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Factorization Algorithm for Feature
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Abstract— Nonnegative matrix factorization (NMF) has
been widely used to learn low-dimensional representa-
tions of data. However, NMF pays the same attention to
all attributes of a data point, which inevitably leads to
inaccurate representation. For example, in a human-face
data set, if an image contains a hat on the head, the hat
should be removed or the importance of its corresponding
attributes should be decreased during matrix factorizing.
This paper proposes a new type of NMF called entropy
weighted NMF (EWNMF), which uses an optimizable weight
for each attribute of each data point to emphasize their
importance. This process is achieved by adding an en-
tropy regularizer to the cost function and then using the
Lagrange multiplier method to solve the problem. Experi-
mental results with several data sets demonstrate the fea-
sibility and effectiveness of the proposed method. We make
our code available at https://github.com/Poisson-EM/
Entropy-weighted-NMF.

Index Terms— clustering, entropy regularizer, low-
dimensional representation, nonnegative matrix
factorization (NMF).

I. INTRODUCTION

W ITH the rapid development of data acquisition
technology, large amounts of data, such as online

documents, medical images, various video series, traffic
data, health data and other high-dimensional data, are
accumulating. Therefore, dimensionality reduction [1] has
become an essential step in data mining. Vector quantization
(VQ) [2], singular value decomposition (SVD) [3], principal
component analysis (PCA) [4], independent component
analysis (ICA) [5] and concept factorization (CF) [6], [7] are
some most commonly used dimensionality reduction methods.
However, due to negative components, these methods typically
cannot be reasonably explained in some practical problems.
Therefore, developing a nonnegative factorization method is
valuable for research. Thus, researchers have investigated the
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nonnegative matrix factorization (NMF) proposed by Lee and
Seung [8]. This method represents a nonnegative matrix by a
product of two low rank nonnegative matrices and then learns
a parts-based representation. In recent years, NMF has been
applied in many fields, including cluesting, dimensionality
reduction, blind source separation, etc. [9]–[12].

In recent years, many variants of NMF have been proposed
to extend its applicable range. For example, Ding et al.
[13] learned new low-dimensional features from data with
convenient clustering interpretation using Semi-NMF, which
allows the data matrix and the base matrix to have mixed
signs [14], [15]. They also developed Convex-NMF by
restricting the base vectors to a convex combination of the
data points. Considering that the orthogonality constraint
leads to sparsity, Pompili et al. [16] proposed an orthogonal
NMF (ONMF) method, which adds orthogonality constraints
to the base and representation matrices. There are two ways
to solve ONMF: the Lagrange method [16] and the natural
gradient on the Stiefel manifold [17].

Blondel et al. [18] conducted an extended study for NMF
by incorporating predetermined weights to each attribute
of each data point, demonstrating that weights can produce
important flexibility by better emphasizing certain features
in image approximation problems. Other researchers then
conducted a series of studies with the weighted NMF
(WNMF). For example, Kim and Choi [19] proposed a new
WNMF method to process an incomplete data matrix with
missing entries, which combined the binary weights into
the NMF multiplication update. Li and Wu [20] proposed
a weighted nonnegative matrix tri-factorization method for
co-clustering that weights each row and column of the
original matrix in a specific way, and the normalized cut
information is combined into the optimization model. Then,
to assign labels to images, Kalayeh et al. [21] proposed
a weighted expansion method of multiview NMF, which
imposes a consistent constraint on the representation matrices
between different features, and a weight matrix mitigates data
set imbalance. Dai et al. [22] proposed applying the WNMF
method to image recovery, and experimental results showed
that, particularly for data affected by salt and pepper noise,
the method could remove noise effectively and could also
provide a more accurate subspace representation.

We refer these methods as “hard WNMF”; however, one
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primary drawback is that the weights, which they rely on, must
be predetermined. Variable weights for NMF are challenging
to implement that can be resolved by designing interpretable
and computable weights.

This paper presents an entropy weighted NMF (EWNMF)
method that assigns a weight to indicate the importance of
each attribute of each data point in matrix factorizing. Then,
the entropy of these weights is used to regularize the cost
function for obtaining an easy computable solution, which
makes the range of weights fall within [0, 1] with a summation
of one; thus, the weights can be explained as the probability
of the contribution of an attribute of one data point to NMF.
Experimental results with several real data sets show that
EWNMF performs better than other NMF variants.

II. METHODOLOGY

A. Related research

NMF is a matrix factorization method that focuses on data
matrices with nonnegative elements, which can reveal hidden
structures and patterns from generally redundant data. We will
review the standard NMF as follows.
Notations In this paper, matrices are denoted as capital
letters. For a matrix A, A∗i, Ai∗ and Aij denote the i −
th column, the i − th row and (i, j) − th element of A,
respectively; the Frobenius norm is represented as ‖A‖F ; �
and ./ mean the item-by-item multiplication and division of
two matrices, respectively; AT denotes the transpose of A;
A ≥ 0 means that all elements of A are equal to or larger
than 0.

The expression of NMF is:

X ≈WH (1)

where the matrix X ⊆ RM×N denotes the given nonnegative
matrix in which each column is a data point. The goal of NMF
is to find two low-dimensional nonnegative matrices: W ⊆
RM×K is called the base matrix, and H ⊆ RK×N is called
the representation matrix, whose product can approximate the
original matrix [23], [24], where K << min{M,N}.

There are different standards to measure the quality of
decomposition. Lee and Seung proposed using the square of
the Euclidean distance and the Kullback-Leibler divergence.
In this paper, the Euclidean distance is used, and the formula
is expressed as:

min F1(W,H) = ‖X −WH‖2F
s. t. W ≥ 0, H ≥ 0

(2)

To alternatively minimize W and H in Eq. (2), the con-
struction of the auxiliary function is important to determine
the iterative update rule.
Definition 1 (Auxiliary function) If the function G(h, h′)
satisfies the following conditions:

G(h, h′) ≥ F (h)
G(h′, h′) = F (h′)

(3)

where h′ is a given value; then, G(h, h′) is the auxiliary
function of F (h) on h′.

…… …

⊙

2

≈ 0

Weights: T Data set: X Recovered data set: WH

Frobenius norm

Fig. 1: Diagram of the proposed method: a hat in the first
image destroys the accuracy of feature representation, which
should be assigned no or little importance.

Then, we can draw the following conclusion.
Lemma 1. If G(h, h′) is an auxiliary function of F (h), then
under the update rule:

h∗ = argmin
h
G(h, h′) (4)

the function F (h) does not increase.
Proof . The conditions satisfied by the auxiliary function
make this proof marked because:

F (h∗) ≤ G(h∗, h′) ≤ G(h′, h′) ≤ F (h′) (5)

Thus, if the auxiliary function reaches the minimum, the
original function should decrease.

Then, we construct the update rule for the NMF problem.
We consider W first, where W t > 0 and H > 0 are given.
Let ξijk = W t

ikHkj/(W
tH)ij , of course, ξijk ≥ 0 and∑K

k=1 ξijk = 1. Therefore, the auxiliary function of standard
NMF is:

f1(W,W
t) =

M∑
i=1

N∑
j=1

K∑
k=1

ξijk(Xij −
WikHkj

ξijk
)2 (6)

Because the function is separable, it can be easily mini-
mized. We thus take the partial derivative of Eq. (6) and set
it to zero so that we can obtain the following update rule as:

W ←W � (XHT ) ./ (WHHT ) (7)

The method of constructing the auxiliary function of H is
similar to that of W . Then, the following update of H is
obtained:

H ← H � (WTX) ./ (WTWH) (8)

B. Proposed method
Different from previous methods, an optimizable weight

matrix is used to measure the importance of the attributes
in matrix factorizing. Fig. 1 shows the explanation of the
proposed idea that, if there is a hat in the only image, the
corresponding attributes of the hat must destroy the result
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of NMF, and we should certainly eliminate or weaken their
importances. Thus, it may be necessary to provide different
importances to the attributes of each data point based on the
following constraint, which will lead to a new optimization
model:

min F2(W,H, T ) =

M∑
i=1

N∑
j=1

Tij [Xij − (WH)ij ]
2

s. t. W ≥ 0, H ≥ 0, T ≥ 0,

M∑
i=1

Tij = 1

(9)

We first consider the new variable T , which can be
solved in an alternative optimization manner. For fixed
W and H , Tij is very easy to solve as Tij = 1 if
Eij = min{|E1j |, |E2j |, ..., |EMj |} or 0 otherwise1, where
E = X − WH . And it demonstrates the simple fact that
only one element of T∗j is 1, and the others are 0, which is
incompatible with the real problem.

To address this issue, we apply an entropy regularizer to
penalize the cost function of NMF to obtain a weight in the
range of [0, 1] instead of 0 or 1, which uses information
entropy to calculate the uncertainty of weights. The new
optimization problem is rewritten as follows:

min F3(W,H, T ) =

M∑
i=1

N∑
j=1

Tij [Xij − (WH)ij ]
2

+ γ

M∑
i=1

N∑
j=1

Tij ln(Tij)

s. t. W ≥ 0, H ≥ 0, T ≥ 0,

M∑
i=1

Tij = 1

(10)

where γ ≥ 0 is a given hyperparameter. The first term in
Eq. (10) is the sum of errors, and the second term is the
negative entropy of the weights. The original cost function in
Eq. (9) results in only one attribute of each data point being
involved in feature representation, and the entropy regularizer
will stimulate more attributes to help feature representation.

This equation can be solved by a simple algorithm, which
is based on the following proposition:
Proposition 1. Given the matrices W and H , Tij in Eq.
(10) is minimized when:

Tij =
e−

[Xij−(WH)ij ]
2

γ∑M
l=1 e

−
[Xlj−(WH)lj ]

2

γ

(11)

Proof . We construct the Lagrange function of Eq. (10) with
respective to T as:

1The update rule can be easily explained by an example as:

min {3, 1, 2} = min 3T1 + 1T2 + 2T3

s. t. T1 ≥ 0, T2 ≥ 0, T3 ≥ 0

T1 + T2 + T3 = 1

The solution is that T1 = 0, T2 = 1 and T3 = 0, in which T2 corresponds
to the minimum value of {3, 1, 2}. This process is similar to the computation
of the weights in the k-means algorithm.

L(T, λ) =

M∑
i=1

N∑
j=1

Tij [Xij − (WH)ij ]
2

+ γ

M∑
i=1

N∑
j=1

Tij ln(Tij)−
N∑
j=1

λj(

M∑
i=1

Tij − 1)

(12)
where [λ1, λ2, ..., λN ] is a vector containing the Lagrange
multipliers corresponding to the constraints.

By setting the gradient of Eq. (12) with respect to λj and
Tij to zero, we obtain the following equation system:

∂L

∂λj
=
∑M
i=1 Tij − 1 = 0 (13)

∂L

∂Tij
=[Xij − (WH)ij ]

2 + γlnTij + γ − λj = 0 (14)

From Eq. (14), we know that:

Tij = e
λj−γ
γ e−

[Xij−(WH)ij ]
2

γ (15)

Substituting Eq. (15) into Eq. (13), we have:

M∑
i=1

Tij = e
λj−γ
γ

M∑
i=1

e−
[Xij−(WH)ij ]

2

γ = 1 (16)

It follows that:

e
λj−γ
γ =

1∑M
l=1 e

−
[Xlj−(WH)lj ]

2

γ

(17)

Substituting this expression to Eq. (15), we find that:

Tij =
e−

[Xij−(WH)ij ]
2

γ∑M
l=1 e

−
[Xlj−(WH)lj ]

2

γ

(18)

Then, we can solve W and H with fixed T , which is
similar to the standard NMF method. For example, we can
construct the following auxiliary function about W :

f3(W,W
t) =

M∑
i=1

N∑
j=1

K∑
k=1

Tijξijk(Xij −
WikHkj

ξijk
)2

+ γ

M∑
i=1

N∑
j=1

Tij lnTij

(19)

Setting the partial derivative of f3(W,W t) to zero yields the
following update rule:

W ←W � (T �X)HT ./ {[T � (WH)]HT } (20)

Similarly, we can also easily obtain the update rule for H as
follows:

H ← H �WT (T �X) ./ {WT [T � (WH)]} (21)

The update rules to W and H are similar to the existing
WNMF methods in [21], [22]. Optimizing EWNMF is sum-
marized as follows in Algorithm 1:
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Algorithm 1 EWNMF

Input: Given the input nonnegative matrix X ⊆ RM×N , the
number K of reduced dimensions and hyperparameter γ;

Output: the weight matrix T , the base matrix W and the
representation matrix H;

1: Randomly initialize W ⊆ RM×K>0 and H ⊆ RK×N>0;
2: while not convergence do
3: Update T by Eq. (18);
4: Update W by Eq. (20);
5: Update H by Eq. (21);
6: end while
7: return T , W and H .

C. Extensions

The proposed entropy weighted method can also be applied
to standard NMF using the square of the Euclidean distance
and to those that use KL divergence, α-divergence and other
existing NMFs, such as ONMF, Semi-NMF, Convex-NMF,
etc., which demonstrates its good compatibility.

For example, incorporating the entropy regularizer into KL-
NMF, its cost function is expressed as:

F4(T,W,H) =

M∑
i=1

N∑
j=1

Tij [Xij log
Xij

(WH)ij
−Xij

+ (WH)ij ] + γ

M∑
i=1

N∑
j=1

Tij ln(Tij)

(22)

where T can be derived from the above method, and then the
update is shown below:

Tij =
e−

Xijlog
Xij

(WH)ij
−Xij+(WH)ij

γ

∑M
l=1 e

−
Xljlog

Xlj
(WH)lj

−Xlj+(WH)lj

γ

(23)

Applying the entropy regularizer to the α-divergence-based
NMF method, the cost function is:

F5(T,W,H) =
1

α(α− 1)

M∑
i=1

N∑
j=1

Tij [X
α
ij(WH)1−αij − αXij

+ (α− 1)(WH)ij ] + γ

M∑
i=1

N∑
j=1

Tij ln(Tij)

(24)
where α ∈ R is a given value. The update method of T is as
follows:

Tij =
e−

[Xαij(WH)
1−α
ij

−αXij+(α−1)(WH)ij ]

α(α−1)γ∑M
l=1 e

−
[Xα
lj

(WH)
1−α
lj

−αXlj+(α−1)(WH)lj ]

α(α−1)γ

(25)

The entropy weighted method can also be popularized to
many other NMFs, which is similar to the above derivations,
and thus, we omit them.

III. EXPERIMENTS

TABLE I: Statistics of the used standard data sets.

Data set Yale UMISTface Caltech101 GTFD TDT2

Points 165 1012 9144 750 9394
Dimensions 1024 1024 1024 1024 36771
Class 15 20 101 50 30

A. Experimental description

Experiments were performed on a HP Compaq PC with a
3.40-GHz Core i7-6700 CPU and 16 GB memory, and all the
methods were implemented in MATLAB. We compare the
performance of the proposed methods with NMF [8], ONMF
[16], Semi-NMF [13] and Convex-NMF [13] on five public
data sets, including the Yale, UMISTface, Caltech101, GTFD
and TDT2 data sets.

The Yale face data set [25] was created by Yale University
and contains data describing 15 people. Each person has 11
face images with different expressions, postures and lighting.
The data set has a total of 150 images, and each has a size
of 32× 32.

The UMISTface data set [26] was established by the
University of Manchester, UK. The data set has a total of
1012 images, including 20 people, each with different angles
and different poses. In this experiment, the pixel number of
each image is 32× 32.

The Caltech101 data set [27] contains 9144 images split
between 101 different object categories, as well as an
additional background/clutter category. This data set has
approximately 40 to 800 images per category, and most
categories have approximately 50 images. The size of each
image is 32× 32.

The GTFD [28] contains 750 images taken in two different
sessions and includes 50 people. All people in the data set
are represented with cluttered backgrounds. The images show
faces with different facial expressions and lighting conditions,
and each has a size of 32× 32.

The TDT2 Audio Corpus [29] contains six sources,
including two news special lines (APW and NYT), two radio
programs (VOA and PRI) and two TV programs (CNN and
ABC). In this experiment, only the largest 30 categories are
used (a total of 9394 documents).

Important details of these data sets are shown in Table I.
After obtaining a new feature representation, we use

k-means to cluster them and then compare it with the label
to evaluate the clustering results. Clustering accuracy (ACC)
[30], [31] and normalized mutual information (NMI) [32],
[33] are used to evaluate the performance of these clustering
results.

Given a set of the ground true class labels y and the
obtained cluster labels y′, the clustering accuracy is defined
as:

ACC =

∑N
i=1 δ(yi,map(y

′
i))

N
(26)
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Fig. 2: Illustrative figures of EWNMF: (a) the source signals, (b) the mixed signals, in which the first one is corrupted at the
beginning part and (c) the obtained weights corresponding to (b).
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Fig. 3: Clustering performance versus the hyperparameter γ on the Yale data set: (a) ACC and (b) NMI.
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TABLE II: ACC and NMI on the Yale data set (%).

Method NMF ONMF Semi-NMF Convex-NMF EWNMF

ACC 39.03 41.21 42.48 31.88 46.06
NMI 44.74 47.36 48.48 37.91 53.27

TABLE III: ACC and NMI on the UMISTface data set (%).

Method NMF ONMF Semi-NMF Convex-NMF EWNMF

ACC 51.06 50.99 52.15 23.52 64.05
NMI 69.63 68.34 67.70 29.13 76.01

where:

δ(a, b) =

{
1 a = b
0 otherwise

and map(·) is a permutation mapping function that maps the
obtained cluster labels to the real labels. The higher the ACC
value is, the better the clustering performance.

NMI is used to calculate the agreement between the two
data distributions and is defined as follows:

NMI(y, y′) =
MI(y, y′)

max(H(y), H(y′))
(27)

where H(y) is the entropy of y. MI(y, y′) quantifies the
amount of information between two random variables (i.e.,
y and y′) and is defined as:

MI(y, y′) =
∑

yi∈y,y′j∈y′
p(yi, y

′
j)log(

p(yi, y
′
j)

p(yi)p(y′j)
) (28)

where p(yi) and p(y′j) are the probabilities that a data point
selected from the data set belongs to the clusters yi and
y′j , respectively; and p(yi, y

′
j) is the joint probability that an

arbitrarily selected data point belongs to clusters yi and y′j
concurrently. The NMI score ranges from 0 to 1, and the larger
NMI is, the better the clustering performance.

Before the experiment, we normalized all the data sets
to scale the minimum and maximum values of each data
point to 0 and 1, respectively. All the methods use the same
random distribution for initialization of W and H to make
them uniformly distributed on [0.1 1.1] and perform 300
iterations to ensure sufficient convergence.

B. Experimental results
1) Signal unmixing on synthetic data: We use a synthetic

data set to simulate a signal-mixture process, which mixes
two source signals by a uniformly distributed matrix on [0
1] and then destroys the beginning part of the first one. The
destroyed part in the mixed signal will hinder signal recovery.
Then, we use EWNMF to unmix the signals to demonstrate
the usefulness of the proposed entropy weighted method.
Fig. 2 shows the source signals, mixed signals (including the
destroyed signal) and the obtained weights. The weights of the
destroyed elements in the first signal are small and can even
be considered as zero, and the other weights are similar. Thus,

we can conclude that EWNMF can provide correct weights to
the importance of attributes in the data set.

2) EWNMF compared with the standard NMF: We investi-
gate the ability of the entropy weighted strategy to improve
the performance of the standard NMF. We apply NMF and
EWNMF to reduce the dimension number of the Yale and
UMISTface data sets and then use k-means to cluster these
new representations. Note that the number of reduced dimen-
sions is equal to that of the clusters. Figs. 3 and 4 show
the clustering results evaluated by ACC and NMI. EWNMF
indeed provides better performance than the standard NMF
and can achieve a consistently superior performance to the
standard NMF on a wide range of the hyperparameter γ,
demonstrating the robustness of EWNMF.

The optimal clustering results on the entire Yale and
UMISTface data sets are shown in Tabs. II and III. An
interesting observation is highlighted and shows a consistent
result with the above figures that EWNMF still provides the
best evaluation standards.

3) Clustering results with different cluster numbers: We
study the relationship between the evaluation standards
and cluster number. The hyperparameter γ is selected in
{10i, i = −8,−7, ..., 7, 8} to obtain the optimal results in
a large range. Because the NMF problem does not have a
sole solution, we randomly initialized 10 times to obtain a
credible averaged ACC and NMI. Different cluster numbers
ranging from 2 to 10 are selected. In a certain data set with
k clusters, the experimental details are described as follows:

1) Randomly select k categories as a subset for the
following experiment.

2) Randomly initialize W and H , obtain new
representations, and cluster them by k-means. Note that
EWNMF uses the selected hyperparameter γ according to the
above instruction.

3) Repeat 1) and 2) 10 times to obtain an average result.
The clustering results, ACC and NMI versus the number of

clusters, are reported in Figs. 5-9. The proposed method can
generally yield more accurate clustering results, and only for
two clusters of the GTFD data set, Semi-NMF occasionally
exceeds the accuracy of the proposed method. Also, none of
the other methods performs better in all aspects than EWNMF.

4) Convergence speed and part-based learning: From the
theoretical analysis described above, we can conclude that the
proposed method is monotonically decreasing, but due to the
nonconvexity of the cost function, it cannot be guaranteed to be
strictly convergent [34]. Thus, we investigate the convergence
speed of the NMF methods.

Fig. 10 shows the cost functions of NMF, ONMF, Semi-
NMF, Convex-NMF and EWNMF on the Yale data set. Except
for the Convex-NMF method, which converges slowly, the
other methods reached a stable point within 200 iterations,
demonstrating that they have similar convergence speeds.
However, ONMF cannot guarantee the monotonic decrease
of the cost function because it uses a proximal Lagrange
multiplier method. Fig. 11 shows the base images on the Yale
data set and demonstrates that Semi-NMF and Convex-NMF
identify more global faces. EWNMF has poor locality com-
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Fig. 5: Clustering performance versus cluster number on the Yale data set: (a) AC and (b) NMI.
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Fig. 6: Clustering performance versus cluster number on the UMISTface data set: (a) AC and (b) NMI.
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Fig. 7: Clustering performance versus cluster number on the Caltech101 data set: (a) AC and (b) NMI.

pared to ONMF; however, the former has a better clustering
effect than the latter. It is visually difficult to evaluate the
performance of the NMF methods, even though they are all

markedly different.
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Fig. 8: Clustering performance versus cluster number on the GTFD data set: (a) AC and (b) NMI.
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Fig. 9: Clustering performance versus cluster number on the TDT2 data set: (a) AC and (b) NMI.

IV. CONCLUSION

This paper proposes a new NMF method, which adds
weights to each attribute of each data to emphasize their im-
portance. We introduce an entropy regularizer to consider these
weights as the probabilities of importance within [0 1], which
mimics the process of human reasoning more accurately. These
weights can be solved by the Lagrange multiplier method,
and a simple update is achieved. The experimental results
show that the proposed method produces performance that is
competitive with those of existing methods.

The entropy regularizer requires an additional hyperparame-
ter to control the certainty of the weights. In the future, we plan
to develop an auto-adjustment strategy for this hyperparameter.
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