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Abstract— Metric learning aims to learn a distance metric1

such that semantically similar instances are pulled together while2

dissimilar instances are pushed away. Many existing methods3

consider maximizing or at least constraining a distance margin4

in the feature space that separates similar and dissimilar pairs of5

instances to guarantee their generalization ability. In this article,6

we advocate imposing an adversarial margin in the input space7

so as to improve the generalization and robustness of metric8

learning algorithms. We first show that the adversarial margin,9

defined as the distance between training instances and their10

closest adversarial examples in the input space, takes account of11

both the distance margin in the feature space and the correlation12

between the metric and triplet constraints. Next, to enhance13

robustness to instance perturbation, we propose to enlarge the14

adversarial margin through minimizing a derived novel loss15

function termed the perturbation loss. The proposed loss can16

be viewed as a data-dependent regularizer and easily plugged17

into any existing metric learning methods. Finally, we show that18

the enlarged margin is beneficial to the generalization ability19

by using the theoretical technique of algorithmic robustness.20

Experimental results on 16 datasets demonstrate the superiority21

of the proposed method over existing state-of-the-art methods22

in both discrimination accuracy and robustness against possible23

noise.24

Index Terms— Adversarial perturbation, generalization ability,25

metric learning, nearest neighbor (NN), robustness.26

I. INTRODUCTION27

METRIC learning focuses on learning similarity or dis-28

similarity between data. Research on metric learning29

originates from at least 2002, where [1] first proposes to30

formulate it as an optimization problem. Since then, many31

metric learning methods have been proposed for classifica-32

tion [2], [3], [4], clustering [5], and information retrieval [6],33

[7]. In particular, the methods have shown to be particularly34

superior in open-set classification and few-shot classification35

with notable applications in, for example, face verification [8],36

[9] and person re-identification [10], [11].37
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One commonly studied distance metric is the generalized 38

Mahalanobis distance, which defines the distance between any 39

two instances xi , x j ∈ R
p as 40

dM(xi , x j ) =
√

(xi − x j)T M(xi − x j) 41

where M is a positive semidefinite (PSD) matrix. Owing to 42

its PSD property, M can be decomposed into LT L. Thus, 43

computing the Mahalanobis distance is equivalent to linearly 44

transforming the instances from the input space to the feature 45

space via L and then computing the Euclidean distance 46

�Lxi − Lx j�2 in the transformed space. 47

To learn a specific distance metric for each task, prior 48

knowledge on instance similarity and dissimilarity should be 49

provided as side information. Metric learning methods differ 50

by the form of side information they use and the supervision 51

encoded in similar and dissimilar pairs. For example, pairwise 52

constraints enforce the distance between instances of the same 53

class to be small (or smaller than a threshold value) and the 54

distance between instances of different classes to be large 55

(or larger than a threshold value) [1], [5]. The thresholds 56

could be either predefined or learned for similar and dissimilar 57

pairs [12], [13]. In triplet constraints (xi , x j , xl), distance 58

between the different-class pair (xi , xl) should be larger than 59

distance between the same-class pair (xi , x j), and typically, 60

plus a margin [14], [15], [16], [17]. More recently, quadruplet 61

constraints are proposed, which require the difference in the 62

distance of two pairs of instances to exceed a margin [18], 63

and (N + 1)-tuplet extends the triplet constraint for multiclass 64

classification [19]. 65

The gap between thresholds in pairwise constraints and the 66

margin in triplet and quadruplet constraints are both designed 67

to learn a distance metric that could ensure good generaliza- 68

tion of the subsequent k-nearest neighbor (kNN) classifier. 69

However, such a distance margin imposed in the feature 70

space does not consider the correlation between the data and 71

the learned metric. Consequently, it may be insufficient to 72

withstand a small perturbation of the instance occurred in the 73

input space, thereby failing to certify the robustness or even 74

possess the anticipated generalization benefit. As illustrated in 75

Fig. 1(upper), while xi selects the same-class instance x j as its 76

NN in the feature space, a tiny perturbation from xi to x�
i in the 77

input space can be magnified by the learned distance metric, 78

leading to a change in its NN from x j to the different-class 79

instance xl . When the NN algorithm is used as the classifier, 80

the perturbation results in an incorrect label prediction. 81
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Fig. 1. (Upper) Traditional methods aim to separate the same-class pair
(xi , x j ) and the different-class pair (xi , xl ) by a margin in the feature space.
While xi has x j as its nearest neighbor (NN) in the feature space and is
correctly predicted by using the NN classifier, the metric is sensitive to
perturbation in the input space; a tiny perturbation from xi to x�

i changes
the NN to xl and leads to an incorrect prediction. (Bottom) Proposed method
aims to enlarge the adversarial margin in the input space, which equals to the
Euclidean distance between xi and the closest point xi,min in the input space
that lies on the decision boundary in the feature space (indicated by P B) and
quantifies the maximum degree to which robustness can be certified.

In this article, we propose a simple yet effective method82

to enhance the generalization ability of metric learning algo-83

rithms and their robustness against instance perturbation.84

As shown in Fig. 1(bottom), the principal idea is to enlarge85

the adversarial margin, defined as the distance between a86

training instance and its closest adversarial example in the87

input space [20].88

In particular, our contributions are fourfold.89

1) We identify that the distance margin, widely used in90

existing methods, is insufficient to withstand adversarial91

examples, and we introduce a direct measure of robust-92

ness termed the adversarial margin, which quantifies the93

maximum degree to which a training instance could be94

perturbed without changing the label of its NN (or kNNs95

if required) in the feature space. Building on a geometric96

insight, we derive an analytically simple solution to the97

adversarial margin, which reveals the importance of an98

adaptive margin considering the correlation between the99

data and the distance metric (Section II-A and II-B).100

2) We define a novel hinge-like perturbation loss to penal-101

ize the adversarial margin for being small. The pro-102

posed loss function serves as a general approach to103

enhancing robustness, as it can be optimized jointly with104

any existing triplet-based metric learning methods; the105

optimization problem suggests that our method learns a106

discriminative metric in a weighted manner and simul-107

taneously functions as a data-dependent regularization108

(see Section II-C).109

3) We show the benefit of enlarging the adversarial margin110

to the generalization ability of the learned distance111

metric by using the theoretical technique of algorithmic112

robustness [21] (Theorem 1, Section II-D).113

4) We conduct experiments on 16 datasets in both114

noise-free and noisy settings. Results show that the pro-115

posed method outperforms state-of-the-art robust metric116

learning methods in terms of classification accuracy and117

validate its robustness to possible noise in the input 118

space (see Section IV). 119

Notation: Let {xi , yi}n
i=1 denote the set of training instance 120

and label pairs, where xi ∈ X ⊆ R
p and yi ∈ Y = {1, . . . , C}; 121

X is called the input space. Our framework is based on triplet 122

constraints {xi , x j , xl} and we adopt the following strategy for 123

generating triplets [14]: 124

S = {
(xi , x j ) : x j ∈ {kNNs with the same class label of xi }

}
125

R= {
(xi , x j , xl) : (xi , x j) ∈ S, yi �= yl

}
. 126

x j is termed the target neighbor of xi and xl is termed the 127

impostor. |S| and |R| denote the numbers of elements in the 128

sets S and R, respectively. dE and dM denote the Euclidean 129

and Mahalanobis distances, respectively; M ∈ S
p
+, where S

p
+ 130

is the cone of p × p real-valued PSD matrices. M2 = M M. 131

1[·] denotes the indicator function and [a]+ = max(a, 0) for 132

a ∈ R. 133

II. METHODOLOGY 134

In this section, we introduce our method for enhancing 135

robustness of triplet-based metric learning algorithms through 136

maximizing the adversarial margin. First, we review the exist- 137

ing distance margin and provide the rationale for enlarging the 138

adversarial margin. Second, an explicit formula for the adver- 139

sarial margin is derived. Third, we propose the perturbation 140

loss to encourage a larger adversarial margin and present its 141

optimization jointly with the existing large (distance) margin 142

NN (LMNN) algorithm. Lastly, we show that enlarging the 143

adversarial margin is beneficial to the generalization ability of 144

the learned distance metric. 145

A. Motivation for Enlarging the Adversarial Margin 146

Suppose xi is a training instance and x j , xl are the NN of xi 147

from the same class and from the different class respectively. 148

Many triplet-based methods, such as LMNN [14], impose the 149

following constraint on the triplet: 150

f (xi) := d2
M(xi , xl) − d2

M (xi , x j ) ≥ 1. 151

When the constraint is satisfied, xi will be correctly classi- 152

fied using the NN classifier. Moreover, the value one represents 153

the unit margin at the distance level and is designed to 154

robustify the model against small noises in training instances. 155

Nevertheless, the distance margin may be insufficient to 156

withstand deliberately manipulated perturbations. Let �xi 157

denote a perturbation of xi . When the perturbation size is 158

constrained as ��xi�2 ≤ r , f (xi + �xi ) decreases the most 159

from f (xi ) if �xi is chosen in the direction of M(xl − x j ): 160

f (xi + �xi ) − f (xi) = 2�xT
i M(x j − xl) = −2r�M(xl − 161

x j)�2. Therefore, in order to correctly classify the perturbed 162

instance xi + �xi , it is required that f (xi + �xi) is positive, 163

that is, �M(xl −x j)�2 should be small. One way to reduce this 164

value is by regularizing the spectral norm of M. However, it is 165

demanding for the metric to satisfy the large distance margin 166

for all triplets and meanwhile keep a small spectral norm (SN). 167

To achieve robustness against instance perturbation, we sug- 168

gest an alternative way by maximizing the adversarial margin, 169

defined as the distance between the training instance and its 170
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closest adversarial example [20]. More concretely, an adversar-171

ial example is a perturbed point whose NN, identified based on172

the learned Mahalanobis distance, changes from an instance of173

the same class to one of a different class; consequently, it will174

be misclassified by the NN classifier and increase the risk175

of misclassification by kNN. In terms of previous notations,176

an adversarial example is a perturbed point xi +�xi such that177

f (xi + �xi ) < 0. If all adversarial examples of an instance178

are far away from the instance itself, i.e., there is no �xi179

such that ��xi�2 ≤ r and f (xi + �xi) < 0, a high degree180

of robustness is achieved. Building on this rationale, we will181

first find the closest adversarial example and then push this182

point away from the training instance. Moreover, since the183

test instance can be regarded as a perturbed copy of training184

instances [21], improving robustness on correctly classified185

training instances also helps enhance the generalization ability186

of the learned metric.187

B. Derivation of Adversarial Margin188

We start by deriving a closed-form solution to the closest189

adversarial example. Given a training instance xi and the190

associated triplet constraint (xi , x j , xl), we aim to find the191

closest point xi,min to xi in the input space that lies on192

the decision boundary formed by x j and xl in the feature193

space. Note that closeness is defined in the input space and194

will be calculated using the Euclidean distance since we target195

at changes on the original feature of an instance; and that the196

decision boundary is found in the feature space since kNNs are197

identified by using the Mahalanobis distance. Mathematically,198

we can formulate the closest adversarial example xi,min as199

follows:200

xi,min = arg min
x�

i ∈Rp

(
x�

i − xi
)T (

x�
i − xi

)
201

s.t.

(
Lx�

i − Lx j + Lxl

2

)T (
Lxl − Lx j

) = 0. (1)202

The objective function of (1) corresponds to minimizing203

the Euclidean distance from the training instance xi . The204

constraint represents the decision boundary, which is the205

perpendicular bisector of points Lx j and Lxl . In other words,206

it is a hyperplane that is perpendicular to the line joining points207

Lx j and Lxl and passes their midpoint ((Lx j + Lxl)/2); all208

points on the hyperplane are equidistant from Lx j and Lxl .209

Since (1) minimizes a convex quadratic function with210

an equality constraint, we can find an explicit formula for211

xi,min by using the method of Lagrangian multipliers; detailed212

derivation is provided in Section VI in the supplementary213

material214

xi,min = xi +
(

x j +xl

2 − xi

)T
M

(
xl − x j

)
(xl − x j )T M2

(
xl − x j

) M(xl − x j). (2)215

With the solution of xi,min, we can now calculate the squared216

Euclidean distance between xi and xi,min217

d2
E(xi , xi,min) =

(
d2

M(xi , xl) − d2
M(xi , x j)

)2

4d2
M2(x j , xl)

. (3)218

For clarity, we will call dE(xi , x i,min) the adversarial mar- 219

gin, in contrast to the distance margin as in LMNN. It repre- 220

sents the maximum amount of tolerance for perturbation while 221

retaining prediction correctness. The numerator of (3) is the 222

square of the standard distance margin, and the denominator 223

is the squared L2-norm of M(xl − x j ). Therefore, in order to 224

achieve a large adversarial margin, the metric should push xl 225

away from the neighborhood of xi by expanding the distance 226

in the direction that has a small correlation with xl − x j (the 227

optimal direction is orthogonal to xl − x j ). 228

Remark 1: The objective function in (1) defines a hyper- 229

sphere in the input space, which characterizes perturbations 230

of equal magnitude in all directions, e.g., isotropic Gaussian 231

noise. To model heterogeneous and correlated perturbation, 232

we can extend the objective function by defining an arbitrary 233

oriented hyperellipsoid, as discussed in Section VI in the 234

supplementary material. 235

C. Metric Learning via Minimizing the Perturbation Loss 236

To improve robustness of distance metric, we design a 237

perturbation loss to promote an increase in the adversar- 238

ial margin. Two situations need to be distinguished here. 239

First, when the NN of xi is an instance from the same 240

class, we will penalize a small adversarial margin by using 241

the hinge loss [τ 2 − d2
E(xi , x i,min)]+. The reasons are that: 242

1) the adversarial margin is generally smaller for hard 243

instances that are close to the class boundary in contrast to 244

those locating far away and 2) it is these hard instances that are 245

more vulnerable to perturbation and demand an improvement 246

in their robustness. Therefore, we introduce τ for directing 247

attention to hard instances and controlling the desired margin. 248

Second, in the other situation where the NN of xi belongs to a 249

different class, metric learning should focus on satisfying the 250

distance requirement specified in the triplet constraint. In this 251

case, we simply assign a large penalty of τ 2 to promote a 252

nonincreasing loss function. Integrating these two situations, 253

we propose the following perturbation loss: 254

JP = 1

|R|
∑
R

{[
τ 2 − d̃2

E(xi , xi,min)
]
+ 255

×1
[
d2

M(xi , xl) > d2
M(xi , x j )

]
256

+ τ 21
[
d2

M (xi , xl) ≤ d2
M(xi , x j)

]}
(4) 257

where
∑

R is an abbreviation for
∑

(xi ,x j ,xl )∈R. To pre- 258

vent the denominator of (3) from being zero, which may 259

happen when different-class instances x j and xl are close 260

to each other, we add a small constant � (� =1e-10) to 261

the denominator; that is, d̃2
E(xi , xi,min) = ((d2

M(xi , xl) − 262

d2
M(xi , x j ))

2)/(4(d2
M2(x j , xl) + �)). 263

The proposed perturbation loss can be readily included in 264

the objective function of any metric learning methods and is 265

particularly useful to triplet-based methods. When the same 266

triplet set is used for supervising metric learning and deriving 267

adversarial examples, our method can encourage the triplets to 268

meet the distance margin by learning a discriminative metric. 269

For this reason, we adapt LMNN as an example for its wide 270

use and effective classification performance. The objective 271
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function of LMNN with the perturbation loss is as follows:272

min
M∈S

p
+

J = JLMNN + λJP273

JLMNN = (1 − μ)
1

|S|
∑
S

d2
M(xi , x j)274

+ μ
1

|R|
∑
R

[
1 + d2

M(xi , x j ) − d2
M (xi , xl)

]
+ (5)275

where
∑

S stands for
∑

(xi ,x j )∈S . The weight parameter276

λ > 0 controls the importance of perturbation loss (JP ) relative277

to the loss function of LMNN (JLMNN). μ ∈ (0, 1) balances the278

impacts between pulling together target neighbors and pushing279

away impostors.280

We adopt the projected gradient descent algorithm to solve281

the above optimization problem. The gradient of JP and JLMNN282

are given as follows:283

∂ JP

∂ M
= 1

|R|
∑
R

αi jl

{
d2

M(xi , xl) − d2
M(xi , x j )

2
(

d2
M2(x j , xl) + �

) (X i j −X il)284

+
(
d2

M(xi , xl) − d2
M(xi , x j )

)2

4
(

d2
M2(x j , xl) + �

)2285

× (M X jl + X jl M)

}
286

∂ JLMNN

∂ M
= 1 − μ

|S|
∑
S

X i j + μ

|R|
∑
R

βi jl(X i j − X il) (6)287

where αi j l = 1[d2
M(xi , xl) > d2

M(xi , x j ), d̃E(xi , xi,min) ≤ τ ],288

βi jl = 1[1 + d2
M(xi , x j ) − d2

M(xi , xl) ≥ 0]; X i j = (xi −289

x j)(xi − x j)
T and X il , X jl are defined similarly. The gradient290

of JP is a sum of two descent directions. The first direction291

X i j − X il agrees with LMNN, indicating that our method292

updates the metric toward better discrimination in a weighted293

manner. The second direction M X jl +X jl M controls the scale294

of M; the metric will descend at a faster pace in the direction295

of a larger correlation between M and X jl . This suggests our296

method functions as a data-dependent regularization. Let M t
297

denote the Mahalanobis matrix learned at the tth iteration. The298

distance matrix will be updated as299

M t+1 = M t − γ

(
∂ JLMNN

∂ M t + λ
∂ JP

∂ M t

)
300

where γ denotes the learning rate. Following [14]’s work, γ is301

increased by 1% if the loss function decreases and decreased302

by 50% otherwise. To guarantee the PSD property, we factor-303

ize M t+1 as V�V T via eigendecomposition and truncate all304

negative eigenvalues to zero, i.e., M t+1 = V max(�, 0)V T .305

Remark 2: The proposed perturbation loss is a generic306

approach to improving robustness against possible perturba-307

tion. In Section VII in the supplementary material, we illustrate308

examples of incorporating the perturbation loss into two differ-309

ent types of triplet-based methods, sparse compositional metric310

learning (SCML) [15] and proxy neighborhood component311

analysis (ProxyNCA++) [22]. SCML revises the structure of312

the Mahalanobis distance by representing it as a sparse and313

nonnegative combination of rank-one basis elements, which314

typically results in less number of parameters to be estimated.315

ProxyNCA++ revises the construction of triplet constraints 316

by replacing nearest instances x j and xl with nearest proxy 317

points. The proxies are learned to represent each class, and 318

the resulting method is shown to generalize well on small 319

datasets [23], robust to outliers and noisy labels [24], and 320

improves computational efficiency on large-scale datasets. 321

Remark 3: Learning a distance metric for extremely 322

high-dimensional data will result in a large number of 323

parameters to be estimated and potentially suffer from over- 324

fitting. In order to reduce the input dimensionality, PCA is 325

often applied to preprocess the data prior to metric learn- 326

ing [14], [25]. In Section VI-A in the supplementary mate- 327

rial, we extend the proposed method such that the distance 328

metric learned in the low-dimensional PCA subspace could 329

still achieve robustness against perturbation in the original 330

high-dimensional input space. The decision boundary of NN 331

classifier [i.e., the constraint of (1)] is revised in order to 332

take account of the linear transformation matrix induced by 333

the Mahalanobis distance and that of PCA. The proposed 334

extension will be evaluated in Section IV-C. 335

D. Generalization Benefit 336

From the perspective of algorithmic robustness [21], enlarg- 337

ing the adversarial margin could potentially improve the 338

generalization ability of triplet-based metric learning methods. 339

The following generalization bound, i.e., the gap between the 340

generalization error L and the empirical error 
emp, follows 341

from the pseudo-robust theorem of [26]. Preliminaries and 342

derivations are given in Section VIII in the supplementary 343

material. 344

Theorem 1: Let M∗ be the optimal solution to (5). Then 345

for any δ > 0, with probability at least 1 − δ we have 346

|L(M∗) − 
emp(M∗)| 347

≤ n̂(ts)

n3
+ B

(
n3 − n̂(ts)

n3
+ 3

√
2K ln 2 + 2 ln 1/δ

n

)
(7) 348

where n̂(ts) denotes the number of triplets whose adversarial 349

margins are larger than τ , B is a constant denoting the upper 350

bound of the loss function [i.e., (5)], and K denotes the number 351

of disjoint sets that partition the input-label space and equals 352

to |Y|(1 + (2/τ))p. 353

Enlarging the desired adversarial margin τ will affect two 354

quantities in (7), namely K and n̂(ts). First, since K equals 355

to |Y|(1 + (2/τ))p, increasing τ will cause K to decrease 356

at a polynomial rate of the input dimensionality p. Moreover, 357

as the right-hand side of (7) is a function of K (O(K 1/2)), this 358

means that the upper bound of generalization gap reduces at a 359

rate of p1/2. Hence, for datasets with a relative large number 360

of features, a small improvement in the adversarial margin can 361

greatly benefit the generalization ability of the learned metric. 362

Second, when τ increases, less triplets will satisfy the 363

condition that their adversarial margin is larger than τ ; that 364

is, n̂(ts) decreases with τ . Meanwhile, since B > 1, the upper 365

bound is a decreasing function of n̂(ts). Therefore, enlarging 366

τ leads to an increase in the upper bound. However, the rate 367

of such increase depends on the datasets. For example, if most 368

instances in the dataset are well separated and have a margin 369
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in the original input space, enlarging the desired adversarial370

margin τ will not have a large impact on n̂(ts), the upper371

bound, and thus the generalization gap.372

In summary, for datasets with many features and most373

instances being separable, we expect an improvement in the374

generalization ability of the learned distance metric from375

enlarging the adversarial margin.376

III. RELATED WORK377

A. Robust Metric Learning378

To make machine learning models more secure and379

trustworthy, robustness to input perturbations is a crucial380

dimension [27]. More importantly, designing such robust381

metric learning algorithms is particularly vital to safety-382

critical applications, such as healthcare [28], network intrusion383

detection [29], and surveillance systems based on faces [30],384

gaits [31], and other biometric traits [32].385

Existing approaches to improving the robustness of Maha-386

lanobis distances can be categorized into four main types.387

The first type of method imposes structural assumption or388

regularization over M so as to avoid overfitting [25], [33],389

[34], [35], [36], [37]. Methods with structural assumption390

are proposed for classifying images and achieve robustness391

by exploiting the structural information of images; however,392

such information is generally unavailable in the symbolic393

datasets that will be studied in this article. Regularization-394

based methods are proposed to reduce the risk of overfitting395

to feature noise in the training set. Our proposal, which is396

aimed to withstand test-time perturbation, does not conflict397

with these methods and can be combined with them to learn398

a more effective and robust distance metric; an example is399

shown in Section IV-C.400

The second type of method adopts loss functions that are401

less sensitive to outlier samples or noisy labels. In most metric402

learning methods, loss functions are founded on the squared403

L2-norm distance for computational efficiency. However, such404

choice may be sensitive to outliers. To overcome this limi-405

tation, several remedies have been proposed, such as using406

L1-norm distances [38] and metric based on the signal-to-407

noise ratio (SNR) [39], or replacing the square function with408

the maximum correntropy criterion [40].409

The third type of method studies robustness to training410

noise [41], [42]. These methods explicitly model the noise dis-411

tribution or identify clean latent examples, and consequently,412

use the expected Mahalanobis distance to adjust the value of413

the distance margin for each triplet. Our method can also be414

viewed as imposing a data-dependent and dynamic margin—to415

achieve the same adversarial margin, triplets that have a higher416

correlation between xl − x j and the metric M should satisfy417

a larger distance margin. However, the focus of our work is418

orthogonal to the aforementioned two types of method.419

The last type of method generates hard instances through420

adversarial learning and trains a metric to fare well in the new421

hard problem [43], [44]. While sharing the aim of improving422

metric robustness, our method is intrinsically different from423

them. Their methods approach the task at a data level,424

where real examples are synthesized based on the criterion425

of incurring large losses. Our method tackles perturbation at 426

a model level, where a loss function is derived by considering 427

the definition of robustness with respect to the decision maker 428

kNN. By preventing change in the NN in a strict manner, our 429

method is capable of obtaining a certification on adversarial 430

margin. 431

B. Adversarial Robustness of Deep Metric Learning 432

More recently, deep metric learning has been investigated 433

intensively, which replaces the linear projection induced by 434

the Mahalanobis distance with deep neural networks. While 435

deep neural networks improve the discriminability between 436

classes, they are found to be nonrobust and vulnerable to 437

adversarial examples. Robust optimization [20], [45] is one of 438

the most effective approaches to improving adversarial robust- 439

ness, which trains the network to be robust against adversarial 440

perturbations that are mostly constructed via gradient-based 441

optimization; [46] adapts it to deep metric learning by con- 442

sidering the interdependence between data points in pairwise 443

or triplet constraints. Another way to enhance robustness and 444

generalization ability is by attaining a large margin in the 445

input space, which dates back to support vector machines [47] 446

and inspires this work. Due to the hierarchical nonlinear 447

nature of deep networks, the input-space margin cannot be 448

computed exactly and a variety of approximations have been 449

proposed [48], [49], [50], [51]. In this work, we investigate 450

such margin in the framework of metric learning, defines it 451

specifically with respect to the kNN classifier, and provide 452

an exact and analytical solution to the margin. The analyti- 453

cal solution to the margin provides fascinating insights into 454

essential factors for the robustness of distance metrics. 455

C. Adversarial Robustness of kNN Classifiers 456

While the notion of adversarial examples applies to kNN 457

classifiers, existing methods for deep neural networks cannot 458

be implemented directly due to the nondifferential nature 459

of the classifier. Papernot et al. [52] and Sitawarin and 460

Wagner [53] propose continuous substitutes of kNN, from 461

which gradient-based adversarial examples can be constructed 462

to attack the classifier. Wang et al. [54] formulates a series 463

of quadratic programming (QP) problems and proposes an 464

efficient algorithm to search exhaustively over all training 465

samples and compute the minimal adversarial perturbation 466

for the 1-NN classifier. In addition, the dual solution to 467

these QP problems can be used for robustness verification. 468

Yang et al. [55] proposes to improve adversarial robustness 469

for kNN by pruning the training set in order to satisfy 470

the condition defined through the robustness radius, i.e., the 471

norm of the minimal adversarial perturbation. Our work also 472

aims to robustify kNN, but achieves it through enlarging the 473

adversarial margin. 474

IV. EXPERIMENTS 475

In this section, we first present two toy examples to 476

illustrate the difference in the learning mechanisms of 477

LMNN and the proposed method dubbed LMNN-PL. Next, 478
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Fig. 2. Comparison of learning mechanisms of LMNN and LMNN-PL when features exhibit different separability. (a) M = [
1 0
0 1

]
d̄E(xi , xi,min) = 0.17.

(b) M = [
10.2 3.5
3.5 7.8

]
d̄E(xi , xi,min) = 0.15. (c) M = [

2.1 0.6
0.6 3.1

]
d̄E(xi , xi,min) = 0.16.

Fig. 3. Comparison of learning mechanisms of LMNN and LMNN-PL when confronting the problem of multicollinearity. (a) M =
[

1 0 0
0 1 0
0 0 1

]
d̄E(xi , xi,min) =

0.83. (b) M =
[

22 23 −17
23 28 −19

−17 −19 14

]
d̄E(xi , xi,min) = 0.05. (c) M =

[
0.45 0.45 −0.08
0.45 0.45 −0.06

−0.08 −0.06 0.85

]
d̄E(xi , xi,min) = 0.70.

we compare LMNN-PL with state-of-the-art methods on479

16 benchmark datasets (13 low/medium-dimensional and three480

high-dimensional) and investigate the relationship between481

adversarial margin, generalization ability, and robustness.482

Finally, the computational aspect of our method is discussed.483

A. Comparisons Between LMNN and LMNN-PL484

We design two experiments to compare the metrics learned485

with the objective of enhancing class discriminability and486

of certified robustness. In the first example, a 2-D binary487

classification dataset is simulated, as shown in Fig. 2a. The488

positive class includes 100 instances drawn uniformly from489

[−3, 0] in the horizontal (abbr. 1st) direction and [0, 1] in the490

vertical (abbr. 2nd) direction. The negative class consists of491

two clusters, where the first cluster includes 100 instances492

drawn from U(−3, 0) and U(−0.6,−0.5) in the 1st and493

2nd directions, respectively, and the second cluster includes494

20 instances drawn from U(0, 0.1) and U(0, 1) in the two495

directions respectively. By design, instances of positive and496

negative classes can be separated in both directions, while497

the separability in the 1st direction is much smaller than the498

2nd direction. Fig. 2(b) and (c) show the instances in the499

projected feature space with metrics learned from LMNN and 500

LMNN-PL, respectively; the projection direction is indicated 501

by the unit vector of red and blue lines; and the metric and 502

the average of adversarial margins (d̄E(xi , x i,min)) are given in 503

the caption. The objective of LMNN is to satisfy the distance 504

margin. Thus, it expands the distance in both directions. 505

Moreover, since the 1st direction has a small separability in 506

the original instance space, this direction is assigned with a 507

larger weight. In contrast, LMNN-PL controls the scale of 508

M. Moreover, a notable difference is that the 2nd direction 509

is assigned with a larger weight than the 1st direction, which 510

is again caused by the small separability in the 1st direction. 511

As any perturbation in the 1st direction is highly likely to 512

result in a misclassification, the proposed method diverts more 513

attention to robust features, i.e., the 2nd direction. Due to the 514

easiness of the task, all metrics lead to the same classification 515

accuracy of 99.09% on a separate test set. 516

In the second example, we simulate a 3-D binary classi- 517

fication dataset, as shown in Fig. 3(a). Each class includes 518

100 instances. The first two dimensions are drawn from 519

multivariate Gaussian distributions with μp = [0.45, 0.45], 520

μn = [−0.45,−0.45], � p = �n = [
1 −0.9

−0.9 1

]
; the 521

third dimension equals the sum of the first two dimensions, 522
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plus white Gaussian noise with standard deviation of 0.01.523

By design, the dataset exhibits the problem of strong mul-524

ticollinearity. This issue has little influence on LMNN as the525

data is nearly separable in all directions. However, it will affect526

the adversarial margin. Specifically, if the metric assigns equal527

weights to all dimensions, then the perturbation should be528

small in all directions so as to guarantee that the perturbed529

instance stays on the correct side of the decision boundary.530

In contrast, if the metric assigns weights only to the third531

dimension, then the perturbation in the first two dimensions532

will not cause any change in the learned feature space and533

hence a larger magnitude of perturbation can be tolerated. This534

expectation is supported by the empirical result in Fig. 3(c),535

where the distance in the third dimension is more important536

than the first two dimensions. LMNN achieves an accuracy of537

95.50% and our method achieves an accuracy of 96.00%.538

In summary, our method learns a discriminative metric, and539

meanwhile, imposes a data-dependent regularization on the540

metric. It also achieves larger adversarial margins than LMNN,541

demonstrating the effectiveness of the proposed perturbation542

loss.543

B. Experiments on UCI Data544

1) Data Description and Experimental Setting: In this545

experiment, we study 13 datasets from UCI machine learning546

repository [56]. Information on sample size, feature dimension547

and class information is listed in Table V in the supplementary548

material. All datasets are preprocessed with mean-centering549

and standardization, followed by L2 normalization to unit550

length. To evaluate the performance, we use 70%–30%551

training-test partitions and report the average result over552

20 rounds of random split. The only exception is the Credit553

dataset, where we only run the experiment once as the sample554

size is relatively large.555

We evaluate the effectiveness of the proposed pertur-556

bation loss by incorporating it into LMNN, SCML, and557

ProxyNCA++ (abbreviated to PNCA); the resulting meth-558

ods are denoted by LMNN-PL, SCML-PL, and PNCA-PL,559

respectively. In addition, we conduct a thorough study by560

setting LMNN as the backbone and comparing LMNN-PL561

with two types of methods. First, we consider different562

regularizers on M. Specifically, we replace the regularizer563

in LMNN from
∑

S d2
M(xi , x j) to the log-determinant diver-564

gence (LDD) [12], which encourages learning a metric toward565

the identity matrix, the capped trace norm (CAP) [25],566

which encourages a low-rank matrix, and the SN, which has567

been used to improve adversarial robustness of deep neural568

networks [57]. Second, we compare with the robust metric569

learning method DRIFT [41], which models the perturbation570

distribution explicitly.571

Hyperparameters of LMNN-PL are tuned via random572

search [58]. We randomly sample 50 sets of values from573

the following ranges: μ ∈ U(0.1, 0.9), τ ∈ U(0, P90%574

{dE(xi , xi,min)}), λ ∈ U(0, 4/τ 2). U(a, b) denotes the uniform575

distribution. Pk%{dE(xi , xi,min)} denotes the kth percentile576

of dE(xi , xi,min), where the distance is calculated for all577

i in the triplet constraints with respect to the Euclidean578

distance. Setting the upper bound of the desired margin τ 579

via the percentile avoids unnecessary large values, matching 580

our intention to enlarge the adversarial margin primarily for 581

hard instances. The upper bound of the weight parameter λ 582

depends on the realization of τ to ensure that magnitudes 583

of perturbation loss and LMNN loss are at the same level. 584

The optimal hyperparameters from fivefold cross-validation 585

on the training data or a separate validation set are used to 586

learn the metric. SCML-PL and PNCA-PL are tuned in a 587

similar manner. More details on the training procedure of the 588

proposed and other methods are given in Section IX-B in the 589

supplementary material. The MATLAB code for our method 590

is available at http://github.com/xyang6/LMNNPL. 591

For LMNN-based and SCML-based methods, we use 3NN 592

as the classifier; for PNCA-based methods, we use the nearest 593

prototype classifier. Classification accuracy is used as the 594

evaluation criterion, except for two highly imbalanced datasets 595

(Ecoli and Yeast), G-means is used. 596

2) Evaluation on Classification Performance: Table I 597

reports the mean value and standard deviation of classification 598

accuracy or G-means for imbalanced datasets (indicated by 599

an asterisk). LMNN-PL outperforms LMNN on 12 out of 600

13 datasets. Among the methods with LMNN as the backbone, 601

our method achieves the highest accuracy on eight datasets 602

and second highest accuracy on the four datasets. These 603

experimental results demonstrate the benefit of perturbation 604

loss to generalization of the learned metric. Similarly, we see 605

that SCML-CL outperforms or performs equally well with 606

SCML on nine datasets. The advantage of PNCA-PL becomes 607

less distinct as it is superior to PNCA only on seven datasets. 608

However, this is fairly reasonable as the decision boundary 609

formed by very few proxies is much smoother than the one 610

from 3NN and hence the method is less likely to overfit to 611

training data. 612

3) Investigation Into Robustness: To test robustness, we add 613

zero-mean Gaussian noise with a diagonal covariance matrix 614

and equal variances to test data; the noise intensity is 615

controlled via the SNR and chosen as 5 dB. In addition, 616

considering the small sample size of UCI datasets, we augment 617

test data by adding multiple rounds of random noise until its 618

size reaches 10 000. As shown in Table II, the proposed meth- 619

ods achieve higher classification accuracy or G-means than 620

the corresponding baselines on almost all datasets. Moreover, 621

LMNN-PL is superior to existing regularization techniques or 622

robust metric learning methods on at least nine datasets. These 623

results clearly demonstrate the efficacy of adding perturbation 624

loss for improving robustness against instance perturbation. 625

Additional experiments with other noise types and intensities 626

are reported in Section IX-C in the supplementary material, 627

where we observe similar advantages of the proposed loss. 628

C. Experiments on High-Dimensional Data 629

As mentioned in Remark 3, we extend LMNN-PL for 630

high-dimensional data with PCA being used as a preprocessing 631

step. To verify its effectiveness, we test it on the following 632

three datasets. 633

1) Isolet [56]: The dataset is a spoken letter database 634

and is available from UCI. It includes 7797 instances, 635
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TABLE I

CLASSIFICATION ACCURACY (OR G-MEANS INDICATED BY AN ASTERISK NEXT TO THE DATASET NAME; MEAN±STANDARD
DEVIATION) OF 3NN WITH DIFFERENT METRIC LEARNING METHODS ON CLEAN DATASETS

TABLE II

CLASSIFICATION ACCURACY (OR G-MEANS INDICATED BY AN ASTERISK) OF 3NN NOISE-CONTAMINATED DATASETS.
GAUSSIAN NOISE WITH AN SNR OF 5 DB IS ADDED TO TEST DATA

grouped into four training sets and one test set. We apply636

PCA to reduce the feature dimension from 617 to 170,637

accounting for 95% of total variance. All methods are638

trained four times, one time on each training set, and639

evaluated on the pregiven test set.640

2) MNIST-2k [59]: The dataset includes the first 2000 train-641

ing images and first 2000 test images of the MNIST642

database. PCA is applied to reduce the dimension643

from 784 to 141, retaining 95% of total variance. All644

methods are trained and tested once on the pregiven645

training/test partition.646

3) APS Failure [56]: This is a multivariate dataset with647

a highly imbalanced class distribution. The training set648

includes 60 000 instances, among which 1000 belong to649

the positive class. The test set includes 16 000 instances650

with 375 positive ones. The training set is further split651

into 40 000 instances for training and 20 000 instances652

for selecting hyperparameters. All methods are tested653

once on the test set. Applying PCA reduces the feature654

dimension from 161 to 79. Due to the large sample655

size, we only evaluate LMNN and LMNN-PL on this 656

dataset. 657

In addition to aforementioned methods, we introduce 658

CAP-PL, which comprises the triplet loss of LMNN, the 659

regularizer of CAP, and the proposed perturbation loss. CAP 660

enforces M to be low-rank, which is a suitable constraint for 661

high-dimensional data. With the inclusion of perturbation loss, 662

we expect the learned compact metric to be more robust to 663

perturbation. For a fair comparison, in CAP-PL, we use the 664

same rank and regularization weight as CAP, and tune τ, λ 665

from ten randomly sampled sets of values. 666

Table III compares the generalization and robustness per- 667

formance of LMNN, CAP, SCML, and our method; the 668

generalization performance of other methods are inferior to 669

LMNN-PL and reported in Table VIII in the supplementary 670

material. First, on all three original datasets, our method 671

achieves better performance than the baseline methods, val- 672

idating its efficacy in improving the generalization ability of 673

the learned metric. Second, when the SNR is 20 dB, the aver- 674

age perturbation size is smaller than the average adversarial 675
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Fig. 4. Sensitivity of LMNN-PL to hyperparameters (indicated by the straight line). Optimal accuracy and parameter value found via CV are indicated by
the dashed line and asterisk, respectively.

TABLE III

GENERALIZATION AND ROBUSTNESS OF SELECTED METRIC

LEARNING METHODS ON HIGH-DIMENSIONAL DATASETS

margin. In this case, our method maintains its superiority.676

When the SNR is 5 dB, the average perturbation size is larger677

than the average adversarial margin. Nonetheless, our method678

produces even larger gain in classification performance for679

LMNN on all datasets except APS Failure with the Gaussian680

noise, for SCML on MNIST and on Isolet with the Gaussian681

noise, for CAP on Isolet. These results suggest that adversarial682

margin is indeed a contributing factor in enhancing robustness.683

Third, CAP-PL obtains higher accuracy on both clean and684

noise-contaminated data than LMNN-PL. This supports our685

discussion in Section III that regularization and perturbation686

loss impose different requirements on M and combining them687

has the potential for learning a more effective distance metric.688

D. Computational Cost689

We now analyze the computational complexity of690

LMNN-PL. According to (6), our method requires additional691

TABLE IV

AVERAGE TRAINING TIME (IN SECONDS) OF LMNN-BASED METHODS

calculations on d2
M2(x j , xl) and M X jl . Given n training 692

instances, k target neighbors and p features, the computational 693

complexities of d2
M2(x j , xl) and M X jl are O(np2 + n2 p) and 694

O(n2 p2), respectively. The total complexity is O(p3 +n2 p2 + 695

kn2 p), same as that of LMNN. 696

Table IV compares the running time of LMNN-based 697

methods on five UCI datasets that are large in sample size 698

or in dimensionality and two high-dimensional datasets. The 699

computational cost of our method is comparable to LMNN. 700

E. Parameter Sensitivity 701

The proposed LMNN-PL includes three hyperparameters – 702

μ for the weight of similarity constraints, λ for the weight 703

of the perturbation loss, and τ for the desired adversarial 704

margin. We investigate their influences on the classification 705

performance by varying one hyperparameter and fixing the 706

other two at their optimal values. Fig. 4 shows the accuracy on 707

MNIST evaluated over the range of the hyperparameter. The 708

performance changes smoothly with respect to μ. It is stable 709

over a wide range of λ. When λ equals 0, LMNN-PL fails to 710

learn a metric and returns a zero matrix. The performance 711

is most affected by τ . Indeed, τ plays the central role in 712

LMNN-PL as it determines the distribution of adversarial 713

margins. A small value of τ has little influence on the objective 714

function as the adversarial margin of most instances may 715

already exceed it before optimization, and a large value may 716

greatly reduce the number of triplets that satisfy the loss 717

condition in the definition of pseudo-robustness [i.e., n̂(ts) 718

in Theorem 1]. Therefore, we shall strive to search for its 719

optimal value. 720

V. CONCLUSION 721

In this article, we propose to enhance the robustness and 722

generalization of distance metrics. This is easily achievable by 723

taking advantage of the linear transformation induced by the 724

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: University College London. Downloaded on September 21,2022 at 11:31:42 UTC from IEEE Xplore.  Restrictions apply. 



10 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Mahalanobis distance. Specifically, we find an explicit formula725

for the adversarial margin, which is defined as the Euclidean726

distance between benign instances and their closest adversarial727

examples, and advocate to enlarge it through penalizing the728

perturbation loss designed on the basis of the derivation.729

Experiments verify that our method effectively enlarges the730

adversarial margin, sustains classification excellence, and731

enhances robustness to instance perturbation. The proposed732

loss term is generic in nature and could be readily embedded733

in other Mahalanobis-based metric learning methods. In the734

future, we will consider extending the idea to metric learning735

methods with nonlinear feature extraction and/or nonlinear736

metric learning methods.737
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