This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Out-of-Sample Tuning for Causal Discovery

Konstantina Biza

Abstract— Causal discovery is continually being enriched with
new algorithms for learning causal graphical probabilistic mod-
els. Each one of them requires a set of hyperparameters, creating
a great number of combinations. Given that the true graph is
unknown and the learning task is unsupervised, the challenge
to a practitioner is how to tune these choices. We propose out-
of-sample causal tuning (OCT) that aims to select an optimal
combination. The method treats a causal model as a set of
predictive models and uses out-of-sample protocols for super-
vised methods. This approach can handle general settings like
latent confounders and nonlinear relationships. The method uses
an information-theoretic approach to be able to generalize to
mixed data types and a penalty for dense graphs to penalize
for complexity. To evaluate OCT, we introduce a causal-based
simulation method to create datasets that mimic the properties of
real-world problems. We evaluate OCT against two other tuning
approaches, based on stability and in-sample fitting. We show
that OCT performs well in many experimental settings and it is
an effective tuning method for causal discovery.

Index Terms— Causal-based
out-of-sample, tuning.

simulation, causal discovery,

I. INTRODUCTION

EARNING causal graphical models from observational

data has been an active area of research in the past
decades, and a wide range of algorithms have been proposed in
the literature. The algorithms may differ in their distributional
assumptions, theoretical properties, search heuristics for the
optimal structure, approximations, or other characteristics that
make them more or less appropriate and effective for a given
learning task. In addition, statistical hypothesis tests and
scoring functions are continually being developed. As a result,
the choice of algorithm and corresponding hyperparameters
(hereafter, called a configuration) can have a sizable impact
on the quality of the learned graph. Unfortunately, practition-
ers are faced with optimizing the configuration for the task
at hand. Given that the problem is unsupervised, standard

Manuscript received 2 August 2021; revised 15 March 2022;
accepted 11 June 2022. This work was supported in part by the European
Research Council under the European Union’s Seventh Framework
Programme (FP/2007-2013)/ERC Grant Agreement under Grant 617393,
and in part by the Hellenic Foundation for Research and Innovation
(H.FR.I) under the “First Call for H.ER.I. Research Projects to Support
Faculty Members and Researchers and the Procurement of High-Cost
Research Equipment Grant” under Project 1941. (Corresponding author:
Konstantina Biza.)

Konstantina Biza and Ioannis Tsamardinos are with the Computer
Science Department, University of Crete, 70013 Heraklion, Greece (e-mail:
konbiza@gmail.com).

Sofia Triantafillou is with the Department of Mathematics and Applied
Mathematics, University of Crete, 70013 Heraklion, Greece.

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TNNLS.2022.3185842.

Digital Object Identifier 10.1109/TNNLS.2022.3185842

, Joannis Tsamardinos

, and Sofia Triantafillou

out-of-sample estimation methods used for supervised prob-
lems, such as cross-validation, cannot be directly applied.

We have recently developed Out-of-sample Causal Tuning
(OCT) [1], a method that automatically selects an algorith-
mic configuration for learning a causal graph from an input
dataset D. The method is based on the observation that a
causal network G induces a set of optimal predictive models.
Specifically, if we are given a network G, we identify the
Markov boundary MBg(X) for each node X in G [2]. Under
some conditions, MBg(X) is the minimal set of nodes that
leads to an optimal predictive model for X [3]. Hence, a graph
that is close to the true causal graph will lead to an optimal
out-of-sample prediction power over all nodes. In our previous
work [1], we showed that we can use this principle as a
basis to select the optimal configuration for learning the
causal structure and that our proposed approach improves
causal structure learning. However, the method was initially
developed for purely continuous and discrete data, assuming
linear Gaussian relationships and multinomial distributions,
and evaluated on synthetic data. We also proposed OCTs,
a version of OCT that tries to avoid configurations leading to
supersets of the correct Markov boundaries. OCTs performed
well on continuous data, but not on discrete data.

In this work, we improve and extend our approach as
follows.

1) We provide a common approach for continuous, dis-
crete, and mixed data, using an information-theoretic
approach. We also develop OCT, so as to be suitable
for nonlinear data.

2) We introduce the Sparsity Penalty, a step inside OCT,
to avoid graphs with false-positive members in the
Markov boundaries.

3) We introduce the causal-based simulation, to resimulate
ground-truth data that have properties (joint distribu-
tions) that are similar to real-world datasets.

4) We use both simulated and resimulated data to compare
our approach against alternatives based on network
stability [4] or scoring criteria for in-sample fitting [5].
We show that OCT performs on par or better, while it
is easily applicable to settings where other approaches
are not (e.g., causally insufficient systems or nonlinear
distributions).

The rest of the document is organized as follows.
In Section II, we discuss the problem of hyperparameter
tuning and its connection to causal discovery. In Section III,
we briefly refer to the theoretical framework of causality.
In Section IV, we discuss two approaches for parameter opti-
mization and how they can be applied to tune causal discovery.
In Section V, we describe the OCT method and introduce

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/


https://orcid.org/0000-0002-9057-5064
https://orcid.org/0000-0002-2492-959X
https://orcid.org/0000-0002-2535-0432

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

its extensions. In Section VI, we detail our experimental setup
and the causal-based simulation. In Section VII, we report
and discuss the results. In Sections VIII and IX, we propose
ideas for future research and summarize our conclusions.
We use upper-case letters to denote single variables or nodes
(e.g., X), bold upper-case letters to denote sets (e.g., MB),
and the symbols G, D, M for graphs, datasets, and models,
respectively. Lower-case letters denote scalars or indices.

II. PROBLEM DEFINITION

In an application of causal discovery to real data, a prac-
titioner is faced with selecting the appropriate algorithm to
use. In addition, each algorithm requires the choice of the
values of a certain number of hyperparameters that influence
its output, like, for example, the significance threshold for
a conditional independence test. Hyperparameters differ from
model parameters in the sense that the former are set by the
user, while the latter are estimated from the data. The impact of
the choice of the hyperparameter values for a given algorithm
in causal discovery has been noted in several papers [6], [7].
Optimizing over both algorithm and hyperparameters has
been coined the Combined Algorithm Selection and Hyper-
parameter optimization problem in the supervised learning
literature [8], CASH for short, or “tuning.” We adopt the same
terminology in this work. Notice that the choice of algorithm
can also be represented as a hyperparameter. An instantiation
of all hyperparameter values (including the algorithm) is called
a configuration.

A related problem in statistics is the problem of model
selection. In both cases, one optimizes among a set of pos-
sible choices. However, there are conceptual differences in
perspectives on the problem. Historically, in statistics, different
models are fit and then the final model is selected among all
the ones that fit. The choice is often manual by visualizing
the model’s fit and residuals. Principled methods for model
selection typically score the tradeoff between model fitting
and model complexity. Such a model selection criterion is the
Bayesian information criterion (BIC) [or similarly, the Akaike
information criterion (AIC)] scoring fitting using the in-sample
data likelihood and penalizing for the model’s degrees of
freedom. The main observation in model selection is that all
models are trained on all training data; selection is based on
the in-sample data fit.

In contrast, the CASH perspective focuses on the learning
algorithm, not the specific models (model instances to be
precise). It is not the model that is selected, but the algorithm
and its hyperparameters (the configuration) to be applied to
all data. For example, during cross-validating an algorithm,
several models are produced. None of them is the final model.
They only serve to estimate how accurate the models produced
by the algorithm are on average. The final model to return is
the model trained on all data using the learning algorithm; all
other models serve only for estimating performance purposes.
Thus, CASH selects algorithms, not models, typically using
out-of-sample estimation protocols (e.g., cross-validation).

It is not straightforward to apply the above techniques
to the CASH problem in causal discovery, since the task
is inherently unsupervised and the true causal network

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

is unknown. Thus, there is no direct way of estimating how
well a model approximates the underlying causal structure.
Despite its obvious importance to practitioners, the problem
of tuning has not been extensively studied in the context of
causal discovery.

III. PRELIMINARIES

Causal Bayesian networks (CBNs) consist of a directed
acyclic graph (DAG) G and a set of probabilities P [2]. Nodes
in the DAG represent variables (we use the terms node and
variable interchangeably) and directed edges represent direct
causality (in the context of nodes in the graph). Each node
can represent a continuous or discrete variable. If X — Y in
a DAG G, we say that X is a parent of Y, and Y is a child
of X in G. Two nodes that share a common child are called
spouses.

The graph and the distribution are connected through the
causal Markov condition (CMC). CMC states that every vari-
able is independent of its noneffects given its direct causes.
Given the CMC, P(V) can be factorized as P(Xy,..., X,) =
[1; P(Xi|Pag(X;)), where Pag(X;) denote the parents of X;
in G. Equivalently, the CMC entails a set of conditional inde-
pendencies expected to hold in the joint probability distribution
of variables in the graph. CBNs can only model causally
sufficient systems, meaning that no pair of variables share an
unmeasured common cause (confounder). Extensions of CBNs
such as maximal ancestral graphs (MAGs) [9] model causal
relationships in causally insufficient systems.

There are two main approaches for learning causal structure:
constraint-based and score-based. Constraint-based methods
apply tests of conditional independence to a dataset and then
try to identify all causal graphs that are consistent with these
(in)dependencies. Hyperparameters of these methods may
include the type of conditional independence test, the condi-
tioning set size, and the significance threshold for rejecting the
null hypothesis. Score-based methods try to identify the graph-
ical model that leads to a factorization that is closest to the
one estimated by the observational data [10]. Hyperparameters
of score-based methods may include the scoring function,
sampling, and structure priors. Hybrid algorithms combine the
above techniques, applying both hypothesis testing and scoring
to learn the graph.

In most cases, the causal structure cannot be uniquely
identified from the data. Instead, a set of DAGs will entail the
same independence relationships (or equivalent factorizations).
These graphs are called Markov equivalent and share the same
edges and some orientations. Both constraint- and score-based
algorithms typically return a partially DAG (PDAG) that sum-
marizes the invariant features of Markov equivalent graphs.
Similarly, in the case of causal insufficiency, algorithms will
return a partial ancestral graph (PAG) that summarizes invari-
ant features of a family of Markov equivalent MAGs.

A causal graph (DAG or MAG) induces a Markov boundary
MB(X) for each node of the graph. The MB(X) is the minimal
set that renders X conditionally independent of any other node.
It is unique for distributions faithful to the graph and it is
invariant among all graphs in the same Markov equivalence
class. The Markov boundary of a node in a DAG or MAG



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

BIZA et al.: OUT-OF-SAMPLE TUNING FOR CAUSAL DISCOVERY

consists of its adjacent nodes and the nodes that are reachable
through a collider path [11], [12].

IV. RELATED WORK

Despite recent advances in causal discovery, the problem of
tuning causal discovery algorithms has received little attention.
We now describe two main approaches that can be used for
causal tuning.

A. Network Stability and the StARS Algorithm

Stability Approach to Regularization Selection (StARS) [4]
is an algorithm for tuning the A = 1/1 hyperparameter of
the graphical lasso [13]. The goal of the method is to select
the A that leads to the most stable network with respect
to small perturbations of the input data. For the task of
learning undirected graphical networks, the method is shown
to outperform BIC and AIC in high-dimensional settings.

StARS has also been applied to tune causal discovery algo-
rithms [6]. Specifically, StARS is used to tune the significance
level threshold for constraint-based algorithms, and the penalty
discount for the score-based algorithms. A modification of
StARS, called Stable Edge-specific Penalty Selection (StEPS),
was developed to improve the performance of the method to
mixed data by introducing different sparsity parameters for
different types of edges (connecting pairs of continuous, pairs
of discrete, or continuous to discrete variables) [14].

For tuning causal configurations instead of a single hyper-
parameter, we modified StARS as follows. For a given con-
figuration a, we first estimate the probability pyy of the
presence of each edge in the network, using subsampling
(learning multiple networks using the same configuration on
resamples of the data without replacement). The instability of
the edge is then defined as {xy = 2pxy - (1 — pxy), that
is, it is twice the variance of a Bernoulli distribution with
parameter pxy. It is low when pyy is close to O or 1, and
high when it is close to 0.5. The network instability N(a)
is the average instability for configuration a over all edges.
We note that in graphical lasso, lower values of A lead to
sparser graphs, and the StARS algorithm selects based on both
stability and sparsity of the graph. Therefore, we compute the
number of edges Q, ; of the graph (regardless of orientation)
estimated with the configuration a and subsample s. We aver-
age over all subsamples and order the instability metric N (a)
by increasing density. We then “monotonize” N(a), that is,
we define N(a ;) = max;<; N(a;). Subsequently, we select
the configuration a* = argmax,, {N(a;)|N(a;) < S}, where
f is a hyperparameter of the StARS method. The pseudo-code
is presented in Algorithm 1. We set the value of /5 to be 0.05 as
suggested in [4].

StARS selects configurations that are robust to a few outliers
in the data but does not evaluate how the model fits the data.
Thus, a configuration that makes the same systematic error
will be favored. We also note that StARS does not account
for instability with respect to edge orientations.

B. Balancing Fitting With Model Complexity

Another principle for selecting the model and corresponding
configuration is to select based on the best tradeoff between

Algorithm 1 Tuning With StARS
Input: Dataset D over nodes V, Configurations A, Subsam-
ples S, Threshold S
Output: Configuration a*
1: for a € A do
22 forseS do
>graph estimation
3: Ga.s < causalAlg, (Dy)
Qa5 < number of edges in G, ¢

»

>density estimation (average number of edges)
50 Qu < Qg over S
>edge instability
. for each pair of variables X, Y do
7: Pa.xy < frequency of edge (X,Y) in {Gys)ses
8: éa,XY =2 pa,XY(l - pa,XY)
>network instability
9 N(a) < &, xy over all edges

>order network instability
10: Rank N(a) by increasing Q,
>monotonize network instability
11: N(a;) < max;<;N(a;)
>select configuration
12: a* = argmax,, {N(a;)|N(a;) < B}
13: return a*

in-sample fitting of the data and the model complexity. A spe-
cific instantiation of the principle for causal discovery tuning
appeared in [5] and is based on the BIC [15]. BIC scores a
causal model based on the likelihood of the data given the
causal model and penalizes it with the degrees of freedom of
the model. The BIC score has been proposed to tune the Peter
and Clark (PC) algorithm [5]. For each output PDAG, the BIC
score for an equivalent DAG is computed as follows:

BIC = log(n)k — 2LL (1)

where LL is the log-likelihood of the causal model, k is the
degrees of freedom, and n is the number of samples. When
the model is a CBN, the likelihood of the data is computed
based on the corresponding factorization

P(DIG) =[] P(xijI9) =[] PijIPag@)) (2
ij ij

where P is the probability or probability density function,
x;j is the value of the ith variable of the jth sample, and
Pag (i), the parents of the variable i in G. In order to compute
P(x;j|Pag(i)) a parametric, statistical model needs to be fit
with outcome each variable i given its parents Pag(i).
Algorithm 2 describes a tuning method for DAGs that
selects a configuration by minimizing the BIC score. We also
apply the same method using the AIC, which is proved
to be asymptotically equivalent to leave-one-out cross-
validation [16]. For mixed data, we use an approximation
for the BIC score presented in [17] and [18]. The authors
propose three scoring functions: the conditional Gaussian (CG)
score, the mixed variable polynomial (MVP) score, and the



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Algorithm 2 Tuning With Likelihood-Based Score (BIC)

Algorithm 3 OCT

Input: Dataset D over nodes V, Configurations A
Output: Configuration a*
1: for a € A do
>graph estimation
2: G, < causalAlg, (D)
3: G, < pdagToDag(G,)
> score computation
. LL, < 2log P(D|G))
5. Score, < log(n)k — LL,
> select configuration
6: a* = argmin, Score,
7: return a*

degenerate Gaussian (DG) score. The scores have been devel-
oped for score-based structure learning, and assume Gaussian
and multinomial distributions. MVP score does not assume
linearity and it is not score equivalent. We use the CG and
DG scores as tuning methods for DAGs with mixed data. For
MAGs with continuous nodes, we compute the BIC score as
in [19] assuming linear Gaussian distributions. Currently, there
are no other approximations of BIC for MAGs with discrete
and mixed data.

There are several advantages to BIC scoring for model
selection. First, several algorithms use BIC internally to search
and score the best possible causal model, proving its effec-
tiveness. Using (2), one needs to fit models for each node X;
from only its parents in the graph Pa(X;). In comparison, the
proposed method below employs models for each node given
its Markov boundary. The latter is a superset of the parents
and thus requires more samples to be fit accurately. There are
also some disadvantages, a major one being that it requires the
computation of likelihood and the degrees of freedom of the
causal model. This is typically possible only with statistical,
parametric models such as Gaussian and multinomial.

V. TUNING BASED ON PREDICTIVE PERFORMANCE

In this work, we propose to tune causal discovery algorithms
using the predictive performance of the learned graphs. The
main principle of our proposed method is fo treat a causal
model as a set of predictive models. Specifically, a causal
model G induces a Markov boundary MB(X) for each node
of the graph. The MB(X) is the minimal set that renders X
conditionally independent of any other node. It is unique for
distributions faithful to the graph and it is invariant among
all graphs in the same Markov equivalence class. Under some
conditions on the appropriateness of the learning algorithm
and the metric of performance, MB(X) is the minimal set of
nodes that is necessary and sufficient for optimal prediction
of X [3]. Thus, a successful learning algorithm will learn a
causal graph that leads to optimal predictive models for each
node.

This allows us to evaluate the configurations producing
causal models using out-of-sample performance estimation
protocols such as cross-validation. Notice that out-of-sample
performance estimation is not generally possible for causal

Input: Dataset D over nodes V, Configurations A, Folds K,
Significance threshold s
Output: Configuration a*
1: for a € A do
2. for k e K do
> graph estimation

3: Gax < causalAlg, (Direim)
> predictive modeling
4: for X eV do
5: MB,, . x < markovBoundary(X, G, )
6: M ix < fitModel(X, MB, . x, DI“")
7: )A(a,k <« predict(Mg . x, D)

> predictive performance evaluation
8: for X €V do

9: Xa <« pool )A(a,k over K
10: I,.x < mutuallnfo(X, X,)
11: I, < m over V

> average size of Markov boundaries
122 MB, < |MB, x x| over K and V
> configuration that maximizes predictive performance
13: a* = argmax, I,
> select configuration
14: a* = SparsityPenalty(A, a*, X, X, MB, I, s)
15: return a*

discovery, since the ground truth is generally not known.
Therefore, we evaluate causal discovery algorithms based on
a set of relevant predictive tasks. A similar approach has
been suggested for other unsupervised learning tasks, such
as dimensionality reduction with the principal component
analysis (PCA) algorithm [20] and clustering [21].

We call this approach OCT. As shown in Algorithm 3, OCT
selects the configuration resulting in the best set of predictive
models (one for each node), using an out-of-sample protocol.
The method takes as input a dataset over variables V and a
set of configurations of causal discovery algorithms A. It also
takes as input the folds K for the cross-validation and a
significance threshold s. For each configuration a and each
fold k, we estimate a causal graph by running the correspond-
ing configuration causalAlg, on the training dataset D,‘fai".
Subsequently, OCT identifies the Markov boundary MB(X)
of each variable X, builds a predictive model for X based
on MB(X) (any supervised machine learning method can be
used in this step), and predicts the target variable using the
test set D;*'. We then pool the predictions of all folds and
evaluate the predictive performance.

To evaluate the predictive performance of the learned model,
we need to compare the true values of each X in the
dataset with the pooled predictions X from the cross-validation
procedure. Popular choices for this evaluation are the root
mean squared error for continuous targets and (multiclass)
Area Under Curve (AUC) for discrete targets. However, these
metrics are on different scales. This creates problems in
applying Algorithm 3 to data with both continuous and discrete



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

BIZA et al.: OUT-OF-SAMPLE TUNING FOR CAUSAL DISCOVERY

variables since the performance of the causal configuration is
judged based on the predictive performance over all nodes.

To make the predictive performance for discrete and contin-
uous variables comparable, we compare the true values of the
target node X with the pooled predictions X using mutual
information. Higher values of mutual information indicate
that the predictions hold the expected amount of information
for the true values. For continuous variables, the mutual
information is defined as

12 = [ [ pteptog PO G)
p(x)p(x)

where p(x) and p(&) are the marginal densities of X and X

and p(x, %) is their joint density. For Gaussian distributions,
I(X, X) can be computed as

1(X, %) = —3log(1 — ) @)

where p is the correlation coefficient of X and X. Mutual

information can also be approximated in a nonparametric

way using k-nearest neighbors [22]. However, due to the

computational cost, in this work, we assume that the variables
follow Gaussian distributions.

For discrete variables, the integrals in (4) are replaced by

the sum, so the marginal and joint distributions are computed

by counting the number of samples falling in each class ¢

(Cx,cx)
Z Z P(cy, cz)log TRV IENE (5)

¢ €Cc;eC

1(X,X) =

After computing mutual information for every node, the
overall performance of a configuration causalAlg, is the
average mutual information of all of the predictive models
(one for each variable).

Asymptotically, the true causal graph will be among the
models that achieve the best performance.

Theorem 1: Assuming that the following conditions hold:
1) data are generated by a CBN Gy, over variables V;
2) the learning algorithm can exactly learn the conditional
distribution of each node X € V given its MB; and 3) the
learning algorithm uses a proper scoring criterion, that is,
a function that is maximum when the algorithm’s probabilistic
predictions report the true probability distribution [23]. Then
any DAG G for which MBg(X) © MBg,.(X) V X € V will
asymptotically have the maximum score.

Proof: 1f a proper scoring rule is used, then the highest
performance for each variable X can only be obtained by the
true probability distribution P(X|V \ X) = P(X|Z) for any
set Z that is a superset of the Markov boundary. Hence, any
DAG G for which MBg(X) © MBg,.(X) V X € V, G will
asymptotically achieve optimal performance. U

Intuitively, causal models that miss members of a MB(X)
will achieve a lower predictive performance than possible,
as they lack informational predictors. Causal models that add
false-positive members of a MB(X) may result in overfitting
in finite samples. However, in the large sample limit, graphs
that entail Markov boundaries that are supersets of the true
Markov boundaries will also achieve the maximum score and
could be selected based on predictive performance. Therefore,

Algorithm 4 Sparsity Penalty

Input: Configurations A and a*, True variables X, Predicted
variables X , Size of Markov boundaries MB, Performances
I, Significance threshold s
Output: Configuration a*
1: for a € A\a* do
> observed difference in performance
2: Ty = (I — 1)
> permutation test

3 for p=1to 1000 do

4: for X e V do

5: X;*’ X’ <« swap(Xg+, X,)

6: I. X < mutuallnfo(X, )A(;*)
7: I X < mutuallnfo(X, )A((’l)
8: Lye , < I, x over V

9: L, < 1, ,x over V

10: T“(p) (I/* I;,p)

11: pval(a) = >T{}bl‘

> select conﬁguratlon
12:if 3 a € A s.t. pyy(a) > s and a = argmin, MB, then
133 a*=a
14: return a*

selecting solely on predictive performance does not penalize
for false-positive edges and could end up selecting very dense
graphs.

To address this issue, we use a postprocessing step that
selects the model with the smallest Markov boundaries,
among all equally performing configurations, up to statistical
indistinguishability. We call this procedure Sparsity Penalty
(see Algorithm 4). The method looks for configurations that
have a statistically indistinguishable performance from the
configuration that maximizes predictive performance (a¢*) and
returns the one with the smallest Markov boundaries, on aver-
age. Specifically, the method goes through all configurations
a € A and tests whether their predictions are equal to the pre-
dictions of the optimal configuration a*. The null hypothesis
assumes that the difference in performance is zero, on average.
Under the null hypothesis, we can randomly swap half of the
predictions obtained from a*, with the ones obtained by the
configuration a to test. We create 1000 permuted sets and
we swap the same samples for all nodes. We compute the test
statistic 7% (p) for the configuration a and the permuted set p.
This is the difference in performance between the swapped
predictions of a* and a in the set p. The Ty, is the observed
difference in performance between a* and a. The p-value
of a is the number of times T¢ is greater than or equal to

T4, divided by the number of permuted sets. We find the
configurations that have p-value above a significance level
s = 0.05, that is, their performance is not significantly
different from a*. Among them, we select the one with the
smallest Markov boundaries, averaged over all nodes and
folds. If no configuration meets the above conditions, Sparsity
Penalty will not change the configuration a*.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

One of the advantages of OCT is that it does not inher-
ently need to make parametric assumptions about the data
distribution; one could potentially employ any applicable
modeling method in machine learning or statistics, and it will
asymptotically select the optimal configuration with respect
to prediction (assuming the conditions in Theorem 1 hold).
In addition, it can be applied to any data type, including mixed
variables. In this work, we propose to use Random Forests [24]
as predictive learning algorithms, since they do not make
assumptions about the data distribution and can handle mixed
variables. In addition, we examine the mutual information as
a metric of predictive performance, in order to average the
results over continuous and discrete nodes. OCT can be also
applied to both DAGs and MAGs.

On the other hand, there are some limitations of OCT.
The first is the choice of the predictive modeling algorithm.
If the algorithm cannot approximate the true distribution,
the procedure can underperform. In addition, in this work,
we compute the mutual information assuming Gaussian distri-
bution for the true and predicted values of continuous nodes.
A nonparametric computation would have obvious impacts
on the computational cost, and the permutation testing inside
OCT would be unfeasible. Furthermore, like StARS, OCT
also requires a hyperparameter, the significance threshold s.
Finally, predictive performance based on Markov boundaries
can fail to distinguish among graphs that can be distinguished
by scoring criteria like BIC. For example, V| — V, < V3 and
any full graph over {V}, V>, V3} entail the exact same Markov
boundaries for all variables, but they are not Markov
equivalent. Asymptotically, a scoring criterion like BIC will
select the configuration that leads to the correct graph, while
OCT cannot distinguish between them. Both of them will
have the same performance and Markov boundary sizes, and
OCT will consider the relevant configurations equivalent.

In addition, mutual information measures predictive per-
formance for discrete and continuous variables in the same
units, but the range could grow without bound. For a discrete
variable X, this happens as the size d of the domain of
X increases. For a continuous variable X, this happens as the
linear correlation p, between X and its predicted values X s
increases in absolute value. Theoretically, it could be the
case that a variable with very high 7(X, X) dominates the
sum of mutual information over all variables; OCT would
then select the causal algorithm that optimizes the Markov
boundary of that specific variable, effectively ignoring the rest
of the variables. However, the growth of mutual information
is logarithmic to d and p and it does not occur for typical sce-
narios in practice. In our experiments, the mutual information
among variables in the same network never differs by more
than one order of magnitude. We do warn the user of OCT,
however, that in the extreme case of deterministic relations
where p = 1, I(X, X) = oo and OCT will fail.

VI. EXPERIMENTAL SETUP
A. Causal Configurations

For our experiments, we use a variety of causal discovery
algorithms. If all variables are measured, we include PC

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

variants (PC [25], Conservative PC (CPC) [26], PC-stable
(PCstable), Conservative PC-stable (CPCstable) [27]), Fast
Greedy Equivalence Search (FGES) [28], [29], and Linear
Non-Gaussian Acyclic Model (LINGAM) [30]. If we assume
that latent variables exist, we use Fast Causal Inference (FCI)
variants (FCI [25], Fast Causal Inference-Max (FCI-Max) [31],
Really FCI (RFCI) [32]), and Greedy FCI (GFCI) [33].
PC variants, FGES, and FCI variants can be applied to
any data type (continuous, discrete, or mixed), together with
the appropriate independence test and/or scoring function.
LiNGAM algorithm is appropriate for continuous variables
with non-Gaussian error terms. We also include the hybrid
algorithms Max-Min Hill-Climbing (MMHC) [34] and MAG
Max—Min Hill-Climbing (M3HC) [19] for discrete DAGs and
continuous MAGs, respectively. The causal discovery algo-
rithms are not limited to the above options. New causal dis-
covery algorithms are continually being developed (see [35]).

Most of the above algorithms require an independence
test and/or scoring function. For discrete data, we use the
chi-square (Chi2) and G-square (G2) tests and the Bayesian
Dirichlet equivalent uniform (BDeu) and BIC scores. For
continuous data, we use the Fisher-Z and conditional cor-
relation independence (CCI) tests. The scoring function is
the BIC score. The CCI [36] test is proposed for nonlin-
ear, non-Gaussian data. The kernel conditional independence
(KCI) [37] is also an efficient test for nonlinear, non-Gaussian
cases; however, due to its computational cost, we do not
include it in our experiments. For mixed data, we use the
CG-BIC and DG-BIC scores [17], [18]. These scores compute
the log-likelihood and the degrees of freedom and approximate
the BIC score. They are also adapted as independence tests
(CG-LRT, DG-LRT). We can apply them to purely continuous
or discrete data, as well. For the rest of this article, we use
the abbreviations CG and DG to refer to both CG-BIC and
DG-BIC scores and CG-LRT and DG-LRT independence tests,
respectively.

The independence tests and scoring functions require,
in turn, a choice of hyperparameter values. In this work, we set
two different levels of significance for the independence tests
(0.01, 0.05). We also change the penalty discount (1, 2) and
the structure prior (0, 1, and 2) of the scores. The penalty
discount penalizes the model complexity, and the structure
prior corresponds to the expected number of parents of each
node (zero value means that it is not included in computation).
All of the above control the sparsity of the estimated graph.
Any other hyperparameter that may be required has the default
value. In the case of MAGs, we set penalty discount 1 and
structure prior 1 to avoid many combinations with GFCL.

Table I summarizes the possible choices for causal discovery
and the tuning methods that we use in this work. On the left
part, we show the algorithms, independence tests, and scoring
functions for each graph type (continuous, discrete, mixed
DAGs or MAGs). A configuration is a combination of an
algorithm, an independence test and/or a scoring function, and
a set of values for the rest of the hyperparameters (significance
level, penalty discount, and structure prior). Depending on
the graph type, we have a variety of possible configurations
ranging from 20 to 56. On the right columns, we show the



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

BIZA et al.: OUT-OF-SAMPLE TUNING FOR CAUSAL DISCOVERY

TABLE I
CAUSAL CONFIGURATIONS AND TUNING METHODS

Causal Hyper-parameters Tuning Methods
Graph Type Algorithms Independence Tests Scores #Config. | nor BIC  AIC CG DG StARS
PC variants Fisher-Z, CCI, CG, DG
Continuous DAG FGES BIC, CG, DG 51 v v v v
LiNGAM
PC variants Chi2, G2, CG, DG
Discrete DAG FGES BIC, BDeu, CG, DG 55 v v v v
MMHC G2 BDeu
. PC variants CG, DG
Mixed DAG FGES CG. DG 28 v v v v
FCI variants  Fisher-Z, CCI, CG, DG
Continuous MAG GFCI Fisher-Z, CCI, CG, DG BIC, CG, DG 50 v v v
M3HC Fisher-Z BIC
. FCI variants Chi2, G2, CG, DG
Discrete MAG GECI Chi2, G2, CG. DG BIC, BDeu, CG, DG 36 v v
. FCI variants CG, DG
Mixed MAG GFCI CG. DG CG. DG 20 v v
TABLE 11 TABLE III
NONLINEAR FUNCTIONS REAL-WORLD DATA
Abbr Causal Functional Relations Abbr Causal Functional Relations Name Samples Nodes Continuous  Discrete  Edges
tanh Y = tanh(32;(8:.X:) + €) X2 Y =3(8iX7) +e Iris 150 5 4 1 6
/X Y =SiBiXT ) e X1 Y =2(BilXil) + € Wine 178 14 13 | 19
exp0.5 | Y =3;(Bisign(X;)[Xi|%%) + € | expls | Y =3 ;(Bisign(X;)|Xi|':5) +e o
log Y =32, (Bilog|Xy|) + ¢ logcosh Y =3, (Bilog(cosh(X;))) + € He?'n Dlseése 297 14 5 9 14
prod Y = [1,(8:X:) + ¢ prode Y = (L, (B X))e Wine quality 1599 12 12 0 36
Breast Cancer Wisconsin 683 10 9 1 20
Car Evaluation 1728 7 0 7 5
. . . Abalone 4177 9 8 1 26
tuning qlethods that we apply in this work. QCT and StARS Forest Fires s17 3 . 5 s
are applicable to any graph and data type, while the scores are Student Performance 395 33 16 17 20

appropriate only for specific cases.

We use the tetrad project for the simulation of mixed
data, causal discovery algorithms, BIC, AIC, CG, and DG
scores (https://github.com/cmu-phil/tetrad). The code for our
experiments, including the implementation of OCT, can be
found in the OCT folder in https://github.com/mensxmachina.
In the same link is also the code for MMHC, M3HC, and BIC
scores for continuous MAGs (CausalExplorer, M3HC folders).

B. Data Simulation

We simulate three types of data: continuous, discrete, and
mixed. For continuous data, we use a linear Gaussian model,
as well as nonlinear relations, as shown in Table II and
appeared in [36]. Every variable in Table II is a function
of its parents and a noise variable, which follows a uniform
distribution, /(—1, 1). In all cases, the absolute coefficients
f range between 0.1 and 0.9. The nonlinear, non-Gaussian
data have also been used in [36] to evaluate the performance
of the CCI and KCI tests. For discrete data, the conditional
probability tables are sampled randomly from a Dirichlet
distribution with @ = 0.5. For each discrete variable, the
number of categories ranges from 2 to 5. We create mixed
data with the conditional Gaussian [17] and the Lee and
Hastie model [38]. The continuous and discrete variables
follow Gaussian and multinomial distributions, respectively.
Both models have been used to evaluate the CG and DG scores
in [18]. We simulate the data from known DAGs. For the
experiments on MAGs, we randomly set as latent a percent of
the nodes and we remove it from the dataset. We then convert
the DAG to an MAG.

C. Causal-Based Simulation

We aim to evaluate the tuning methods on real data, as well.
For this task, we apply a resimulation method, which is based
on [39]. The idea is to estimate a graph G’ from a real
dataset D and then to simulate data from this graph. Our goal
is to create data with similar properties to real-world problems.

In this work, we resimulate data with the causal-based
simulation method, described in Algorithm 5. First, we use
the FGES algorithm to learn a causal DAG G’ over the
variables in dataset D. Then, for each variable X, we need a
model that gives us X=PX |Pay) for discrete variables and
X =E[X |Pay] for continuous variables. The TRAIN function
employs a 10-fold cross-validation to find the best model
among all input predictive configurations B, trains this model
on all data, and returns it. We include support vector machines
(SVMs) with linear and Gaussian kernels and Random Forests
with default hyperparameters, for multiclass and regression
problems (B¢, B¢). For continuous variables, we add noise to
the predicted expected value, by adding a residual, selected
uniformly at random (lines 16 and 17, Algorithm 5). We note
that by doing this, we effectively assume that the variance of
the error term is independent of the values of the predictive
variables.

Table IIT shows the real data that we use for resimulation.
We select nine datasets among the most popular from the
University of California, Irvine (UCI) machine learning repos-
itory [40]. The first four columns show the number of samples,
the number of nodes, and the number of continuous and
discrete variables. We estimate the initial graph with the FGES



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

OCTmax @ OCT <-BIC P-AIC & StARS #-Rnd 4p-Worst

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

[ ull [empty [ Jother

L.Gaussian Djscrete L.Gaussian Discrete
4 ¢ 40 —r’—‘—f#éé*ﬁ I
35 ‘ . 35t ‘ 1 StARS - |
30 30 ‘ A|C
o 2% ’ ’ o) 25 ’
C:If:) 20 } % 20 ’ 1 BIC |
a R4 <
5 15k
10 # f 4 10 g " ocTy
: J; . & i 4
‘ l ’ » OCTmax -
0 0 —QF
15 20 25 30 35 5 10 15 20 25 30 35 5 15 25 35 5 15 25 35
Edges Edges Edges Edges
(@ (©)
Fig. 1. Sparsity Penalty is necessary for OCT. (a) and (b) Tuning performance over increasing edges on linear Gaussian and discrete DAGs with ten nodes.

We include the full and the empty graphs among the configurations. OCT performs well with respect to SHD in both cases. (c) Selected configurations: full,
empty, and any other causal configuration. OCT avoids the full and the empty graph in most of the cases.

Algorithm 5 Causal-Based Simulation

Input: Real-data D over V, Sample size n’, Predictive Con-
figurations B¢, B
Output: Dataset D’
. D «— o
> graph estimation
2: G', Pa < causalAlg(D)
3: for X € V do
> simulation

4:  if Pay is empty then
5: X' < random samples from X
6:  else

> predictive modeling

if X is discrete then

P(X|Pay) < TRAIN(X, Pay, BY)
: else

10 E[X|Pay] < TRAIN(X, Pay, B°)
11: Rx < compute residuals for X

> assign predictions
12: for i =1 ton' do
13: if X is discrete then
14: X'(i) < draw from P(X|Pay(i))
15: else
16: r < random residual from Ry
17: X'(i) < E[X|Pax(i)] +r

18: D «~DUX
19: return D’

algorithm, (CG-)BIC score, and default hyperparameters. The
last column shows the number of edges in the estimated DAG.
We then fit the models only once and resimulate 20 datasets
of 1000 samples.

D. Tuning Performance

We evaluate the performance of the tuning methods with the
following metrics: structural Hamming distance (SHD) [34],
structural interventional distance (SID) [41], adjacency pre-
cision (AP), and adjacency recall (AR). SHD counts the
number of steps needed to reach the true PDAG from the

@ 0OCT 4-BIC P-AIC €-CG P> DG - StARS - Rnd 4p-Worst

DAGs MAGs
16 25
14
20+
12 -
* ¢ 14

o, ¢ * . ¢
» ¢
a ° + !

. ‘h %L : ‘ 7

4 f 4 # P ox 7 "

2 ) * & o ¢ °

DL.Gaussian Discrete C.GaLJssian LeeHastie 0L.Gaussian Discrete C.GaLJssian LeeHastie

Fig. 2. DAGs and MAGs with various data types. Tuning performance

over different data types on DAGs and MAGs. OCT performs well in most
of the cases.

estimated PDAG. These modifications include edge removal,
addition, and changes in orientation. Similarly, we use the
SHD to compare the estimated PAG with the true PAG
as in [42]. SID counts the number of pairs for which the
intervention distribution is falsely estimated on the learned
graph. SID upper (SIDu) and SID lower (SIDI) are the upper
and lower limits of SID in the equivalence class of the network.
AP computes the number of correctly estimated adjacencies
divided by the number of all estimated adjacencies, and
AR computes the number of correctly estimated adjacencies
divided by the number of the true adjacencies. SHD and SID
consider both the skeleton and orientations, while AP and AR
only the skeleton. We compute each metric on the graph
estimated on the entire dataset with a selected configuration.

VII. RESULTS

We comparatively evaluate the performance of OCT against
the other tuning methods. We report the distance of the
selected graph from the oracle configuration. The oracle
configuration achieves the best tuning performance value and
corresponds to 0 difference, so lower is better for all metrics.
For each experimental setting, a plot depicts the distance with
respect to SHD achieved by each tuning method (y-axes).
We also include the performance of a random selection of a
configuration with uniform probability (Rnd). The black points
show the performance with the worst configuration. Each point



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

BIZA et al.: OUT-OF-SAMPLE TUNING FOR CAUSAL DISCOVERY

@ ocT 4 BIC P AIC € CG P DG StARS B Rnd 4-Worst|

Non-Linear Functions
T

A SHD

()

Average over Non-Linear Functions

ASHD ASIDu ASIDI AAP AAR
OCT 298 £0.51 12.81 +£1.28 15.22 £1.25 0.12 £0.03 0.13 £0.03
BIC 431 40.78 9.91 £0.85 1447 +£1.42 0.23 £0.05 0.15 £0.04
AIC  6.12 £0.68 10.80 £0.76 13.71 +£1.28 0.33 £0.04  0.09 £0.02
StARS  3.65 £0.63 15.79 £2.41 21.71 £3.12 0.17 £0.04 0.25 £0.03
Rnd 471 £0.61 13.56 £1.42 18.67 £1.87 0.21 £0.03 0.17 40.02

Resimulated Data

*

¢ ¢~ +

A SHD
ey
A

*

K L]
o * . > 4
4 h k : # " ‘g .’ 10- t
s T ]
S [ J
o 4 » - R
¢ \“\‘\00 & & Va,o\o“z @ %\&B‘\
(b)
Average over Mixed Data Sets
ASHD ASIDu ASIDI AAP AAR
OCT  3.09 £1.10 15.98 +4.89 20.39 £6.24 0.06 £0.01 0.06 +0.02
CG 9.48 £4.56 20.69 £3.89 22.90 £7.91 0.21 £0.05 0.08 £0.02
DG 6.56 +£1.41 18.15 £3.19 24.58 +4.84 0.15 £0.03  0.06 +£0.02
StARS 495 £1.07 18.13 £3.78 28.61 £6.09 0.11 £0.04 0.16 £0.07
Rnd  8.16 £2.46 24.51 £5.49 30.34 £7.96 0.16 £0.03 0.09 £0.01

Fig. 3. Nonlinear and real-world data. (a) Tuning performance over nonlinear, non-Gaussian data. OCT is on average the best tuning method with respect
to SHD, while BIC and AIC perform better with respect to SID. (b) Tuning performance over resimulated data. OCT performs well with respect to SHD on

continuous and mixed data, and AIC on discrete data.

is the mean value over 20 networks. On the x-axis, we vary one
of the following: data types, nonlinear functions, resimulated
datasets, number of latent variables, number of nodes, number
of edges, and number of samples. The default experimental
setting contains graphs of ten nodes, 15 edges, and data with
1000 samples.

A. Sparsity Penalty Is Necessary for OCT

In the first experiment (see Fig. 1), we show the behavior
of OCT with and without the Sparsity Penalty step. We call
OCTmax the version that selects the configuration with the
maximum predictive performance (without Sparsity Penalty).
We focus on linear Gaussian and discrete DAGs with ten
nodes and we increase the number of edges. We also include
the full and the empty graph among the configurations.
OCT performs often better than OCTmax with respect to SHD
[see Fig. 1(a) and (b)]. In Fig. 1(c), we show the corresponding
selected configurations. OCTmax may select the full graph
in very sparse or dense graphs, while OCT can avoid the
full graph more often. In addition, none of them select the
empty graph. Based on the above, we suggest OCT instead of
OCTmax and we will use it for the rest of our experiments.
Regarding the other tuning methods, BIC performs better with
linear Gaussian data, and AIC with discrete data. Both of them
select the full graph on linear Gaussian data as the number
of edges increases. StARS may select the empty graph. This
happens when the other configurations are unstable, so the
empty graph is the sparsest and most stable among them.

B. DAGs and MAGs With Various Data Types

Fig. 2 shows the tuning performance on DAGs and MAGs
over four different data types: linear Gaussian, discrete, mixed
from the conditional Gaussian model, and mixed from the Lee
and Hastie model. We examine graphs of ten nodes, 15 edges,
and four latent nodes (in the case of MAGs). OCT performs

well, not only on purely continuous and discrete data, but also
on mixed data. For mixed DAGs, CG performs well on the
conditional Gaussian model, and DG scores on the Lee and
Hastie model. This result is compatible with the results in [18],
where CG and DG scores are evaluated with respect to struc-
ture learning. In the case of MAGs, we can compare against
StARS for all data types and against BIC only for linear
Gaussian data. OCT is suitable for all graphs and data types.

C. Nonlinear and Real-World Data

We then examine the performance over nonlinear, non-
Gaussian data and resimulated data (see Fig. 3). The table
below each plot depicts the average results over the x-axis
with respect to SHD, SIDu, SIDI, AP, and AR. In Fig. 3(a),
we focus on continuous DAGs and we simulate data with ten
nonlinear functions (see Table II) and uniform error terms.
OCT performs well in most of the cases and it is the best
tuning method, on average, with respect to SHD. BIC and
AIC scores perform better with respect to the SID metric.
BIC and AIC favor more false-positive edges than OCT,
which does not seem to affect the performance with respect
to SID. This can be explained if these additional edges create
supersets of the correct parent sets. Errors in orientation may
also affect differently the SHD and SID metrics. Fig. 3(b)
shows the results of resimulated data. No tuning method
performs well on all datasets with respect to SHD. As before
[see Figs. 1(b) and 2], AIC performs best on discrete data
(car dataset). Overall, OCT performs well with respect to both
SHD and SID on resimulated data.

D. Increasing Nodes, Samples, and Latents

In Fig. 4, we compare the performance of tuning algorithms
on linear Gaussian data with an increasing number of nodes,
samples, and latent variables. First, we increase the number of
nodes in DAGs (10, 20, 50) with 1.5|V| edges (15, 30, 75).



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

@ OCT «-BIC P> AIC - StARS #-Rnd 4)-Worst|

- ¢ s e
40 ’ 10 0 w Q
35
20 8 12 Q
Q 1
5 * * o I TR
<4 20 * L tk
15 ’* 4 '. ; 8 # * é
10 ‘ > n . a 4 @
5 ‘ ’ [ ) 2
‘ 10 20 50 " 250 1000 2500 ’ 2 4 6
Nodes Samples Latent
(a) (b) ©
Fig. 4. Increasing nodes, samples, and latents. Tuning performance over

increasing (a) number of nodes, (b) sample size, and (c) latent variables. OCT
performs on par or better than the other tuning methods in most of the cases.

Due to computational cost, we do not include the CCI test and
LiNGAM algorithm, so we tune over 42 configurations. As the
number of nodes increases, OCT is the most suitable tuning
method with respect to SHD. Then we increase the number
of samples in DAGs (250, 1000, 2500). Fewer samples do not
affect the performance of the tuning methods. On average,
OCT and BIC perform similarly with respect to SHD. Finally,
we increase the number of latent variables in MAGs (2, 4, 6).
The initial DAGs have 12, 14, and 16 nodes and 20 edges.
OCT performs on par or better than BIC with respect to SHD.

E. Computational Cost

Regarding the computational cost, OCT requires more time
than the scoring functions and the StARS algorithm. This is
because OCT runs each configuration ten times (due to the
10-fold cross-validation) and fits a random forest for each node
of each configuration and fold. StARS runs each configuration
20 times on smaller subsets than OCT, and it does not require
any other computationally costly procedure. In general, the
computational cost of OCT is reasonable. For example, for a
continuous DAG of ten nodes, 15 edges, and 1000 samples,
OCT and StARS need around 73 and 25 min, respectively,
to select among 51 configurations.

VIII. FUTURE RESEARCH

We now present some ideas for future research to scale
up OCT. OCT could be trivially parallelized at a granular level,
since each configuration on each cross-validation fold can run
independent of all others. Parallelizing the causal discovery
algorithm is also possible, but algorithm-dependent. For high-
dimensional data, to reduce the computational cost, one could
opt to perform predictive modeling only on a subsample of the
variables. How large this subsample is should require further
research. In addition, one could drop configurations that cannot
scale up and exceed a reasonable time-out limit. The time-
out could be determined as a multiple of the execution time
of a prototypical configuration with known properties and
time complexity. Essentially, since OCT turns the problem
into a supervised learning task, numerous ideas from the
Automated Machine Learning (AutoML) literature, such as
Bayesian Optimization [43], Meta-Learning [43], and Early
Dropping [44], are available to try.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

IX. CONCLUSION

We develop OCT to select the best combination of a causal
discovery algorithm and its hyperparameters (causal configu-
ration) for a given dataset. The main characteristic of OCT is
the evaluation of causal models with respect to their predic-
tive power, using as predictors the Markov boundaries and
employing out-of-sample performance estimation protocols.
OCT evaluates the predictive models with an information-
theoretic approach and selects the causal configuration taking
into account both the predictive performance and the sparsity
of the output graph. In this work, we employ Random Forests
as a predictive learning algorithm and we compute the mutual
information. The above properties make OCT suitable for
mixed data, variables with nonlinear relations, and causal
sufficient or insufficient systems. However, an inappropriate
choice of the learning algorithm or scoring criterion might
affect OCT’s tuning performance. We evaluate OCT in many
experimental settings; DAGs and MAGs with purely continu-
ous, discrete and mixed variables, and DAGs with nonlinear
relationships. In addition, we introduce a causal-based sim-
ulation method to evaluate OCT on data that have similar
properties to real-world problems. We also compare OCT
against the StARS algorithm and several scoring functions:
BIC, AIC, CG, and DG. OCT performs on par or better than
the scoring functions that are often used internally during
causal structure learning, but are not widely applicable to
causally insufficient systems. AIC is the appropriate tuning
method for discrete DAGs. StARS is a suitable tuning method
for any data and graph type, like OCT, but further modifica-
tions are required to improve its performance in causal tuning.
OCT performs well in many experimental settings with respect
to the SHD metric and avoids false-positive adjacencies.
It cannot always minimize the SID metric; however, it achieves
low values. Overall, OCT is an effective tuning method for
causal discovery, suitable for both DAGs and MAGs, graphs
with mixed variables, and nonlinear distributions.

REFERENCES

[1] K. Biza, I. Tsamardinos, and S. Triantafillou, “Tuning causal discovery
algorithms,” in Proc. 10th Int. Conf. Probabilistic Graph. Models,
vol. 138, 2020, pp. 17-28.

[2] J. Pearl, Causality: Models, Reasoning and Inference,
Cambridge, U.K.: Cambridge Univ. Press, 2009.

[3] I Tsamardinos and C. F. Aliferis, “Towards principled feature selection:
Relevancy, filters and wrappers,” in AISTATS, 2003, pp. 1-8.

[4] H. Liu, K. Roeder, and L. A. Wasserman, “Stability approach to
regularization selection (stars) for high dimensional graphical models,”
in Proc. NIPS, vol. 24, 2010, pp. 1432-1440.

[5] M. H. Maathuis, M. Kalisch, and P. Biihlmann, “Estimating high-
dimensional intervention effects from observational data,” Ann. Statist.,
vol. 37, no. 6A, pp. 3133-3164, Dec. 2009.

[6] V. K. Raghu, A. Poon, and P. V. Benos, “Evaluation of causal structure
learning methods on mixed data types,” Proc. Mach. Learn. Res., vol. 92,
pp. 48-65, Aug. 2018.

[7]1 J. Ramsey and B. Andrews, “A comparison of public causal search
packages on linear, Gaussian data with no latent variables,” arXiv,
vol. abs/1709.04240, 2017.

[8] C. Thornton, F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Auto-
WEKA: Combined selection and hyperparameter optimization of clas-
sification algorithms,” in Proc. 19th ACM SIGKDD Int. Conf. Knowl.
Discovery Data Mining (KDD), 2012, pp. 847-855.

[9] T. Richardson and P. Spirtes, “Ancestral graph Markov models,” Ann.
Statist., vol. 30, no. 4, pp. 962-1030, 2002.

2nd ed.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

BIZA et al.: OUT-OF-SAMPLE TUNING FOR CAUSAL DISCOVERY

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]
[25]
[26]

[27]

[28]

[29]

(30]

[31]

(32]

[33]

[34]

[35]

[36]

G. F. Cooper and E. Herskovits, “A Bayesian method for the induction
of probabilistic networks from data,” Mach. Learn., vol. 9, no. 4,
pp. 309-347, 1992.

G. Borboudakis and I. Tsamardinos, “Forward-backward selection with
early dropping,” J. Mach. Learn. Res., vol. 20, pp. 1-8, Jan. 2019.

J. Pellet and A. Elisseeff, “Finding latent causes in causal networks:
An efficient approach based on Markov blankets,” in Proc. NIPS, 2008,
pp- 1-8.

J. H. Friedman, T. J. Hastie, and R. Tibshirani, “Sparse inverse covari-
ance estimation with the graphical lasso,” Biostatistics, vol. 9, no. 3,
pp. 41-432, 2008.

A. J. Sedgewick, I. Shi, R. M. Donovan, and P. V. Benos, “Learning
mixed graphical models with separate sparsity parameters and stability-
based model selection,” BMC Bioinf., vol. 17, no. S5, pp. 307-318,
Dec. 2016.

G. Schwarz, “Estimating the dimension of a model,” Ann. Statist., vol. 6,
no. 2, pp. 461-464, Jan. 1978.

M. Stone, “An asymptotic equivalence of choice of model by cross-
validation and Akaike’s criterion,” J. Roy. Statist. Soc. B, Methodol.,
vol. 39, no. 1, pp. 4447, Sep. 1977.

B. Andrews, J. Ramsey, and G. F. Cooper, “Scoring Bayesian networks
of mixed variables,” Int. J. Data Sci. Analytics, vol. 6, no. 1, pp. 3-18,
Aug. 2018.

B. Andrews, J. Ramsey, and G. F. Cooper, “Learning high-dimensional
directed acyclic graphs with mixed data-types,” Proc. Mach. Learn. Res.,
vol. 104, pp. 4-21, Jul. 2019.

K. Tsirlis, V. Lagani, S. Triantafillou, and I. Tsamardinos, “On scoring
maximal ancestral graphs with the max—min Hill climbing algorithm,”
Int. J. Approx. Reasoning, vol. 102, pp. 74-85, Nov. 2018.
P. O. Perry, “Cross-validation for unsupervised
Ph.D. dissertation, Stanford Univ., Stanford, CA, USA, 2009.
W. Fu and P. O. Perry, “Estimating the number of clusters using cross-
validation,” J. Comput. Graph. Statist., vol. 29, no. 1, pp. 162-173,
Jan. 2020.

A. Kraskov, H. Stogbauer, and P. Grassberger, “Estimating mutual
information,” Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat. Interdiscip.
Top., vol. 69, Jun. 2004, Art. no. 066138.

T. Gneiting and A. E. Raftery, “Strictly proper scoring rules, prediction,
and estimation,” J. Amer. Stat. Assoc., vol. 102, no. 477, pp. 359-378,
Mar. 2007.

L. Breiman, “Random forests,” Mach. Learn., vol. 45, no. 1, pp. 5-32,
2001.

P. Spirtes, C. Glymour, S. N., and Richard, Causation, Prediction, and
Search. Cambridge, MA, USA: MIT Press, 2000.

J. Ramsey, J. Zhang, and P. L. Spirtes, “Adjacency-faithfulness and
conservative causal inference,” 2012, arXiv:1206.6843.

D. Colombo and M. H. Maathuis, “Order-independent constraint-
based causal structure learning,” J. Mach. Learn. Res., vol. 15, no. 1,
pp. 3741-3782, 2014.

D. M. Chickering, “Optimal structure identification with greedy search,”
J. Mach. Learn. Res., vol. 3, pp. 507-554, Nov. 2002.

J. Ramsey, M. Glymour, R. Sanchez-Romero, and C. Glymour, “A mil-
lion variables and more: The fast greedy equivalence search algorithm
for learning high-dimensional graphical causal models, with an applica-
tion to functional magnetic resonance images,” Int. J. Data Sci. Anal.,
vol. 3, no. 2, pp. 121-129, Mar. 2017.

S. Shimizu, P. O. Hoyer, A. Hyvirinen, and A. Kerminen, “A linear
non-Gaussian acyclic model for causal discovery,” J. Mach. Learn. Res.,
vol. 7, pp. 2003-2030, Dec. 2006.

V. K. Raghu et al, “Comparison of strategies for scalable causal
discovery of latent variable models from mixed data,” Int. J. Data Sci.
Anal., vol. 6, no. 1, pp. 33-45, Aug. 2018.

D. Colombo, M. H. Maathuis, M. Kalisch, and T. S. Richardson
“Learning high-dimensional directed acyclic graphs with latent and
selection variables,” Ann. Statist., vol. 40, no. 1, pp. 294-321, 2012.

J. M. Ogarrio, P. Spirtes, and J. Ramsey, “A hybrid causal search algo-
rithm for latent variable models,” in Proc. 8th Int. Conf. Probabilistic
Graph. Models, vol. 52, Sep. 2016, pp. 368-379.

I. Tsamardinos, L. E. Brown, and C. F. Aliferis, “The max-min hill-
climbing Bayesian network structure learning algorithm,” Mach. Learn.,
vol. 65, no. 1, pp. 31-78, 2006.

O. Goudet, D. Kalainathan, P. Caillou, I. Guyon, D. Lopez-Paz, and
M. Sebag, “Learning functional causal models with generative neural
networks,” 2017, arXiv:1709.05321.

J. D. Ramsey, “A scalable conditional independence test for nonlinear,
non-Gaussian data,” 2014, arXiv:1401.5031.

learning,”

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

11

K. Zhang, J. Peters, D. Janzing, and B. Scholkopf, “Kernel-based
conditional independence test and application in causal discovery,” in
Proc. 27th Conf. Uncertainty Artif. Intell., 2011, pp. 804-813.

J. D. Lee and T. J. Hastie, “Learning the structure of mixed graphical
models,” J. Comput. Graph. Statist., vol. 24, no. 1, pp. 230-253, 2015.
A. Statnikov and C. F. Aliferis, “Analysis and computational dissection
of molecular signature multiplicity,” PLOS Comput. Biol., vol. 6, no. 5,
pp. 1-9, 2010.

D. Dua and C. Graff. (2017). UCI Machine Learning Repository.
[Online]. Available: http://archive.ics.uci.edu/ml

J. Peters and P. Biihlmann, “Structural intervention distance for eval-
uating causal graphs,” Neural Comput., vol. 27, no. 3, pp. 771-799,
Mar. 2015.

S. Triantafillou and I. Tsamardinos, “Score-based vs constraint-based
causal learning in the presence of confounders,” in Proc. CFA@UAI,
2016, pp. 1-9.

F. Hutter, L. Kotthoff, and J. Vanschoren, “Automated machine learning:
Methods, systems, challenges,” in Automated Machine Learning. Cham,
Switzerland: Springer, 2019.

I. Tsamardinos, E. Greasidou, and G. Borboudakis, “Bootstrapping the
out-of-sample predictions for efficient and accurate cross-validation,”
Mach. Learn., vol. 107, no. 12, pp. 1895-1922, Dec. 2018.

Konstantina Biza received the B.Sc. degree in biol-
ogy from the National and Kapodistrian University
of Athens, Athens, Greece, in 2016, and the M.Sc.
degree in computer science from the University of
Crete, Heraklion, Greece, in 2020, where she is
currently pursuing the Ph.D. degree in computer sci-
ence. Her research interests include causal discovery
and machine learning.

Ioannis Tsamardinos received the B.Sc. degree
from the University of Crete, Heraklion, Greece, in
1995, and the Ph.D. degree from the Intelligent Sys-
tems Program, University of Pittsburgh, Pittsburgh,
PA, USA, in 2001.

He joined the Department of Biomedical Infor-
matics, Vanderbilt University, Nashville, TN, USA,
as an Assistant Professor. In 2006, he joined the
University of Crete, where he currently serves as
a Professor of machine learning in the Computer
Science Department. He has authored more than

140 peered-reviewed articles in the field of artificial intelligence, machine
learning, and bioinformatics, on topics of causal discovery, feature selection,
and applications in biomedicine.

Dr. Tsamardinos was a recipient of several international awards, including
the ERC Consolidator and PoC Grants.

Sofia Triantafillou received the Diploma degree
from the National Technical University of Athens,
Athens, Greece, in 2006, and the Ph.D. degree in
computer science from the University of Crete,
Heraklion, Greece, in 2015.

She was a Post-Doctoral Researcher with
Northwestern University, Evanston, IL, USA, and
the University of Pennsylvania, Philadelphia, PA,
USA. From 2018 to 2021, she was an Assistant
Professor with the University of Pittsburgh,
Pittsburgh, PA, USA. In 2021, she joined the

University of Crete as an Assistant Professor of statistics at the Department
of Mathematics and Applied Mathematics, where she teaches undergraduate
and graduate statistics courses. Her current research interests include causal
inference and the development of statistical methods for the analysis of
multiple heterogeneous datasets.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


