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Abstract— Skeleton sequences are lightweight and compact1

and thus are ideal candidates for action recognition on edge2

devices. Recent skeleton-based action recognition methods extract3

features from 3-D joint coordinates as spatial–temporal cues,4

using these representations in a graph neural network for feature5

fusion to boost recognition performance. The use of first- and6

second-order features, that is, joint and bone representations, has7

led to high accuracy. Nonetheless, many models are still confused8

by actions that have similar motion trajectories. To address9

these issues, we propose fusing higher-order features in the10

form of angular encoding (AGE) into modern architectures to11

robustly capture the relationships between joints and body parts.12

This simple fusion with popular spatial–temporal graph neural13

networks achieves new state-of-the-art accuracy in two large14

benchmarks, including NTU60 and NTU120, while employing15

fewer parameters and reduced run time. Our source code is16

publicly available at: https://github.com/ZhenyueQin/Angular-17

Skeleton-Encoding.18

Index Terms— Feature extraction, graph neural network,19

skeleton-based action recognition.20

I. INTRODUCTION21

SKELETON-BASED action recognition is more robust to22

background information and easier to process, attracting23

increasing attention [25] in the community. Recently, deep24

graph neural networks fuel the recent surge of accuracy for25

skeleton-based action recognition [39]. By leveraging graph26

neural networks, action recognizers more thoroughly extract27

the topological information within the skeleton sequences.28

To make graph neural networks applicable for29

skeleton-based action recognition, skeletons are treated30

as graphs, with each vertex representing a body joint and31

each edge a bone. Initially, only first-order features were32

employed, representing the coordinates of the joints [39].33

Subsequently, [26] introduced a second-order feature: each34
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Fig. 1. Sample skeletons with similar motion trajectories: (left) taking off
glasses versus (right) taking off headphones. The angles formed by red dashed
lines (i.e., the fore- and upper arms) are distinctive, which are informative in
distinguishing these two similar motions.

bone is expressed as the vector difference between one 35

joint’s coordinate and that of its nearest neighbor in the 36

direction of the body center. Their experiments show that 37

these second-order features improve the recognition accuracy 38

of skeleton-based action recognizers. 39

However, existing methods suffer from the poor perfor- 40

mance of discriminating actions with similar motion trajec- 41

tories (see Fig. 1). Since the joint coordinates in each frame 42

are similar in these actions, it is challenging to identify the 43

cause of nuances between coordinates. It can be due to various 44

body sizes, motion speeds, or actually performing different 45

actions. To robustly capture the relative movements between 46

body parts while maintaining invariance for different body 47

sizes of human subjects, in this article, we propose the use of 48

higher-order representations in the form of angles. We refer to 49

the new proposed feature as angular encoding (AGE), which 50

can be applied to both static and velocity domains of human 51

body joints. Thus, the proposed encoding allows the model to 52

recognize actions more precisely. Experimental results reveal 53

that by fusing angular information into the existing mod- 54

ern action recognition architectures, such as spatio-temporal 55

graph convolutional network (STGCN) [39] and decoupling 56

GCN [4], confusing action sequences can be classified more 57

accurately, especially when the actions have very similar 58

motion trajectories. 59

It is worth considering whether it is possible to design a 60

neural network to implicitly learn angular features. However, 61

such a design would be challenging for current graph convolu- 62

tional networks (GCNs) [29], [35], mainly due to two reasons. 63

1) Conflicts between more layers and higher performance of 64

GCNs: GCNs are currently the best-performing models in 65

classifying skeleton-based actions. To model the relationships 66

among all the joints, a graph network requires many layers. 67
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TABLE I

COMPARISON OF RECOGNITION PERFORMANCE ON FOUR SETTINGS OF TWO BENCHMARK DATASETS. WE COMPARE NOT ONLY THE RECOGNITION
ACCURACY, BUT ALSO THE TOTAL NUMBER OF PARAMETERS (PARAMS) IN THE NETWORKS. ENS IS THE NUMBER OF MODELS USED IN

AN ENSEMBLE. BSL MEANS TO USE THE ORIGINAL FEATURE WITHOUT EMPLOYING ANGULAR ENCODING. AGE-S AND AGE-V
STAND FOR CONCATENATING THE ORIGINAL REPRESENTATION WITH ANGULAR ENCODING IN THE STATIC AND VELOCITY

DOMAINS, RESPECTIVELY. JOINT/J AND BONE/B DENOTE THE USE OF JOINT AND BONE FEATURES, RESPECTIVELY. THE
TOP ACCURACY IS HIGHLIGHTED IN RED BOLD, AND THE SECOND BEST PERFORMANCE IS HIGHLIGHTED IN BLUE.

SYMBOL & INDICATES ENSEMBLING MODELS TRAINED WITH DIFFERENT INPUT FEATURES GIVEN IN THE

PARENTHESIS. GFLOPS STANDS FOR THE FLOATING-POINT OPERATIONS PERFORMED BY A MODEL, WHICH
IS THE NUMBER OF MULTIPLY–ADD OPERATIONS THAT A MODEL PERFORMS

However, recent work implies that the performance of a68

GCN can be compromised when it goes deeper due to over-69

smoothing problems [21]. 2) Limitation of adjacency matrices:70

Recent graph networks for action recognition learn the rela-71

tionships among nodes via an adjacency matrix, which only72

captures pairwise relevance, whereas angles are third-order73

relationships involving three related joints.74

We summarize our contributions as follows.
75

1) We propose a rich collection of higher-order represen-76

tations in the form of the angular encoding defined77

in both static and velocity domains. The encoding78

captures relative motion between body parts while79

maintaining invariance against different human body80

sizes.81

2) The angular features can be easily fused into existing 82

action recognition architectures to further boost perfor- 83

mance. Our experiments show that angular features are 84

complementary information relative to existing features, 85

that is, the joint and bone representations.
86

3) We are the first to incorporate multiple categories of 87

angular features into modern spatial–temporal GCNs and 88

achieve state-of-the-art results on several benchmarks, 89

including NTU60 and NTU120. Meanwhile, if a sim- 90

ple model (employing fewer training parameters and 91

requiring less inference time) has equipped with the 92

proposed angular encoding, it becomes powerful. Thus, 93

the proposed angular encoding supports real-time action 94

recognition on edge devices. 95
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TABLE II

EVALUATION RESULTS ON ENSEMBLING WITH ANGULAR FEATURES. ENS
IS THE ENSEMBLING. JNT AND BON REPRESENT THE JOINT AND BONE

FEATURES, RESPECTIVELY. THE RED BOLD NUMBER HIGHLIGHTS

THE HIGHEST PREDICTION ACCURACY. ACC↑ IS THE IMPROVE-
MENT IN ACCURACY

II. RELATED WORK96

Many of the earliest attempts at skeleton-based action97

recognition encoded all human body joint coordinates in98

each frame into a feature vector for pattern learning [31],99

[32]. These models rarely explored the internal dependencies100

between body joints, resulting in missing rich information101

about actions. Kernel-based methods have also been proposed102

for action recognition [9], [10].103

Later, as deep learning became a standard choice in video104

processing [1], [17] and understanding [12], [13], RGB-based105

videos started to tackle action recognition. However, they106

suffer from problems in domain adaptation [7], [42], [44]107

since they have varying backgrounds with different textures of108

subjects. On the other hand, skeleton data have relatively fewer109

issues with domain adaptation. Convolutional neural networks110

(CNNs) were introduced to tackle skeleton-based action recog-111

nition and achieved an improvement [33]. However, CNNs are112

designed for grid-based data and are not suitable for graph data113

since they cannot leverage the topology of a graph.114

Recently, deep graph neural networks are accumulating115

attention [15], [20], [34], [40]. Graph neural networks also116

started to attract attention in skeleton recognition. In GCN-117

based models, a skeleton is treated as a graph, with joints118

as nodes and bones as edges. An early application was119

ST-GCN [39], using graph convolution to aggregate joint120

features spatially and convolving consecutive frames along121

the temporal axis. Subsequently, actional-structural graph con-122

volutional network (AS-GCN) [14] was proposed to further123

improve the spatial feature aggregation via the learnable124

adjacency matrix instead of using the skeleton as a fixed125

graph. Attention enhanced graph convolutional LSTM network126

(AGC-LSTM) [28] learned long-range temporal dependencies,127

using long short-term memory (LSTM) as a backbone, and128

changed every gate operation from the original fully connected129

layer to a graph convolution layer, making better use of the130

skeleton topological information. 2s-adaptive graph convolu-131

tional network (AGCN) [26] made two major contributions:132

1) applying a learnable residual mask to the adjacency matrix133

of the graph convolution, making the skeleton’s topology134

more flexible; and 2) proposing a second-order feature, the135

difference between the coordinates of two adjacent joints,136

to act as the bone information. An ensemble of two models,137

trained with the joint and bone features, substantially improved138

the classification accuracy. More graph convolution techniques 139

have been proposed in skeleton-based action recognition, 140

such as semantics-guided neural network (SGN) [41] and 141

Shift-GCN [5], employing self-attention and shift convolution, 142

respectively. Recently, multi-scale-graph 3D (MS-G3D) [18] 143

achieved high results by proposing graph 3-D convolutions 144

(G3Ds) to aggregate features within a window of consecutive 145

frames. However, 3-D convolutions demand a long running 146

time. 147

In more recent times, Qin et al. [22] proposed some 148

self-attention models that dynamically optimize the graph 149

structure. Xu et al. [37] designed a pure CNN architecture 150

that more effectively captures the topological information. 151

Memmesheimer et al. [19] study the one-shot problem of 152

skeleton-based action recognition. They apply the metric 153

learning setting and map the problem to a nearest-neighbor 154

search in a set of activity reference samples. Wang et al. [30] 155

studied the adversarial attack problem in skeleton-based action 156

recognition. They investigated a perceptual loss that ensures 157

the imperceptibility of the attack. Diao et al. [6] investigated 158

the black-box attack on skeleton-based action recognition. 159

They proposed an attack mechanism called black-box attack 160

on skeletal action recognition (BASKR) and showed that 161

the adversarial attack is a threat and on-manifold adversarial 162

samples are common for skeletal motions. 163

All the existing methods suffer from low accuracy in 164

discriminating actions sharing similar motion trajectories. This 165

motivates us to seek a new encoding to facilitate the model 166

differentiating two confusing actions. Some works show angle 167

features similar to the local feature presented in this article [8], 168

[38]. On the other hand, we propose a collection of angular 169

encoding forms. Each category consists of further subcate- 170

gories. Different categories of angular encoding are designed 171

to capture motion features of distinct kinematic body parts. 172

III. ANGULAR FEATURE REPRESENTATION 173

A. Angular Encoding 174

We propose using third-order features, which measure the 175

angle between three body joints to depict the relative move- 176

ments between body parts in skeleton-based action recogni- 177

tion. Given three joints u, w1, and w2, where u is the target 178

joint to calculate the angular features and w1 and w2 are 179

endpoints in the skeleton, �buwi denotes the vector from joint u 180

to wi (i = 1, 2), we have �buwi = (xwi − xu, ywi − yu, zwi − zu), 181

where (xk, yk, zk) represent the coordinates of joint k (k = 182

u, w1, w2). We define two kinds of angular features. 183

1) Static Angular Encoding: Suppose θ is the angle between 184

�buw1 and �buw2 , we define the static angular encoding da(u) for 185

joint u as 186

da(u)=

⎧⎪⎨
⎪⎩

1−cos θ =1 − �buw1 · �buw2

|�buw1 ||�buw2 |
, if u �= w1, u �= w2

0, if u = w1 or u =w2.

187

(1) 188

Note that w1 and w2 do not need to be adjacent nodes 189

of u. The feature value increases monotonically as θ goes 190

from 0 to π radians. In contrast to the first-order features, 191

representing the coordinate of a joint, and the second-order 192
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Fig. 2. Proposed four types of angular features. We extract angular features for the target joint (in red dots) which corresponds to the root of an angle. The
anchor joints (in yellow dots) are fixed endpoints of angles. Green dashed lines represent the two sides of an angle. (a) Local. (b) Center-oriented. (c) Pair-
and (d) Finger-based.

Fig. 3. Our backbone architecture is composed of three STBs, each consisting of a spatial multiscale graph convolution and a temporal multiscale convolution
unit. The spatial multiscale unit extracts structural skeleton information with parallel graph convolutional layers. The temporal multiscale unit draws correlations
with four functional groups. See Section III-B for more details. (a) Feature extraction. (b) STB. (c) SMGC. (d) TMC.

features, representing the lengths and directions of bones, these193

third-order features focus more on motions and are invariant194

to the scale of human subjects.195

2) Velocity Angular Encoding: The temporal differences of196

the angular features between consecutive frames, that is,197

v(t+1)
a (u) = d(t+1)

a (u) − dt
a(u) (2)198

where v(t+1)
a (u) is the angular velocity of joint u at frame199

(t +1), describing the dynamic changes of angles. The angular200

encoding is a third-order feature. Taking the velocity of these201

third-order features further increases the order. Hence, these202

velocity angular features enable an action recognizer to capture203

fourth-order information of motion sequences.204

However, we face a computational challenge when we 205

attempt to exploit these angular features: if we use all pos- 206

sible angles, that is, all possible combinations of u, w1, and 207

w2, the computational complexity is O(N3 T ), where N and 208

T , respectively, represent the number of joints and frames. 209

Instead, we manually define sets of angles that seem likely to 210

facilitate distinguishing actions without drastically increasing 211

computational cost. In the rest of Section III, we present the 212

four categories of angles considered in this work. 213

a) Locally defined angles: As illustrated in Fig. 2(a), 214

a locally defined angle is measured between a joint and its two 215

adjacent neighbors. If the target joint has only one adjacent 216

joint, we set its angular feature to zero. When a joint has more 217
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TABLE III

INDEPENDENT EVALUATION OF ANGULAR ENCODING FOR EACH CATE-
GORY. XSUB AND XVIEW REPRESENT CROSS-SUBJECT AND CROSS-

VIEW. XSET MEANS CROSS-SETUP

than two adjacent joints, we choose the most active two. For218

example, we use the two shoulders instead of the head and219

belly for the neck joint since the latter rarely move. These220

angles can capture relative motions between two bones.221

b) Center-oriented angles: A center-oriented angle mea-222

sures the angular distance between a target joint and two223

body center joints representing the neck and pelvis. As in224

Fig. 2(b), given a target joint, we use two center-oriented225

angles: 1) neck–target–pelvis, dubbed as unfixed-axis; and226

2) neck–pelvis–target, dubbed as fixed-axis. For the joints227

representing the neck and pelvis, we set their angular features228

to zero. Center-oriented angles measure the relative position229

between a target joint and the body center joints. For example,230

given an elbow as a target joint moving away horizontally231

from the body center, the unfixed-axis angle decreases while232

the fixed-axis angle increases.233

c) Pair-based angles: Pair-based angles measure the234

angle between a target joint and four pairs of endpoints:235

1) hands; 2) elbows; 3) knees; and 4) feet, as illustrated in236

Fig. 2(c). If the target joint is one of the endpoints, we set the237

feature value to zero. We select these four pairs due to their238

importance in performing actions. The pair-based angles are239

beneficial for recognizing object-related actions. For example,240

when a person is holding a box, the angle between a target241

joint and hands can indicate the box’s size.242

d) Finger-based angles: Fingers are actively involved in243

human actions. When the skeleton of each hand has finger244

joints, we include more detailed finger-based angles to incor-245

porate them. As demonstrated in Fig. 2(d), the two joints246

corresponding to fingers are selected as the anchor endpoints247

of an angle. The finger-based angles can indirectly depict248

gestures. For instance, an angle with a wrist as the root and a249

hand tip as well as a thumb as two endpoints can reflect the250

degree of hand opening.251

B. Our Backbone Architecture252

The overall network architecture is illustrated in Fig. 3.253

Three different features are extracted from the skeleton and254

input into the stack of three spatial–temporal blocks (STBs).255

Then, the output passes sequentially to a global average pool-256

ing, a fully connected layer, and then a softmax layer for action257

classification. We use a simplified version of MS-G3D [18] as258

the backbone of our model. For simplification, we remove their259

heavy G3D modules, weighing the performance gain against260

the computational cost. We call the resulting system MSGCN.261

TABLE IV

COMPARISON OF RECOGNITION PERFORMANCE BETWEEN MSGCN AND
MSG3D. MSG3D HAS HIGHER ACCURACY, MORE PARAMETERS,

AND A LONGER RUNNING TIME. GFLOPS STANDS FOR THE

FLOATING-POINT OPERATIONS PERFORMED BY A MODEL,
WHICH IS THE NUMBER OF MULTIPLY–ADD OPERATIONS

THAT A MODEL PERFORMS

Note that our proposed angular features are independent of the 262

choice of the backbone. 263

We extract the joint, bone, and angular features from every 264

action video. For the bone feature, if a joint has more than one 265

adjacent node, we choose the joint closer to the body’s center. 266

So, given an elbow joint, we use the vector from the elbow 267

to the shoulder rather than the vector from the elbow to the 268

wrist. For the angle, we extract seven or nine angular features 269

(without/with finger-based angles) for every joint, constituting 270

seven or nine channels of features. Eventually, for each action, 271

we construct a feature tensor X ∈ R
C×T ×V ×M , where C , T , 272

V , and M , respectively, correspond to the numbers of chan- 273

nels, frames, joints, and participants (the persons conducting 274

actions). We test various combinations of the joint, bone, and 275

angular features in the experiments. 276

Each STB, as exhibited in Fig. 3(b), comprises a spatial 277

multiscale graph convolution (SMGC) unit and three temporal 278

multiscale convolution (TMC) units. The details of these 279

components are illustrated as follows. 280

The SMGC unit, as shown in Fig. 3(c), consists of a parallel 281

combination of graph convolutional layers. The adjacency 282

matrix of graph convolutions results from the summation of 283

a powered adjacency matrix Ak and a learnable mask Ak
mask . 284

1) Powered adjacency matrices: To prevent over-smoothing, 285

we avoid sequentially stacking multiple graph convolutional 286

layers to make the network deep. Following [18], to create 287

graph convolutional layers with different sizes of receptive 288

fields, we directly use the powers of the adjacency matrix 289

Ak instead of A itself to aggregate the multihop neighbor 290

information. Thus, Ak
i, j = 1 indicates the existence of a 291

path between joint i and j within k-hops. We feed the input 292

into K graph convolution branches with different receptive 293

fields. K is no more than the longest path within the skeleton 294

graph. 2) Learnable masks: Using the skeleton as a fixed 295

graph cannot capture the nonphysical dependencies among 296

joints. For example, two hands may always perform actions 297

in conjunction, whereas they are not physically connected in 298

a skeleton. To infer the latent dependencies among joints, 299

following [26], we apply learnable masks to the adjacency 300

matrices. 301

The TMC unit, shown in Fig. 3(d), consists of seven parallel 302

temporal convolutional branches. Each branch starts with a 303

1 × 1 convolution to aggregate features between different 304

channels. The functions of different branches diverge as the 305

input passes forward, which can be divided into four groups. 306

In detail. 307
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TABLE V

COMPARISON OF WITH/WITHOUT ANGULAR FEATURES ON THE MOST CONFUSING ACTIONS THAT MAY SHARE SIMILAR MOTION TRAJECTORIES.
THE “ACTION” COLUMN SHOWS THE GROUND-TRUTH LABELS, AND THE “SIMILAR ACTION” COLUMN SHOWS THE PREDICTIONS FROM

THE MODEL (WITH/WITHOUT ANGULAR FEATURES). THE SIMILAR ACTIONS HIGHLIGHTED IN ORANGE DEMONSTRATE THE CHANGE

OF PREDICTIONS AFTER EMPLOYING ANGULAR FEATURES. THE ACCURACY IMPROVEMENTS HIGHLIGHTED IN RED ARE THE

SUBSTANTIALLY INCREASED ONES (ACC↑ ≥ 10%) DUE TO USING OUR ANGULAR FEATURES

1) Extracting multiscale temporal features: The group con-308

tains four 3×1 temporal convolutions, applying four dif-309

ferent dilations to obtain multiscale temporal receptive310

fields.311

2) Processing features within the current frame: This group312

only has one 1×1 to concentrate features within a single313

frame.314

3) Emphasizing the most salient information within the315

consecutive frames: The group ends with a 3 × 1 max-316

pooling layer to draw the most important features.317

4) Preserving gradient: The final group incorporates318

a residual path to preserve gradients during back-319

propagation [2].320

IV. EXPERIMENTS321

A. Datasets322

1) NTU60 [24]: NTU60 is a widely used benchmark323

dataset for skeleton-based action recognition, incorporating324

56 000 videos. The action videos were collected in a labora-325

tory environment, resulting in accurately extracted skeletons.326

Nonetheless, recognizing actions from these skeletons is still327

challenging due to five aspects: 1) the skeletons are captured328

from different viewpoints; 2) the skeleton sizes of subjects329

vary; 3) so do their speeds of action; 4) different actions can330

have similar motion trajectories; and 5) there are limited joints331

to portray hand actions in detail.332

2) NTU120 [16]: NTU120 is an extension of NTU60.333

It uses more camera positions and angles, as well as a larger334

number of performing subjects, leading to 1 13 945 videos.335

B. Experimental Setups336

We train deep learning models on four NVIDIA 2080-Ti337

graphics processing units (GPUs) and use PyTorch as our338

deep learning framework to compute the angular encoding. 339

Furthermore, we apply stochastic gradient descent (SGD) with 340

momentum 0.9 as the optimizer. The training epochs for 341

NTU60 and NTU120 are set to 55 and 60, respectively, with 342

learning rates decaying to 0.1 of the original value at epochs 343

35, 45, and 55. We follow [25] in normalizing, translating each 344

skeleton, and padding all clips to 300 frames via repeating 345

the action sequences. The training loss function is cross- 346

entropy [23]. 347

C. Ablation Studies 348

There are two possible approaches for using angular fea- 349

tures: 1) simply concatenate our proposed angular features 350

with the existing joint, bone, or both features, and then train 351

the model; and 2) feed the angular features into our model 352

and ensemble it with other models that are trained using joint, 353

bone or both features to predict the action label. We study the 354

differences between these approaches. We report the results 355

in Table I, including using different settings of both Nanyang 356

Technological University (NTU) and NTU120. To reduce clut- 357

ter, we use the results of the cross-subject setting of NTU120 358

for ablation studies. We denote the accuracy without angular 359

encoding with baseline (BSL). AGE means to concatenate the 360

original feature with angular encoding. The suffix -S (in BSL-S 361

and AGE-S) and -V (in BSL-V and AGE-V) represent feeding 362

the static and velocity feature, respectively. 363

1) Concatenating With Angular Features: Here, we study 364

the effects of concatenating angular features with others. 365

We first obtain the accuracy of three models trained with three 366

feature types, that is, the joint, bone, and a concatenation of 367

both, respectively, as our BSLs. Then, we concatenate angular 368

features to each of these three to compare the performance. 369

We evaluate the accuracy with two data streams, that is, angu- 370

lar static and velocity. We observe that all the feature types 371
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TABLE VI

COMPARISON OF THE EFFECT FOR IMPROVING ACTION RECOGNITION BY CONCATENATING CERTAIN ANGULAR FEATURES TO THE JOINT REPRESENTA-
TION. EACH SUBTABLE IS SORTED BY THE INCREASE IN ACCURACY. THE “ACTION” COLUMN SHOWS THE GROUND-TRUTH LABELS, AND THE

“SIMILAR ACTION” COLUMN SHOWS THE PREDICTIONS FROM THE MODEL (WITH/WITHOUT ANGULAR ENCODING)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 
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TABLE VII

STATIC: FIRST HALF

in both data streams receive accuracy boosting in response372

to incorporating angular features. For the static stream, con-373

catenating angular features with the concatenation of joint and374

bone features leads to the most significant enhancement. As to375

the velocity stream, although the accuracy is lower than that of376

the static one, the improvement resulting from angular features377

is more substantial. In sum, concatenating all three features378

using the static data stream results in the highest accuracy.379

2) Training Solely With Angular Encoding: We are inter-380

ested in the performance of the network when only feeding381

the angular encoding, that is, no joint and bone features are382

used. The outcome is shown as the first row of Table II,383

denoted as Ang. We see training merely with angular encoding384

even outperforms that of utilizing the joint feature, indicating385

the completeness of angular encoding for depicting human 386

skeleton motion trajectories. 387

3) Ensembling With Angular Encoding: We also study the 388

change in accuracy when ensembling a network trained solely 389

with angular features Ang with networks trained with joint 390

and bone features, respectively, as well as their ensemble. The 391

results are reported in Table II. We obtain the accuracy of the 392

above three models as the BSL results for each stream and 393

compare them against the precision of ensembling the BSL 394

models with Ang. We note that ensembling Ang consistently 395

leads to an increase in accuracy. As with the concatenation 396

studies, angular features are more beneficial for the velocity 397

stream. However, unlike the case with concatenation, the 398

accuracy of the two streams is similar. We also observe that 399
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TABLE VIII

STATIC: SECOND HALF

ensembling with Bon achieves considerable accuracy gain.400

An ensemble of Jnt, Bon, and Ang results in the highest401

accuracy in the static stream.402

4) Evaluating Angular Encoding of Each Category: We403

independently evaluate the boost of the angular encoding of404

the four categories, that is, local, center-oriented, pair-based,405

and finger-based. The utilized model is the BSL architecture.406

We discover that all these four categories can individually407

boost the recognition accuracy, as shown in Table III. Fur-408

thermore, the proposed angular encoding has been leveraged409

in an open challenge and revealed to be effective.1410

1In ICCV 2021, the winning team of a skeleton-based action recognition
challenge leveraged the angular encoding proposed in this article, achieving
the first-place accuracy among 70+ teams. The utilized dataset was a
newly collected skeleton dataset with drones. The winning team specifically
evaluated the boost of accuracy from using our proposed angular encoding
on the newly recorded dataset, showing the effectiveness of angular encoding.
See their presentation (clickable) at 8:30.

D. Comparison With State-of-the-Art Models 411

The ablation studies indicate fusing angular features in 412

both concatenating and ensembling forms can boost accuracy. 413

Hence, we include the results of both approaches as well as 414

their combination in Table I. In practice, the storage and the 415

run time may become bottlenecks. Thus, we consider not only 416

the recognition accuracy, but also the number of parameters 417

(in millions) and the inference time (in gigaFLOPs). The 418

unavailable results are marked with a dash. 419

We achieve new state-of-the-art accuracies for recognizing 420

skeleton actions on both datasets, that is, NTU60 and NTU120. 421

For NTU120, MSGCN outperforms the existing state-of-the- 422

art model by a wide margin. 423

Apart from the higher accuracy, MSGCN requires fewer 424

parameters and a shorter inference time. We evaluate the 425

inference time of processing a single NTU120 action video 426

for all the methods. Compared with the existing most accurate 427

model, MSGCN requires fewer than 70% of the parameters 428
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TABLE IX

VELOCITY: FIRST HALF

and less than 70% of the run time while achieving higher429

skeleton-based recognition results.430

Of note, the proposed angular features are compatible431

with the listed competing models. If one seeks even higher432

accuracy, the employed simple GCN can be replaced with a433

more sophisticated model, such as MS-G3D [18], although434

this change can lead to more parameters and longer inference435

time. For example, if we employ a more complicated MS-436

G3D [18] instead of our MSGCN, the accuracy can be further437

improved as Table IV shows. Nonetheless, both the num-438

ber of parameters and the GFlops will also correspondingly439

increase.440

V. ANALYSIS OF ANGULAR ENCODING441

We want to provide an intuitive understanding of how442

angular features help in differentiating actions. To this end,443

we compare the results from two models trained with the joint 444

features and the concatenation of joint and angular features. 445

A. Utilizing of All Types of Angular Encoding 446

First, we concatenate all kinds of angular encoding with 447

joint features and train the BSL network. The results are 448

illustrated in Table V. We observe two phenomena. 449

1) The majority of the action categories receiving a sub- 450

stantial accuracy boost from angular features are hand- 451

related, such as making a victory sign vs thumbs up. 452

We hypothesize that the enhancement may result from 453

our explicit design of angles for hands and fingers, 454

so that the gestures can be portrayed more comprehen- 455

sively. 456

2) For some actions, after the angular features have 457

been introduced, the most similar actions change. This 458
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TABLE X

VELOCITY: SECOND HALF

suggests that the angles are providing complemen-459

tary information to the coordinate-based representations.460

For the new actions that still confuse the network461

after using the angular encoding, they are also chal-462

lenging for humans to differentiate them from their463

corresponding ground-truth actions by just observing464

skeletons.465

For better understanding, we provide some visual examples466

displaying the confusing actions whose mostly confused coun-467

terparts get altered after using angular encoding in Fig. 4.468

Among them, folding paper and counting money are easily469

confused, and reading and writing are also likely to be mixed470

up. We see that these confusing pairs of skeletons are visually471

similar to those of humans.472

B. Contributions From Different Angle Types473

Next, we conduct ablation studies on different types of474

the proposed angular encoding for improving the accuracy475

of recognizing skeleton-based actions. The BSL accuracy is476

obtained merely using the joint feature. Then, we concatenate477

different types of angular encoding with the joint feature to478

evaluate the effectiveness of each encoding type. We study the 479

effects of different types of angular features on improving the 480

accuracy of recognizing actions. 481

The results are depicted in Fig. 5. We observe the following. 482

1) The center-oriented angular encoding boosts the accu- 483

racy with the largest margin for both static and velocity 484

input features; the increases are 1.01% and 2.02%, 485

respectively. Since the center-oriented encoding reflects 486

the distance from the joint to the body center, the results 487

imply knowing such a distance is greatly beneficial to 488

recognizing skeleton-based actions. This is consistent 489

with our daily experience. To illustrate, people normally 490

pose the hand farther away from the body center for the 491

victory sign than for the ok sign. 492

2) Angular encoding improves more accuracy for the 493

velocity input features than the static joint coordi- 494

nates. The average improvements are 0.58% and 1.42%, 495

respectively. This difference indicates angular encoding 496

provides more additional information in capturing the 497

dynamic motion trajectories of actions than depicting 498

the spatial structural information. 499

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



12 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 4. Visualization examples of confusing actions. The action that the network gets most confused about has changed after employing angular encoding
as a part of input features. (a) Folding paper. (b) Counting money. (c) Reading. (d) Writing.

Fig. 5. Accuracy of recognizing skeleton-based actions using the multiscale
GCN with different types of angular encoding. Both static and velocity
domains are considered. The best accuracy of each domain is highlighted
in red.

3) The part-based angular encoding only marginally height-500

ens the accuracy of using the static features, only 0.22%,501

whereas the increase improves substantially enlarges502

to 1.47% for the velocity input. We conjecture this503

is because the actions performed by arms and legs504

involve a lot of dynamics. Thus, when using the veloc-505

ity input, angular encoding provides complementary506

dynamic information to these actions.507

We investigate how each kind of angular encoding improves508

accuracy. To this end, we collect the top seven actions whose509

accuracy is improved by the angular encoding the most. The 510

results are exhibited in Table VI. We see the following. 511

1) Equipping the velocity features with angular encoding 512

boosts substantial accuracy for long-lasting actions, such 513

as “staple book.” In contrast, for the static input, most 514

actions whose accuracy is significantly improved are 515

those that last for a short time, such as “thumb up.” 516

2) The majority of actions whose accuracy is improved by 517

a type of angular encoding are those performed by the 518

anchor joints corresponding to the angular encoding. 519

To illustrate, finger-based encoding increases accuracy 520

for hand-related actions, while part-based encoding ben- 521

efits the actions heavily using arms and legs. 522

VI. GENERALIZABILITY OF ANGULAR ENCODING 523

A possible concern is the generalizability of the pro- 524

posed angular encoding. That is, will fusing angular encoding 525

improve the accuracy of other backbone architectures? To 526

answer this, we conduct experiments fusing angular encoding 527

with the joint feature and feed the concatenated input to 528

three recently proposed backbone networks: 1) ShiftGCN [5]; 529

2) DecoupleGCN [4]; and 3) MSG3D [18]. The utilized 530

dataset is the cross-subject setting of NTU120. 531

We display the results in Fig. 6. We not only demonstrate 532

the accuracy of fusing all kinds of proposed angular encoding, 533

but we also separately concatenate every type of encoding with 534

the joint feature and report the corresponding accuracy. We see 535

fusing angular encoding with the original features consistently 536
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Fig. 6. Accuracy of recognizing skeleton-based actions using DecoupleGCN (left) and ShiftGCN (right) with different types of angular encoding. Both static
and velocity domains are considered. The column All represents concatenating all types of angular encoding.

improves the accuracy of all three backbones. On the other537

hand, the effectiveness of different angular encoding varies538

in boosting accuracy. We observe the center-oriented angu-539

lar encoding increases accuracy with the largest magnitude.540

Furthermore, angular encoding improves accuracy more when541

deployed in the velocity domain than in the static domain.542

These two observations are consistent with those on our543

simple backbone network. For DecoupleGCN, the part- and544

finger-based angular encoding more substantially improve545

accuracy than they do for our simple backbone. Specifically,546

although feeding the velocity input to DecoupleGCN initially547

leads to lower accuracy than using the static feature, the548

situation is reversed after fusing with these two types of549

angular encoding. These scenarios imply that using features550

in the velocity domain surpasses using the static joints.551

VII. DISCUSSION552

As we have described in Section I, current GCNs are553

designed to extract features between two adjacent nodes.554

On the other hand, the angular features are higher-order ones555

beyond two adjacent vertices. We can theoretically view every556

angle as a hyperedge e(v1, v2, v3), where v1, v2, and v3 are557

the constitutional joints of an angle. The angular encoding558

is their associated feature. The angular encoding extends the559

capability of existing GNNs to capture features of hyperedges.560

From the perspective of treating a skeleton as a hypergraph,561

we have proposed four categories of hyperedges. In contrast,562

existing work that also makes use of angle features only563

contains one type of hyperedges.564

VIII. CONCLUSION565

To extend the capacity of GCNs in extracting body struc-566

tural information, we propose higher-order representations in567

the form of angular features, the proposed angular features568

comprehensively capture the relative motion between different569

body parts while maintaining robustness against variations570

of subjects. Hence, they are able to discriminate between571

challenging actions having similar motion trajectories, which572

causes problems for existing models. Our experimental results573

show that the angular features are complementary to existing574

features, that is, the joint and bone representations. By incor- 575

porating our angular features into a simple action recognition 576

GCN, we achieve new state-of-the-art accuracy on several 577

benchmarks while maintaining lower computational cost, thus 578

supporting real-time action recognition on edge devices. 579

APPENDIX 580

We provide the improvement of accuracy by angular encod- 581

ing for each class. The results for the static domain are in 582

Tables VII and VIII. The ones for the velocity domain are in 583

Tables IX and X. 584
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