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Abstract

Recently deep learning has been successfully applied to un-
supervised active learning. However, current method attempts
to learn a nonlinear transformation via an auto-encoder while
ignoring the sample relation, leaving huge room to design
more effective representation learning mechanisms for unsu-
pervised active learning. In this paper, we propose a novel
deep unsupervised Active Learning model via Learnable
Graphs, named ALLG. ALLG benefits from learning opti-
mal graph structures to acquire better sample representation
and select representative samples. To make the learnt graph
structure more stable and effective, we take into account k-
nearest neighbor graph as a priori, and learn a relation propa-
gation graph structure. We also incorporate shortcut connec-
tions among different layers, which can alleviate the well-
known over-smoothing problem to some extent. To the best
of our knowledge, this is the first attempt to leverage graph
structure learning for unsupervised active learning. Extensive
experiments performed on six datasets demonstrate the effi-
cacy of our method.

Introduction

Active learning is an active research topic in machine learn-
ing and computer vision communities. Its goal is to choose
informative or representative samples to be labeled, so as
to reduce the costs of annotating but guarantee the perfor-
mance of the model trained on these labeled samples. Due to
its huge potentiality, active learning has been widely applied
to various tasks, such as image classification [Wang et al.
2016|, recommendation systems [Elahi, Ricci, and Rubens
2016]], object detection [[Aghdam et al.[2019]], semantic seg-
mentation [Siddiqui, Valentin, and Niefiner|2020]] and so on.

Unsupervised active learning targets at selecting repre-
sentative samples through taking advantage of structure in-
formation of data. Currently, most unsupervised approaches
[Yu, B1, and Tresp|2006; Zhang et al.|2011} |Zhu et al.[2015;
Shi and Shen|[2016; |[Li et al.|[2018a]] intend to minimize the
data reconstruction loss with different structure regulariza-
tion terms for selecting representative samples. These meth-
ods assume that each data point can be represented by a
linear combination of a selected sample subset, thus fail-
ing in modeling data with nonlinear structures. To remedy
this issue, a kernel based method [Cai and He/[2011] incor-
porates the manifold structure of data into the reproducing
kernel Hilbert space (RKHS). More recently, deep learning

has been applied to solve the unsupervised active learning
problem [Li et al.|2020], named DUAL. DUAL attempts to
nonlinearly map data into a latent space, and then performs
sample selection in the learnt space.

The key to success for DUAL stems from learning a
nonlinear transformation to obtain new feature representa-
tions by leveraging deep learning. However, it does not ex-
plicitly take advantage of the relation among samples dur-
ing representation learning. Recently, graph neural networks
(GNN) have attracted much attention [Kipf and Welling
2016; |Velickovic et al.|2017; | Xu et al.| 2018|, where the
sample relation has been proved to be helpful for learning
good sample representations. Thus, it ought to be beneficial
to sample selection, if we can leverage graph structure in-
formation of data, and aggregate neighbor information of
samples to learn better representations. But another ques-
tion arises: how to construct an optimal graph structure for
non-graph data still remains an open problem.

Based on the above considerations, we propose a novel
deep unsupervised Active Learning model based on Learn-
able Graphs, called ALLG. Specifically, ALLG first uti-
lizes an auto-encoder framework to map samples into a la-
tent space. Without pre-defining graph structure of samples,
ALLG devises a novel adjacent matrices learning module to
automatically learn an optimal graph structure among sam-
ples for jointly refining sample representations and sam-
ple selection. In this module, we incorporate the k-nearest
neighbor graph as a priori to learn a stable graph structure.
Considering that the relation among samples may happen
to evolve as the sample representations change in differ-
ent network layers, we attempt to learn a series of relation
propagated adjacent matrices, in the hope of capturing more
precise graph structures. Moreover, we add shortcut con-
nections among different adjacent matrices learning layers,
which can alleviate the well-known over-smoothing problem
to some extent. Finally, a self-selection layer is employed to
select representative samples based on the learnt sample rep-
resentation.

The contributions of this paper are summarized as:

* ALLG builds a connection between unsupervised active
learning and graph structure learning. To the best of our
knowledge, this is the first attempt to leverage graph
structure learning for unsupervised active learning.

* ALLG attempts to learn more precise sample representa-
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Figure 1: The overall framework of ALLG. It mainly consists of four modules: An encoder and a decoder are used to learn
a nonlinear mapping. An adjacent matrix learning module aims to learn a relation propagation regularized graph structure for
precise sample representation. A shortcut connection is introduced to alleviate the over-smoothing problem. A self-selection

layer is used to select representative samples.

tion by leveraging the graph, and devise a novel mecha-
nism to dynamically learn a series of graph adjacent ma-
trices.

* Inspired by the idea of residual learning, ALLG adds
shortcut connections among different adjacent matrices
learning layers to alleviate the over-smoothing problem.

Extensive experiments are performed on six publicly
available datasets, and experimental results demonstrate the
effectiveness of ALLG, compared with the state-of-the-arts.

Related Work

In this section, we will briefly review some work on unsu-
pervised active leaning and graph structure learning.

Unsupervised Active Learning

Unsupervised active learning has attracted much attention in
recent years. At the earlier stage, [[Yu, Bi, and Tresp|2006]
propose to utilize transductive experimental design (TED) to
select a sample subset, and obtain a greedy solution. ALNR
[Hu et al|[2013] performs sample selection by consider-
ing the neighborhood relation of samples. RRSS [Nie et al.
2013]] proposes a convex formulation by introducing a struc-
tured sparsity-inducing norm, and a robust sparse represen-
tation loss. To select complementary samples, [Shi and Shen
2016] proposes a diverse loss function that is an extension of
TED. LSR [Li et al|2017] was proposed via local structure
reconstruction to select representative data points. ALFS [Li
et al.|[2018al] builds a connection between unsupervised ac-
tive learning and feature selection, and proposes a convex
formulation to select samples and features simultaneously.
Most recently, owing to the powerful representation ca-
pability and great success of deep learning, deep model
has been explored to solve the unsupervised active learn-
ing problem [Li et al.|2020]|. In [L1 et al.[[2020], the authors
utilize deep auto-encoders to embed data to a latent space,

and then select the most representative samples to best re-
construct both the whole dataset and clustering centroids.
Although deep learning based methods have achieved im-
pressive results, they ignore the relation among data points
during sample representation learning and thus have the in-
ferior results.

Graph Structure Learning

For the sake of applying GNNs to non-graph structured data,
many graph structure learning methods have been proposed
in recent years. [Dong et al.||2016; [Egilmez, Pavez, and Or-
tega2017]] explore to learn the graphs from data without as-
sociating it with the downstream tasks. More recently, [L1
et al.|2018b; |(Choi et al.[[2019; [Liu et al.|2019; |(Chen, Wu,
and Zaki|2019]] aim to dynamic construct graphs towards the
downstream tasks. However, these methods are task-specific
ones which depend on the supervised information.

Different from these models, we propose to optimize the
learning of graphs and active learning simultaneously in an
unsupervised manner.

Method

The overall architecture of our method is illustrated in Fig-
ure[T] Our network mainly consists of the following compo-
nents: an encoder and decoder module is used to learn a non-
linear transformation. An adjacent matrix learning module
aims to learn multiple optimal adjacent matrices and lever-
age them for learning compact sample representation, which
is the core module of our method. A self-selection module
attempts to select representative samples. Before introduc-
ing these modules in detail, we first give some notations.
Let X = [x1,X2, - ,X,] € R*™ denote a data matrix,
where x;(1<i<n) is the data point. d and n are the dimen-
sion and number of data points respectively. Our goal is to
learn a nonlinear transformation by considering the sample
relation to learn better sample representations. To this end,



we first learn a latent space with a deep auto-encoder. We
then attempt to learn the graph structure of the data in the
latent space, and leverage it for learning a good representa-
tion. Based on the learnt representation, we can select the
most representative samples via a self-selection layer. We
attempt to optimize them in a joint framework.

Encoder and Decoder

In order to learn a nonlinear transformation ©, we utilize an
auto-encoder architecture to map the data into a latent space,
because of its effectiveness in unsupervised learning.

In our framework, the encoder consists of L fully con-
nected layers. The output of the [-th layer in the encoder is
defined as:

2V =W 1 pMy =10 (1)
where z§°) = x; denotes the ¢-th original training data in X,
which is used as the input of the encoder block. W) and
b(® are the weights and bias associated with the I-th hid-
den layer respectively. o(+) is a nonlinear activation func-
tion. Then, we can define the latent representation as:

7L — O(X) = [0(x1),0(x2), - ,0(x,)] € R xn )

where d’ denotes the dimension of the latent representation.
As for the decoder, it learns another nonlinear mapping
to reconstruct the original data, which guides the training of
the encoder. The decoder has a symmetric structure with the
encoder, which consists of L fully connected layers as well.
Then, the reconstruction loss of auto-encoder is defined
as:

L= |xi —%ill3 = [|X = X|[3, 3)
=1

where X denotes the reconstruction of X. Actually, the input
X plays a role of self-supervisor to guide the learning of
auto-encoder.

Graph Structure Learning

After obtaining the latent representation Z’ of the input X,
we intend to learn the graph structure of the input X for
generating more precise sample representation.

Adjacent Matrix Learning: As aforementioned, taking ad-
vantage of the relation among data points can have a posi-
tive effect on sample representation learning, which has been
verified in graph neural networks (GNNs) [Wu et al.|[2020].
However, many GNN algorithms are developed to deal with
graph data, and assume that the adjacent relationship is
given, which can not be directly applied to non-graph data.
To deal with it, there are some algorithms which attempt to
construct a human estimated graph structure, e.g., k-nearest
neighbor graph. However, such methods can not guarantee
the graph structure is optimal. Based on these considera-
tions, we aim to learn a data-driven optimal graph structure.
Considering that some human estimated graph structure can
still reveal some priori information, we can integrate such in-
formation into our framework to regularize the graph struc-
ture learning. In all, we propose the following regularization

terms to learn the graph structure:
La = al|Aq][f + BllA1 — AollZ, @)

where A denotes the k-nearest neighbor graph, and A de-
notes the learnt graph, i.e., the adjacent matrix, o and 3 are
positive trade-off parameters.

In Eq.(@), the first regularization term aims to reduce the
complexity of the learnt adjacent matrix. The second term
imposes a constraint on A1, making it not deviate from the
k-nearest neighbor graph A, such that the prior information
can be integrated. One can control how close the learnt adja-
cent matrix to the priori by modifying the parameter 3. Ac-
tually, the graph adjacent matrix A can be regarded as the
parameters of a fully connected layer without bias. There-
fore, it can be updated through a standard back-propagation
procedure during training.

After obtaining the adjacent matrix A, we can obtain the
new sample representations S; based on Z” as:

S, =o(ZFAY), (5)

where o(-) is a nonlinear activation function. Based on the
above equation, we can see that the new sample representa-
tion S; can be obtained based upon a linear combination of
Z" with the weight matrix A, thereby the relation among
samples can be incorporated into the process of representa-
tion learning.

Relation Propagation: It is worth noting that only learn-
ing one adjacent matrix may be sub-optimal for learning the
graph structure of data, since the representations of samples
are from different layers during the process of training. In
order to learn more stable and effective optimal graph struc-
ture, we intend to learn multi-level adjacent matrices with a
relation regularized term. In order to enable the learning of
multiple adjacent matrices, we propose another regulariza-
tion terms as:

N

L, =Y (@A + A - AallF), (©)
=2

where A; denotes the learnt adjacent matrix of the /-th ma-
trix learning layer, o’ and /3’ are positive trade-off parame-
ters.

In Eq.(6), the first term aims to lower the complexities of
the learnt adjacent matrices, while the second term utilizes
the former learnt adjacent matrix to regularize the latter ad-
jacent matrix. By this means, the relation among samples
can be smoothly propagated.

After learning multiple adjacent matrices, we can obtain
another sample representation for sample selection as:

SiJrl:O-(SiAi)vi:]va"' vN_l (7)

where S; denotes the latent sample representations in the -
th graph Laplacian layer.

Shortcut Connection: In GNNs, there is a well known
problem, i.e., over-smoothing. The over-smoothing problem
means that repeated graph Laplacian eventually make node
embeddings indistinguishable. Empirically, a shortcut con-
nection would bring more discriminative features from the



former layers to alleviate this problem. The shortcut con-
nection is illustrated in Figure [2| Mathematically, it can be
described as:

S = 18, + (1 —7)Sy, ®)
where 7 is a trade-off parameter to control the contribution

of the k-th graph structure learning layer to the final sample
representation.
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Figure 2: The short connection in ALLG
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Self-Selection Layer

After obtaining the final latent sample representations, we
perform sample selection by introducing a self-selection
layer, as shown in Figure[]

Self-selection layer takes the output of the adjacent matrix
learning layers as the input. In order to select samples to best
reconstruct all ones, we use the loss function presented as:

‘Cs = Z HSOUt _ SothH% + AHQH(X)J (9)
=1

where Q € R™*"™ is the reconstruction coefficients for the
samples. ||Q|[oo,1 = Y_i; |/9i]|oc, Where q; is the i-th row
vector of Q and || - || denotes the sup-norm of a vector,
defined as ||a]|s = max |a;].

K3

The first term in Eq. (9) aims to pick out m samples to
reconstruct the whole dataset in the latent space, while the
second term is a regularization term to enforce the coeffi-
cient matrix Q row-sparse. To minimize Eq. (9), similarly, Q
can be regarded as the parameters of a fully connected layer
without bias and nonlinear activations, and solved jointly
through a standard back-propagation procedure.

After the inputs passing by the self-selection layers, we
then feed them into the decoder as its inputs as:

Xy = SouQ € RY X" (10)

Algorithm 1: Optimization Procedure for ALLG

Input: The matrix X € R¥*"
Parameter: trade-off parameters o, 5, A
Output: Q

1: Calculate the k-nearest neighbor graph Ay with X.

2: Pre-train an auto-encoder network which has the same
architecture with the encoder and decoder block of the
proposed framework via a standard back-propagate al-
gorithm on X.

3: Initialize the encoder and decoder block of the proposed
framework using the pre-trained network parameters.

4: while not converged do

5:  Update the whole network by minimizing the loss

function in Eq.(TI).

6: end while

Overall Model and Training
Based on Eq. (3), @). (6). and (9), the final loss function is

ﬁtotal = ﬁr + ﬁa + »Cp + Cs (11)

To jointly optimize Eq.(IT)), we use a two-stage training
strategy following [Li et al.[2020]]: Firstly, we only pre-train
the encoder-decoder without considering the matrices learn-
ing module and self-selection layer, minimizing the loss in
Eq. (3). By this means, we obtain good initial parameters for
fine-tuning the whole model. Specifically, three fully con-
nection layers are used in the encoder, and the decoder has
a symmetric structure with it. After that, we update all the
parameters by minimizing Eq.(TT)) through a standard back-
propagation procedure. The ReLU is used in our method as
the activations. And we optimize Eq. with the Adam
optimizer where we set the learning rate to 1.0 x 1072, In
the final model, ALLG utilizes 2 adjacent matrices learning
layers. As for the shortcut connection, we set the kK = 1 and
r = 0.3 in Eq.(8) during training. The hyperparameters o
and o' are set to be the same so as the 8 and 3’ during train-
ing. The optimization procedure for ALLG can also be seen
in Algorithm[T]|

Post Processing

Once the model converges, we can get the parameter Q
based on the self-selection layer. As Q is row sparse after
training, the row values of QQ can be regarded as the contri-
butions of each data point to reconstruct other data points.
Thus, we calculate the /5-norm of the rows and sort them in
descending order to get a rank of samples. Then we can se-
lect the top-m data points as the most representative samples
to be labeled.

Experiments

In this section, we will introduce the experimental results to
demonstrate the effectiveness of the proposed method. We
also conduct some ablation study and analysis on the pro-
posed ALLG.
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Figure 3: The performance comparisons of different active learning methods combined with SVM on six benchmark.

[ Datasets | Size [ Dimension [ Class |
Splice-junction 1000 60 2
Plant Species Leaves | 1600 64 100
Waveform 5000 40 3
ESR 11500 178 5
GSAD 13910 128 6
Letter Recognition 20000 16 10

Table 1: Details of experimental datasets.

Experimental Setting

Dataset: To demonstrate that datasets from different do-
mains can benefit from ALLG, we conduct experiments on
six publicly available datasets from different domains, and
the details of the datasets are summarized in Table In
the datasets, ”Splice-junction” and "ESR” are from biol-
ogy, while "ESR” is present as time-series. ’Plant Species
Leaves” and “Letter Recognition” are generated from im-
ages. "Waveform” is a physical dataset, while "GSAD” is
from sensors utilized in simulations.

Baselimﬂ: We compare our method with several typical un-
supervised active learning algorithms, including RRSS [Nie
et al.2013]], ALNR [Hu et al.2013]], MAED [Cai and He

!These datasets are all downloaded from the UCI Machine
Learning Repository: https://archive.ics.uci.edu/ml/datasets.php.

2All source codes are obtained from the authors of the corre-
sponding papers, except K-means and ALNR.

2011], ALFS [Li et al|2018a], DUAL [Li et al.[2020]]. We
also compare with a matrix column subset selection algo-
rithm, deterministic column sampling (DCS) [Papailiopou-
los, Kyrillidis, and Boutsidis|2014]], which can be used for
unsupervised active learning. In addition, we take K-Means
as another baseline, in which we choose the samples which
are closest to the cluster centers as the most representative
samples, and we set ' = 5 in experiments.

Experimental protocol: Following [Li et al.[2018a] and
[Li et al.|2020], we randomly select 50% of the samples as
the candidate set and the rest is testing set. Different active
learning algorithms are performed on the same candidate set
to query the most representative m samples. To verify the
quality of samples selected by these methods, we train two
classifiers by using these selected samples as the training
data: a SVM classifier with a linear kernel and C = 100, as
well as a Logistic Regression (LR) classifier. We search the
trade-off parameters in our algorithm from {0.1, 1, 10}. For
a fair comparison, the parameters of RRSS, ALNR, MAED,
ALFS, DUAL are all searched from the same space. Each
experiment is run five times, and the result is reported in
terms of the average accuracy.

Experimental Result

General Performance: Figure [3and Figure f] show the re-
sults of different methods combined with a SVM classifier
and a LR classifier respectively. We can observe that ALLG
outperforms all other baselines in almost all queries. We use
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Figure 4: The performance comparisons of different active learning methods combined with Logistic Regression on six bench-
mark.
#of Query | 25 50 75 100 125 150 175 200 225 | Average
Kmeans 0.6616 0.6856 0.6692 0.6688 0.6820 0.6884 0.6960 0.6876 0.7080 | 0.6830
DCS 0.6360 0.6720 0.6632 0.6808 0.6884 0.6920 0.6916 0.7096 0.7384 | 0.6857
RRSS 0.5844 0.6516 0.6712 0.6564 0.6680 0.6832 0.6952 0.7052 0.7124 | 0.6697
MAED 0.6544 0.6720 0.6709 0.6725 0.6641 0.6632 0.6689 0.7116 0.7180 | 0.6772
ALNR 0.6472  0.6552 0.6396 0.6368 0.6744 0.6824 0.6992 0.7272 0.7336 | 0.6772
ALFS 0.6248 0.6744 0.6804 0.6840 0.7072 0.7104 0.7136  0.7284 0.7416 | 0.6960
DUAL_.O | 0.6552 0.6740 0.6976 0.7088 0.7012 0.7168 0.7212 0.7184 0.7380 | 0.7034
DUAL 0.6524 0.6688 0.7064 0.7148 0.7200 0.7456  0.7504 0.7600 0.7620 | 0.7200
ALLG.O | 0.7212 0.7328 0.7484 0.7540 0.7612 0.7680  0.7720 0.7744 0.7772 | 0.7565
ALLG 0.7132  0.7484 0.7640 0.7660 0.7756 0.7848 0.7892 0.7948 0.7968 | 0.7703

Table 2: Ablation study on sample representation. The bold text indicates the best results and the underlined text indicates the

second best results.

two different classifiers to illustrate that the quality of se-
lected samples by ALLG is agnostic to classifiers. It is worth
noting that ALLG achieves marked improvement compared
to deep learning based DUAL, about 3% average improve-
ment on different numbers of query. It’s verified that learn-
ing graphs of data can really be positive to sample selec-
tion. Note that we do not perform ALFS and RRSS on larger
datasets, because of their unaffordable computational com-
plexities.

Ablation Study: We perform ablation study on the Splice-
junction dataset to gain further understanding of the pro-
posed method. The experimental setting is as:

* Training Classifiers Using the Original Features: For
ALLG and DUAL, they embed samples to a latent space,
and use the new representation to train classifiers. To
eliminate the influence of new representations, we use
original features to train classifiers after obtaining the se-
lected samples by ALLG and DUAL. We denote them
as ALLG_O and DUAL_O respectively. The results are
shown in Table@ In general, ALLG_O and DUAL_O still
achieve better performance than other methods. Mean-
while, ALLG_O has a better result than DUAL_O, which
verifies the effectiveness of our method once again. In
addition, ALLG is better than ALLG_O, and DUAL
achieves better performance than DUAL_O. This illus-



# of Query ‘ 25 50 75 100 125 150 175 200 225 ‘ Average
w/o smoothing | 0.6486 0.7126 0.7313  0.7320 0.7540 0.7540 0.7526 0.7606 0.7686 | 0.7349
ALLG _knn 0.6800 0.7160 0.7055 0.7225 0.7415 0.7535 0.7725 0.7695 0.7855 | 0.7384
ALLG_one 0.6900 0.7195 0.7385 0.7540 0.7730 0.7805 0.7780 0.7820 0.7840 | 0.7555
ALLG._ts 0.6820 0.7430 0.7380 0.7430 0.7540 0.7820 0.7890 0.7840 0.7850 | 0.7555
ALLG_td 0.7145 0.7430 0.7505 0.7630 0.7735 0.7715 0.7855 0.7970 0.7940 | 0.7658
ALLG 0.7132  0.7484 0.7640 0.7660 0.7756 0.7848 0.7892 0.7948 0.7968 | 0.7703

Table 3: Ablation study on graph structure learning. The bold text indicates the best results.

trates that learning a nonlinear representation can be
helpful for active learning.

* Adjacent Matrices Learning Module: We also verify
the effectiveness of the graph structure learning module,
i.e., adjacent matrix learning. We denote: 1) w/o smooth-
ing: ALLG trained without graph structure learning; 2)
ALLG knn: ALLG using k-nearest neighbor graph as the
only adjacent matrix; 3) ALLG_one: ALLG trained with
one learnt adjacent matrix; 4) ALLG_ts: ALLG trained
with two learnt adjacent matrices but forcing them to be
the same; 5) ALLG_td: ALLG trained with two differ-
ent learnt adjacent matrices (i.e., it will become ALLG
when shortcut connections are added). The results are re-
ported in Table[3] We find that ALLG _knn achieves better
results than w/o smoothing, illustrating that leveraging
graph structure of data is good for learning a better sam-
ple representation. ALLG_one is better than ALLG _knn,
demonstrating that learning a graph structure can achieve
superior results, compared to a human estimated one.
ALLG_td outperforms ALLG_one and ALLG_ts. This il-
lustrates that learning multiple different adjacent matri-
ces can be beneficial to representation learning. Finally,
ALLG beats ALLG_td, showing that shortcut connection
is effective for unsupervised active learning.

Parameter Study: We study the sensitivity of our algorithm
in terms of the trade-off parameters A, a, 5 on the Splice-
junction dataset. We fix the number of queries to 125. The
results are shown in Figure [5] Our method is insensitive to
the parameters with a relatively wide range.

0 250 500 750 1000 1250 1500 1750 2000 0 250 500 750 1000 1250 1500 1750 2000
Epoch Epoch

(a) Total loss (b) Supnorm loss of Q

Figure 6: Convergence analysis of ALLG

Figure 7: Visualization by t-SNE on Splice-junction dataset.
The red circles denote the selected samples, and other color
solid circles denote different classes.

; A ; e! | Ié) Visualization: We use t-SNE [Maaten and Hinton| 2008]]
- - - to visualize sample selection on the Splice-junction dataset
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Figure 5: Parameter study on Splice-junction dataset.

Convergence Analysis: We further show the convergence
curves of ALLG on the Splice-junction dataset. The results
are shown in Figure[6] As the number of epoch increases, the
total loss and the supnorm loss of Q are gradually decreased
until convergent. From the figure, the algorithm converges
when the epoch reaches to around 2000.

In this paper, we proposed a novel unsupervised active learn-
ing model by learning optimal graph structures of data. A
novel adjacent matrices learning module was devised to
learn a series of optimal graph structures of data through
relation propagation regularization without pre-defining the
graph structures. In the meantime, we took k-nearest neigh-
bor graph prior to assist in graph structure learning. Fi-
nally, we utilized a shortcut connection to alleviate the over-
smoothing problem. Experimental results demonstrated the
effectiveness of our method.
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