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Toward Certified Robustness of
Distance Metric Learning

Xiaochen Yang™, Yiwen Guo

Abstract— Metric learning aims to learn a distance metric
such that semantically similar instances are pulled together while
dissimilar instances are pushed away. Many existing methods
consider maximizing or at least constraining a distance margin
in the feature space that separates similar and dissimilar pairs of
instances to guarantee their generalization ability. In this article,
we advocate imposing an adversarial margin in the input space
so as to improve the generalization and robustness of metric
learning algorithms. We first show that the adversarial margin,
defined as the distance between training instances and their
closest adversarial examples in the input space, takes account of
both the distance margin in the feature space and the correlation
between the metric and triplet constraints. Next, to enhance
robustness to instance perturbation, we propose to enlarge the
adversarial margin through minimizing a derived novel loss
function termed the perturbation loss. The proposed loss can
be viewed as a data-dependent regularizer and easily plugged
into any existing metric learning methods. Finally, we show that
the enlarged margin is beneficial to the generalization ability
by using the theoretical technique of algorithmic robustness.
Experimental results on 16 datasets demonstrate the superiority
of the proposed method over existing state-of-the-art methods
in both discrimination accuracy and robustness against possible
noise.

Index Terms— Adversarial perturbation, generalization ability,
metric learning, nearest neighbor (NN), robustness.

I. INTRODUCTION

ETRIC learning focuses on learning similarity or dis-

similarity between data. Research on metric learning
originates from at least 2002, where [1] first proposes to
formulate it as an optimization problem. Since then, many
metric learning methods have been proposed for classifica-
tion [2], [3], [4], clustering [5], and information retrieval [6],
[7]. In particular, the methods have shown to be particularly
superior in open-set classification and few-shot classification
with notable applications in, for example, face verification [8],
[9] and person re-identification [10], [11].
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One commonly studied distance metric is the generalized
Mahalanobis distance, which defines the distance between any
two instances x;, x; € R” as

du(xi,xj) = \/(xi —x)TM(x; — x)

where M is a positive semidefinite (PSD) matrix. Owing to
its PSD property, M can be decomposed into L” L. Thus,
computing the Mahalanobis distance is equivalent to linearly
transforming the instances from the input space to the feature
space via L and then computing the Euclidean distance
[Lx; — Lx;||> in the transformed space.

To learn a specific distance metric for each task, prior
knowledge on instance similarity and dissimilarity should be
provided as side information. Metric learning methods differ
by the form of side information they use and the supervision
encoded in similar and dissimilar pairs. For example, pairwise
constraints enforce the distance between instances of the same
class to be small (or smaller than a threshold value) and the
distance between instances of different classes to be large
(or larger than a threshold value) [1], [5]. The thresholds
could be either predefined or learned for similar and dissimilar
pairs [12], [13]. In triplet constraints (x;, x;,x;), distance
between the different-class pair (x;, x;) should be larger than
distance between the same-class pair (x;,x;), and typically,
plus a margin [14], [15], [16], [17]. More recently, quadruplet
constraints are proposed, which require the difference in the
distance of two pairs of instances to exceed a margin [18],
and (N + 1)-tuplet extends the triplet constraint for multiclass
classification [19].

The gap between thresholds in pairwise constraints and the
margin in triplet and quadruplet constraints are both designed
to learn a distance metric that could ensure good generaliza-
tion of the subsequent k-nearest neighbor (KNN) classifier.
However, such a distance margin imposed in the feature
space does not consider the correlation between the data and
the learned metric. Consequently, it may be insufficient to
withstand a small perturbation of the instance occurred in the
input space, thereby failing to certify the robustness or even
possess the anticipated generalization benefit. As illustrated in
Fig. 1(upper), while x; selects the same-class instance x ; as its
NN in the feature space, a tiny perturbation from x; to x; in the
input space can be magnified by the learned distance metric,
leading to a change in its NN from x; to the different-class
instance x;. When the NN algorithm is used as the classifier,
the perturbation results in an incorrect label prediction.
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Fig. 1. (Upper) Traditional methods aim to separate the same-class pair

(x;,x;) and the different-class pair (x;, x;) by a margin in the feature space.
While x; has x; as its nearest neighbor (NN) in the feature space and is
correctly predicted by using the NN classifier, the metric is sensitive to
perturbation in the input space; a tiny perturbation from x; to x; changes
the NN to x; and leads to an incorrect prediction. (Bottom) Proposed method
aims to enlarge the adversarial margin in the input space, which equals to the
Euclidean distance between x; and the closest point x; i in the input space
that lies on the decision boundary in the feature space (indicated by P B) and
quantifies the maximum degree to which robustness can be certified.

In this article, we propose a simple yet effective method
to enhance the generalization ability of metric learning algo-
rithms and their robustness against instance perturbation.
As shown in Fig. 1(bottom), the principal idea is to enlarge
the adversarial margin, defined as the distance between a
training instance and its closest adversarial example in the
input space [20].

In particular, our contributions are fourfold.

1) We identify that the distance margin, widely used in
existing methods, is insufficient to withstand adversarial
examples, and we introduce a direct measure of robust-
ness termed the adversarial margin, which quantifies the
maximum degree to which a training instance could be
perturbed without changing the label of its NN (or kNNs
if required) in the feature space. Building on a geometric
insight, we derive an analytically simple solution to the
adversarial margin, which reveals the importance of an
adaptive margin considering the correlation between the
data and the distance metric (Section II-A and II-B).

2) We define a novel hinge-like perturbation loss to penal-
ize the adversarial margin for being small. The pro-
posed loss function serves as a general approach to
enhancing robustness, as it can be optimized jointly with
any existing triplet-based metric learning methods; the
optimization problem suggests that our method learns a
discriminative metric in a weighted manner and simul-
taneously functions as a data-dependent regularization
(see Section II-C).

3) We show the benefit of enlarging the adversarial margin
to the generalization ability of the learned distance
metric by using the theoretical technique of algorithmic
robustness [21] (Theorem 1, Section II-D).

4) We conduct experiments on 16 datasets in both
noise-free and noisy settings. Results show that the pro-
posed method outperforms state-of-the-art robust metric
learning methods in terms of classification accuracy and
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validate its robustness to possible noise in the input

space (see Section IV).
Notation: Let {x;, y;}}_, denote the set of training instance

and label pairs, where x; e Y CR” andy; € Y ={1,...,C};
X is called the input space. Our framework is based on triplet
constraints {x;, x ;, x;} and we adopt the following strategy for
generating triplets [14]:

S={(xi,x;) :x; € {kNNs with the same class label of x;}}
R={(xi,x;,x): (xi,x;) €S,y # n}.

x; is termed the target neighbor of x; and x; is termed the
impostor. |S| and |R| denote the numbers of elements in the
sets S and R, respectively. dg and dy; denote the Euclidean
and Mahalanobis distances, respectively; M € SP, where Si
is the cone of p x p real-valued PSD matrices. M> = MM.
1[-] denotes the indicator function and [a], = max(a, 0) for
aelR.

II. METHODOLOGY

In this section, we introduce our method for enhancing
robustness of triplet-based metric learning algorithms through
maximizing the adversarial margin. First, we review the exist-
ing distance margin and provide the rationale for enlarging the
adversarial margin. Second, an explicit formula for the adver-
sarial margin is derived. Third, we propose the perturbation
loss to encourage a larger adversarial margin and present its
optimization jointly with the existing large (distance) margin
NN (LMNN) algorithm. Lastly, we show that enlarging the
adversarial margin is beneficial to the generalization ability of
the learned distance metric.

A. Motivation for Enlarging the Adversarial Margin

Suppose x; is a training instance and x ;, x; are the NN of x;
from the same class and from the different class respectively.
Many triplet-based methods, such as LMNN [14], impose the
following constraint on the triplet:

Fx) = dyy(xi, x)) — dyg(xi, %) > 1.

When the constraint is satisfied, x; will be correctly classi-
fied using the NN classifier. Moreover, the value one represents
the unit margin at the distance level and is designed to
robustify the model against small noises in training instances.

Nevertheless, the distance margin may be insufficient to
withstand deliberately manipulated perturbations. Let Ax;
denote a perturbation of x;. When the perturbation size is
constrained as ||Ax;|l> <r, f(x; + Ax;) decreases the most
from f(x;) if Ax; is chosen in the direction of M (x; — x):
fxi+ Axi) — f(x;) = 2Ax] M(x; — x;) = =2r|M(x; —
x ;) |l2. Therefore, in order to correctly classify the perturbed
instance x; + Ax;, it is required that f(x; + Ax;) is positive,
that is, ||M (x;—x)|l» should be small. One way to reduce this
value is by regularizing the spectral norm of M. However, it is
demanding for the metric to satisfy the large distance margin
for all triplets and meanwhile keep a small spectral norm (SN).

To achieve robustness against instance perturbation, we sug-
gest an alternative way by maximizing the adversarial margin,
defined as the distance between the training instance and its
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closest adversarial example [20]. More concretely, an adversar-
ial example is a perturbed point whose NN, identified based on
the learned Mahalanobis distance, changes from an instance of
the same class to one of a different class; consequently, it will
be misclassified by the NN classifier and increase the risk
of misclassification by kNN. In terms of previous notations,
an adversarial example is a perturbed point x; + Ax; such that
f(x; + Ax;) < 0. If all adversarial examples of an instance
are far away from the instance itself, i.e., there is no Ax;
such that ||Ax;|l < r and f(x; + Ax;) < 0, a high degree
of robustness is achieved. Building on this rationale, we will
first find the closest adversarial example and then push this
point away from the training instance. Moreover, since the
test instance can be regarded as a perturbed copy of training
instances [21], improving robustness on correctly classified
training instances also helps enhance the generalization ability
of the learned metric.

B. Derivation of Adversarial Margin

We start by deriving a closed-form solution to the closest
adversarial example. Given a training instance x; and the
associated triplet constraint (x;,x;,x;), we aim to find the
closest point X;min to x; in the input space that lies on
the decision boundary formed by x; and x; in the feature
space. Note that closeness is defined in the input space and
will be calculated using the Euclidean distance since we target
at changes on the original feature of an instance; and that the
decision boundary is found in the feature space since kKNNs are
identified by using the Mahalanobis distance. Mathematically,
we can formulate the closest adversarial example x;min as
follows:

Xi,min = argmin(x; — xi)T(x; _ xi)
x;eRP

T
st (Lx; - w) (Lx;,— Lx;) =0. (1)

The objective function of (1) corresponds to minimizing
the Euclidean distance from the training instance x;. The
constraint represents the decision boundary, which is the
perpendicular bisector of points Lx ; and Lx;. In other words,
it is a hyperplane that is perpendicular to the line joining points
Lx; and Lx; and passes their midpoint ((Lx; + Lx;)/2); all
points on the hyperplane are equidistant from Lx; and Lx;.

Since (1) minimizes a convex quadratic function with
an equality constraint, we can find an explicit formula for
Ximin by using the method of Lagrangian multipliers; detailed
derivation is provided in Section VI in the supplementary
material

(5% —x) M=)

(x; —x)TM*(x; — x})

=x; + Mx; —x;). (2)

X min

With the solution of x; min, We can now calculate the squared
Euclidean distance between x; and X; min

(d3, Geis 1) — iy (xi, %))

4d;,(xj, %))

3)

d)%;(xh xi,min) =

For clarity, we will call dg(x;, X; min) the adversarial mar-
gin, in contrast to the distance margin as in LMNN. It repre-
sents the maximum amount of tolerance for perturbation while
retaining prediction correctness. The numerator of (3) is the
square of the standard distance margin, and the denominator
is the squared L,-norm of M (x; — x ;). Therefore, in order to
achieve a large adversarial margin, the metric should push x;
away from the neighborhood of x; by expanding the distance
in the direction that has a small correlation with x; — x; (the
optimal direction is orthogonal to x; — x ;).

Remark 1: The objective function in (1) defines a hyper-
sphere in the input space, which characterizes perturbations
of equal magnitude in all directions, e.g., isotropic Gaussian
noise. To model heterogeneous and correlated perturbation,
we can extend the objective function by defining an arbitrary
oriented hyperellipsoid, as discussed in Section VI in the
supplementary material.

C. Metric Learning via Minimizing the Perturbation Loss

To improve robustness of distance metric, we design a
perturbation loss to promote an increase in the adversar-
ial margin. Two situations need to be distinguished here.
First, when the NN of x; is an instance from the same
class, we will penalize a small adversarial margin by using
the hinge loss [72 — dé(xi,xi,min)]+. The reasons are that:
1) the adversarial margin is generally smaller for hard
instances that are close to the class boundary in contrast to
those locating far away and 2) it is these hard instances that are
more vulnerable to perturbation and demand an improvement
in their robustness. Therefore, we introduce 7 for directing
attention to hard instances and controlling the desired margin.
Second, in the other situation where the NN of x; belongs to a
different class, metric learning should focus on satisfying the
distance requirement specified in the triplet constraint. In this
case, we simply assign a large penalty of 72 to promote a
nonincreasing loss function. Integrating these two situations,
we propose the following perturbation loss:

1 ~
o = o Sl ~ B ],
R

x]l[dzzw(xi,xl) > dgzu(xi»xj)]
+ 2 1[dyy (xi, x)) < dyy(xi,x )]} @

where > is an abbreviation for >, . . .. To pre-
vent the denominator of (3) from being zero, which may
happen when different-class instances x; and x; are close
to each other, we add a small constant ¢ (¢ =le-10) to
the denominator; that is, dz(x;, Ximn) = ((d3;(x;, X)) —
3y (xi, %))/ (4(d2 (x 1, x1) + €)).

The proposed perturbation loss can be readily included in
the objective function of any metric learning methods and is
particularly useful to triplet-based methods. When the same
triplet set is used for supervising metric learning and deriving
adversarial examples, our method can encourage the triplets to
meet the distance margin by learning a discriminative metric.
For this reason, we adapt LMNN as an example for its wide
use and effective classification performance. The objective
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function of LMNN with the perturbation loss is as follows:

min J = JounN + AJp
MeS,

1
Joun = (1= @) —= >~ dy(xi, x))
IS1 4

b S+ Byl = ], ©)
R
where > g stands for > . ,cs. The weight parameter
A > 0 controls the importance of perturbation loss (Jp) relative
to the loss function of LMNN (JpmnN)- # € (0, 1) balances the
impacts between pulling together target neighbors and pushing
away impostors.
We adopt the projected gradient descent algorithm to solve
the above optimization problem. The gradient of Jp and JyynN
are given as follows:

aJ 1 di(xi, x)) — d3y(x;, x
—P=—Zaw{ b (i, x1) — di (x x’)(X,-j—X,-z)
oM~ |R| & 22 x50 +€)

(&3 Gei, x0) — iy (xi, x )’

4(d§42(xj,xl) + 6)2

X (MXj[ +Xj1M)]

1 —
= ZXij—i-LZﬁijz(Xij—Xiz) (6)
ISI 4 IRI 43

where a;;; = 1[d},(x;,x;) > di;(xi, %), dg(Xi, Ximin) < T,
Biji = 11 + dy(xi, x;) — dy(xi,x) = 0]; X;5 = (x; —
x)(xi—x j)T and X;;, X j; are defined similarly. The gradient
of Jp is a sum of two descent directions. The first direction
X, — X;; agrees with LMNN, indicating that our method
updates the metric toward better discrimination in a weighted
manner. The second direction M X j;+X ;; M controls the scale
of M; the metric will descend at a faster pace in the direction
of a larger correlation between M and X ;. This suggests our
method functions as a data-dependent regularization. Let M’
denote the Mahalanobis matrix learned at the ¢th iteration. The
distance matrix will be updated as
0JLMNN ; oJp. )

oM’ oM’

where y denotes the learning rate. Following [14]’s work, y is
increased by 1% if the loss function decreases and decreased
by 50% otherwise. To guarantee the PSD property, we factor-
ize M'*! as VAV via eigendecomposition and truncate all
negative eigenvalues to zero, i.e., M'™' = V max(A,0)V7.
Remark 2: The proposed perturbation loss is a generic
approach to improving robustness against possible perturba-
tion. In Section VII in the supplementary material, we illustrate
examples of incorporating the perturbation loss into two differ-
ent types of triplet-based methods, sparse compositional metric
learning (SCML) [15] and proxy neighborhood component
analysis (ProxyNCA++) [22]. SCML revises the structure of
the Mahalanobis distance by representing it as a sparse and
nonnegative combination of rank-one basis elements, which
typically results in less number of parameters to be estimated.

0JLMNN
oM

Mt+1=Mt_y(
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ProxyNCA++ revises the construction of triplet constraints
by replacing nearest instances x; and x; with nearest proxy
points. The proxies are learned to represent each class, and
the resulting method is shown to generalize well on small
datasets [23], robust to outliers and noisy labels [24], and
improves computational efficiency on large-scale datasets.

Remark 3: Learning a distance metric for extremely
high-dimensional data will result in a large number of
parameters to be estimated and potentially suffer from over-
fitting. In order to reduce the input dimensionality, PCA is
often applied to preprocess the data prior to metric learn-
ing [14], [25]. In Section VI-A in the supplementary mate-
rial, we extend the proposed method such that the distance
metric learned in the low-dimensional PCA subspace could
still achieve robustness against perturbation in the original
high-dimensional input space. The decision boundary of NN
classifier [i.e., the constraint of (1)] is revised in order to
take account of the linear transformation matrix induced by
the Mahalanobis distance and that of PCA. The proposed
extension will be evaluated in Section IV-C.

D. Generalization Benefit

From the perspective of algorithmic robustness [21], enlarg-
ing the adversarial margin could potentially improve the
generalization ability of triplet-based metric learning methods.
The following generalization bound, i.e., the gap between the
generalization error £ and the empirical error £cpp, follows
from the pseudo-robust theorem of [26]. Preliminaries and
derivations are given in Section VIII in the supplementary
material.

Theorem 1: Let M* be the optimal solution to (5). Then
for any ¢ > 0, with probability at least 1 — J we have

|£(M*) - femp(M*)|

- ﬁ(l:) +B(n3 —f(ts) n
n n

3\/2K1n2+21n 1/5) o
n

where 7i(t;) denotes the number of triplets whose adversarial

margins are larger than 7, B is a constant denoting the upper

bound of the loss function [i.e., (5)], and K denotes the number

of disjoint sets that partition the input-label space and equals

to [VI(1 + (2/7))".

Enlarging the desired adversarial margin v will affect two
quantities in (7), namely K and 7i(t;). First, since K equals
to |V|(1 + (2/7))?, increasing 7 will cause K to decrease
at a polynomial rate of the input dimensionality p. Moreover,
as the right-hand side of (7) is a function of K (O(K'/?)), this
means that the upper bound of generalization gap reduces at a
rate of p'/2. Hence, for datasets with a relative large number
of features, a small improvement in the adversarial margin can
greatly benefit the generalization ability of the learned metric.

Second, when 7 increases, less triplets will satisfy the
condition that their adversarial margin is larger than 7; that
is, 7i(t;) decreases with 7. Meanwhile, since B > 1, the upper
bound is a decreasing function of 7i(#;). Therefore, enlarging
7 leads to an increase in the upper bound. However, the rate
of such increase depends on the datasets. For example, if most
instances in the dataset are well separated and have a margin
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in the original input space, enlarging the desired adversarial
margin 7 will not have a large impact on 7i(t), the upper
bound, and thus the generalization gap.

In summary, for datasets with many features and most
instances being separable, we expect an improvement in the
generalization ability of the learned distance metric from
enlarging the adversarial margin.

ITI. RELATED WORK
A. Robust Metric Learning

To make machine learning models more secure and
trustworthy, robustness to input perturbations is a crucial
dimension [27]. More importantly, designing such robust
metric learning algorithms is particularly vital to safety-
critical applications, such as healthcare [28], network intrusion
detection [29], and surveillance systems based on faces [30],
gaits [31], and other biometric traits [32].

Existing approaches to improving the robustness of Maha-
lanobis distances can be categorized into four main types.
The first type of method imposes structural assumption or
regularization over M so as to avoid overfitting [25], [33],
[34], [35], [36], [37]. Methods with structural assumption
are proposed for classifying images and achieve robustness
by exploiting the structural information of images; however,
such information is generally unavailable in the symbolic
datasets that will be studied in this article. Regularization-
based methods are proposed to reduce the risk of overfitting
to feature noise in the training set. Our proposal, which is
aimed to withstand test-time perturbation, does not conflict
with these methods and can be combined with them to learn
a more effective and robust distance metric; an example is
shown in Section IV-C.

The second type of method adopts loss functions that are
less sensitive to outlier samples or noisy labels. In most metric
learning methods, loss functions are founded on the squared
L,-norm distance for computational efficiency. However, such
choice may be sensitive to outliers. To overcome this limi-
tation, several remedies have been proposed, such as using
Li-norm distances [38] and metric based on the signal-to-
noise ratio (SNR) [39], or replacing the square function with
the maximum correntropy criterion [40].

The third type of method studies robustness to training
noise [41], [42]. These methods explicitly model the noise dis-
tribution or identify clean latent examples, and consequently,
use the expected Mahalanobis distance to adjust the value of
the distance margin for each triplet. Our method can also be
viewed as imposing a data-dependent and dynamic margin—to
achieve the same adversarial margin, triplets that have a higher
correlation between x; — x; and the metric M should satisfy
a larger distance margin. However, the focus of our work is
orthogonal to the aforementioned two types of method.

The last type of method generates hard instances through
adversarial learning and trains a metric to fare well in the new
hard problem [43], [44]. While sharing the aim of improving
metric robustness, our method is intrinsically different from
them. Their methods approach the task at a data level,
where real examples are synthesized based on the criterion

of incurring large losses. Our method tackles perturbation at
a model level, where a loss function is derived by considering
the definition of robustness with respect to the decision maker
kNN. By preventing change in the NN in a strict manner, our
method is capable of obtaining a certification on adversarial
margin.

B. Adversarial Robustness of Deep Metric Learning

More recently, deep metric learning has been investigated
intensively, which replaces the linear projection induced by
the Mahalanobis distance with deep neural networks. While
deep neural networks improve the discriminability between
classes, they are found to be nonrobust and vulnerable to
adversarial examples. Robust optimization [20], [45] is one of
the most effective approaches to improving adversarial robust-
ness, which trains the network to be robust against adversarial
perturbations that are mostly constructed via gradient-based
optimization; [46] adapts it to deep metric learning by con-
sidering the interdependence between data points in pairwise
or triplet constraints. Another way to enhance robustness and
generalization ability is by attaining a large margin in the
input space, which dates back to support vector machines [47]
and inspires this work. Due to the hierarchical nonlinear
nature of deep networks, the input-space margin cannot be
computed exactly and a variety of approximations have been
proposed [48], [49], [50], [51]. In this work, we investigate
such margin in the framework of metric learning, defines it
specifically with respect to the kNN classifier, and provide
an exact and analytical solution to the margin. The analyti-
cal solution to the margin provides fascinating insights into
essential factors for the robustness of distance metrics.

C. Adversarial Robustness of kNN Classifiers

While the notion of adversarial examples applies to kNN
classifiers, existing methods for deep neural networks cannot
be implemented directly due to the nondifferential nature
of the classifier. Papernot er al. [52] and Sitawarin and
Wagner [53] propose continuous substitutes of kNN, from
which gradient-based adversarial examples can be constructed
to attack the classifier. Wang er al. [54] formulates a series
of quadratic programming (QP) problems and proposes an
efficient algorithm to search exhaustively over all training
samples and compute the minimal adversarial perturbation
for the 1-NN classifier. In addition, the dual solution to
these QP problems can be used for robustness verification.
Yang et al. [S5] proposes to improve adversarial robustness
for kNN by pruning the training set in order to satisfy
the condition defined through the robustness radius, i.e., the
norm of the minimal adversarial perturbation. Our work also
aims to robustify kNN, but achieves it through enlarging the
adversarial margin.

IV. EXPERIMENTS

In this section, we first present two toy examples to
illustrate the difference in the learning mechanisms of
LMNN and the proposed method dubbed LMNN-PL. Next,
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Fig. 2. Comparison of learning mechanisms of LMNN and LMNN-PL when features exhibit different separability. (a) M = [(')
®) M =[5 53] de(xi, ximin) = 0.15. () M = [§§ $9] dr(xi, ximin) = 0.16.
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Fig. 3. Comparison of learning mechanisms of LMNN and LMNN-PL when confronting the problem of multicollinearity. (a) M = [é g ﬂ dg (x;, Ximin) =
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0.83. (b) M = [ 23 28 719] dg(xi, Ximin) = 0.05. (c) M = [ 045 0.45
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we compare LMNN-PL with state-of-the-art methods on
16 benchmark datasets (13 low/medium-dimensional and three
high-dimensional) and investigate the relationship between
adversarial margin, generalization ability, and robustness.
Finally, the computational aspect of our method is discussed.

A. Comparisons Between LMNN and LMNN-PL

We design two experiments to compare the metrics learned
with the objective of enhancing class discriminability and
of certified robustness. In the first example, a 2-D binary
classification dataset is simulated, as shown in Fig. 2a. The
positive class includes 100 instances drawn uniformly from
[—3, 0] in the horizontal (abbr. 1st) direction and [0, 1] in the
vertical (abbr. 2nd) direction. The negative class consists of
two clusters, where the first cluster includes 100 instances
drawn from U(—3,0) and U(—0.6,—0.5) in the 1st and
2nd directions, respectively, and the second cluster includes
20 instances drawn from U(0,0.1) and U (0, 1) in the two
directions respectively. By design, instances of positive and
negative classes can be separated in both directions, while
the separability in the Ist direction is much smaller than the
2nd direction. Fig. 2(b) and (c) show the instances in the

—0.08 | -
—0.06:| dg (x,- N x,"min) =0.70.
0.85

projected feature space with metrics learned from LMNN and
LMNN-PL, respectively; the projection direction is indicated
by the unit vector of red and blue lines; and the metric and
the average of adversarial margins (dg (x;, Ximin)) are given in
the caption. The objective of LMNN is to satisfy the distance
margin. Thus, it expands the distance in both directions.
Moreover, since the 1st direction has a small separability in
the original instance space, this direction is assigned with a
larger weight. In contrast, LMNN-PL controls the scale of
M. Moreover, a notable difference is that the 2nd direction
is assigned with a larger weight than the 1st direction, which
is again caused by the small separability in the 1st direction.
As any perturbation in the Ist direction is highly likely to
result in a misclassification, the proposed method diverts more
attention to robust features, i.e., the 2nd direction. Due to the
easiness of the task, all metrics lead to the same classification
accuracy of 99.09% on a separate test set.

In the second example, we simulate a 3-D binary classi-
fication dataset, as shown in Fig. 3(a). Each class includes
100 instances. The first two dimensions are drawn from
multivariate Gaussian distributions with w, = [0.45, 0.45],
n, = [-045,-045], £, = X, = [_(1).9 ’?'9]; the
third dimension equals the sum of the first two dimensions,
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plus white Gaussian noise with standard deviation of 0.01.
By design, the dataset exhibits the problem of strong mul-
ticollinearity. This issue has little influence on LMNN as the
data is nearly separable in all directions. However, it will affect
the adversarial margin. Specifically, if the metric assigns equal
weights to all dimensions, then the perturbation should be
small in all directions so as to guarantee that the perturbed
instance stays on the correct side of the decision boundary.
In contrast, if the metric assigns weights only to the third
dimension, then the perturbation in the first two dimensions
will not cause any change in the learned feature space and
hence a larger magnitude of perturbation can be tolerated. This
expectation is supported by the empirical result in Fig. 3(c),
where the distance in the third dimension is more important
than the first two dimensions. LMNN achieves an accuracy of
95.50% and our method achieves an accuracy of 96.00%.

In summary, our method learns a discriminative metric, and
meanwhile, imposes a data-dependent regularization on the
metric. It also achieves larger adversarial margins than LMNN,
demonstrating the effectiveness of the proposed perturbation
loss.

B. Experiments on UCI Data

1) Data Description and Experimental Setting: In this
experiment, we study 13 datasets from UCI machine learning
repository [56]. Information on sample size, feature dimension
and class information is listed in Table V in the supplementary
material. All datasets are preprocessed with mean-centering
and standardization, followed by L, normalization to unit
length. To evaluate the performance, we use 70%-30%
training-test partitions and report the average result over
20 rounds of random split. The only exception is the Credit
dataset, where we only run the experiment once as the sample
size is relatively large.

We evaluate the effectiveness of the proposed pertur-
bation loss by incorporating it into LMNN, SCML, and
ProxyNCA++ (abbreviated to PNCA); the resulting meth-
ods are denoted by LMNN-PL, SCML-PL, and PNCA-PL,
respectively. In addition, we conduct a thorough study by
setting LMNN as the backbone and comparing LMNN-PL
with two types of methods. First, we consider different
regularizers on M. Specifically, we replace the regularizer
in LMNN from > g d3,(x;,x;) to the log-determinant diver-
gence (LDD) [12], which encourages learning a metric toward
the identity matrix, the capped trace norm (CAP) [25],
which encourages a low-rank matrix, and the SN, which has
been used to improve adversarial robustness of deep neural
networks [57]. Second, we compare with the robust metric
learning method DRIFT [41], which models the perturbation
distribution explicitly.

Hyperparameters of LMNN-PL are tuned via random
search [58]. We randomly sample 50 sets of values from
the following ranges: 4 € U(0.1,0.9), t € U(0, Pyq
{de(xi, Ximin)}), 4 € U(0,4/72). U(a, b) denotes the uniform
distribution. Pro{dr(x;, Ximin)} denotes the kth percentile
of dg(x;,x;mn), Where the distance is calculated for all
i in the triplet constraints with respect to the Euclidean

distance. Setting the upper bound of the desired margin 7
via the percentile avoids unnecessary large values, matching
our intention to enlarge the adversarial margin primarily for
hard instances. The upper bound of the weight parameter A
depends on the realization of 7 to ensure that magnitudes
of perturbation loss and LMNN loss are at the same level.
The optimal hyperparameters from fivefold cross-validation
on the training data or a separate validation set are used to
learn the metric. SCML-PL and PNCA-PL are tuned in a
similar manner. More details on the training procedure of the
proposed and other methods are given in Section IX-B in the
supplementary material. The MATLAB code for our method
is available at http://github.com/xyang6/LMNNPL.

For LMNN-based and SCML-based methods, we use 3NN
as the classifier; for PNCA-based methods, we use the nearest
prototype classifier. Classification accuracy is used as the
evaluation criterion, except for two highly imbalanced datasets
(Ecoli and Yeast), G-means is used.

2) Evaluation on Classification Performance: Table 1
reports the mean value and standard deviation of classification
accuracy or G-means for imbalanced datasets (indicated by
an asterisk). LMNN-PL outperforms LMNN on 12 out of
13 datasets. Among the methods with LMNN as the backbone,
our method achieves the highest accuracy on eight datasets
and second highest accuracy on the four datasets. These
experimental results demonstrate the benefit of perturbation
loss to generalization of the learned metric. Similarly, we see
that SCML-CL outperforms or performs equally well with
SCML on nine datasets. The advantage of PNCA-PL becomes
less distinct as it is superior to PNCA only on seven datasets.
However, this is fairly reasonable as the decision boundary
formed by very few proxies is much smoother than the one
from 3NN and hence the method is less likely to overfit to
training data.

3) Investigation Into Robustness: To test robustness, we add
zero-mean Gaussian noise with a diagonal covariance matrix
and equal variances to test data; the noise intensity is
controlled via the SNR and chosen as 5 dB. In addition,
considering the small sample size of UCI datasets, we augment
test data by adding multiple rounds of random noise until its
size reaches 10000. As shown in Table II, the proposed meth-
ods achieve higher classification accuracy or G-means than
the corresponding baselines on almost all datasets. Moreover,
LMNN-PL is superior to existing regularization techniques or
robust metric learning methods on at least nine datasets. These
results clearly demonstrate the efficacy of adding perturbation
loss for improving robustness against instance perturbation.
Additional experiments with other noise types and intensities
are reported in Section IX-C in the supplementary material,
where we observe similar advantages of the proposed loss.

C. Experiments on High-Dimensional Data

As mentioned in Remark 3, we extend LMNN-PL for
high-dimensional data with PCA being used as a preprocessing
step. To verify its effectiveness, we test it on the following

three datasets.
1) Isolet [56]: The dataset is a spoken letter database

and is available from UCI. It includes 7797 instances,
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TABLE I
CLASSIFICATION ACCURACY (OR G-MEANS INDICATED BY AN ASTERISK NEXT TO THE DATASET NAME; MEANZ+STANDARD
DEVIATION) OF 3NN WITH DIFFERENT METRIC LEARNING METHODS ON CLEAN DATASETS
LMNN-based SCML-based PNCA-based
Dataset Euclidean LMNN LDD CAP SN DRIFT LMNN-PL SCML SCML-PL PNCA PNCA-PL
Australian 82.7642.38 83.704+2.43 84.18+2.37 83974245 83.7742.50 84.47+2.02 84.47+1.63 84.761+2.08 84.42+2.18 86.30+£1.82 86.151+2.24
Breast cancer 97.17+1.33  97.12+1.25 96.95+1.51 97.00+1.08 97.05£1.32 96.98+1.16 97.02+1.30  97.00£1.09 97.074+1.24 97.024+1.30 97.05+1.24
Ecoli* 85.8648.10  86.4247.94 85.29+9.78 83.54+10.09 86.44+7.95 86.45+6.54 87.04+7.38 85.53+7.06 86.69+6.58 84.80+6.84 85.5415.60
Fourclass 75.1242.35  75.1042.31 75.15+2.32 75.02+£2.48 75.10£2.31 75.0842.34 75.1242.35 75.104£2.27 75124235  75.3942.21 72.9745.36
Haberman 72.25+4.41 72.194+3.89 72424395 71.5243.54 72.30+4.57 72.024+3.94 72.64+4.29  72.75+3.79 72.364+4.38  75.2843.55 75.67+3.85
Iris 87.11+4.92  87.114+5.08 87.67+4.70 86.67+5.49 87.22+5.24 85.89+4.46 87.334+4.73 86.894+6.40 87.44+5.31 84.441+6.29 83.22+5.97
Segment 94.794+0.65  95.31+0.89 95.58+0.81 95.514+0.70 95.38+0.83 95.754+0.65 95.6410.83 92.611+6.65 93.95+1.47 94.73+£0.93 94.524+0.99
Sonar 85.16+4.19 86.67+£4.10 87.2243.90 87.224+4.38 86.67+4.04 86.19+4.43 87.78+3.53 82.38+4.15 84.13+4.61 83.25+£5.95 83.65+4.83
Voting 93.78+1.76  95.80+1.78 95.80+1.41 95924145 95.84+1.74 9531+1.32 96.15+1.56 95.84+1.58 96.26+1.28 95.84+1.65 95.65+1.66
WDBC 96.29+1.61 96.99+1.30 96.96+£1.43 96.994+1.51 96.93+1.34 96.70+1.16 97.13+1.33  97.25+1.30 97.25+1.52 97.37+1.49 97.37+0.94
Wine 95.284+2.36  97.31+£1.94 96.67£1.76 96.85+2.26 97.41£1.84 97.69+1.79 97.69+1.89 97.69+1.79 97.2242.04 97.044+2.71 97.22+1.95
Yeast* 70.33+10.50 69.844+10.26 70.26£10.51 70.29410.52 69.86£10.29 70.324+10.51 70.32+10.51 68.81£11.35 69.904+10.35 66.01+-13.21 69.41+£10.36
Credit 76.40 76.41 76.68 76.96 76.50 76.87 76.89 76.45 76.29 81.15 81.07
# outperform - 12 11 12 12 12 - 9 - 7 -

For methods with LMNN as the backbone, the best ones are shown in bold and the second best ones are underlined; for methods with SCML or PNCA as the backbone, the
best ones are shown in bold. ‘# outperform’ counts the number of datasets where LMNN-PL (SCML-PL, PNCA-PL resp.) outperforms or performs equally well with LMNN-based

(SCML, PNCA resp.) methods.

TABLE II

CLASSIFICATION ACCURACY (OR G-MEANS INDICATED BY AN ASTERISK) OF 3NN NOISE-CONTAMINATED DATASETS.
GAUSSIAN NOISE WITH AN SNR OF 5 DB IS ADDED TO TEST DATA

LMNN-based SCML-based PNCA-based
Dataset Euclidean LMNN LDD CAP SN DRIFT LMNN-PL SCML SCML-PL PNCA PNCA-PL
Australian 82.2841.67 82.46+£1.58 83.02+1.58 82.3641.56 82.5641.54 82.58+1.45 83.50+1.56 82.934+1.65 83.42+1.68 82.794+2.37 83.66+2.28
Breast cancer 96.791+1.05 96.25+1.09 96.69£1.09 96.35+1.02 96.29+1.11 96.664+1.00 96.71+1.08 96.40+1.05 96.65+1.06 96.20+1.37 96.77+1.14
Ecoli* 79.95+7.67 74.96+7.16 79.13+7.67 7446+9.36 75.19+£7.23 77.86+7.76 80.04+7.51 76.49+6.78 78.38+7.92  75.52+6.08 77.041+6.20
Fourclass 69.114+1.12  67.62+1.23 68.77£1.14 67.63+1.12 68.554+1.30 69.03+1.13 69.01+1.17 68.074+1.16 68.861+1.06  70.4242.17 69.39+4.60
Haberman 69.931+-1.88 69.84+1.79 69.92+1.87 69.23+2.00 69.904+1.88 69.094+2.49 69.89+1.90 69.65+1.63 69.88+1.83  74.324+3.22 74.32+3.10
Iris 79.754+3.26  78.61£2.97 78.87+3.16 77.7943.27 78.704+3.08 78.4343.09 79.04+3.09 78.1643.58 79.01+3.12  77.954+4.53 78.20+3.90
Segment 88.184+0.64 81.02+3.55 86.15+£1.26 85344247 82.104+3.41 86.63+1.09 84.72+2.62 60.184+9.73 61.33+9.05  78.274+2.83 80.28+3.35
Sonar 83.4743.21 83.56+4.27 86.18+2.95 85.4142.82 83.5244.28 84.654+3.30 85.00+3.15 77.014+4.23 79.494+3.80 80.744+4.36 81.74+3.43
Voting 93.1941.15 94.00£1.00 94.25+1.14 94.3741.17 94.064+1.00 93.954+1.12 94.64+1.21 93.9941.15 94.64+1.09 92.61+1.64 93.46+1.77
WDBC 95924130 91.71£1.90 96.30+0.94 96.164+1.08 92.464+1.80 96.044+0.86 96.11+0.88 95.744+1.30 96.21+1.16  96.03+1.54 96.22+1.15
Wine 94.20+1.46  93.33+1.63 94.03£1.39 93.97+1.47 9345£1.70 94.66+1.15 9451+1.20 94.01£1.56 94.61+1.32 94.19+1.94 93.48+1.48
Yeast* 69.364+10.47 54.131+8.24 68.62+£10.43 66.484+10.18 55.494+9.45 69.64+10.49 69.82+10.44 55.961+7.64 60.47+10.39 61.41+17.97 63.59+18.33
Credit 76.28 76.16 76.22 76.05 76.30 76.37 76.15 75.93 75.55 78.24 79.13
# outperform - 12 9 10 11 9 - 12 - 11 -

grouped into four training sets and one test set. We apply
PCA to reduce the feature dimension from 617 to 170,
accounting for 95% of total variance. All methods are
trained four times, one time on each training set, and
evaluated on the pregiven test set.

MNIST-2k [59]: The dataset includes the first 2000 train-
ing images and first 2000 test images of the MNIST
database. PCA is applied to reduce the dimension
from 784 to 141, retaining 95% of total variance. All
methods are trained and tested once on the pregiven
training/test partition.

APS Failure [56]: This is a multivariate dataset with
a highly imbalanced class distribution. The training set
includes 60000 instances, among which 1000 belong to
the positive class. The test set includes 16000 instances
with 375 positive ones. The training set is further split
into 40000 instances for training and 20000 instances
for selecting hyperparameters. All methods are tested
once on the test set. Applying PCA reduces the feature
dimension from 161 to 79. Due to the large sample

2)

3)

size, we only evaluate LMNN and LMNN-PL on this
dataset.

In addition to aforementioned methods, we introduce
CAP-PL, which comprises the triplet loss of LMNN, the
regularizer of CAP, and the proposed perturbation loss. CAP
enforces M to be low-rank, which is a suitable constraint for
high-dimensional data. With the inclusion of perturbation loss,
we expect the learned compact metric to be more robust to
perturbation. For a fair comparison, in CAP-PL, we use the
same rank and regularization weight as CAP, and tune 7, 1
from ten randomly sampled sets of values.

Table III compares the generalization and robustness per-
formance of LMNN, CAP, SCML, and our method; the
generalization performance of other methods are inferior to
LMNN-PL and reported in Table VIII in the supplementary
material. First, on all three original datasets, our method
achieves better performance than the baseline methods, val-
idating its efficacy in improving the generalization ability of
the learned metric. Second, when the SNR is 20 dB, the aver-
age perturbation size is smaller than the average adversarial
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the dashed line and asterisk, respectively.

TABLE III

GENERALIZATION AND ROBUSTNESS OF SELECTED METRIC
LEARNING METHODS ON HIGH-DIMENSIONAL DATASETS

Isolet

Method Clean  IG,SNR=20 IG,SNR=5 AG,SNR=20 AG,SNR=5 Adv.
(0.0809)  (0.4233)  (0.0588)  (0.3181) margin
LMNN  90.1444.45 90.09+4.15 86.02-:3.48 90.1744.03 87.8143.87 0.1095

89.4043.76 0.1249

88.5043.71 0.0683
88.414+4.07 0.0822

LMNN-PL 91.08+3.71 91.024+3.77 87.91£3.30 91.05+3.73

SCML 90.73+4.10 90.33+4.21 86.50+4.18 90.51+4.14
SCML-PL 90.83+4.16 90.671+4.12 86.55+£3.75 90.83+4.16

CAP 91.0543.66 91.1343.85 88.974+4.00 91.10+3.73 89.90+3.87 0.1514
CAP-PL  91.58+3.96 91.5243.86 89.9143.74 91.474+3.91 90.65+3.73 0.1559
MNIST
Method Clean  IG,SNR=20 IG,SNR=5 AG,SNR=20 AG,SNR=5 Adv.

(0.0540) (0.2939) (0.0649) (0.3482) margin
LMNN 90.55 90.00 88.40 90.10 88.40  0.1528
LMNN-PL  91.15 91.35 90.80 91.45 90.35 0.2235
SCML 88.95 88.75 87.35 88.85 86.45 0.1217
SCML-PL 89.15 89.20 88.50 89.35 88.05 0.1432
CAP 91.65 91.80 91.40 91.80 90.70  0.2219
CAP-PL 92.00 91.90 90.85 91.95 90.65 0.2264

APS Failure

Method Clean  IG,SNR=20 IG,SNR=5 AG,SNR=20 AG,SNR=5 Adv.

(0.0906) (0.5097) (0.0996) (0.5604) margin
LMNN 80.69 80.20 75.66 81.18 75.13 0.1773
LMNN-PL  80.89 82.15 74.13 82.33 7792  0.2583

Columns 3-6 report methods’ robustness against isotropic Gaussian noise (IG) and
anisotropic Gaussian noise (AG). Values in brackets give the average perturbation
size, calculated as the mean value of the La-norm of noises (|| Ax;||2).

margin. In this case, our method maintains its superiority.
When the SNR is 5 dB, the average perturbation size is larger
than the average adversarial margin. Nonetheless, our method
produces even larger gain in classification performance for
LMNN on all datasets except APS Failure with the Gaussian
noise, for SCML on MNIST and on Isolet with the Gaussian
noise, for CAP on Isolet. These results suggest that adversarial
margin is indeed a contributing factor in enhancing robustness.
Third, CAP-PL obtains higher accuracy on both clean and
noise-contaminated data than LMNN-PL. This supports our
discussion in Section III that regularization and perturbation
loss impose different requirements on M and combining them
has the potential for learning a more effective distance metric.

D. Computational Cost

We now analyze the computational complexity of
LMNN-PL. According to (6), our method requires additional

40
A

50 60 70 80 90 0.04 0.09 013 017 022 026 031 035 0.39
T

Sensitivity of LMNN-PL to hyperparameters (indicated by the straight line). Optimal accuracy and parameter value found via CV are indicated by

TABLE IV
AVERAGE TRAINING TIME (IN SECONDS) OF LMNN-BASED METHODS

LMNN LDD CAP SN DRIFT = LMNN-PL
Australian 13.44 0.83 3.07 7.60 1.00 2.15
Segment 27.48 10.45 11.47 24.66 5.12 19.54
Sonar 4.93 4.08 4.65 30.39 0.92 6.75
WDBC 9.38 2.94 522 16.54 5.12 8.17
Credit 724.42 34.65 11522 966.63 130.36 138.63
Isolet 339.57  207.69 176.50  540.26 NA 190.55
MNIST 369.55 68.98  289.18 197.50 37.51 391.04

calculations on dfwz (xj,x;) and MX ;. Given n training
instances, k target neighbors and p features, the computational
complexities of djzu2 (x;,x;) and MX j; are O(np*+n®p) and
O (n?p?), respectively. The total complexity is O(p> +n’p?+
kn®p), same as that of LMNN.

Table IV compares the running time of LMNN-based
methods on five UCI datasets that are large in sample size
or in dimensionality and two high-dimensional datasets. The
computational cost of our method is comparable to LMNN.

E. Parameter Sensitivity

The proposed LMNN-PL includes three hyperparameters —
u for the weight of similarity constraints, 1 for the weight
of the perturbation loss, and 7 for the desired adversarial
margin. We investigate their influences on the classification
performance by varying one hyperparameter and fixing the
other two at their optimal values. Fig. 4 shows the accuracy on
MNIST evaluated over the range of the hyperparameter. The
performance changes smoothly with respect to w. It is stable
over a wide range of 4. When 4 equals 0, LMNN-PL fails to
learn a metric and returns a zero matrix. The performance
is most affected by 7. Indeed, v plays the central role in
LMNN-PL as it determines the distribution of adversarial
margins. A small value of 7 has little influence on the objective
function as the adversarial margin of most instances may
already exceed it before optimization, and a large value may
greatly reduce the number of triplets that satisfy the loss
condition in the definition of pseudo-robustness [i.e., 7i(Z)
in Theorem 1]. Therefore, we shall strive to search for its
optimal value.

V. CONCLUSION

In this article, we propose to enhance the robustness and
generalization of distance metrics. This is easily achievable by
taking advantage of the linear transformation induced by the
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Mahalanobis distance. Specifically, we find an explicit formula
for the adversarial margin, which is defined as the Euclidean
distance between benign instances and their closest adversarial
examples, and advocate to enlarge it through penalizing the
perturbation loss designed on the basis of the derivation.
Experiments verify that our method effectively enlarges the
adversarial margin, sustains classification excellence, and
enhances robustness to instance perturbation. The proposed
loss term is generic in nature and could be readily embedded
in other Mahalanobis-based metric learning methods. In the
future, we will consider extending the idea to metric learning
methods with nonlinear feature extraction and/or nonlinear
metric learning methods.
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