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Shilling Black-box Recommender Systems by
Learning to Generate Fake User Profiles

Chen Lin, Si Chen, Meifang Zeng, Sheng Zhang, Min Gao, and Hui Li

Abstract—Due to the pivotal role of Recommender Systems
(RS) in guiding customers towards the purchase, there is a
natural motivation for unscrupulous parties to spoof RS for
profits. In this paper, we study Shilling Attack where an
adversarial party injects a number of fake user profiles for
improper purposes. Conventional Shilling Attack approaches
lack attack transferability (i.e., attacks are not effective on
some victim RS models) and/or attack invisibility (i.e., injected
profiles can be easily detected). To overcome these issues, we
present Leg-UP, a novel attack model based on the Generative
Adversarial Network. Leg-UP learns user behavior patterns
from real users in the sampled “templates” and constructs
fake user profiles. To simulate real users, the generator in
Leg-UP directly outputs discrete ratings. To enhance attack
transferability, the parameters of the generator are optimized by
maximizing the attack performance on a surrogate RS model.
To improve attack invisibility, Leg-UP adopts a discriminator to
guide the generator to generate undetectable fake user profiles.
Experiments on benchmarks have shown that Leg-UP exceeds
state-of-the-art Shilling Attack methods on a wide range of
victim RS models. The source code of our work is available
at: https://github.com/XMUDM/ShillingAttack.

Index Terms—Shilling Attack, Black-box Attack, Recom-
mender Systems, Generative Adversarial Network.

I. INTRODUCTION

RECOMMENDER Systems (RS) have played a vital role
since the beginning of e-commerce [1]. The prevalence

of RS in industries (e.g., Amazon, Facebook and Netflix [2])
has led to growing interest in manipulating RS [3]. On the
one hand, unscrupulous parties can gain illegal profits by
attacking RS to mislead users and affect their decisions. On the
other hand, studying how to spoof RS gives insights into the
defense against malicious attacks. We have seen various types
of attacks against RS in the literature, including Unorganized
Malicious Attacks (i.e., several attackers individually attack
RS without an organizer) [4], Sybil Attacks (i.e., attacker
illegally infers a user’s preference) [5], etc.

This paper studies Shilling Attack, which is one of the
most subsistent and profitable attacks against RS [6]. Shilling
Attack is also called as Data Poisoning Attack [7], [8] or
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Fig. 1: An illustrative example of Shilling Attacks: promoting
products by injecting fake user profiles. The value indicates
the preference of a user on an item.

Profile Injection Attack [9] in the literature. Researchers have
successfully performed Shilling Attacks against real-world
RS such as YouTube, Google Search, Amazon and Yelp in
experiments [10], [11]. Large companies like Sony, Amazon
and eBay have also reported that they suffered from Shilling
Attacks in practice [12]. In Shilling Attacks, an adversarial
party performs an attack by injecting a number of fake
user profiles to hoax RS for improper purposes [12]. The
goal is to either promote its own products (i.e., make the
products recommended more often) or demote its competitors’
products (i.e., make the competitors recommended less often).
Fig. 1 illustrates the former case: after injecting carefully
crafted fake user profiles, the target item appears in the top-2
recommendation list provided by the victim recommendation
model to some users. Shilling Attacks fully utilize the core
of RS: RS must allow users to interact with the system by
various operations such as giving ratings and browsing pages.
This way, RS can gain sufficient feedback from users to
train their models and provide recommendations. The open
of RS to the data input from users makes injecting fake
user profiles to launch Shilling Attacks possible. Moreover,
Shilling Attacks treat the victim RS as a black box and only
require the historical user-item interaction data (e.g., ratings)
which is typically accessible from real users’ public pages
in the system. For instance, the pages of users containing
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their historical data in local business RS platforms Yelp1 and
Dianping2 are both open to the public.

Early Shilling Attack methods create injection profiles based
on simple heuristics [6], [12], [13]. For instance, Average
Attack [12] assigns the highest rating to the target item to be
promoted and average ratings to a set of randomly sampled
items. Recently, with the success of Adversarial Attacks [14]
in image classification [15] and text classification [16], a few
works [17], [18], [19], [20] consider directly adopting an
Adversarial Attack model for Shilling Attacks. Though we
have witnessed a great success of Adversarial Attacks against
many learning systems, existing Adversarial Attacks cannot be
directly adopted for Shilling Attacks:

1) Attack goals are different. Adversarial Attacks on text
and image usually aim to trick the system to misclassify,
while Shilling Attacks aim to misguide RS to rank the
target item higher/lower.

2) Attack knowledge is different. A prevalent strategy
of Adversarial Attacks is to utilize the information of
gradient decent in machine learning models to search
undetectable perturbations [14]. However, in Shilling
Attacks, though the data (e.g., rating matrix) of RS is
generally available to all users (i.e., a user can see all
other users’ ratings) and thus exposed to attackers [13],
[6], [12], the victim RS model is typically treated as a
black box.

3) Data correlation is different. Attacking many machine
learning tasks can be achieved by manipulating one data
sample (e.g., One-pixel Attack [15]). This is impractical
for RS since recommendation for a user is typically made
based on the information from multiple user-item pairs.

Besides, existing Shilling Attack methods suffer from the
following limitations:
• Low Attack Transferability. Simple heuristic based

attacking methods are shown to be effective only on
certain traditional collaborative filtering (CF) approaches.
For example, Average [12], Bandwagon [21] and Ran-
dom [12] Attacks are more effective against CF using
user-based k-Nearest Neighbors, but do not work well
against CF using item-based k-Nearest Neighbors [22].
Since they are tailored for one victim RS model, their
attack transferability on other victim RS models, es-
pecially on recently prevalent deep learning based RS
models [23], is doubtful.

• Low Attack Invisibility. Both simple heuristic based
and most recent methods which directly use Adversarial
Attack models for Shilling Attacks lack the consideration
of personalization. The generated fake user profiles do
not have real-user behavior patterns in RS. Thus the
attack can be easily detected [18], [24]. Moreover, recent
Adversarial Attack models for Shilling Attacks against
RS [19], [20] generate fake user profiles with implicit
feedback, i.e., profiles only have binary entries to indicate
whether the user has interacted with an item. To launch
Shilling Attacks using these “binary” fake user profiles,

1https://www.yelp.com
2http://www.dianping.com

attackers have to use bots to automatically trigger inter-
actions (e.g., frequently browse the page of an item) and
mislead the system to regard the frequent operations as an
indication of user preferences. Such frequent operations
may arouse the suspicion of the detector.

In this paper, we propose Leg-UP (Learning to Generate
Fake User Profiles), which extends our previous work
AUSH [24] for Shilling Attacks, and is built upon the Gen-
erative Adversarial Network (GAN) [25]. The novelty of
Leg-UP lies in the following designs to enhance its attack
transferability and invisibility, which are different compared
to AUSH and other recent Shilling Attack methods:

1) Generator: a neural network module to produce
discrete ratings. The generated fake user profiles of Leg-
UP include discrete ratings. As giving Likert-scale ratings
is the most common way that real RS provide to users
to give feedback and get involved in the recommendation
procedure, the fake user profiles are easy to inject into the
system (e.g., type in ratings on a limited number of items
manually), but difficult for the detector to discover. Leg-
UP adopts a discretization layer in the generator which
produces learnable thresholds to generate ratings with
personalized user behavior patterns. To avoid the problem
that discretization will encounter unpropagated gradients
in training, we train Leg-UP through an approximation
function. Since the error of the discretization will be
eliminated during optimization, the generated fake user
profiles are more accurate and powerful in Shilling At-
tacks. This way, both attack transferability (i.e., attack
performance) and invisibility of Leg-UP are enhanced.

2) Generator Optimization: indirect and direct genera-
tion losses. The generator in a standard GAN is usually
optimized through the classification task in the discrim-
inator. Towards better attack performance, a generation
loss can be associated solely with the generator. In AUSH,
the generation loss is indirect, i.e., it is related to the
reconstruction of some user data. Since the generator acts
like an “attacker”, the generation loss can also be direct,
i.e., to measure how well the victim RS model is attacked.
Inspired by Tang et al. [20], we design a generation loss
to be estimated on a surrogate model for Leg-UP. We also
propose a two-level optimization for the generation loss.
Thus, less knowledge is demanded regarding the victim
RS model, black-box attack is allowed, and higher attack
transferability can be achieved.

3) Discriminator. In GANs, the generator and the dis-
criminator strike to enhance each other in a minimax
competition. Specifically, in Shilling Attacks, by training
the generator to “beat” the discriminator, the generated
fake user profiles are less detectable and more powerful
in the attack. We provide a design of the discriminator for
Leg-UP, which acts like a “defender” and identifies fake
user profiles based on both explicit and implicit feedback,
so that both attack transferability and attack invisibility
can be improved.

We have conducted comprehensive experiments to verify
the effectiveness and undetectability of Leg-UP. We show that
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Leg-UP is effective against a wide range of victim RS models,
including both classic and modern deep learning based recom-
mendation algorithms, on a variety of benchmark RS datasets.
We also show that Leg-UP is virtually undetectable by the
state-of-the-art attack detection method. We demonstrate, by
visualizations, that the fake user profiles produced by Leg-
UP follow a similar distribution as real users and maintain
diversity (i.e., personalization). We hope that, Leg-UP, as a
new Shilling Attack method, can benefit the study of secure
and robust RS.

The rest of the paper is organized as follows: Sec. II
surveys the related work. Sec. III introduces the background
of Shilling Attacks against RS and the framework design of
Leg-UP. Sec IV and Sec. V describe in detail Leg-UP’s model
architecture and learning algorithm, respectively. In Sec. VI,
we compare Leg-UP with other state-of-the-art Shilling Attack
methods to verify its effectiveness and undetectability. Finally,
Sec. VII concludes our work and points out future research
directions.

II. RELATED WORK

A. Recommender Systems (RS)

RS can help overcome the information overload problem.
The research on RS has a long history. Early work on RS is
either heuristic-based or factorization-based [26].

Recently, the great success of deep learning has significantly
advanced the development of RS. Following are some repre-
sentative deep neural networks adopted in RS and their exam-
ples: (1) Convolutional Neural Network (CNN) can capture
local and global representation from heterogeneous data [27].
One recent work RecSeats [28] adopts CNN to capture higher
order interactions between features of available seats in seat
recommendation. (2) Multilayer Perceptron (MLP) can easily
model the nonlinear interactions between users and items even
when the system has much noise data. Recently, Zhou et
al. [29] enhance MLP with filtering algorithms from signal
processing that attenuates the noise in the frequency domain.
Experimental results show that their method can significantly
improve recommendation quality. (3) Recurrent Neural Net-
work (RNN) can help RS model sequential behaviors better.
For instance, Zhang et al. [30] recently adopt RNN in their
proposed deep dynamic interest learning that captures the
local/global sessions within sequences for CTR prediction
and Xia et al. [31] leverage RNN for modeling reviews in
RS. (4) Graph Neural Network (GNN) can model structural
information in graph data that is prevalent in RS. Huang et
al. [32] study how to use GNN together with negative sampling
to provide recommendations on user-item graphs. Huang et
al. [33] model both the high order user- and item-wise relation
encoding in GNN for social recommendation.

Due to the page limit, we only illustrate recent, represen-
tative RS. Readers can refer to related surveys [23], [26] for
more related work on RS.

B. Adversarial Attacks

Investigating the security of machine learning based sys-
tems is a continuing concern within the machine learning

community. Research has shown that, crafted adversarial
examples [14], which may be imperceptible to the human
eye, can lead to unexpected mistakes of machine learning
based systems. Adversarial Attacks, which are launched by
adversaries to leverage vulnerabilities of the system, has been
studied in many text and image based learning systems [34],
[14].

Adversarial examples in conventional machine learning
models have been discussed since decades ago [14]. Dalvi
et al. [35] find that manipulating input data may affect
the prediction results of classification algorithms. Biggio et
al. [36] design a gradient-based approach to generate ad-
versarial examples against SVM. Barreno et al. [37], [38]
formally investigate the security of conventional machine
learning methods under Adversarial Attacks. Roli et al. [39]
discuss several defense strategies against Adversarial Attacks
to improve the security of machine learning algorithms. In
addition to conventional machine learning, recent studies have
reported that deep learning techniques are also vulnerable to
Adversarial Attacks [14].

Even though Adversarial Attack methods are able to affect
many learning applications, we cannot directly apply these
methods to Shilling Attacks as explained in Sec. I.

C. Generative Adversarial Network

Generative Adversarial Network (GAN) [25] performs ad-
versarial learning between a generator and a discriminator,
which can be implemented with any form of differentiable sys-
tem that maps data from one space to the other. The generator
tries to capture the real data distribution and generates real-like
data, while the discriminator is responsible for discriminating
the generated and original data. GAN plays a minimax game
and the optimization terminates at a saddle point that is a
minimum with respect to the generator and a maximum with
respect to the discriminator (i.e., Nash equilibrium).

As GAN overcomes the limitations of previous generative
models [40], it has been prevalently deployed in applications
that generate text [41], images [25], recommendations [42]
or many other types of data [40]. To improve original GAN,
DCGAN [43] adopts the CNN architecture, and Wasserstein
GAN [44] leverages Earth Mover distance. There also exists
a direction of GAN research which utilizes GAN to generate
adversarial examples. For instance, Zhao et al. [45] propose
to search the representation space of input data under the
setting of GAN in order to generate more natural adversarial
examples. Xiao et al. [46] design AdvGAN which can attack
black-box models by training a distilled model.

D. Shilling Attacks against RS

O’Mahony et al. [47], [48] firstly study the robustness of
user-based CF by injecting some fake users. They also provide
a theoretical analysis of the attack by viewing injected ratings
as noises. Lam and Riedl [12], Burke et al. [9], [21], Mobasher
et al. [22] further study the influence of some low-knowledge
attack approaches to promote an item (e.g., Random, Average,
Bandwagon and Segment Attacks) and demote an item (e.g.,
Love/Hate Attacks and Reverse Bandwagon Attacks) on CF
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methods. Assuming more knowledge and cost are available,
Wilson and Seminario [49], and Seminario and Wilson [50]
design Power User/Item Attacks which leverage most influen-
tial users/items to shill RS, Fang et al. [51] study how to spoof
graph based RS models, and Li et al. [7] present near-optimal
Data Poisoning Attacks for factorization-based RS. Xing et
al. [10] and Yang et al. [11] conduct experiments on attacking
real-world RS (e.g., YouTube, Google Search, Amazon and
Yelp), and show that manipulating RS is possible in practice.

The success of Adversarial Attacks have inspired the study
of Shilling Attacks. Christakopoulou and Banerjee [17], [18]
employ DCGAN [43] to generate fake user profiles used in
Shilling Attacks. However, directly adopting existing GANs
will not provide satisfactory results in Shilling Attacks as
shown in our experiments. Tang et al. [20] leverage a surrogate
victim model to estimate the attack performance for black-
box attacks. Song et al. [19] design an effective Shilling
Attack framework based on reinforcement learning. But their
method requires that the feedback from RS is periodically
available, which is impractical for most RS. Our previous work
AUSH [24] is tailored for RS by considering attack cost and
designing a specific generation loss. But AUSH applies simple
rounding to generate discrete ratings, and its generation loss
is indirect and only related to the reconstruction of some user
data, which may affect the results of Shilling Attacks.

III. BACKGROUND AND OVERVIEW OF LEG-UP
A. Terminology

First, we introduce the terminology of Shilling Attacks:
• Attack goal. The goal of an adversarial party in Shilling

Attacks could be complex. In this paper, we mainly
consider targeted attack, i.e., one item must be influenced.
This is the most common case for Shilling Attacks
against RS, because retail companies and producers have
a strong intention to increase sales in the fierce business
competition.
– Push Attacks indicate that one or several target items

must be promoted, i.e., the target items must be recom-
mended by the victim RS model more than they were
before the attack.

– Nuke Attacks indicate that one or several target items
must be demoted. Although we use Push Attacks to
demonstrate the model design throughout this paper, it
is convenient to apply the techniques to Nuke Attacks
by reversing the goal setting.

• Attack budget. Attacking RS is costly. When designing
a practical Shilling Attack method against RS, we have
to take into account the attack budgets from two perspec-
tives:
– Attack size is the number of fake user profiles. The

larger the attack size is, the more effective and expen-
sive the attack could be.

– Profile size is the number of non-zero ratings in one
fake user profile. Some recent works [20] do not con-
sider profile size. However, we believe that constrain-
ing the profile size is necessary. In some E-commerce
platforms, injecting fake ratings is impossible without

real purchase. Thus, it will be too expensive to generate
fake users with unlimited non-zero ratings.

• Attack knowledge. How much knowledge is accessible
for the attacker is a critical factor in designing Shilling
Attack methods. In general, the most desirable knowledge
is related to the user feedback and the victim RS model:
– User feedback is the dataset used to train the vic-

tim RS model. The attacker can have full or partial
knowledge about the user feedback. In this paper, we
assume that the attacker has full knowledge of the user
feedback, i.e., the attacker knows who rates what and
the exact rating values. This is a reasonable setting and
is commonly adopted in literature [13], [6], [12], [20],
because user-item ratings in RS are generally available
to all users (e.g., a user can see all other users’ ratings)
and thus exposed to attackers.

– Victim RS model is used to deliver recommendations
and it is the target of Shilling Attacks. Some existing
works assume that white-box attack is possible, i.e.,
the attacker has different degrees of knowledge about
the victim model, e.g., the model type [51] and model
parameters [52]. In this paper, we assume that the
victim model is unseen to the attacker (i.e., a black
box). This is because in many real productive RS,
the model is so complex that acquiring extraordinary
knowledge about the model parameters is impossible.
Furthermore, real RS usually employ ensemble models
and update their models frequently [1]. Therefore, the
attacker can not have accurate knowledge about the
model type.

• Injected fake user profiles. Although Leg-UP does not
explicitly classify items in a user profile, we follow the
terminology used in the literature [6] and divide the
items in a fake user profile into four parts so that our
descriptions are consistent with previous works:
– Target item indicates the item that the attacker wants

to fulfill his/her malicious purpose.
– Filler items are the items which have non-zero ratings

in the injected fake user profiles. The filler items in
each fake user profile are usually different.

– Unrated items are the items that have not been
assigned with any ratings in the injected fake user
profiles.

– Selected items are several human-selected items for
a special treatment. Not all attack models consider
selected items. One possible reason to use selected
items is to influence in-segment users, i.e., users that
have shown preferences on selected items. Details can
be found in Sec. VI-E.

B. Notations
Throughout this paper, we use lower-case letters for in-

dices, capital letters for scalars, boldface lower-case letters for
vectors, boldface capital letters for matrices, and calligraphic
letters for sets. The notations used for Leg-UP are illustrated
in Tab. I. We use X ∈ R|U|×|I| to denote the real rating matrix
in RS, where U and I represent the user universe and the item
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Fig. 2: Overview of Leg-UP. Leg-UP consists of three parts: (1) A sampling step that samples real user profiles as “templates”;
(2) A generator that generates fake users; (3) A discriminator that distinguishes real user profiles and fake user profiles to
boost the generator’s ability to generate undetectable fake user profiles.

TABLE I: Notations for Leg-UP.

Notation Definition
U ,V, I,S Sets of real users, fake users, items, and

selected items.
X ∈ R|U|×|I| Input rating matrix of real users and items.
GΘ(X(in)) or X̂ ∈ R|V|×|I| Injected fake user rating matrix.
X(in) ∈ RA×|I| Sampled user rating matrix used for “tem-

plates”.
X̃ ∈ R∗×∗ RS’s predictions on some users and items.
Xu,: A row of X represents a user u.
X:,i A column of X represents an item i.
Iu = {i ∈ I : Xu,i 6= 0} The item set that user u has rated.
Ui = {u ∈ U : Xu,i 6= 0} The set of users who have rated item i.
X̂ = GΘ(X(in)) The generator producing fake user profiles

based on “templates”, parameterized by Θ.
DΦ(X̂) The discriminator parameterized by Φ.
OΓ

(
X, X̂

)
The surrogate victim RS model parameter-
ized by Γ.

universe, respectively. Each row of X, i.e., Xu,: represents the
ratings given by user u. Each column of X, i.e., X:,i represents
the ratings assigned to item i. Iu = {i ∈ I : Xu,i 6= 0}
indicates the set of items that have been rated by user u.
Similarly, Ui = {u ∈ U : Xu,i 6= 0} denotes the set of
users that have rated item i. The attack budget is given by
A and P , i.e., the attack size and profile size. Leg-UP takes
X as the input and generates the fake user profiles X̂, where
X̂ ∈ R|V|×|I|. Since the attack size is A, |V| = A. Given the
profile size P , there are exactly P non-zero entries in X̂v,:,
∀v ∈ V .

C. Framework Overview

Inspired by the success of GAN based adversarial learning
in text [41] and image [25] generation, the design of Leg-UP
follows a GAN framework. Fig. 2 gives an overview of our
pipeline, which consists of the following parts:

1) Sampling. Making up fake user profiles from scratch is
risky as the generated profiles may not have real-user

patterns. Following our previous work AUSH [24], we
use sampled real user profiles as “templates” and learn
real user patterns from them. Using “templates” instead
of all the real users for learning real user patterns is
computationally efficient and makes it easy for Leg-UP
to focus on capturing patterns of real users with rich
information which leads to high-quality fake profiles. The
knowledge of templates is accessible in practice and does
not exceed the requirements of recent sophisticated attack
methods [7], [51], as we have shown in Sec. III-A. The
sampling component in Leg-UP gives the generator the
opportunity to learn from real user behaviors and retain
the preference diversity of the community (i.e., personal-
ization). Specially, the sampling component contains two
steps. In the first step, a batch of real users are chosen as
“templates”. The second step is optional. When a fixed
profile size is required, in the second step, filler items
are sampled from the rated items of the corresponding
“template”.

2) Generator. Generator takes as input the sampled user-
item rating sub-matrix (i.e., “templates”) and captures
the latent association between items and users. It outputs
the injected fake user profiles in the form of discrete
ratings. To boost the attack performance, the parameters
of generator are learned by minimizing a generation loss,
which measures how much the victim RS model will be
affected after the attack. As we are performing black-box
attacks, the details of the victim recommendation model
is unknown. Thus, the generation loss is measured via a
surrogate victim model in Leg-UP.

3) Discriminator. The discriminator of Leg-UP is fed with
the output of the generator. It distinguishes real user
profiles and fake user profiles. Optimizing the discrim-
inator, through a discrimination loss which measures the
accuracy of the classification of real/fake user profiles,
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boosts the generator’s ability to generate undetectable
fake user profiles.

The design of Leg-UP is general and there are various pos-
sible implementations for the generator and the discriminator.
We provide the details of one implementation in Sec. IV.

IV. MODEL

In this section, we will elaborate on one implementation for
Leg-UP to accomplish Shilling Attacks.

A. Sampling

As illustrated in Sec. III-C, Leg-UP contains a two-step
sampling component:

1) User Sampling. The first step is to sample users u ∼
U from the existing users to construct “templates”. The
result is a sub-matrix of X, i.e., X(in) ∈ R|U ′|×|I|. Given
the attack size A, we have |U ′| = A. Each “template” is
sampled randomly from real users.

2) Filler Item Sampling. Given the profile size P , Leg-UP
uses the second step to select items in each “template”.
We follow the setting of AUSH [24] and randomly
keep P items if the sampled user (i.e., “template”) has
interacted with more than P items. If the sampled user
has interacted with less than P items, we only use these
items in this “template”.

B. Generator

The generator aims to capture the real user preferences from
“templates” in order to construct the fake user profiles in the
form of discrete ratings for Shilling Attacks. There are various
possible model structures for the generator. Without loss of
generality, we divide the generator of Leg-UP into two major
components. One is used to generate user preferences (i.e.,
numerical values in the latent space) from “templates”, the
other is to transform the user preferences to discrete ratings:

Generating user preference. To infer user preferences in
X(in), a function, preference learner, that yields numerical
output is required. Suppose the preference learner is denoted
by PLΩ(X(in)), with parameters Ω = {ω}. The simplest
preference learner is to directly output its parameters:

PLΩ(X(in))v,i = ωi. (1)

We can also adopt a more complex neural network module
to extract user preferences from “templates”. One attractive
feature of using such a module is that it can capture non-
linear user-item associations in the “templates”. Since most
victim RS models deliver recommendations based on user-
item correlations, adopting a complex preference learner can
be helpful in shilling the victim RS model. To be specific, we
empirically find that the following Autoencoder (AE) based
design works well for Leg-UP:

PLΩ(X(in))v = fdecode
(
fencode(X

(in)
v,: )

)
∗ 2.5 + 2.5,

fencode(X) = ReLU(WeX + be),

fdecode(X) = Tanh(WdX + bd),

(2)

where W and b are learnable weight matrices and bias
vectors, respectively. In Eq. 2, fencode(X

(in)
v,: ) is a Multilayer

Perceptron (MLP) which transforms the ratings X
(in)
v,: into a

low dimensional latent representation, i.e., user preferences.
fdecode(·) is another MLP that decodes the latent represen-
tation back to a rating vector. Note that, in the implemen-
tation, each template has at most P non-zero entries, i.e.,
‖X(in)

v,: ‖0 ≤ P and only the non-zero entries are involved
in computing. To ensure that fake user profiles will have
exactly P non-zero ratings, we operate on the corresponding
entries of the output, hence we have ‖PLΩ(X(in))v‖0 ≤ P .
Moreover, we normalize the output of the preference learner
via first multiplying it by 2.5 and then adding 2.5 so that
0 < PLΩ(X(in))v < 1.

Discretizing user preference. Giving discrete ratings (e.g., 5-
star scale ratings) to items is the common way that RS provide
to users to interact with the system and get involved in the
recommendation procedure. Thus, the numerical output of AE
in Leg-UP, which indicates the preference strength of each
fake user on each filler item, is designed to be discretized as
5-star ratings. Our previous work AUSH [24] adopts a simple
rounding method to project numerical preference to discrete
ratings. The rounding method in AUSH divides the range into
five segments:

X̂v,i =



1, 0 < PLΩ(X(in))v,i ≤ 0.2

2, 0.2 < PLΩ(X(in))v,i ≤ 0.4

3, 0.4 < PLΩ(X(in))v,i ≤ 0.6

4, 0.6 < PLΩ(X(in))v,i ≤ 0.8

5, 0.8 < PLΩ(X(in))v,i < 1.

(3)

However, the rounding method in AUSH is intuitively sub-
optimal:

1) It can not discover subtle differences among users as the
rounding method is identical to all users and/or items.
For example, suppose the estimated preference is 0.85, a
normal user may give a 5-star rating, while a picky user
might give a 4-star rating. Rounding will output 5-star
for all users, which is not feasible.

2) It will incur unpredictable errors that influence attack
performance. Since rounding is performed when the
optimization of AUSH is completed, errors introduced
by discretizing the preference are not accumulated in the
learning objective. Suppose that the estimated preference
from AUSH is 4.8, which has minimized the generation
loss of AUSH. Then, discretizing it to 5 may not conform
to the direction of optimization for the generation loss,
which will affect the attack performance.

To address above issues in AUSH, we design a final
discretization layer in the generator of Leg-UP to discretize
preference so that the discretization process becomes part of
the optimization and discretization errors can be reduced:

GΘ(X(in))v,i =

5∑
k=1

H
(
PLΩ(X(in))v,i,

k∑
k′=1

τv,k′
)
, (4)

where τ is a learnable parameter, ∀v ∈ V, 0 ≤ τv,k ≤ 1.
Θ = {τ,W,b} is the set of parameters of AE and the final
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discretization layer. H(x, τ), 0 < x < 1 is the Heaviside step
function defined as follows:

H(x, τ) =

{
1, x > τ

0, x ≤ τ. (5)

Essentially, the final discretization layer learns five value
segments for each user v:

X̂v,i =



1, 0 < PLΩ(X(in))v,i ≤ τv,1
2, τv,1 < PLΩ(X(in))v,i ≤

∑2
k=1 τv,k

3, τv,1 + τv,2 < PLΩ(X(in))v,i ≤
∑3
k=1 τv,k

4,
∑3
k=1 τv,k < PLΩ(X(in))v,i ≤

∑4
k=1 τv,k

5,
∑4
k=1 τv,k < PLΩ(X(in))v,i <

∑5
k=1 τv,k.

(6)
We can attach a generation loss with the generator to

enhance the quality of generated fake user profiles. It is worth
noting that, even without the generation loss, the generator
can still get rewarded/penalized through the discrimination
loss introduced in Sec. IV-C. Generation loss can be indirect.
For example, AUSH employs a reconstruction loss which
measures how well the generated ratings recover the real
ratings:

Lgen =
∑
v∈U

∑
X

(in)
v,j 6=0

(
X̂v,j −X

(in)
v,j

)2
. (7)

Eq. 7 does not require any prior knowledge of the victim
RS model and it is irrelevant to the attack. The design goal of
the reconstruction loss is to help the fake user profiles retain
the real user behavior patterns so that they can be difficult to
detect.

We can also directly maximize the attack performance via
the generation loss. We use Push Attacks as an example, i.e.,
how much the target item t will be promoted:

Lgen = −
∑
u∈U

log
exp X̃u,t∑
j∈I exp X̃u,j

, (8)

where X̃u,i is the rating predicted by the victim model for user
u on item i. If the target item t receive a higher predicted rating
by the victim RS model than other items after the attack, then
the direct loss in Eq. 8 will be minimized. Note that Nuke
Attacks can be achieved similarly via maximizing Eq. 8.

However, we can not obtain the predicted ratings X̃ by
the victim RS model in the setting of the black-box Shilling
Attacks. Instead, we use the output of a surrogate RS model
to represent X̃, with the assumption that the knowledge for
attacking a well-trained surrogate RS model can be transferred
to attacking other RS models (i.e., real victim RS models) [20].
Therefore, the predicted ratings X̃ can be obtained via:

X̃ = SΓ

(
X∗
)
,

X∗ = concate
(
X, GΘ(X(in))

)
,

(9)

where SΓ indicates a surrogate RS model with parameters Γ,
and X∗ indicates the concatenation of two matrices X and
GΘ(X(in)). Note that, the surrogate model is trained on both

real user feedback and fake user profiles to achieve a minimal
recommendation loss LRS :

Γ = arg min
Γ
LRS

(
X∗, SΓ(X∗)

)
. (10)

We use the original design of the recommendation loss LRS

in the surrogate RS. But we calculate LRS on X∗ instead of
X.

In summary, we have the following objective for the gener-
ator:

min
Θ
−
∑
u∈U

log
expSΓ

(
X∗
)
u,t∑

j∈I expSΓ

(
X∗
)
u,j

s.t.,Γ = arg minLRS

(
X∗, SΓ(X∗)

)
.

(11)

The choice of the surrogate model is important to ensure
attack transferability. Following Tang et al. [20], we use
Weighted Regularized Matrix Factorization (WRMF) as the
default surrogate model due to its efficiency and effectiveness
on real data [1], [2]. But we also explore other surrogate
models in our experiments in Sec. VI-G. In WRMF, the rec-
ommendation loss LRS is defined as the weighted aggregation
of the differences between predictions and observed ratings in
X∗:

LRS

(
X∗, SΓ(X∗)

)
=

∑
u∈U,i∈I

wu,i
(
X∗u,i −PTuQi

)2
+ λ(‖P‖2 + ‖Q‖2), (12)

where wu,v is the instance weight for the observed rating
Xu,i 6= 0 and the missing rating Xu,i = 0. Γ = {P,Q}
are model parameters of the surrogate model, and λ is the
hyper-parameter to control model complexity.

C. Discriminator

The discriminator D attempts to correctly distinguish fake
user profiles and real user profiles. It takes the fake user
profiles generated by the generator or the real user profiles,
and outputs the probabilities that the inputs are real. We use
a MLP as our discriminator. For simplicity, we illustrate the
discriminator in Eq. 13 with the fake user profiles X̂:

DΦ(X̂) = σ
(
Wd(X̂) + bd

)
, (13)

where Φ = {Wd,bd} are learnable weight matrices and bias
vector, and σ indicates the sigmoid function. Note that we use
both explicit feedback (non-zero ratings) and implicit feedback
(denoted as zeros) in the user profiles for Eq. 13.

The goal of the discriminator is essentially a binary classifi-
cation task. We use the cross-entropy loss as the discrimination
loss:

Ldis = logDΦ(X) + log
(
1−DΦ(X̂)

)
. (14)

Inspired by the idea of GAN [25], we aim to unify the
different goals of the generator and the discriminator by letting
them play a minimax game via optimizing the objective in
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x

Value

τ

H(x, τ)

1

Slope: ξ
τ− τm

2

Slope: 1−2ξ
τm

Slope: ξ
1−τ− τm

2

τ − τm
2 τ + τm

2

H ′(x, τ)

Fig. 3: We use H ′(x, τ) (line in blue) to approximate the heav-
iside step function H(x, τ) (line in red). The approximation
contains three straight-line segments with different slope.

Eq. 15. Using the direct generation loss as an example, the
overall objective of Leg-UP is presented as follows:

min
Θ

max
Φ
L = Eu∼U [logDΦ(Xu)]

−
∑
u∈U

log
exp

(
SΓ(X∗)u,t

)∑
j∈I exp

(
SΓ(X∗)u,j

)
+ EX̂v∼GΘ(X(in))[log

(
1−DΦ(X̂v)

)
]

s.t.,Γ = arg minLRS

(
X∗, SΓ(X∗)

)
,

(15)

where Θ and Φ are model parameters of G and D, respectively.
u is a real user profile sampled from the user universe, X̂v is
a fake user profile generated from the generator distribution
GΘ(X(in)).

V. LEARNING

Training Leg-UP is not trivial. We will discuss and provide
solutions to three critical problems in training Leg-UP in this
section.

A. Approximate Discretization

Firstly, the discretization layer in generator employs a
discontinuous step function. The gradient for step function is
not defined at the boundary and is zero everywhere else. This
is problematic in for gradient propagation.

To address this issue, we adopt an approximation function
H ′ to mimic the behavior of the Heaviside step function H
introduced in Eq. 5:

H ′(x, τ) =


xξ

τ− τm2
, x < τ − τm

2
ξ(x−τ− τm2 )

1=τ− τm2
+ 1− τ, x > τ + τm

2
(x−τ)(1−2ξ))

τm
+ 0.5, others,

(16)

where τm = min{τ, 1−τ}. As shown in Fig. 3, H ′(x, τ) uses
three straight lines to approximate H(x, τ), when x ∈ [0, 1].
As explained by Tsoi et al. [53], a larger value of ξ providers
a smoother derivative but further approximation from the
Heaviside function. In practice, a value of ξ = 0.1 works
well.

Algorithm 1: Training procedure for Leg-UP.
Input: rating matrix X
Output: parameter set Θ for the generator G and parameter

set Φ for the discriminator D
for number of training epochs do

(1) Discriminator optimization
for k1 steps do

uniformly sample a minibatch of users U ′;
foreach u′ ∈ U ′ do

sample F items to construct x(in)

u′ ;
generate a minibatch of fake user profiles
{x(out)

u′ = G(x
(in)

u′ )|u′ ∈ U ′};
optimize Φ to minLdis with Θ fixed;

(2) Generator optimization
for k2 steps do

uniformly sample a minibatch of user rating vectors
{xu};

foreach u′ ∈ U ′ do
sample F items to construct x(in)

u′ ;
generate a minibatch of fake user profiles
{x(out)

u′ = G(x
(in)

u′ )|u′ ∈ U ′};
(3) Surrogate optimization
for T steps do

sample a minibatch of user rating vectors from
(X, X̂);

optimize Γ to minLRS ;
optimize Θ to minLgen with Φ and Γ fixed;

B. Two-level Optimization for Lgen

Secondly, the adversarial loss in Eq. 11 is computed based
on a well-trained surrogate RS model, which requires a two-
level optimization procedure. The exact gradient, with respect
to the generator parameters, for the adversarial loss can be
written as:

∂ΘLgen =
∂Lgen

∂X̂

∂X̂

∂Θ
+
∂Lgen

∂Γ

∂Γ

∂X̂
, (17)

where X̂ = GΘ(X).
However, the computation of the exact gradient requires

to keep the parameters of the surrogate model for all the
training steps, which will consume a lot of time and space
resources [20]. Following the idea of Tang et al. [20], we
approximate the gradient by unrolling only the last step when
accumulating gradients to improve the efficiency of Leg-UP.

C. Learning Algorithm

Finally, we present Alg. 1 to optimize the overall objective
of Leg-UP in Eq. 15. Specifically, the generator acts like an
“attacker” and attempts to generate “perfect” fake user profiles
that are difficult to detect by the discriminator and can achieve
the malicious attack goal on the surrogate model. On the other
hand, the discriminator module performs like a “defender”.
It tries to accurately distinguish fake user profiles and real
user profiles, and provides guidance to train the generator to
generate undetectable fake user profiles. Each of the generator
and the discriminator strikes to enhance itself to beat the other
one at every round of the minimax competition.
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TABLE II: Statistics of data.

Data #Users #Items #Ratings Sparsity
ML-100K 943 1,682 100,000 93.70%
FilmTrust 780 721 28,799 94.88%

Yelp 2,762 10,477 119,237 99.59%
Automotive 2,928 1,835 20,473 99.62%

T & HI 1,208 8,491 28,396 99.72%
G & GF 2,212 8,041 62,424 99.65%
A & A 7.845 12,615 193,928 99.80%

VI. EXPERIMENT

In this section, we conduct experiments3 to answer the
following research questions:
• RQ1: Does Leg-UP give better attack performance on

different victim RS models, compared with other Shilling
Attack methods? (Sec. VI-B)

• RQ2: Is it more difficult to recognize the attack launched
by Leg-UP, compared with other Shilling Attack meth-
ods? (Sec. VI-C)

• RQ3: Does each component in Leg-UP contribute to its
attack effects? (Sec. VI-D)

• RQ4: Can Leg-UP achieve tailored attack goals such as
In-segment Attacks? (Sec. VI-E)

• RQ5: How does the attack budget affect the performance
of attack? (Sec. VI-F)

• RQ6: Does the choice of the surrogate model affect Leg-
UP? (Sec. VI-G)

A. Experimental Setup

We use seven benchmark datasets for RS in our experi-
ments, including ML-100K4, FilmTrust5, Yelp6 and four other
Amazon datasets7 Automotive, Tools and Home Improvement
(T & HI), Grocery and Gourmet Food (G & GF), and Apps
for Android (A & A). ML-100K is used as the sole dataset
in most previous work on Shilling Attacks [13] due to the
convenience of computation. We use its default training/test
split. However, we believe that the nature of datasets affects
attack transferability. For example, some victim RS models
perform better on denser datasets. Thus, we include the other
four datasets, which are larger and sparser, to testify the
competence of Leg-UP in different settings. We randomly
split datasets except ML-100K by 9:1 for training and testing,
respectively. To exclude cold-start users (as they are too
vulnerable), we filter users with less than 15 ratings and items
without ratings. Five target items are randomly sampled for
each dataset. Tab. II illustrates the statistics of the data. where
“Sparsity” is the percentage of missing ratings.

The attack budget is shown in Tab. III. We use each attack
method to generate 50 user profiles. This is roughly the
population which can manifest the differences among attack
models [9]. In each injected user profile, we demand the
number of non-zero ratings to equal to the average number of

3The source code of Leg-UP is available at https://github.com/XMUDM/
ShillingAttack.

4https://grouplens.org/datasets/movielens/100k
5https://www.librec.net/datasets/filmtrust.zip
6https://www.kaggle.com/c/yelp-recruiting/data
7http://jmcauley.ucsd.edu/data/amazon

TABLE III: Attack budget.

Data A P |S| #Targets
ML-100K 50 90 3 5
FilmTrust 50 36 3 5

Yelp 50 5 1 5
Automotive 50 4 1 5

T & HI 50 8 1 5
G & GF 50 10 1 5
A & A 50 9 1 5

ratings per user in the dataset. This makes the “profile size”
to be 90, 36, 5, 4, 8, 10 and 9 in ML-100K, FilmTrust, Yelp,
Automotive, T & HI, G & GF, and A & A, respectively.

B. Attack Effectiveness (RQ1)

We compare Leg-UP with several Shilling Attack methods,
including classic heuristic based methods and recent GAN
based methods:

1) AIA stands for Adversarial Injection Attack, a bi-level
optimization framework to generate fake user profiles
by maximizing the attack objective on the surrogate
model [20]. AIA randomly selects A (i.e., the attack size)
real user profiles and uses them to initialize the opti-
mization. Following the original paper, we use WRMF
as the surrogate model, and unroll the last step as an
approximation of the adversarial gradient. Note that AIA
does not constrain the profile size. It is possible that a
generated fake user profile has more than P filler items.

2) DCGAN is a Generative Adversarial Network [43]
adopted in a recent Shilling Attack method [18], where
the generator takes a noise and outputs fake user pro-
files through convolutional units. We follow the settings
in [18] for the network structures and hyper-parameters.
We randomly sample P non-zero ratings in the fake user
profiles for a fair comparison.

3) WGAN is the Wasserstein GAN [44] which has shown
better empirical performance than the original GAN in
many tasks [54]. We replace the GAN architecture in
DCGAN with WGAN for Shilling Attacks. The hyper-
parameters are the same as DCGAN.

4) Random Attack is a heuristic based method [9], which
assigns random rating X̂u,i ∼ N (µ, σ) to P random
items in the fake user profile u, where P is the profile
size, µ and σ are the mean and the variance of all ratings
in the system, respectively.

5) Average Attack [9] assumes that the fake user assigns a
rating X̂u,i ∼ N (µi, σi) to P randomly sampled items,
where µi and σi are the mean and the variance of ratings
on this item i, respectively.

6) Segment Attack divides the fake user profile into se-
lected items and filler items. It assigns maximal ratings
to the selected items and minimal ratings to the filler
items. Following [9], for each target item in ML-100K,
we select three items that are most frequently rated under
the same tag/category of the target item as the selected
items. For each target item in the other six datasets which
do not have information of tag/category, we sample three
items (FilmTrust) and one item (Yelp, Automotive, T &

https://github.com/XMUDM/ShillingAttack
https://github.com/XMUDM/ShillingAttack
https://grouplens.org/datasets/movielens/100k
https://www.librec.net/datasets/filmtrust.zip
https://www.kaggle.com/c/yelp-recruiting/data 
http://jmcauley.ucsd.edu/data/amazon
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TABLE IV: Analyses of attack performance.

(a) Use default values for A and P .

Method Leg-UP AIA DCGAN WGAN Random Attack Average Attack Segment Attack Bandwagon Attack
#Best results 30 2 0 0 0 1 8 1

Ratio (Max: 100%) 71.43% 4.76% 0.00% 0.00% 0.00% 2.38% 19.05% 2.38%
#Top-2 results 40 8 0 0 1 3 28 4

Ratio (Max: 50%) 47.62% 9.52% 0.00% 0.00% 1.19% 3.57% 33.33% 4.76%

(b) Use various values for A and P as in Tab. IX.

Method Leg-UP AIA DCGAN WGAN Random Attack Average Attack Segment Attack Bandwagon Attack
#Best results 147 5 1 0 8 6 40 3

Ratio (Max: 100%) 70.00% 2.38% 0.48% 0.00% 3.81% 2.86% 19.05% 1.43%
#Top-2 results 197 37 1 0 17 16 142 10

Ratio (Max: 50%) 46.91% 8.81% 0.24% 0.00% 4.05% 3.81% 33.81% 2.38%

Fig. 4: Heatmaps showing attack results (default A and P ). The darker a cell shows, the larger the corresponding HR@10 is.

HI, G & GF, and A & A) from global popular items as
the selected items [24].

7) Bandwagon Attack [21] uses the most popular items as
the selected items and assigns the maximal rating to them,
while fillers are assigned with ratings in the same manner
as Random Attack.

WGAN and DCGAN learn the rating assigned to the target
item. In other attack methods for comparison, the highest
possible rating (i.e., 5-star) is assigned to the target item. The
hidden layer in the AE (i.e., the generator) of Leg-UP (i.e.,
Eq. 2) has 128 neurons. The first and the second hidden layers
in the discriminator of Leg-UP (i.e., Eq. 13) have 512 and 128
neurons, respectively. For AIA and Leg-UP, we use WRMF
with λ = 10−5 as the default surrogate model and optimize it
with Adam [55].

We evaluate Shilling Attacks on a wide range of victim RS
models before and after the attack, including shallow models
(NMF [56], Slope-One [57], and SVD)8 and deep learning
based models (NeuMF [58] and variants of AutoEncoder [59],
i.e., IAutoRec and UAutoRec)9. Note that Leg-UP can gen-
erate discrete ratings. Since our goal is to estimate how the
rating values in fake user profiles spoof RS models, we modify
NeuMF, which is originally designed for implicit feedback, to
predict explicit ratings, by using the RMSE loss.

8For all shallow models, we use implementations from https://github.com/
NicolasHug/Surprise.

9For all deep learning based models, we use implementations at https:
//github.com/cheungdaven/DeepRec.

Before attacking, we train each victim RS model on the
training set. Then, we deploy each attack method to generate
fake user profiles. The required information for each attack
method (e.g., mean and variance) is obtained from the training
set. After the injection, each victim RS model will be trained
again from scratch on the polluted data. We train victim RS
models, attack competitors and Leg-UP until convergence.

We evaluate the attack performance on the test set using Hit
Ratios at K with K = 10 (i.e., HR@10) on the target item.
The larger HR@10 is, the more effective the attacker is.

Tab. IVa illustrates how many times and ratios that different
attackers produce the highest HR@10 (maximum possible ratio
is 100%) and the top-2 highest HR@10 (maximum possible
ratio is 50% when an attacker produces top-2 best results for
all cases, and the highest HR@10 also counts) on different
datasets using default values for A and P . And Fig. 4 provides
heatmaps showing attack performance of different attackers
(using default A and P ) on different victim RS models on
various datasets. In Fig. 4, each cell indicates HR@10 of an
attack method attacking a victim RS model on a dataset, and
darker colors indicate higher HR@10 values. In the following,
we provide analyses of the attack performance:

Overall Performance. From Tab. IVa, we can conclude that,
compared to other attack methods, Leg-UP generally achieves
attractive attack performance against all victim RS models on
different datasets. Using default settings of A and P , Leg-
UP is consistently the best attack method compared to all
competitors (71.43% of the time and the maximum possible

https://github.com/NicolasHug/Surprise
https://github.com/NicolasHug/Surprise
https://github.com/cheungdaven/DeepRec
https://github.com/cheungdaven/DeepRec
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Fig. 5: Changes of Losses in Leg-UP.

ratio is 100%), or the top-2 best attack method (47.62% of the
time and the maximum possible ratio is 50%). On the contrary,
conventional attack models do not show a robust attack per-
formance like Leg-UP, even though they may exceed Leg-UP
in a few cases. This conclusion can be confirmed by observing
Fig. 4: (1) Most cells in the heatmap of Leg-UP are dark (i.e.,
high HR@10), and they are darker than corresponding cells in
other attackers’ heatmaps. (2) Baselines’ heatmaps have some
cells in dark colors, but they all have a large region in a light
color (i.e., low HR@10).

Comparisons between Heuristic Based and GAN Based
Methods. From Tab. IVa, we can also find that heuristic
based methods are sometimes powerful. For example, Segment
Attack is frequently the top-2 best attack method (33.33%
of the time), while directly adopting the idea of Adversarial
Attacks (i.e., using general GANs) does not give satisfactory
performance. Particularly, both DCGAN which is adopted in
the recent Shilling Attacks [18] and WGAN [44] which aims at
stabilizing GAN training do not show better performance than
simple heuristic based attack approaches like Average Attack
and Random Attack. It shows that we need to tailor the idea
of general GAN before applying it in Shilling Attacks.

Analysis of Different Losses in Leg-UP. Fig. 5 illustrates
how the generator loss, the discriminator loss and the complete
loss (i.e., Eq. 15) of Leg-UP (with default A and P ) change on
datasets FilmTrust and Automotive during the optimization. As
the generator and the discriminator compete with each other,
we can see fluctuation of their losses, and the increase of one
loss is accompanied by the decrease of the other loss. On
the whole, we can observe declining trends for both of the
generator loss and the discriminator loss, and therefore the
complete loss decreases during the optimization.

C. Attack Invisibility (RQ2)

Attack Detection. In order to testify how realistic the injected
user profiles can be, we apply a state-of-the-art unsupervised
attack detector [60] on the injected user profiles generated by
different attack methods. Fig. 6 depicts the precision and recall
rates of the detector on different attack methods. The lower
values of precision and recall indicates that the attack method

Fig. 6: Attack detection of injected profiles (precision v.s.
recall). Low precision and recall values suggest an invisible
attack model.
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Fig. 7: Real and fake user profiles in the latent space.

is more undetectable. We have the following observations
based on the detection results:

1) There is a positive correlation between precision and
recall rates for all attack methods on different datasets.

2) The detection performance is highly dependent on the
data and it is easy to detect fake profiles on denser
datasets. For example, the detector struggles to detect
fake profiles from almost all attackers on Automotive.
But it has high precision and recall rates for detecting
most attack methods (except Leg-UP) on ML-100K.

3) Leg-UP consistently produces virtually undetectable in-
jections. For most cases, the detector performs the worst
against Leg-UP. On the contrary, the detection perfor-
mance on baseline attackers are unstable.

Fake User Distribution. To further study the attack invisibility
of Leg-UP, we visualize the real and fake user profiles using
the t-SNE projection [61] of the latent space. Fig. 7 depicts
the visualization results of Leg-UP, Segment Attack, AIA and
DCGAN. From the results, we can see that the fake user
profiles produced by Leg-UP follow a similar distribution as
real user profiles, i.e., fake users are scattered in the latent
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TABLE V: Ablation study: Impacts of using direct generation
loss or indirect generation loss on attack performance and
detection performance. Better results are shown in bold.

(a) Attack performance (HR@10).

Dataset ML-100K FilmTrust Automotive
Direct Indirect Direct Indirect Direct Indirect

IAutoRec 0.0145 0.0990 0.7180 0.8333 0.9958 0.9955
UAutoRec 0.6450 0.2006 0.9997 0.3549 0.6369 0.8000
SVD 0.8575 0.5521 0.9588 0.9245 0.8776 0.8649
NMF 0.2461 0.1849 0.3443 0.2821 0.1642 0.1466
NeuMF 0.1833 0.3131 0.4546 0.6868 0.3333 0.3712
Slope-one 0.5835 0.0258 0.4061 0.0678 0.1133 0.0869

(b) Detection results.

Dataset ML-100K FilmTrust Automotive
Direct Indirect Direct Indirect Direct Indirect

Precision 0.3347 0.1522 0.3265 0.3107 0.0160 0.0600
Recall 0.3638 0.1830 0.3552 0.3238 0.0176 0.0660

TABLE VI: Ablation study: Comparisons between using Au-
toEncoder (AE) or using a simple function (SF as the generator
in Leg-UP. Better results are shown in bold.

(a) Attack performance.

Dataset ML-100K FilmTrust Automotive
AE SF AE SF AE SF

IAutoRec 0.0145 0.0448 0.7180 0.8229 0.9955 0.9677
UAutoRec 0.6450 0.3644 0.9997 0.2561 0.6369 0.7886
SVD 0.8575 0.5095 0.9588 0.9430 0.8776 0.8580
NMF 0.2461 0.1364 0.3443 0.1397 0.1642 0.1030
NeuMF 0.1833 0.2793 0.4546 0.5631 0.3333 0.2320
Slope-one 0.5835 0.0094 0.4061 0.0631 0.1133 0.0731

(b) Detection results.

Dataset ML-100K FilmTrust Automotive
AE SF AE SF AE SF

Precision 0.3347 0.2974 0.3265 0.1845 0.0160 0.0000
Recall 0.3638 0.3240 0.3552 0.2000 0.0176 0.0000

space of real users. As a comparison, fake users produced by
other attackers collapse to a small region in the space, making
them easy to detect. Therefore, we can conclude that Leg-UP
preserves the diversity of real user behavior patterns in the RS
(i.e., personalization), making it more undetectable than other
Shilling Attack methods.

D. Ablation Study (RQ3)

To answer RQ3, we remove or change some components of
Leg-UP and investigate the performance changes.

Impacts of Generation Loss. As mentioned in Sec. IV,
a direct “attack-related” loss (Eq. 11) is beneficial to the
improvement of the attack performance, while an indirect
“reconstruction-related” loss (Eq. 7) can improve attack in-
visibility. This is supported by Tab. V, which reports the
attack performance and detection results of Leg-UP (i.e.,
direct loss), where the generation loss is directly measured
upon the attack performance, and AUSH (i.e., indirect loss),
where the generation loss is measured upon the reconstruction
performance. We can see that, in most cases, indirect loss is
outperformed by direct loss in terms of HR@10. However, with
indirect loss, AUSH can more often generate indistinguishable
fake user profiles than Leg-UP.

TABLE VII: Ablation study: Comparisons between using
discretization with a learnable layer (DL) or using simple
rounding (SR). Better results are shown in bold.

(a) Attack performance.

Dataset ML-100K FilmTrust Automotive
DL SR DL SR DL SR

IAutoRec 0.0145 0.0049 0.7180 0.5379 0.9955 0.8858
UAutoRec 0.6450 0.4304 0.9997 0.9869 0.6369 0.6000
SVD 0.8575 0.6465 0.9588 0.9632 0.8776 0.8392
NMF 0.2461 0.0082 0.3443 0.3471 0.1642 0.0790
NeuMF 0.1833 0.0162 0.4546 0.2450 0.3333 0.2611
Slope-one 0.5835 0.5165 0.4061 0.4198 0.1133 0.0441

(b) Detection results.

Dataset ML-100K FilmTrust Automotive
DL SR DL SR DL SR

Precision 0.3347 0.1440 0.3265 0.1959 0.0160 0.0360
Recall 0.3638 0.1596 0.3552 0.2130 0.0176 0.0396

TABLE VIII: Ablation study: Comparisons between Leg-UP
with (w. D) and without (w/o. D) the discriminator. Better
results are shown in bold.

(a) Attack performance.

Dataset ML-100K FilmTrust Automotive
w. D w/o. D w. D w/o. D w. D w/o. D

IAutoRec 0.0145 0.0874 0.7180 0.5663 0.9955 0.9565
UAutoRec 0.6450 0.8364 0.9997 1.0000 0.6369 0.0003
SVD 0.8575 0.9323 0.9588 0.9582 0.8776 0.8297
NMF 0.2461 0.2771 0.3443 0.3580 0.1642 0.0923
NeuMF 0.1833 0.5627 0.4546 0.9293 0.3333 0.2807
Slope-one 0.5835 0.6292 0.4061 0.4059 0.1133 0.0459

(b) Detection performance.

Dataset ML-100K FilmTrust Automotive
w. D w/o. D w. D w/o. D w. D w/o. D

Precision 0.3347 0.4204 0.3265 0.4250 0.0160 0.0200
Recall 0.3638 0.4572 0.3552 0.4528 0.0176 0.0200

Impacts of Generator Architecture. Leg-UP can use a
simple function or a complex neural network module as the
generator. Note that, when using the simple function, Leg-UP
resembles AIA, where ratings of “template” users are used to
initiate the optimization process. When using a neural network
module like Autoencoder, the parameters of the neural network
instead of the rating values themselves, will be updated during
optimization. As shown in Tab. VI, removing the Autoencoder
decreases HR@10. Adopting a non-linear module such as
Autoencoder can capture the complex, or even high-order
interactions among users and items. As a result, the generated
fake user profiles can sabotage the victim RS models and the
attack transferability is improved.

Impacts of Discretization Strategy. Since typical RS use
Likert-scale ratings, it is necessary to generate fake user
profiles with discrete ratings (e.g., one to five stars) to mimic
the normal interactions between normal users and RS. Leg-
UP provides two strategies: simply using rounding to map
numerical values (i.e., user preferences) to discrete stars like
AUSH [24], or learning how to discretize user preferences
into discrete ratings. In Tab. VII, we report results produced
by the discretization layer (DL) or the simple rounding (SR).
We can see that, discretization with learnable thresholds helps
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Fig. 8: HR@10 on in-segment users for Automotive. Higher
value suggests a better attack method.

raise HR@10, because it involves the discretization in the
optimization of the overall attack framework so that the
discretization errors can be reduced during optimization.

Impacts of Using a Discriminator. Leg-UP is built upon
the idea of GAN, where the discriminator is incorporated to
guide the generator to produce “perfect” fake user profiles.
To study the impacts of using the discriminator, we report
HR@10 by only using the generator in Leg-UP in Tab. VIII.
We can see that, incorporating the discriminator is usually
harmful in terms of HR@10. However, using the discriminator
is indispensable to generate undetectable fake user profiles
for Leg-UP. Therefore, we consider it as a flexible option to
include discriminator in Leg-UP to launch an effective attack
which should be difficult for detectors to discover.

E. In-segment Attack Goals (RQ4).

Like some existing Shilling Attack methods [18], [24], it
is easy to modify Leg-UP to achieve a tailored attack goal,
e.g., attacking in-segment users like Segment Attack does.
In-segment users [12] are users who have shown preferences
on selected items. They are popular target audience because
companies which face fierce competitions are eager to attract
market population of their competitors. We define in-segment
users as users who have assigned high ratings (i.e., 4- or 5-
stars) on all selected item in the training set. We can modify
the generation loss in Eq. 8 so that in-segment attack can be
launched by Leg-UP:

Lgen = −
∑

u∈U(seg)

log
exp X̃u,t∑
j∈I exp X̃u,j

, (18)

where U (seg) is the set of in-segment users and t is the target
item.

Fig. 8 reports HR@10 of Segment Attack, Leg-UP and Leg-
UP with the tailored loss (i.e., Leg-UP (seg)) against different
victim RS models on in-segment users for Automotive dataset.
We can observe that by modifying the objective, Leg-UP can
always obtain higher HR@10 results on in-segment users.
We can also find that, Leg-UP generally has better attack
performance on in-segment users than Segment Attack.

TABLE IX: Performance of Leg-UP with varying A and P .

ML-100K
A 50 50 50 38 64
P 75 90 110 90 90

HR@10 0.1550 0.1833 0.1916 0.1501 0.2644

FilmTrust
A 50 50 50 25 75
P 22 36 50 36 36

HR@10 0.3639 0.4546 0.1821 0.1035 0.6157

Automotive
A 50 50 50 38 64
P 2 4 8 4 4

HR@10 0.3224 0.3333 0.4338 0.3847 0.3224

T & HI
A 50 50 50 38 64
P 5 8 15 8 8

HR@10 0.6205 0.5488 0.6161 0.5620 0.5230

G & GF
A 50 50 50 38 64
P 5 10 15 10 10

HR@10 0.8552 0.8561 0.8522 0.8813 0.8715

F. Effects of Attack Budget (RQ5).

We also investigate the effect of the attack budget hyper-
parameter A and P on Leg-UP. In Tab. IX, we report the
performance of Leg-UP using varying A and P . We can
observe that larger values of A improves the attack perfor-
mance of Leg-UP as more fake user profiles are injected to
spoof the system. For the profile size P , Leg-UP achieves
reasonable performance using the default values (i.e., the
average number of ratings per user in the dataset) on different
datasets, justifying the default setting for p. Compared to
default values of P , smaller or larger P values reduce the
attack performance of Leg-UP or only slightly improve the
attack performance of Leg-UP.

Moreover, we compare Leg-UP to other attack methods
using varying A and P (the values are listed in Tab. IX)
on different datasets. Tab. IVb reports how many times and
ratios that Leg-UP produces the highest HR@10 and the top-
2 highest HR@10. Similar to the results depicted in Tab. IX,
Tab. IVb shows that Leg-UP consistently achieves best attack
performance for most of the time when different A and P are
used in the experiments. Hence, we can conclude that Leg-UP
is robust regardless of the setting of the attack budget.

G. Effects of Surrogate Models (RQ6).

By default, we adopt WRMF as the surrogate model in
Leg-UP and AIA. We further investigate the effects of sur-
rogate models by using another two RS models IAutoRec and
SVD++ [62]. Tab. X reports the attack performance of Leg-
UP and AIA on two datasets T & HI and G & GF, using
default settings for the attack budget A and P . From the
results in Tab. X and Fig. 4, we can observe that different
surrogate models affect the attack performance. However, most
of the time, changing the surrogate model in one attack method
does not affect the performance too much. Moreover, the
attack performance of Leg-UP is robust, i.e., it consistently
outperforms AIA by a large margin regardless of the adopted
surrogate model.

VII. CONCLUSION

Shilling Attack is one of the most subsistent and profitable
attack types against RS. By injecting a small amount of fake
user profiles, where each profile contains ratings on some
items, the target items receive more (or less) recommendations
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TABLE X: Performance of Leg-UP and AIA using different surrogate models with default A and P .

Dataset Attacker Surrogate Model IAutoRec UAutoRec SVD NMF NeuMF Slope-one

T & HI
Leg-UP IAutoRec 0.7083 0.0041 0.7167 0.0573 0.0157 0.2301

SVD++ 0.9348 1.0000 0.7336 0.0616 0.0169 0.4162

AIA IAutoRec 0.1858 0.0000 0.7052 0.0067 0.0056 0.1481
SVD++ 0.1998 0.0000 0.7125 0.0070 0.0062 0.1596

G & GF
Leg-UP IAutoRec 0.8664 0.7880 0.7364 0.0615 0.0065 0.7648

SVD++ 0.8694 1.0000 0.7401 0.0699 0.0072 0.8264

AIA IAutoRec 0.2009 0.0007 0.7413 0.0035 0.0028 0.1537
SVD++ 0.2084 0.0006 0.7400 0.0035 0.0031 0.1474

by the victim RS model. We show that two challenges arise in
designing Shilling Attack methods: low attack transferability
and low attack invisibility. To overcome these challenges, in
this paper, we present a novel Shilling Attack framework
Leg-UP based on the idea of GAN. We discuss and provide
different options for the design of the generator module, the
generation loss, the discriminator module and the learning
method for Leg-UP. The experimental results show the superi-
ority of Leg-UP over state-of-the-art Shilling Attack methods.
Leg-UP is effective against a wide range of shallow and deep
RS models on several benchmark RS datasets. Meanwhile,
Leg-UP is virtually undetectable by the modern RS attack
detector. Leg-UP, as a new Shilling Attack method, can benefit
the study of secure and robust RS.

In the future, an interesting research direction is to study
the impacts of surrogate models on attack transferability. We
also plan to study the learning process of Leg-UP for more
efficient learning. Furthermore, user feedback in RS is usually
sequential or multi-modal. Therefore, extending Leg-UP to
sequential or multi-modal data is attractive.
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