζρl}, (84)

where l ∈ N+, ρ = 6/5, and ζ =
√

64 log d̃k∗
log(ρ)N . Then we define the following event

C̃ :=

∃E ∈ C(r), s.t.
∣∣∣∣‖X(E)‖22

N
− ‖E‖

2
F

D

∣∣∣∣ > ‖E‖2F2D
+ 44

D

N2

(
E[‖X∗(ε)‖∗trnn]

K∑
k=1

αk
√
rkrk+s

)2
 . (85)

We can observe that the event C̃ is the complement of the event that Lemma 8 reveals. Thus, the aim is to prove the event C̃
holds with small probability. The sub-events of C̃ can be given by

C̃l :=

∃E ∈ C(r, l), s.t.
∣∣∣∣‖X(E)‖22

N
− ‖E‖

2
F

D

∣∣∣∣ > 5

12
ζρl + 44

D

N2

(
E[‖X∗(ε)‖∗trnn]

K∑
k=1

αk
√
rkrk+s

)2
 ,∀l ∈ N+. (86)

Note that the event C̃ = ∪∞l=1C̃l, which indicates that we can solve the sub-events separately. According to Lemma 10, we have

PC̃ ≤
∞∑
l=1

P(C̃l) ≤
∞∑
l=1

exp(−c7Nζ2ρ2l) ≤
∞∑
l=1

exp(−2c7Nζ
2l log(ρ)) ≤ exp(−2c7Nζ

2 log(ρ))

1− exp(−2c7Nζ2 log(ρ))
. (87)

By plugging ζ =
√

64 log d̃k∗
log(ρ)N into (87), we conclude our proof.

APPENDIX G
PROOF OF LEMMA 10

We first give the expectation of ZT as

E[ZT ] =E

[
sup

E∈C(r,T )

∣∣∣∣∣ 1

N

N∑
n=1

〈Xn,E〉 − E
[
‖X(E)‖22

]∣∣∣∣∣
]

≤2E

[
sup

E∈C(r,T )

∣∣∣∣∣ 1

N

N∑
n=1

εn 〈E,Xn〉2
∣∣∣∣∣
]
,

(88)

where the inequality uses the standard symmetrization argument [s6], {εn}Nn=1 is i.i.d. Rademather sequence. According to
the contraction inequality and the assumption ‖E‖∞ = 1 in the set C(r), we have

E[ZT ] ≤ 8

N
E

[
sup

E∈C(r,T )

|〈E,X∗(ε)〉|

]
, (89)

then we can obtain that

E[ZT ] ≤ 8

N
E

[
sup

E∈C(r,T )

‖E‖trnn‖X∗(ε)‖∗trnn

]

≤ 8

N
E

[
sup

E∈C(r,T )

K∑
k=1

αk
√
rkrk+s‖E‖F ‖X∗(ε)‖∗trnn

]

≤ 8
√
DT

N
E[‖X∗(ε)‖∗trnn]

K∑
k=1

αk
√
rkrk+s,

(90)

where the first inequality uses the dual norm of TRNN, the second inequality uses the relationship between TRNN and
Frobenius norm and the third inequality uses the assumption in (82). Then we have the inequality

1

9
(

5

12
T ) +

8
√
DT

N
E[‖X∗(ε)‖∗trnn] ≤ (

1

9
+

8

9
)

5

12
T +

44D

N2
(E[‖X∗(ε)‖∗trnn])2. (91)
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Then, according to the Massart’s concentration inequality

P(ZT ≥ E[ZT ] +
1

9
(

5

12
T )) ≤ exp(−c7nT 2), (92)

with c7 = 1/128. Combining (91) and (92), we have

P(ZT >
5

12
T +

44D

N2
(E[‖X∗(ε)‖∗trnn])2) ≤ exp(−c7NT 2). (93)

This completes the proof of Lemma 10.

APPENDIX H
PROOF OF THEOREM 2

Given a Kth-order tensor T, without loss of generality, we assume that d1,k∗ ≥ d2,k∗ , where k∗ = arg mink∈[K](d1,k∧d2,k).
For a given constant γ ≤ 1, define a set

T̄ =

T̄(k∗,s) = T̄(k∗,s)(i, j) ∈ Rd1,k∗×rk∗rk∗+s : T̄(k∗,s)(i, j) ∈

0, γ(δ ∧ σ)

K∑
k=1

αk

√
Kďk∗

N
rkrk+s


 , (94)

and its augmenting matrix

T =
{
T ∈ Rd1×···×dK : T(k∗,s) = (T̄(k∗,s) · · · T̄(k∗,s)0) ∈ Rd1,k∗×d2,k∗ ,where T̄(k∗,s) ∈ T̄

}
, (95)

where 0 is the zero matrix of size d1,k∗ × (d2,k∗ − rk∗rk∗+sbd2,k∗/(rk∗rk∗+s)c).
According to the Varshamov-Gilbert bound (Lemma 2.9 in [s7]), it can be guaranteed that there exists a subset T0 ⊂ T with

cardinality Card(T0) ≥ 2rk∗rk∗+sďk∗ + 1, and for any distinct elements T1 and T2 of T0, we have

‖T1 − T2‖2F ≥
ďk∗rk∗rk∗+s

8

(
γ2(δ2 ∧ σ2)

Kďk∗

N
(

K∑
k=1

αk
√
rkrk+s)

2

)
bd2,k∗

r
c ≥ γ2

16
(δ2 ∧ σ2)

DKďk∗

N
(

K∑
k=1

αk
√
rkrk+s)

2.

(96)
Since the distribution of ξn, n ∈ [N ] is Gaussian, we get that, for any T ∈ T0, the Kulback-Leibler divergence K(P0,PT)
between P0 and PT satisfies

K(P0,PT) =
N

2Dσ2
‖T‖2F ≤

γ2ďk∗rk∗rk∗+s
2

. (97)

From (97), we can deduce the following condition

1

Card(T0)− 1

∑
T∈T0

K(P0,PT) ≤ ϑ log(Card(T0)− 1), (98)

is satisfied if γ > 0 and ϑ > 0 are chosen as a sufficiently small numerical constant. According to Theorem 2.5 in [s7],
combining (96) and (97), there exists a constant c > 0, such that

inf
T̂

sup
T∗

PT∗

(
‖T̂ − T∗‖2F

D
>
c(δ2 ∧ σ2)DKďk∗

N
(

K∑
k=1

αk
√
rkrk+s)

2

)
≥ %, (99)

for some absolute constants 0 < % < 1. Proof of Theorem 2 is completed.

APPENDIX I
PROOF OF LEMMA 3

Proof of Lemma 3. Let T ∈ Rd1×···dK be a Kth-order tensor whose TR decomposition is T = TR(G(1), · · · ,G(K)). Since
there are subcritical (rkrk+1 < dk), critical (rkrk+1 = dk) and supercritical (rkrk+1 > dk) states in TR decomposition [s8],
we give discussions in the following two cases.

If dk > rkrk+1, we perform the skinny SVD on G
(k)
(2) , that is, [Uk,Sk,V

>
k ] = SVD(G

(k)
(2)), and reconstruct the core tensor

G̃
(k)

= fold(2)(SkV
>
k ), where fold(2)(·) denotes the canonical mode-2 folding operation, and G̃

(k)
∈ Rrk×rkrk+1×rk+1 . If

dk ≤ rkrk+1, we simply let Uk = Idk .
Therefore, each core tensor can be equivalently rewritten as

G(k) = G̃
(k)
×2 Uk, k ∈ [K]. (100)

By directly extending the Theorem 4.2 in [s9] to the matrix case, the given tensor T can be equivalently represented by

T = T̃ ×1 U1 · · · ×K UK , (101)
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where T̃ = TR(G̃
(1)
, · · · , G̃

(K)
) ∈ RR1×R2···×RK , and

Rk =

{
rkrk+1, if rkrk+1 < dk,

dk, otherwise.
(102)

Therefore, tensor data with TR supercritical or critical state is actually a full-Tucker-rank tensor, i.e., the factor matrix Uk is
the identity matrix. This completes the proof of Lemma 1 and Lemma 3.

APPENDIX J
PROOF OF THEOREM 3

We first introduce a supporting Lemma to show the following equivalent relationship.

Lemma 11. Let T ∈ Rd1×d2···×dK be Kth-order tensor, T̃ and Uk ∈ St(dk, Rk), k ∈ [K] satisfy T = T̃×U1×2 · · ·×K UK ,
then its circular mode-(k, s) unfolding can be formulated as

T(k,s) = (UK−s ⊗ · · · ⊗Ul+1) T̃(k,s)(Ul ⊗ · · · ⊗Uk)
>
, (103)

where l is defined in (5).

Proof of Lemma 11. Note that for a given tensor T, its circular mode-(K− s+ 1, s) unfolding is given by T(K−s+1,s) of size
d1d2 · · · dK−s × dK−s+1 · · · dK . Thus, we have the following vectorization form of T:

vec
(
T(K−s+1,s)

)
=vec (T) = vec(T̃ ×1 U1 · · · ×K UK)

= (UK ⊗ · · · ⊗U1) vec(T̃).
(104)

For circular mode-(K − s+ 1, s) unfolding of T, we have

vec
(

(UK−s ⊗ · · · ⊗U1)T̃(K−s+1,s)(UK ⊗ · · · ⊗UK−s+1)>
)

=(UK ⊗ · · · ⊗UK−s+1 ⊗UK−s ⊗ · · · ⊗U1)vec
(
T̃(K−s+1,s)

)
=vec(T(K−s+1,s)),

(105)

where the first equality uses (A⊗B)vec(C) = vec(BCA>). Therefore, we have

T(K−s+1,s) = (UK−s ⊗ · · · ⊗U1)T̃(K−s+1,s)(UK ⊗ · · · ⊗UK−s+1)>. (106)

Now, we are able to extend (106) to any circular mode-(k, s) unfolding by shifting T and T̃ circularly into Tk and T̃k,
respectively,

Tk = T̃k ×1 Ul+1 · · · ×K−s Uk−1 ×K−s+1 Uk · · · ×K Ul, (107)

where Tk ∈ Rdl+1×···×dK−s×dK−s+1···×dl and T̃k ∈ RRl+1×···×RK−s×RK−s+1···×Rl , and l is defined in (5). Combining (107)
and (106), we can obtain (103) directly. Proof of Lemma 11 is completed.

Proof of Theorem 3. Suppose Uk ∈ St(dk, Rk), and Rk ≥ rkrk+1, k ∈ [K]. According to Lemma 11 and the determinant
result of Kronecker product [s10], we have:

(UK−s ⊗ · · · ⊗Ul+1)
>

(UK−s ⊗ · · · ⊗Ul+1)

=U>K−sUK−s ⊗ · · · ⊗U>l+1Ul+1

=IJ ,

(108)

and similarly

(Ul ⊗ · · · ⊗Uk)
>

(Ul ⊗ · · · ⊗Uk) = IM , (109)

where J =
∏K−s
j=l+1Rj and M =

∏l
m=k Rm. According to the Lemma 3 in [s11], we have ‖T(k,s)‖∗ = ‖T̃(k,s)‖∗, and thus

‖T‖trnn = ‖T̃‖trnn.
Proof of Theorem 3 is completed.
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APPENDIX K
PROOF OF THEOREM 4

Proof of Theorem 4. Let T′ and (T̃
′
, {U′k}Kk=1) be the global optimal solutions of (18) and (28), respectively. Thus, we have

1

2
‖y − X(T′)‖2F + λ‖T′‖trnn

≤1

2
‖y − X(T̃

′
×1 U′1 · · · ×K U′K)‖2F + λ‖T̃

′
‖trnn.

(110)

Suppose (rkrk+1 ∧ dk) ≤ Rk ≤ dk, k ∈ [K], then we can perform Tucker decomposition T′ = T̃
∗
×1 U∗1 · · · ×K U∗K , where

U∗k ∈ St(dk, Rk), k ∈ [K]. Since (T̃
′
, {U′k}Kk=1) is the global optimal solution of (28), we have

1

2
‖y − X(T̃

′
×1 U′1 · · · ×K U′K)‖2F + λ‖T̃

′
‖trnn

≤1

2
‖y − X(T̃

∗
×U∗1 · · · ×K U∗K)‖2F + λ‖T̃

∗
‖trnn

=
1

2
‖y − X(T′)‖2F + λ‖T′‖trnn.

(111)

According to (110) and (111), it can be observed that ({U′k}Kk=1, T̃
′
) is also the optimal solution of problem (18).

APPENDIX L
PROOF OF THEOREM 5

We first introduce the important lemma:

Lemma 12. [s12] Let H be the real Hilbert space endowed with an inner product 〈·, ·〉 and a corresponding norm ‖ · ‖, and
y ∈ ∂‖x‖, where ∂f(x) is the subgradient of f(x). Then ‖y‖∗ = 1 if x 6= 0, and ‖y‖∗ ≤ 1 if x = 0, where ‖ · ‖∗ is the dual
norm of ‖ · ‖.

Part 1: We first show that the boundness of sequences (Tt, T̃
t
, {Ut

k}Kk=1, {L
k,t}Kk=1, {R

k}Kk=1) generated by Algorithm 2.
According to the first-order optimal conditions of problem (34), we have

0 ∈ λαk
ηt

∂‖Lk,t+1
(k,s) ‖∗ + Lk,t+1

(k,s) +
1

ηt
Rk,t

(k,s) − T̃
t+1

(k,s), (112)

and by (37), we have

− 1

λαk
Rk,t+1

(k,s) ∈ ∂‖L
k,t+1
(k,s) ‖∗, (113)

according to Lemma 12, we have

1

λαk
‖Rk,t+1

(k,s) ‖ ≤ 1. (114)

Thus, the sequence {Rk,t}Kk=1 are bounded sequences.
According to (31), (33) and (35), we have

`2ηt(T
t+1, T̃

t+1
, {Ut+1

k }
K
k=1, {L

k,t+1}Kk=1,P
t, {Rk,t}Kk=1)

≤`2ηt(T
t, T̃

t
, {Ut

k}Kk=1, {L
k,t}Kk=1,P

t, {Rk,t}Kk=1)

≤`2ηt(T
t, T̃

t
, {Ut

k}Kk=1, {L
k,t}Kk=1,P

t−1, {Rk,t−1}Kk=1) +
ηt−1 + ηt

2(ηt−1)2
(

K∑
k=1

‖Rk,t −Rk,t−1‖2F + ‖Pk,t −Pk,t−1‖2F ).

(115)
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According to the boundness of sequence Pt and (114), we can obtain that `2ηt(T
t+1, T̃

t+1
, {Ut+1

k }Kk=1, {L
k,t+1}Kk=1,P

t, {Rk,t}Kk=1) <
∞. Then according to (29), we have

1

2
‖y − X(Tt)‖2F + κ∞δ (Tt) + λ

K∑
k=1

αk‖Lk,t(k,s)‖∗

=`2ηt(T
t, T̃

t
, {Ut

k}Kk=1, {L
k,t}Kk=1,P

t−1, {Rk,t−1}Kk=1)−
K∑
k=1

(〈Lk,t − T̃
t
,Rk,t〉+

ηt

2
‖Lk,t − T̃

t
‖2F )

− 〈Pt−1,Tt − T̃
t
×1 Ut

1 · · · ×K Ut
K〉 −

ηt

2
‖Tt − T̃

×
1 Ut

1 · · · ×K Ut
K‖2F

=`2ηt(T
t, T̃

t
, {Ut

k}Kk=1, {L
k,t}Kk=1,P

t−1, {Rk,t−1}Kk=1)− 1

2ηt−1

K∑
k=1

(‖Rk,t‖2F − ‖R
k,t−1‖2F )

− 1

2ηt−1
(‖Pt‖2F − ‖P

t−1‖2F ) <∞.

(116)

By (116) and Ut
k ∈ St(dk, Rk), k ∈ [K], the sequences (Tt, T̃

t
, {Ut

k}Kk=1, {L
k,t}Kk=1, {R

k}Kk=1) generated by Algorithm 2
are bounded.

Part 2: Then we prove that the sequences generated by Algorithm 2 are Cauchy sequences. By (37), we have
∞∑
t=1

‖Lk,t − T̃
t
‖F =

∞∑
t=1

1

ηt
‖Rk,t+1 −Rk,t‖F . (117)

Since sequences {Rk,t}Kk=1 are bounded and limt→∞ ηt =∞, we have limt→∞ ‖Lk,t − T̃
t
‖F = 0, that is, Lk,∞ = T̃

∞
, k ∈

[K].
According to the first-order optimal condition of problem (34) and ∃Fk,t ∈ ∂‖Lk,t(k,s)‖∗ such that

λαk
µt

Fk,t + Lk,t(k,s) − T̃
t

(k,s) +
1

ηt
Rk,t

(k,s) = 0. (118)

Similar to (??), we have
∞∑
t=1

‖Lk,t(k,s) − Lk,t−1
(k,s) ‖F =

∞∑
t=1

‖(ν − 1)Rk,t
(k,s) − νR

k,t−1
(k,s) + λαkF

k,t‖F
ηt

< bmax

∞∑
t=1

1

ηt

=
bmax
η0

∞∑
t=1

ν−t

=
bmax

η0(ν − 1)
<∞.

(119)

where bmax = max(b1, b2, · · · , b∞), where bt = ‖(ν − 1)Rk,t
(k,s) − νRk,t−1

(k,s) + λαkF
k,t‖F . Thus, {Lk,t}Kk=1 are Cauchy

sequences. Similarly, it can be verified that {Tt, T̃
t
} are also Cauchy sequence.

Part 3: We show that any limit point generated by Algorithm 2 satisfied the KKT conditions of problem (28). The KKT
conditions of problem (28) are

0 ∈y − X(T∗) + λ

K∑
k=1

αk∂‖T̃
∗
‖∗ + ∂κ∞δ (T∗),

T∗ = T̃
∗
×U∗1 · · · ×K U∗K ,

U∗k ∈ St(dk, Rk), k ∈ [K].

(120)

According to the first-order optimal condition of problem (21), we have

0 ∈ ηt(Lk,t − T̃
t+1

) + Rk,t − λαkfold(∂‖Lk,t(k,s)‖∗), k ∈ [K]. (121)

Similarly, for problem (33), we have

0 = T̃
t+1
− 1

K + 1
(

1

ηt
Pt + Tt)×1 Ut+1,>

1 · · · ×K Ut+1,>
K − 1

K + 1

K∑
k=1

1

ηt
Rk,t −Lk,t. (122)
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Since {Lk,t}Kk=1 and T̃
t

are Cauchy sequences, and Lk,∞ = T̃
∞

. Combining (35), (121) and (122), we can obtain that

0 ∈λαkfold(∂‖T̃∞(k,s)‖∗) + y − X(T∞) + ∂κ∞δ (T∞),

T∞ = T̃
∞
×U∞1 · · · ×K U∞K ,

U∞k ∈ St(dk, Rk), k ∈ [K].

(123)

Therefore, the sequences (Tt, T̃
t
, {Lk,t}Kk=1, {U

t
k}Kk=1) generated by Algorithm 2 converges to the KKT point of problem

(28).
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