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Abstract—Unsupervised domain adaptation (UDA) has success-
fully addressed the domain shift problem for visual applications.
Yet, these approaches may have limited performance for time
series data due to the following reasons. First, they mainly rely on
the large-scale dataset (i.e., ImageNet) for the source pretraining,
which is not applicable for time-series data. Second, they ignore
the temporal dimension on the feature space of the source and
target domains during the domain alignment step. Last, most of
the prior UDA methods can only align the global features without
considering the fine-grained class distribution of the target do-
main. To address these limitations, we propose a SeLf-supervised
AutoRegressive Domain Adaptation (SLARDA) framework. In
particular, we first design a self-supervised learning module
that utilizes forecasting as an auxiliary task to improve the
transferability of the source features. Second, we propose a novel
autoregressive domain adaptation technique that incorporates
temporal dependency of both source and target features during
domain alignment. Finally, we develop an ensemble teacher model
to align the class-wise distribution in the target domain via
a confident pseudo labeling approach. Extensive experiments
have been conducted on three real-world time series applications
with 30 cross-domain scenarios. Results demonstrate that our
proposed SLARDA method significantly outperforms the state-of-
the-art approaches for time series domain adaptation. Our source
code is available at: https://github.com/mohamedr002/SLARDA.

Index Terms—Self-supervised learning, autoregressive domain
adaptation, ensemble teacher learning, time series data

I. INTRODUCTION

Time series classification (TSC) is a pivotal problem in
many real-world applications including healthcare services and
smart manufacturing [1], [2]. Several conventional approaches
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tried to learn the dynamics of the time series data for the
classification task including dynamic time warping (DTW),
hidden Markov models (HMM), and artificial neural networks
(ANN) [3]. Yet, these approaches cannot cope with evolving
complexity of real-world applications. Deep learning (DL)
has shown notable success for time series-based applications
[4], [1], [5]. However, its success comes at the expense of
laborious data annotation. Moreover, DL-based approaches
always assume that training data (i.e., source domain) and
testing data (i.e., target domain) are drawn from the same
distribution. This may not hold for real applications under
dynamic environments, which is well-known as the domain
shift problem.

Unsupervised Domain Adaptation (UDA) methods have
achieved remarkable progress in mitigating the domain shift
problem for visual applications [6], [7]. To avoid extensive
data-labeling, UDA is designed to leverage previously labeled
datasets (i.e., source domain) and transfer knowledge to an
unlabeled dataset of interest (i.e., target domain) in a transduc-
tive domain adaptation scenario [8]. One popular paradigm is
to reduce the distribution discrepancy between the source and
target domains via matching moments of distributions at differ-
ent orders. For instance, the most prevailing method is based
on the Maximum Mean Discrepancy (MMD) as a distance,
which is calculated via the weighted sum of the distribution
moments [9]. Another paradigm for mitigating the distribution
shift is inspired by Generative Adversarial Networks (GANs).
Particularly, it leverages the adversarial learning between a
feature extractor and a domain discriminator to find domain
invariant features [10], [11].

Nevertheless, applying UDA on time series data can be
challenging for the following reasons. First, most of the
existing approaches are specifically developed for visual data.
Extending these approaches to time series could be sub-
optimal due to its temporal dynamics property. Second, most
of the existing DA approaches rely on ImageNet pretraining
as the initialization for the model, which is not applicable for
time series data.

Recently, few works have addressed domain adaptation for
time series data by finding domain invariant features [12],
[13]. For instance, Purushotham et al. used the variational
recurrent networks to extract features and adversarial adap-
tation to align the source and target domains [12]. Wilson
et al. leveraged information from multiple source domains
to improve the performance on the unlabelled target domain
[13]. Both approaches aim to find domain invariant features
by adversarially training the feature extractor to deceive the
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Fig. 1: Illustration of different domain alignment approaches. (A)
The global distributions of the source and target domains are aligned,
but the classes are misclassified between the source and target. (B)
In our proposed approach, both global feature alignment and class-
conditional alignment are considered during the adaptation process
to align the domains in the feature and class levels.

domain discriminator.
However, they ignore the temporal dimension when dis-

criminating between the source and target features. As a
result, the domain discriminator can be easily deceived without
reaching a satisfactory alignment state. Furthermore, previous
time series domain adaptation methods aim to only align the
global distribution between domains, without considering the
fine-grained class distributions within each domain as shown
in Fig. 1.

To address all the aforementioned limitations, we propose
a novel SeLf-supervised AutoRegressive Domain Adaptation
(SLARDA) framework to boost the performance of time
series UDA. First, unlike existing approaches that utilize self-
supervised learning for unsupervised representation learning
[14], [15], we design a self-supervised pretraining approach to
improve the transferability and generalization of the learned
features in the source domain. With the lack of an ImageNet-
like dataset for time series pretraining, we are the first to
propose self-supervised pretraining as a strong alternative for
time series domain adaptation. Second, to incorporate temporal
dependency of time series data during feature alignment, we
propose a novel autoregressive domain adaptation approach.
Particularly, an autoregressive domain discriminator is devel-
oped to consider the temporal dimension when classifying
between the source and target features, which helps the feature
extractor to learn better features.

Last, to mitigate the class-conditional shift between the
source and target domains, we propose a teacher-based ap-
proach with confident pseudo labels to guide the target model
and correctly align the fine-grained source and target classes.

The main contributions of the proposed method can be
summarized as follows:

• We develop a self-supervised pretraining for the source
domain via a contrastive predictive loss to improve the
representation learning and transferability of the learned
features. To the best of our knowledge, we are the first
to propose self-supervised pretraining for time series
domain adaptation.

• To consider the temporal dependency among source and
target features during domain alignment, we design an au-

toregressive domain discriminator for time series, which
can boost the performance of feature learning and domain
alignment.

• We propose an ensemble teacher model confident pseudo
labeling approach to generate reliable pseudo labels in the
target domain for domain alignment, which can mitigate
the class-conditional shift between the source and target
domains.

II. RELATED WORKS

In this section, we will present the recent literature of
general unsupervised domain adaptation and the existing tech-
niques of time series domain adaptation.

A. Unsupervised Domain Adaptation
Unsupervised domain adaptation (UDA), which is a subset

of transfer learning, attempts to address the domain shift
problem of labeled source and unlabeled target domains. Ex-
isting approaches can be classified into two major categories,
namely, discrepancy-based methods and adversarial learning-
based methods. Discrepancy based approaches intend to align
the two domains via minimizing statistical distances. For
instance, some methods minimized Maximum Mean Discrep-
ancy (MMD) [16] to find invariant features between the two
domains [17], [18], [19]. Chen et al. presented a high-order
MMD to match the high-order moments between the source
and target domains [20]. Correlation alignment methods try
to mitigate the domain shift by matching the second-order
statistics between the source and target domains [21], [22].
In [23], Central Moment Discrepancy (CMD) was proposed
to align the high-order central moments to obtain transferable
features between the source and target domains.

Inspired by Generative Adversarial Networks (GANs), ad-
versarial UDA methods optimize a feature extraction network
to produce invariant features of the source and target domains
such that a well-trained domain classification network cannot
distinguish between them. For example, Ganin et al. employed
a reverse gradient layer to adversarially train the domain
discriminator and the feature extractor [24]. While Tzeng et
al. proposed an adversarial discriminative domain adaptation
(ADDA) approach via untying source and target networks and
using GAN-based inverted labels’ loss [25]. In Wasserstein
distance guided representation learning (WDGRL) The d[26],
a theoretically justified Wasserstein distance was utilized to
tackle the stability issue of the GAN-based objective. Long
et al. proposed conditional adversarial domain adaptation
(CDAN) via incorporating the task-knowledge with features
during the domain alignment step [27]. The decision-boundary
iterative refinement training (DIRT) approach employed virtual
adversarial training and conditional entropy to align the source
and target domains [28]. However, most of these approaches
adopt conventional adversarial training on a vectorized fea-
ture space of the source and target domains, disregarding
the temporal information during the domain alignment step.
Differently, our approach leverages autoregressive domain dis-
criminator to consider the temporal information during align-
ment, leading to a better discriminative adaptation between the
source and target domains.
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Fig. 2: Overall framework of the proposed SLARDA.

On the other hand, another related line of research has lever-
aged self-ensemble techniques to provide pseudo labels for
the unlabeled target domain [29], [30]. Yet, these approaches
cannot predict high-quality pseudo labels at the early stage of
the training due to the lack of proper initializing. Differently,
our approach is initialized by a self-supervised pre-trained
model on the source domain, which can produce robust pseudo
labels at both early and late stages of the adaptation step.

B. Domain Adaptation for Time Series Data

Few studies have investigated UDA for time series data.
For instance, [12] employed variational recurrent auto-encoder
with adversarial training to mitigate the domain shift problem.
[31] proposed multi-source domain adaptation via a gradient
reversal layer for human activity recognition tasks. Most of
these approaches directly adopted image-based UDA tech-
niques for time series, which may be sub-optimal as they
ignored the temporal dependency during domain alignment.
Differently, our approach explicitly addresses the temporal de-
pendency during both feature learning and domain alignment
steps by designing a novel self-supervised pretraining and an
innovative autoregressive domain discriminator, respectively.
In addition to the global feature alignment, our approach also
adapts the fine-grained class distributions between the source
and target domains, as shown in Fig. 1.

III. METHODOLOGY

A. Problem Formulation

In this work, we address the problem of UDA for time series
data. Given a labelled source domain DS = {Xi

S ,y
i
S}

nS
i=1 with

nS samples, and an unlabeled target domain DT = {Xj
T }

nT
j=1,

with nT samples. The source and target domains are sampled
from different distributions PS(X) and PT (X) respectively,
where PS(X) 6= PT (X). The samples of the source and target
domains can be either uni-variate or multi-variate time series.

Formally, we have input source sample Xi
S ∈ RM×K with

M channels and K time steps, and its corresponding label
yiS ∈ RC , where C is the number of classes. Our main goal
is to design a predictive model that can accurately predict the
label yiT of the unlabeled target sample Xi

T ∈ RM×K .

B. Overview of SLARDA

Fig. 2 shows the proposed SLARDA framework, which is
composed of three main components: (1) a self-supervised
pretraining module to improve the transferability of the learned
source features; (2) an autoregressive discriminator model to
explicitly consider the temporal dependency among the source
and target features during domain alignment; (3) a class-
conditional alignment module to address the class-conditional
shift and adapt the fine-grained distribution of different cate-
gories for the unlabeled target domain. We will elaborate on
each component in more detail in the following subsections.

C. Self-supervised Learning for Source Pretraining

Most of the existing UDA approaches initialize the target
domain model by a supervised pre-trained model on the la-
beled source domain. We argue that the learned representation
from supervised objectives tends to be more specific towards
a single domain and may have limited transferability to out-
of-distribution domains. Inspired by [14], we propose a novel
self-supervised auxiliary task to improve the transferability of
the learned representations in the source domain. Specifically,
given the encoded latent features, we pick a time step t and
train the model to predict the future time steps given the past
ones, as shown in Fig. 3. Thus, the model will learn more
general features that encompass the shared information among
multiple time steps.

To map the input data into a latent space, we first design a
1D-CNN encoder model. Then, we leverage an autoregressive
model to summarize the latent features into a context vector.
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Fig. 3: Self-supervised learning in the source domain.

Formally, given the output latent features from the encoder
H≤t = {h0, . . . ,ht}, they are fed into an autoregressive
model to obtain the context vector rt. Subsequently, we
pass the context vector to a parameterized fully connected
mapping layer FCk to predict the future latent feature zt+k =
FCk(rt).

To measure similarity between ht+k and zt+k, we leverage
a dot product similarity measure between the predicted vector
and the true latent future. The similarity matching function
can be formulated as follows:

φk(ht+k, zt+k) = exp (hᵀ
t+kzt+k), (1)

where φk is a log bi-linear model. Here, we jointly optimize
the encoder model, the autoregressive model, and the log bi-
linear model via the contrastive objective to maximize the
similarity between the predicted future zt+k and its corre-
sponding true future latent feature ht+k. While the true latent
feature changes during the training, the predicted vector varies
correspondingly to preserve their relationship and stabilize the
training process.

This auxiliary task of predicting the future time-steps via
self-supervised learning helps to better model the temporal de-
pendency of the input samples and produce more transferable
features from the source domain. We formulate the problem as
a binary classification problem between positive and negative
samples. In our case, the future latent of the same sample
is considered as a positive pair while the future latent of all
other samples in the mini-batch are considered as negative
pairs. This can be formalized as follows:

LSL = −E
Hb

[
log

φk (ht+k, FCk(rt))∑
hj∈Hb

φk (hj , FCk(rt))

]
, (2)

where Hb represents a mini-batch of samples.
We design the aforementioned self-supervised loss to op-

timize the source encoder ES on the source domain data.
Concurrently, we train the encoder model ES to perform well
on the main classification task via cross-entropy loss on the
labeled source domain data, shown as follows:

Lcls = −EXS∼PS
[yᵀ
S log(CS(ES(XS)))]. (3)

Finally, we jointly train the source encoder ES with the self-
supervised task along with the supervised objective to produce
more transferable features as follows:

min
ES

Lcls + LSL. (4)

D. Autoregressive Domain Adaptation

Adversarial domain adaptation has achieved remarkable
performance for visual applications. However, the design of
discriminator networks in existing methods does not consider
temporal dependency in the feature space of the time series
data, resulting in a limited performance for domain alignment.

To address this critical issue, we propose an autoregressive
domain discriminator to exhibit the temporal dynamic behavior
of time series data during domain alignment, as shown in
Fig. 4.

The autoregressive discriminator DAR consists of two main
components. First, an autoregressive network fAR that encodes
the temporal dependencies among both source and target
features into vector representations, shown as follows:

fAR(h0, . . . ,hK) = p(hK | h<K), (5)

where p(hK | h<K) is the conditional distribution among
different time steps of the sequential features.

Second, a binary classification network fD is applied on the
summarised feature vectors to classify between the source and
target features. Thus, the autoregressive discriminator can be
represented as DAR = fD(fAR(·)). A detailed explanation
of the autoregressive discriminator and its architecture are
discussed in Section IV-B. To align the source and target
domains, we first freeze the self-supervised pre-trained source
model and transfer its weights to the target model. Then,
we adversarially train the autoregressive domain discriminator
against the target model to produce domain invariant features.
The autoregressive discriminator is optimized to discern be-
tween the source and target features, which can be formalized
as:

min
DAR

LD =− EXS∼PS

[
logDAR(HS)

]
− EXT∼PT

[
log(1−DAR(HT ))

]
, (6)

where HS = ES(XS) and HT = ET (XT ) are the temporal
output features from the source and target encoders respec-
tively, and DAR represents the autoregressive discriminator
network. Concurrently, we train the target encoder to confuse
the discriminator by mapping the target features to be similar
to the source ones. The target encoder loss can be formalized
as:

min
ET

Ladv =EXT∼PT

[
log(1−DAR(HT ))

]
. (7)

E. Class-conditional Alignment via Teacher Model

Autoregressive domain adaptation can successfully align
the marginal distribution of the source and target temporal
features. However, it can still mis-align the different classes
among source and target domains due to class-conditional
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shift. To overcome this issue, we develop a teacher based
confident pseudo labeling approach to adapt the fine-grained
distribution of different categories among the source and target
domains.

1) Teacher Model: Inspired by the mean teacher for semi-
supervised learning [29], we design an ensemble teacher
model fψ to produce robust pseudo labels for the unlabeled
target domain, as shown in Fig. 5. We obtain the weights of
the teacher model Wψ by applying the exponential moving
average (EMA) over the target model parameters WθT across
successive training steps. The momentum updates of the
teacher model parameters can be represented as follows:

Wψ = αWψ + (1− α)WθT , (8)

where α is a momentum parameter that controls the speed of
the weight updates of the teacher model. Given the teacher
model fψ , we obtain the output predictions as follows:

pψ = fψ(XT ), (9)

ŷψ = softmax(pψ), (10)

where pψ are the output predictions of the teacher model,
and ŷψ are the corresponding probabilities.

2) Confident Pseudo Labels: To further refine the predicted
labels of the teacher model, we only preserve the confident
labels that are above a predefined confidence threshold ζ. This
can be formalized as follows:

ŷps = ŷψ[max(pψ) > ζ], (11)

Unlabeled 
Target Samples

Target Model

Teacher Model

EMA

Confident Pseudo Labels

Fig. 5: Class-conditional alignment via teacher model.

where ŷps are the retained confident pseudo labels. To align
the class-conditional distribution, we leverage the obtained
confident pseudo labels to train the target model by a cross-
entropy loss:

Lca = −EXT∼PT

[ K∑
k=1

1[yps=k] log(ŷ
k
T )
]
, (12)

where Lca is the class-conditional alignment loss, and ŷT =
CT (ET (XT )) are the predicted labels by the target classifier
CT .

Algorithm 1: Autoregressive Domain Adaptation
Input: Source domain: DS = {Xi

S , y
i
S}

nS
i=1

Target domain:DT = {Xi
T }

nT
i=1

Output: Trained target encoder ET
ES ← Pre-trained source encoder
ET ← Initialize with Es parameters
fψ ← Teacher model
DAR ← Autoregressive Domain Discriminator
for number of iterations do

1) Sample mini-batch of m source samples XS ∼ PS
2) Sample mini-batch of m target samples XT ∼ PT
3) Extract source features: HS = ES(XS)
4) Extract target features: HT = ET (XT )
5) Feed HS and HT to DAR
6) Assign labels of ones to HS and zeros to HT
7) Compute discriminator loss LD by Eq. 6
8) Update DAR by LD
9) Invert the labels of HT

10) Compute Ladv with the inverted labels by Eq. 7
11) Pass XT to the Teacher model fψ
12) Obtain the confident pseudo labels by Eq. 11
13) Compute the class conditional loss LCA by Eq. 12
14) Update ET using both Ladv and LCA via Eq. 13

end

F. Overall Objective Function

In our approach, we jointly optimize the target encoder ET
to minimize both the autoregressive domain adaptation loss
and class-conditional alignment loss in an end-to-end learning
manner. Our overall objective can be formalized as follows:

Loverall = Ladv + λLca (13)

= min
ET

EXT∼PT

[
log(1−DAR(ET (XT )))

− λŷᵀ
ps log(CT (ET (XT )))

]
,

where λ is the weight of the class-conditional loss. Algorithm
1 shows the detailed procedures of our autoregressive adapta-
tion approach.

G. Testing on the target domain

In the testing phase, we only use the pretrained target
encoder ET and target classifier CT while ablating both the
transformer model and the autoregressive network, ensuring
consistency of the backbone network when evaluating against
other UDA algorithms. Given the test data from the target
domain, the encoder model ET will extract the target adapted
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Fig. 6: Architecture of autoregressive discriminator.
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Fig. 7: Architecture of feature extraction network.

features. Subsequently, the target classifier CT will predict
corresponding the class predictions.

p̂test = EXtest∼Ptest

[
σ(CT (ET (Xtest)))

]
, (14)

ŷtest = argmax(p̂test), (15)

where σ(a)i = eai∑k
j=1 e

aj
represents the the softmax func-

tion, p̂test is the output probability vector, and ŷtest is the
predicted label.

IV. EXPERIMENTS

A. Datasets

We evaluate our SLARDA on three real-world time se-
ries applications including human activity recognition (HAR),
sleep stage classification (SSC), and machine fault diagnosis
(MFD). Table I shows the summarized details about each
dataset. To calculate the total number of samples for each
dataset, we summed all the training and testing parts for all
the domains. We will elaborate further about each dataset in
the following subsections.

1) HAR Dataset: The Opportunity1 is a benchmark dataset
for human activity recognition [32].

In our experiments, following the existing baselines in the
data challenge [33], we only selected 113 sensors. The data
annotations comprised from two main levels: (1) Locomotion
represents low level tasks such as sitting, standing, walking,
and lying down; (2) Gestures: High level tasks which com-
prised from 17 different actions. We only adopted the low level
annotations, and hence, we have 4 main classes (i.e., sitting,
standing, walking, and lying down). The missing values in
the data has been filled via the linear interpolation approach.
Four users have been involved in the experiments, where the

1https://archive.ics.uci.edu/ml/datasets/OPPORTUNITY+Activity+
Recognition

TABLE I: Dataset statistics.

HAR Dataset SSC Dataset MFD Dataset

Domain names (A,B,C,D) (EDF, SH1, SH2) (H,I,J,K)
# Training Samples 8224 81740 32736
# Testing Samples 1426 30390 10912
# Channels 113 1 1
# Classes 4 5 3
Sequence Length 128 3000,3750,7500 5120

data from each user represents one domain. We aim to apply
domain adaptation across different users. To construct the
training samples for each user, we adopted sliding window
approach with window size of 128 and overlapping of 50%,
as in [33].

2) SSC Dataset: Sleep stage classification includes classi-
fying Electroencephalogram (EEG) signals into five stages:
Wake (W), Non-Rapid Eye Movement (N1, N2, N3), and
Rapid Eye Movement (REM). In our experiments, we eval-
uate our domain adaptation method with cross-dataset scenar-
ios. Therefore, we employ three real-world datasets, namely,
Sleep-EDF2, SHHS-1, and SHHS-23, with sampling rates
of 100 Hz, 125 Hz and 250 Hz, respectively. The differ-
ent sampling rates incur significant domain shifts among
datasets.Notably, we down-sampled the data from SHHS-1 and
SHHS-2 such that their sequence lengths become the same as
Sleep-EDF (i.e., 3000 time steps).

3) MFD Dataset: The MFD4 dataset contains sensor read-
ings of bearing machine under 4 different operating conditions,
with each having 3 different classes, i.e., healthy, inner-bearing
damage, and outer-bearing damage. Each operating condition
refers to different operating parameters, including rotational
speed, load torque, and radial force [34]. In our experiments,
each operating condition is considered as one domain. Eventu-
ally, we can perform 12 cross-condition scenarios for domain
adaptation. To construct the data samples for each domain,
we adopted a sliding window to segment the data into small
segments. We set the window size of 5120 and shifting size
of 4096, as in [35].

B. Model Architectures

Our algorithm has two main models, namely the feature
extractor model and the autoregressive discriminator model.

2physionet.org/content/sleep-edf/1.0.0/
3https://sleepdata.org/datasets/shhs
4https://mb.uni-paderborn.de/en/kat/main-research/datacenter/

bearing-datacenter/data-sets-and-download

https://archive.ics.uci.edu/ml/datasets/OPPORTUNITY+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/OPPORTUNITY+Activity+Recognition
physionet.org/content/sleep-edf/1.0.0/
https://sleepdata.org/datasets/shhs
https://mb.uni-paderborn.de/en/kat/main-research/datacenter/bearing-datacenter/data-sets-and-download
https://mb.uni-paderborn.de/en/kat/main-research/datacenter/bearing-datacenter/data-sets-and-download
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TABLE II: Parameter setting for the CNN encoder and the autore-
gressive feature extractor.

Parameters HAR Dataset SSC Dataset MFD Dataset

Encoder model:
# of Layers 3 3 5
# of Channels (c) 16 32 8
Kernel size (k) 8 25 32
# stride (s) 2 3 2

Transformer (Adaptation):
FC Layer 64 512 128
Input Channels 16 64 8
# of Layers 8 8 4
# Num of Heads 2 4 4

GRU (Pretraining):
Hidden Dimension 16 64 64
Input Dimension 16 128 8
# of Layers 1 1 1

We provide further details about the architecture of each model
in the following subsections.

1) Feature Extractor: We adopt the 1D-CNN architecture
to extract features for the three datasets, as shown in Fig.7. Due
to the large variation among different applications, different
kernel sizes and different number layers are selected for each
dataset. Table II shows the detailed encoder parameters for
each dataset. We adopted the commonly used architecture in
the literature for each application. Particularly, for the MFD
dataset, we used a 5-layer 1D-CNN with a kernel size of 32,
as in [35]. While for both SSC and HAR, we used a 3-layer
1D-CNN with kernel size of 25 and 8 respectively, as in [36].

2) Autoregressive Discriminator: We employ the trans-
former model [38] to model the temporal dependency among
time steps for both source and target domains. The transformer
model uses self-attention, which has an advantage over other
sequential model such as recurrent neural networks in terms
of efficiency and speed [39]. The model architecture is shown
in Fig. 6. First, a linear projection layer is utilized to map
from the input dimension to the hidden dimension of the
transformer model. Then, layer normalization is applied to
the input features. After that, a multi-head self-attention is
employed to the normalized features. Table II shows the
detailed parameters for the autoregressive discriminator. As
each dataset has different characteristics, we adopt different
parameters for each dataset.

3) Autoregressive Network (Pretraining): In our pretraining
step, we leverage Gated Recurrent Network (GRU) to sum-
marize the latent features into a context vector. Particularly,
we used a single-layer GRU network for all the datasets,
while input and hidden dimensions vary according to each
dataset. Table II illustrates the detailed architectures of the
GRU network on each dataset.

C. Implementation Details

In our experiments, we use labeled data from the source
domain and unlabeled data from the target domain, following
the standard protocol of unsupervised domain adaptation [27],
[28]. All experiments have been conducted using PyTorch 1.7
on NVIDIA GeForce RTX 2080 Ti GPU. We use a batch size
of 512 for MFD and 128 for HAR and SSC. We adopt Adam

optimizer with a learning rate of 1e-3 for SSC and 1e-4 for
HAR and MFD, and a weight decay of 3e-4, as in [39], [35],
[36]. For the teacher model, the conditional alignment weight
λ is set to 0.005, the momentum of updating the teacher model
α is set to 0.996, and the confidence threshold ζ for pseudo
labels is set to 0.9. For all the datasets, we randomly split the
data into 60% for training, 20% for validation, and 20% for
testing. We report the mean value of 5 consecutive runs with
different random seeds.

D. Results

1) Baselines: To evaluate the performance of the proposed
SLARDA, we have compared against some strong baselines.
As most of the state-of-the-art approaches are implemented
for image-related datasets, we re-implement 9 state-of-the-
arts methods to fit our time series datasets. Additionally, to
promote fair evaluation, we adopt our backbone architecture
which works well on time series for all the baseline methods.
In particular, we compare our SLARDA with the following
state-of-the-art methods: Deep Adaptation Networks (DAN)
[17], Wasserstein Distance Guided Representation Learning
(WDGRL) [26], Deep CORAL [22], Minimum Discrepancy
Domain Adaptation (MDDA) [37], HoMM [20], Domain
Adversarial Neural Networks (DANN) [24], Conditional Ad-
versarial Domain Adaptation (CDAN) [27], and Virtual Ad-
versarial Domain Adaptation (VADA) [28]. It worth noting
that some baselines failed to outperform Source Only on some
datasets as they are not specifically designed for time series
data. Hence, we only reported the methods that outperform the
Source Only for each dataset. In Tables III, IV, V, the best
performance is bolded while the second best is underlined.

2) Results on the HAR Dataset: We first evaluate our
proposed SLARDA on HAR dataset which contains data from
four subjects, namely, A, B, C and D. Table III shows the
evaluation results on 12 cross-domain scenarios. Our proposed
approach achieves the best performance on 6 cross-domain
scenarios and the second-best on 5 cross-domain scenarios.
Besides, the proposed SLARDA significantly outperforms the
benchmark methods in the overall performance with a 2.62%
improvement over the second-best method, i.e., DIRT. It is
worth noting that the adaptation sometimes may deteriorate
the performance when the domain gap is small as in the B→A
scenario.

3) Results on the SSC Dataset: The SSC dataset contains
three domains, namely EDF, SH1 and SH2, with sampling
rates of 100, 125, and 250 Hz respectively. Table IV shows
the results on 6 cross-domain scenarios. In overall, our
SLARDA approach performs best on 5 out of 6 cross-domains
scenarios with 5% average improvement over the state-of-
the-art method. Notably, Our approach performs best when
mapping from higher resolution to lower resolution datasets
(i.e., SH2→SH1, SH2→EDF, and SH1→EDF). The reason
is that our SLARDA, in contrast to the baseline approaches,
better exploits the rich temporal information in the feature
space to improve the alignment between domains. For exam-
ple, in scenarios SH2→SH1 and SH2→EDF, our approach
significantly outperforms the second-best method with the
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TABLE III: Results on Human Activity Recogniton dataset among 12 cross-domain scenario (Accuracy %).

Method A→B A→C A→D B→A B→C B→D C→A C→B C→D D→A D→B D→C Average P-Value

Source Only 66.55 71.46 60.40 83.78 72.02 27.68 56.04 30.97 53.43 47.09 64.79 58.58 57.73 1.2E-06
DANN [24] 75.92 59.67 63.01 81.04 65.41 49.10 70.46 72.44 57.72 68.95 61.80 62.70 65.68 1.1E-05
DAN [17] 75.09 61.72 66.64 81.11 66.66 47.12 75.59 71.94 58.92 69.59 66.28 67.27 67.33 8.7E-04
WDGRL [26] 76.79 60.09 64.66 81.50 62.88 52.14 64.56 60.46 59.80 68.75 64.22 64.71 65.05 7.3E-04
MDDA [37] 72.88 61.23 55.38 76.12 61.40 50.38 54.10 60.33 56.37 70.63 53.63 63.64 61.34 7.6E-06
HoMM [20] 73.99 58.74 60.94 76.76 61.59 47.34 71.36 68.38 57.63 65.21 64.82 58.07 63.74 3.3E-06
CDAN [27] 77.53 60.60 53.89 77.59 63.23 44.60 53.76 50.45 59.04 70.61 71.06 61.96 62.03 9.2E-05
DIRT [28] 70.03 65.14 60.17 74.04 65.88 56.62 78.92 69.49 58.95 71.97 73.55 76.87 68.47 3.0E-02

SLARDA 79.66 63.09 65.87 83.53 76.25 60.35 78.18 77.42 59.87 71.58 66.85 70.42 71.09 -

TABLE IV: Experimental results on Sleep Stage Classification dataset among 6 cross-domain scenario (Accuracy %).

Method EDF→SH1 EDF→SH2 SH1→EDF SH1→SH2 SH2→EDF SH2→SH1 Average P-Value

Source Only 49.12 55.98 67.50 52.27 58.33 76.83 60.00 4.2E-05
DAN [17] 59.98 57.98 70.68 60.35 65.69 77.78 65.41 6.7E-04
Deep Coral [22] 61.43 58.86 71.05 60.85 67.33 77.51 66.17 8.3E-04
DANN [24] 57.91 59.01 72.30 57.31 66.57 76.06 64.86 6.5E-04
CDAN [27] 62.76 63.62 72.94 67.72 73.39 77.71 69.69 3.1E-03
DIRT [28] 59.92 57.80 75.92 63.66 68.91 73.82 66.67 2.2E-03

SLARDA 68.19 64.71 82.73 67.01 82.36 81.91 74.49 -

TABLE V: Experimental results on Fault Diagnosis dataset Among 12 cross-domain scenario (Accuracy %).

Method H→I H→J H→K I→H I→J I→K J→H J→I J→K K→H K→I K→J Average P-Value

Source Only 25.70 36.18 25.81 36.62 71.74 99.89 32.26 90.91 93.81 38.09 98.90 78.23 60.68 1.6E-07
Deep Coral [22] 38.05 47.07 45.37 41.30 66.98 92.63 36.92 82.31 81.60 42.80 96.29 69.48 61.73 9.8E-07
DAN [17] 50.86 53.57 56.30 38.86 65.16 98.82 26.13 91.09 87.97 45.31 98.27 69.71 65.17 1.1E-04
WDGRL [26] 40.67 51.70 52.02 51.37 72.56 94.89 52.73 67.73 76.74 51.28 97.98 65.79 64.62 2.6E-07
MDDA [37] 38.15 48.65 49.14 35.35 72.28 97.79 23.56 85.53 81.61 39.60 99.42 70.86 61.83 1.9E-04
HoMM [20] 46.78 45.47 51.28 41.15 75.19 98.43 34.17 84.97 83.35 44.82 98.99 75.43 65.00 4.9E-07
CDAN [27] 52.95 61.38 53.55 31.64 74.25 99.66 55.20 91.98 93.14 42.08 98.71 72.90 68.95 1.8E-04
DIRT [28] 47.21 54.13 51.46 45.71 85.91 98.26 31.06 99.28 99.14 45.64 99.23 84.66 70.14 2.3E-04

SLARDA 84.38 75.70 96.04 86.60 79.47 99.68 75.59 90.10 92.94 91.17 97.40 80.69 87.48 -

improvements of nearly 9% and 4% respectively. On the other
hand, adapting from domains with lower sampling rates to the
ones with higher sampling rates can be quite challenging due
to the extrapolation effect. Yet, our SLARDA can still perform
best in EDF→SH1 and EDF→SH2 and second-best in SH1→
SH2.

4) Results on the MFD Dataset: The MFD dataset has
four different working conditions, denoted as H, I, J and K.
Table. V shows the results on the 12 cross-condition scenarios.
Similarly, our proposed approach outperforms baselines in 6
out of 12 cross-domain scenarios with an average improvement
of 17.34% over the second-best method, i.e., VADA. Clearly,
the SLARDA outperforms the benchmark methods on the
challenging transfer tasks with large domain shifts, e.g., H→I,
H→J, and H→K.

5) Statistical Significance: We performed a comparative
analysis on the statistical significance of our SLARDA ap-
proach against all the other baselines. Specifically, we lever-
aged Wilcoxon signed-rank test to measure the P-Value of
our SLARDA against other baseline methods [38]. Tables
III, IV, and V show the P-value of our SLARDA against
other baselines in HAR, SSC, and MFD datasets respectively.
Clearly, for all the baseline methods, our SLARDA achieves
P-value <0.05 and is significantly better than other approaches
on all the datasets with 95% confidence level.

E. Ablation Study and Sensitivity Analysis

1) Ablation Study: To show the contribution of each com-
ponent in our proposed method, we conduct an ablation study
on the MFD dataset. The model variants are defined as follows:

• SLARDA(w/o SL): we replace the self-supervised pre-
training with conventional supervised pretraining.

• SLARDA(w/o AR): we replace the autoregressive do-
main discriminator with a conventional fully connected
discriminator network trained with standard GAN loss.

• SLARDA(w/o Teacher): we remove the conditional
alignment component from the SLARDA model.

• SLARDA(full): we include all the model’s components.

Fig. 8 shows the average results of different variants for
the 12 cross-domain scenarios. It can be seen that removing
self-supervised (SL) pretraining can be detrimental to the
performance with more than 8% degradation. This is because
removing SL can reduce the feature’s transferability between
domains, which can also affect the efficacy of our remaining
modules (i.e., AR and Teacher). Similarly, removing the class-
conditional alignment (i.e., Teacher) also has a significant
impact on the model performance. Last, adding the autore-
gressive component by addressing the temporal features can
improve the overall performance by about 3%. To sum up, this
ablation clearly shows the effectiveness of each component in
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Fig. 8: Ablation Study on the MFD dataset.

Fig. 9: Sensitivity analysis of class-conditional loss in Eq. (12).

our SLARDA model.
2) Sensitivity Analysis of the class conditional loss: There

are some key parameters in the proposed approach, which
may have a significant impact on model performance. One
of the key parameters is λ in Eq. (12), which indicates the
contribution of the class-conditional loss. Here, we investigate
the impact of this key parameter on model performance.
We conduct experiments on the MFD dataset and report the
average performance of 12 cross-domain scenarios. We vary
the weight parameter λ from 0.0001 to 1. Fig. 9 shows the
results of our proposed SLARDA with different values of λ.
Clearly, gradually increasing λ improves the performance of
our SLARDA. Yet, over-weighting the class-conditional loss
deteriorates the performance as the predicted pseudo labels can
still be noisy. In a nutshell, our SLARDA approach performs
best with λ values between 0.001 and 0.005.
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Fig. 10: Sensitivity analysis of confidence threshold parameter ζ.

3) Sensitivity Analysis of the Confidence Threshold: We
conducted a sensitivity analysis experiment to measure the sen-
sitivity of our approach to the confidence threshold parameter.
Fig. 10 shows the evaluation performance on four randomly
selected cross-domain scenarios for the MFD Dataset. We
varied the confidence threshold from 0.1 to 0.99 and reported
the corresponding performance. Clearly, lower values of the
confidence threshold can degrade the generalization perfor-
mance across domains as noisy pseudo labels can be utilized
to train the target model. In comparison, higher confidence
thresholds consistently yield better performance across the
four experimented cross-domain scenarios. However, a very
large confidence threshold, e.g., 0.99, can deteriorate the
performance on cross-domain scenarios, as we may not be
able to find sufficient amount of pseudo labels that satisfy this
large threshold.

F. Computational Complexity

To evaluate the time complexity of our proposed approach
against other baseline methods, we calculated the total running
time over all the cross-domain scenarios on the Fault Diagnosis
dataset, as shown in Table VI. Generally, discrepancy-based
approaches (i.e., DAN, Deep Coral, HoMM and MMDA)
have lower computational complexity, when comparing to
adversarial-based methods. Among all the adversarial-based
methods, our SLARDA approach has the second lowest
computational cost with a total computational time of 1,765
seconds.

V. CONCLUSIONS

In this paper, we proposed a time series domain adapta-
tion method, which explicitly considers temporal dynamics
of data during both feature learning and domain alignment.
In particular, we showed that the proposed self-supervised
pretraining of the source domain model can produce more
transferable features than supervised pretraining. Hence, we
suggest adopting self-supervised pretraining for time series
domain adaptation methods. Second, we proved that address-
ing the temporal dependency during domain alignment can
significantly boost performance. Last, we demonstrated that
providing confident pseudo labels can successfully address the
class-conditional shift of time series data. The efficacy of the
proposed method has been verified by using three real-world
time-series datasets. We believe that our approach can promote
the direction of time series domain adaptation. Our approach
can still be limited as it assumes the availability of rich-labeled
source domain data, which may be laborious. Hence, in our
future works, we aim to design self-supervised learning [40] to
learn representations with few labeled data and a large amount
of unlabelled in the source domain.
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recurrent models for human activity recognition using wearables,” in
IJCAI’16 Proceedings of the Twenty-Fifth International Joint Conference
on Artificial Intelligence, 2016, pp. 1533–1540.

[34] C. Lessmeier, J. K. Kimotho, D. Zimmer, and W. Sextro, “Condition
monitoring of bearing damage in electromechanical drive systems by
using motor current signals of electric motors: A benchmark data set for
data-driven classification,” in Proceedings of the European conference
of the prognostics and health management society, 2016, pp. 05–08.

[35] M. Ragab, Z. Chen, M. Wu, H. Li, C.-K. Kwoh, R. Yan, and X. Li,
“Adversarial multiple-target domain adaptation for fault classification,”
IEEE Transactions on Instrumentation and Measurement, vol. 70, pp.
1–11, 2020.

[36] E. Eldele, M. Ragab, Z. Chen, M. Wu, C. K. Kwoh, X. Li, and C. Guan,
“Time-series representation learning via temporal and contextual con-
trasting,” in Proceedings of the Thirtieth International Joint Conference
on Artificial Intelligence, IJCAI-21, 2021, pp. 2352–2359.

[37] M. M. Rahman, C. Fookes, M. Baktashmotlagh, and S. Sridharan, “On
minimum discrepancy estimation for deep domain adaptation,” Domain
Adaptation for Visual Understanding, pp. 81–94, 2020.

[38] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in NIPS, 2017,
pp. 5998–6008.

[39] E. Eldele, Z. Chen, C. Liu, M. Wu, C.-K. Kwoh, X. Li, and C. Guan,
“An attention-based deep learning approach for sleep stage classification
with single-channel eeg,” IEEE Transactions on Neural Systems and
Rehabilitation Engineering, vol. 29, pp. 809–818, 2021.

[40] A. Abbas, M. M. Abdelsamea, and M. M. Gaber, “4s-dt: Self-supervised
super sample decomposition for transfer learning with application to
covid-19 detection,” IEEE Transactions on Neural Networks and Learn-
ing Systems, 2021.


	I Introduction
	II Related Works
	II-A Unsupervised Domain Adaptation
	II-B Domain Adaptation for Time Series Data

	III Methodology
	III-A Problem Formulation
	III-B Overview of SLARDA
	III-C Self-supervised Learning for Source Pretraining
	III-D Autoregressive Domain Adaptation
	III-E Class-conditional Alignment via Teacher Model
	III-E1 Teacher Model
	III-E2 Confident Pseudo Labels

	III-F Overall Objective Function
	III-G Testing on the target domain

	IV Experiments
	IV-A Datasets
	IV-A1 HAR Dataset
	IV-A2 SSC Dataset
	IV-A3 MFD Dataset

	IV-B Model Architectures
	IV-B1 Feature Extractor
	IV-B2 Autoregressive Discriminator
	IV-B3 Autoregressive Network (Pretraining)

	IV-C Implementation Details
	IV-D Results
	IV-D1 Baselines
	IV-D2 Results on the HAR Dataset
	IV-D3 Results on the SSC Dataset
	IV-D4 Results on the MFD Dataset
	IV-D5 Statistical Significance

	IV-E Ablation Study and Sensitivity Analysis
	IV-E1 Ablation Study
	IV-E2 Sensitivity Analysis of the class conditional loss
	IV-E3 Sensitivity Analysis of the Confidence Threshold

	IV-F Computational Complexity

	V Conclusions
	References

