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Abstract—Representation learning is a central problem of
Attributed Networks data analysis in a variety of fields. Given an
attributed graph, the objectives are to obtain a representation
of nodes and a partition of the set of nodes. Usually these
two objectives are pursued separately via two tasks that are
performed sequentially, and any benefit that may be obtained by
performing them simultaneously is lost. In this paper we propose
a Power Attributed Graph Embedding and clustering (PAGEC
for short) in which the two tasks, embedding and clustering,
are considered together. To jointly encode data affinity between
node links and attributes, we use a new powered proximity
matrix. We formulate a new matrix decomposition model to
obtain node representation and node clustering simultaneously.
Theoretical analysis shows the close connections between the
new proximity matrix and the random walk theory on a graph.
Experimental results demonstrate that the PAGEC algorithm
performs better, in terms of clustering and embedding, than state-
of-the-art algorithms including deep learning methods designed
for similar tasks in relation to attributed network datasets with
different characteristics.

Index Terms—Attributed graph, Embedding, Clustering, Spec-
tral rotation.

I. INTRODUCTION

Attributed Networks (AN) [1] have been used to model
a wide variety of real-world networks, such as academic
and healthcare networks, where both node links and at-
tributes/features are available for analysis. In contrast to plain
networks that contain only node links and dependencies, in
AN each node is associated with a valuable set of features.

More recently, representation learning has become an im-
portant objective in applications including social networks,
academic citation networks and protein-protein interaction
networks. Attributed Network Embedding (ANE) [2] seeks to
obtain a continuous low-dimensional matrix representation of
the nodes in a network that preserves the topological structure
and node attribute proximity of the original network.

Although Network Embedding (NE) has given rise to a
number of approaches such as [3], research on ANE has so
far received little attention [4]. Unlike NE, which learns from
plain networks, ANE seeks to utilize information relating both
to node proximity and to the affinity of node attributes within
the network. Since the two information sources are not the
same, it is difficult for existing NE algorithms to be directly
applied to ANE.

Learned representations have been shown to be helpful in
many learning tasks such as network clustering [5], node vi-
sualization [6], node classification [7], and link prediction [8],
and as a consequence ANE is becoming a pressing topic for
research in which challenging issues of high-dimensionality,
sparsity and nonlinearity need to be addressed.

Existing AN clustering methods have been applied widely,
but they often perform poorly because of (1) the likelihood that

an approximate continuous embedding solution will deviate
significantly from a good discrete clustering, and (2) a loss of
information between the independent stages, namely continu-
ous embedding generation and embedding discretization.

II. RELATED WORK

Learning a low-dimensional vector representation for each
vertex of a network data is a good way to analyze the network.
This task attracted the attention of several authors [9] for
different purposes such as detection anomalies in dynamic
networks [10]. Recently, various models have been proposed
for attributed networks showing that jointly learning network
representations with network topology information and vertex
attributes enhance the performance on various tasks including
clustering; in [11] the authors demonstrated the benefits of
clustering. In this regard, a number of approaches have been
developed, based on matrix decomposition, graph clustering,
and deep representation learning. Most of the work that we
consider in our comparisons in Section V are the following.
Spectral Clustering [12] is a widely used approach for learning
social embedding. With the advent of deep learning, several
works have tackled the same problem. Graph Encoder
[13] learns graph embedding for spectral graph clustering,
while DNGR [14] trains a stacked denoising autoencoder for
graph embedding. [15] developed DeepWalk, a network
representation approach which encodes social relations into
a continuous embedding space. [16] proposed GAE, using
an autoencoder-based unsupervised framework for attributed
network data embedding, and VGAE, a variational graph
autoencoder approach for graph embedding with both node
link and node attribute information. [5] presented MGAE, a
marginalized graph autoencoder for graph clustering. [8] pro-
posed ARGA, which is the most recent adversarially regularized
autoencoder algorithm using a graph autoencoder to learn the
embedding, while the ARVGA [8] algorithm uses a variational
graph autoencoder to learn the embedding. More recently, [17]
developed a new attributed graph clustering algorithm AGC
based on adaptive graph convolution. In [18] a deep attentional
embedding approach DAEGC for attributed graph clustering is
proposed.

The sequential process in which a learned representation is
obtained before clusters are then obtained using a clustering
method is a source of problems. The two tasks do not share the
same objective and are carried out separately. For this reason,
simultaneous embedding and clustering are frequently used to
improve representation learning by making use of structure
information from the clusters. A number of approaches have
been proposed for the representation learning and clustering
tasks [19], [20]. However, none of these approaches has
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attempted to integrate available information contained within
a network, which can be seen as a deficiency. In order to
overcome this, we propose a novel simultaneous ANE and
clustering scheme which simultaneously (1) learns embedding
from information on network topology and on attributes, and
(2) learns continuous embedding and discrete clustering labels.
Specifically, we explicitly enforce a discrete transformation
on the intermediate continuous labels (embedding), which
leads to a tractable optimization problem with a discrete
solution. The key challenge is knowing how to integrate the
information on both node links and attributes in order to carry
out node representation learning and discrete node clustering
at the same time. To compensate for the information loss
when sequential clustering is relaxed, and to obtain a discrete
clustering solution, we use a smooth transformation (e.g.,
rotation) from the relaxed continuous embedding to a discrete
solution. In this sense, the continuous embedding only serves
as an intermediate product.

To the best of our knowledge, simultaneous attributed
network embedding and clustering in a unified learning frame-
work has not so far been adequately investigated. The goal of
the present work is to look at this issue by considering matrix
decomposition as the embedding framework.

III. PROPOSED METHOD

In this section we describe the Simultaneous Attributed
Network Embedding and Clustering method that we have
called PAGEC. We present the formulation of an objective
function and an effective algorithm for data embedding and
clustering. But we begin by describing the construction of
two matrices S and M integrating both types of information
– content and structure information – that we use to achieve
our objective.

A. Content and Structure information

An attributed network G = (V, E ,X) consists of the set of
nodes V , the set of links E ⊆ V×V , and X = [x1,x2, . . . ,xn]
where n = |V| and xi ∈ Rd is the feature/attribute vector of
the node vi. Formally, the graph can be represented by two
types of information, namely the content information X ∈
Rn×d and the structure information A ∈ Rn×n, where A is
an adjacency matrix of G and aij = 1 if eij ∈ E otherwise 0;
we consider that each node is a neighbor of itself, then we set
aii = 1 for all nodes. We therefore model node proximity by
an (n×n) transition matrix W given by W = D−1A, where
D is the degree matrix of A defined by dii =

∑n
i′=1 ai′i.

In order to utilize additional information about node sim-
ilarity from X, we first preprocess the above dataset X to
produce similarity graph input WX of size (n× n); we then
construct a K-Nearest-Neighbor (KNN) graph. To this end we
use the heat kernel and L2 distance, KNN neighborhood mode
with a given K and we set the width of the neighborhood
σ = 1. Note that any appropriate distance or dissimilarity
measure can be used. Finally we combine node proximity
from both content information X and structure information
W in an (n × n) matrix S. We thus propose perturbing
the similarity W by adding the similarity from WX; we

choose to define S as follows S = W + WX. In Figure
1 multidimensional scaling is applied to W and S in order
to illustrate the impact of WX. Note that with S, the sparsity
is overcome by the presence of WX. Later we will see the
interest of using WX in S. Since clustering is our main

Fig. 1. MDS on W (left) and S (right) (K = 35): Cora dataset where W
of size (2708× 2708) with true 7 clusters.

objective, we propose integrating S in the formulation of a
new data representation by assuming that nodes with the same
label tend to similar social relations and similar node attributes.
This reflects the fact that labels are strongly influenced by both
content and structure information and are inherently correlated
to the two information sources, and we are reminded of
the idea underlying Canonical Discriminant Analysis (CDA),
which is a dimension-reduction technique related to principal
component analysis (PCA) and canonical correlation [21].
Given groups of observations with measurements on attributes,
CDA derives the linear combination of variables that has the
highest possible multiple correlation with the groups. It can
be seen as a particular kind of PCA in which the observations
belonging to a same group are replaced by their centroid.
The new data representation M = (mij) of size (n × d)
can be considered as a multiplicative integration of W and
X replacing each node by the centroid of its neighborhood
(barycenter): i.e, mij =

∑n
k=1 wikxkj ,∀i, j or M = WX.

Since W is a transition matrix, in order to make better use of
the random walk properties we use Wp to explore the structure
of W, where a random walk includes multiple steps instead
of only one. M is then given by

M = WpX where p ∈ N+. (1)

This modification is simple to describe and leads to a re-
finement of the feature matrix X, creating what can be seen
as a smooth version with each row of M converging to the
prototype of its class. M will therefore be more helpful in the
clustering task. In Figure 2 it is interesting to visualize the
impact of W in the formulation of M. To this end we apply
CDA on X and M and indicate the seven true clusters of the
Cora dataset. This reveals clusters separated with M = WX
and, even better, separated with M = W8X, showing the
impact of Wp, which can be seen already to do a good job
independently of clustering.

B. Definition of the model and Optimisation

Let k be the number of clusters and also the number
of components into which the data is embedded. With M
and S, our PAGEC method seeks to obtain the maximally
informative embedding with respect to the clustering structure
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Fig. 2. Cora dataset (2708 × 1433) with true 7 clusters: CDA on X (left), M = WX (middle) and M = W8X (right). To evaluate the separability of
different classes, we rely on the ratio between-class scatter matrix Sb and total-class scatter St defined by R-square =

Tr(Sb)
Tr(St)

where Tr(.) denotes Trace(.).
We have respectively 2.58%, 5.41% and 10.52%.

in the attributed network data. The proposed objective function
F(B,Z,Q,G) to be minimized is consequently given by∥∥∥M−BQ>

∥∥∥2

+ λ
∥∥∥S−GZB>

∥∥∥2

s.t. B>B = I,Z>Z = I,G ∈ {0, 1}n×k (2)

where G = (gij) of size (n × k) is a cluster membership
matrix, B = (bij) of size (n × k) is the embedding matrix,
and Z = (zij) of size (k×k) is an orthonormal rotation matrix
which most closely maps B to G ∈ {0, 1}n×k. Q ∈ Rd×k

is the features embedding matrix. Finally, the parameter λ is
a non-negative value and can be viewed as a regularization
parameter.

The idea behind factorizing M and S is so that nodes
with similar proximity, those with greater similarity in the two
matrices, will have closer representations in the latent space
given by B. This way, optimizing (2) leads to a clustering of
the nodes into k clusters given by G. Note that both tasks –
embedding and clustering – are performed simultaneously and
supported by Z; this is the key to attaining good embedding
while taking the clustering structure into account.

The first term of PAGEC can be seen as a generalization of
canonical discriminant analysis in which the partition of nodes
is replaced by a more general graph structure defined a priori
on the set of nodes. To infer the latent factor matrices Z, B,
Q and G from M = WpX and S = W+WX, we derive an
alternating optimization algorithm. To this end, we make use
of the following proposition.

Proposition 1. Given S ∈ Rn×n, G ∈ {0, 1}n×k, Z ∈ Rk×k,
B ∈ Rn×k, we have∥∥∥S−GZB>

∥∥∥2

=
∥∥∥S− SBB>

∥∥∥2

+ ‖SB−GZ‖2 (3)

Proof. First, since B>B = I and Tr(AB) = Tr(BA) we have

‖GZB>‖2 = Tr(BZ>G>GZB>) = Tr(Z>G>GZ) = ‖GZ‖2.

Similarly we have ‖SBB>‖2 = ‖SB‖2. This leads to

(a)‖S−GZB>‖2 = ‖S‖2 + ‖GZ‖2 − 2Tr(SGZB>).

(b)‖S− SBB>‖2 = ‖S‖2 + ‖SBB>‖2 − 2Tr(SBB>S>)

= ||S||2 + ||SB||2 − 2||SB||2 since S = S>

= ||S||2 − ||SB||2.

(c)‖SB−GZ‖2 = ‖SB‖2 + ‖GZ‖2 − 2Tr(SGZB>).

Summing (b) and (c) (the right terms of (3)) leads to (a).

Below we detail the different steps involved in inferring Z,
Q, B and G.

Compute Z. By fixing G and B we reduce the problem that
arises in (2) to minZ

∥∥S−GZB>
∥∥2. From proposition 1, we

deduce that

min
Z

∥∥∥S−GZB>
∥∥∥2

⇔ min
Z
‖SB−GZ‖2 (4)

which can be reduced to maxZ Tr(G>SBZ) s.t. Z>Z = I.

It was shown (page 29) in [22], with UΣV> the SVD for
G>SB, that

Z = UV>. (5)

This problem turns out to be similar to the well-known
orthogonal Procrustes problem [23].

Compute Q. Given G, Z and B, (2) is reduced to
minQ

∥∥M−BQ>
∥∥2
, and we get

Q = M>B. (6)

It is therefore possible for Q to be seen as an embedding of
attributes.

Compute B. Given G, Q and Z, (2) is equivalent to
maxB Tr((M>Q + λSGZ)B>) s.t. B>B = I. Similarly to
when computing Z, let ÛΣ̂V̂> be the SVD for (M>Q+λSGZ),
and we get

B = ÛV̂>. (7)

It is important to emphasize that at each step, B makes use
of the information from the matrices Q, G, and Z. This
highlights one of the aspects of a simultaneous embedding
and clustering.

Compute G: Finally, given B, Q and Z, the problem (2) is
equivalent to minG ‖SB−GZ‖2 since from (2) and (3) G is
present only in ‖SB −GZ‖. Thereby, we are faced with an
assignment step like that case of the k-means algorithm where
G is a cluster membership matrix. Therefore, it is computed
as follows. We first fix Q, Z, B, let B̃ = SB we then compute

gik =

{
1 if k = argmink′ ||b̃i − zk′ ||2
0 otherwise.

(8)
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A the (t+1)th iteartion, this leads to ‖B̃(t) − G(t)Z(t)‖2 ≥
‖B̃(t) − G(t+1)Z(t)‖2. The steps of the PAGEC1 algorithm
that uses S, which we will refer to as PAGECS, are outlined
in Algorithm 1. The convergence of PAGECS is guaranteed
due to analytical solutions of Q, Z, B (refitting step ) and
assignment step carried out by G. However, according to the
initialization it will reach only a local optimum. We therefore
started the algorithm several times and selected the best result
minimizing the objective function (2).

Algorithm 1 : PAGECS algorithm
Input: M and S from structure matrix W and content
matrix X, k, p and λ ;
Initialize: B, Q and Z with arbitrary orthonormal matrix;
repeat

(a) - Compute G using (8)
(b) - Compute B using (7)
(c) - Compute Q using (6)
(d) - Compute Z using (5)

until convergence
Output: G: clustering matrix, Z: rotation matrix, B: node
embedding matrix and Q: attribute embedding matrix.

IV. POWERED PROXIMITY MATRIX

Before assessing the Algorithm 1, we shall first present
some theoretical reasons to explain why the proposed PAGEC
model is able to outperform recent state-of-the-art methods
proposed for the same purpose. Let us recall that the key
elements when employing this model are, first, designing an
affinity (or proximity) matrix that can jointly encode informa-
tion from the structure W and attributes X, and, secondly,
embedding and clustering AN simultaneously so that there is
a mutual reinforcement between B and G.

With the PAGEC model, we use a powered proximity matrix
to harness the benefits of a random walk process. The idea
behind using Wp is to be able to explore the structure of W
when a random walk includes multiple steps instead of just
one. We know from the theory of Markov chains that Wp

(where p is any positive integer ) is obtained by multiplying
W by itself p times, and consequently, if W = VΛV>, then
we have Wp = VΛpV>, where V is the matrix whose nth

column is vn. The eigensystem of W is therefore constituted
by λn, vn, while the eigensystem of Wp is constituted by λp,
vn.

In a prior work [24], it was noted that for many natural
problems, W is an approximately block stochastic matrix,
and hence the first k left eigenvectors of W are approximate
piecewise constant over the k almost invariant subsets of
rows. The iterative random walk process converges to the
approximated data Wp, where each row and each column
moves towards its prototype. In other words, this process
converges to an equilibrium (steady) state. The matrix W is
composed of k << n quasi-similar rows, where each row is
represented by its prototype; see Figure 3.

1From now on, in order to distinguish between a model and its derived
algorithm, we will use typewriter font for an algorithm. Consequently, PAGEC
is the model and PAGEC its derived algorithm.

Let us consider Wp, the pth order transition matrix, as the
affinity matrix. The cell wm,n in Wp gives the total probability
that a random walk xj beginning at m will end up in n after
p steps, considering all possible paths between the nodes. We
would expect this probability wm,n to be high if there is a
good path between m and n, and low otherwise, the intended
outcome being a block diagonal matrix suitable for clustering
data [24]. However, in practice we usually observe that Wp

behaves differently according to the value of p. If data points
i, j are in the same cluster there are values of p for which the
ith and jth rows of Wp become very similar. Consequently,
if data points i, j are similar, then after a sufficient number of
steps we can expect that particles that begin a random walk in
each of them will have the same distribution for their locations
after p steps. We also remark that by varying the number of
steps p we explicitly explore similarities at different scales in
the data, and as p increases we would expect to find a coarser
structure. Note that, since Wp is a stochastic matrix (transition
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Fig. 3. Random walk process. Evolution of singular values and patterns
according W and W8.

matrix) the construction of M as illustrated in Figure can be
viewed as an iterative process WpX; when p = 0 we have
M = X. This process will converge to the approximated data
WpX where each row moves towards its prototype. In other
words, this process converges to an equilibrium state. With g
denoting the number of eigenvalues of Wp equal to 1, the
matrix WpX is composed of g << n quasi-similar rows
where each row is represented by its prototype (Figure 4).

At first sight this power iterative process appears to be of
little interest, since it eventually leads to a data matrix in which
rows coincide for any starting point. However, our practical
experience shows that the data quickly give rise to row blocks
and that these blocks move towards each others relatively
slowly. If we stop the process at this point, the refined affinity
matrix M can be useful for clustering. Thus, this process can
be seen as a refining of the feature matrix X into a matrix
structured into blocks, which is beneficial in relation to both
the embedding and the clustering tasks.

V. NUMERICAL EXPERIMENTS

Our focus in this work is on different clustering methods.
Below we compare the PAGEC algorithm with some compet-
itive methods, including recent deep learning methods.

A. Characteristics of datasets and Compared methods

The performances of clustering methods are evaluated using
datasets commonly tested with ANE where the clusters are
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known. The experiments were conducted using four public
citation network datasets, namely Citeseer, Cora, Wiki, and
Pubmed, which contain a sparse bag-of-words feature vector
for each document, together with a list of citation links
between documents. Each document has a class label. For our
purposes the documents are the nodes and the citation links are
the edges. The characteristics of the datasets are summarized
in Table I. The balance coefficient is defined as the ratio of the
number of documents in the smallest class to the number of
documents in the largest class, while nz denotes the percentage
of sparsity.

TABLE I
CHARACTERISTICS OF DATASETS (#: THE CARDINALITY)

datasets n d # Edges #Classes nz(%) Balance
Cora 2708 1433 5294 7 98.73 0.22
Citeseer 3312 3703 4732 6 99.14 0.35
Wiki 2405 4973 17981 17 86.46 0.02
Pubmed 19717 500 44338 3 89.98 0.52

We compare PAGEC with embedding-based methods and
with other methods that are explicitly for graph clustering.
In our comparison we include standard methods and also
recent deep learning methods; these differ in the way they
use available information. Some of them (such as K-means)
use only X as the baseline, while others use more recent
algorithms based on X and W. All the compared methods
are also mentioned in Section II above: Graph Encoder
[13], DNGR [14], DeepWalk [15], Spectral Clustering [12],
while spectral-f denotes a traditional spectral clustering
applied on WX, spectral-g is applied on W. Using X
and W we evaluated GAE and VGAE [16], MGAE [5], ARGA
and ARVGA [8], AGC [17] and DAEGC [18].

B. Sensitivity analysis of λ and p

With the PAGEC model, the parameter λ controls the role
of the second term ||S − GZB>||2 in (2). To measure its
impact on the clustering performance of PAGECS, we vary
λ in {0, 10−6, 10−3, 10−1, 100, 101, 103} and p from 1 to 12.
The performances in terms of accuracy (ACC), Normalized
Mutual Information (NMI) and F1 measure are illustrated only
on Cora dataset in Figure 5, due to lack of space; a high
ACC, NMI or F1 corresponds to a better clustering result.
First, we note that with λ = 0 we are relying only on

minB,Q

∥∥M−BQ>
∥∥2

s.t. B>B = I. In this case we observed

0 10 -6 10 -3 10 -1 10 0 10 1 10 3
0.2

0.3

0.4

0.5

0.6

0.7

0.8

C
lu

st
er

in
g 

pe
rfo

rm
an

ce
(%

)

Sensitivity analysis of ACC, NMI and F1 to 

Acc

NMI

ARI

1 2 3 4 5 6 7 8 9 10 11 12

p

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

C
lu

st
er

in
g 

pe
rfo

rm
an

ce
(%

)

Sensitivity analysis of ACC, NMI and F1 to p

Acc

NMI

F1
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poor results in terms of quality of clustering, which is an
indication of the impact of the second term in (2). Quality
increases as λ increases, and with only small values of λ
a better performance is obtained on all datasets. We have
noted that around 10−2 the clustering result becomes stable
and less sensitive to λ. With values of λ greater than 10−1

the performance of PAGEC degrades sharply. This can be
explained by the fact that the initialization of G is random,
and thus can often be a long way from the real solution. As
we can observe in Figure 5, the best results are obtained with
λ = 10−3 and p = 5.

C. Attributed network clustering

Evaluating clustering results is not a trivial task. Clustering
accuracy is not always a reliable measure when clusters are
not balanced and the number of clusters is high. As a better
indication of the quality of our approach, below we have
chosen to retain, in addition to accuracy, two measures that
are widely used in assessing the quality of clustering, namely
Normalized Mutual Information, and the F1 measure. The
F1 measure takes both precision and recall into account in
computing the score, F1 being the harmonic mean of the pre-
cision and recall. Intuitively, NMI quantifies to what extent the
estimated clustering is informative about the true clustering,
while F1 is more oriented towards measuring the effectiveness
of a clustering algorithm. The higher the ACC/NMI/F1, the
better the clustering, and so in our experiments clustering
performance in relation to the true available clusters is assessed
in terms of ACC, NMI and F1. If one clustering algorithm
performs better than other clustering algorithms on a number
of these measures, then we can have some confidence that it
is truly the best clustering algorithm for the situation being
evaluated.

We repeated the experiments 50 times and the averages
(mean) and standard-deviations (sd) are reported in Table
II; the best performance for each dataset is highlighted in
bold. First, we observe the good performances of methods
that integrate information from W. The methods that include
deep learning algorithms relying on M and W are better still.
Regarding PAGEC, for the versions based respectively on W
(PAGECW) and on S (PAGECS), we note good performances
for all the datasets. In the case of PAGECS we remark the
impact of WX; it learns low-dimensional representations in
agreement with the clustering structure.

D. Attributed network embedding

The PAGEC model, through B, offers an embedding into
clusters from which a 2d or 3d structure can also be observed.
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TABLE II
CLUSTERING PERFORMANCES (ACC % , NMI % AND F1 % ) ON CORA, CITESEER, WIKI AND PUBMED DATASETS. (-) REFERS TO THE

NON-AVAILABILITY OF ACC IN [18].

Datasets
Methods Input Cora Citeseer Wiki Pubmed

Acc NMI F1 Acc NMI F1 Acc NMI F1 Acc NMI F1
K-means X 34.65 16.73 25.42 38.49 17.02 30.47 33.37 30.20 24.51 57.32 29.12 57.37
Spectral-f WX 36.26 15.09 25.64 46.23 21.19 33.70 41.28 43.99 25.20 59.91 32.55 58.61
Spectral-g W 34.19 19.49 30.17 25.91 11.84 29.48 23.58 19.28 17.21 39.74 3.46 51.97
DeepWalk W 46.74 31.75 38.06 36.15 09.66 26.70 38.46 32.38 25.74 61.86 16.71 47.06
DNGR W 49.24 37.29 37.29 32.59 18.02 44.19 37.58 35.85 25.38 45.35 15.38 17.90
GAE X,W 53.25 40.69 41.97 41.26 18.34 29.13 17.33 11.93 15.35 64.08 22.97 49.26
VGAE X,W 55.95 38.45 41.50 44.38 22.71 31.88 28.67 30.28 20.49 65.48 25.09 50.95
ARGE X,W 64.0 44.90 61.90 57.3 35.0 54.60 41.40 39.502 38.27 59.12 23.17 58.41
ARVGE X,W 63.8 45.0 62.70 54.4 26.1 52.90 41.55 40.01 37.80 58.22 20.62 23.04
MGAE X,W 63.43 45.57 38.01 63.56 39.75 39.49 50.14 47.97 39.20 43.88 8.16 41.98
DAEGC X,W 70.04 52.8 68.2 67.2 39.7 63.6 - - - 67.1 26.6 65.9
AGC X,W 68.92 53.68 65.61 67.00 41.13 62.48 47.65 45.28 40.36 69.78 31.59 68.72
PAGECW,p=p∗ X,W 70.09 53.56 66.56 66.66 40.80 62.77 50.38 43.57 41.44 69.56 30.76 68.95

sd .0040 .0016 .0004 .0007 .00015 .0005 .0079 .0023 .0097 .00 .00 .00
PAGECS,p=p∗ X,S 72.25 55.21 67.94 68.31 43.04 63.69 55.30 51.27 45.96 72.20 33.64 71.51

sd .0010 .0012 .0009 .0009 .0007 .0004 .0037 .0019 .0020 .00 .0028 .00

To illustrate the quality of embedding, we consider the four
attributed network datasets above and focus on the R-square=
Tr(Sb)
Tr(St)

ratio, where Sb is the between-class scatter matrix and
St is the total scatter matrix. To evaluate the separability
of true classes, we computed this ratio from X, M and B
respectively (Table III).

TABLE III
EVALUATION OF SEPARABILITY BETWEEN CLASSES GIVEN THE TRUE

PARTITION AND DATA REPRESENTATIONS X, M AND B.

Rsquare in %

datasets X M B

Cora 2.58 5.41 44.43
Citeseer 1.73 3.92 40.6
Wiki 5.73 17.69 34.04
Pubmed 1.99 2.02 31.14

VI. CONCLUSION AND PROSPECTS

In unsupervised learning, representation learning and clus-
tering are generally studied by two distinct machine learning
communities. In our contribution we argue that bringing the
two disciplines together can improve representation learning.
Behind the design of representation-learning algorithms of this
kind is the all-encompassing quest for Artificial Intelligence.

This paper is concerned with both learning representation
and clustering. We have proposed a novel matrix decomposi-
tion framework for simultaneous attributed network data em-
bedding and clustering. Unlike existing methods that combine
the objective function of ANE and the objective function of
clustering separately, our proposed method PAGECS capital-
izes on learning representation and clustering simultaneously.

The proposed framework suggests a number of prospects
for further investigation. Following several KNN experiments
relating to the choice of the number of neighbors, we have
noted that given the sparsity a large number of neighbors (more
than 30) is necessary. However, there are other points that
warrant in-depth evaluation, such as the choice of λ and p.

In the future we are planning to improve upon our proposed
method in several respects. First, we would like to be able
to measure the impact of each matrix W and WX in the
construction of S by considering two different weights for W
and WX as follows: S = αW+βWX. Secondly, we wish to
address the problem of assessing the number of clusters, which
remains a challenge in unsupervised learning, and specifically
in relation to ANE.
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