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Abstract—Online metric learning has been widely applied in
classification and retrieval. It can automatically learn a suitable
metric from data by restricting similar instances to be separated
from dissimilar instances with a given margin. However, the exist-
ing online metric learning algorithms have limited performance in
real-world classifications, especially when data distributions are
complex. To this end, this paper proposes a multilayer framework
for online metric learning to capture the nonlinear similarities
among instances. Different from the traditional online metric
learning, which can only learn one metric space, the proposed
Multi-Layer Online Metric Learning (MLOML) takes an online
metric learning algorithm as a metric layer and learns multiple
hierarchical metric spaces, where each metric layer follows a
nonlinear layers for the complicated data distribution. Moreover,
the forward propagation (FP) strategy and backward propaga-
tion (BP) strategy are employed to train the hierarchical metric
layers. To build a metric layer of the proposed MLOML, a new
Mahalanobis-based Online Metric Learning (MOML) algorithm is
presented based on the passive-aggressive strategy and one-pass
triplet construction strategy. Furthermore, in a progressively and
nonlinearly learning way, MLOML has a stronger learning ability
than traditional online metric learning in the case of limited
available training data. To make the learning process more
explainable and theoretically guaranteed, theoretical analysis is
provided. The proposed MLOML enjoys several nice properties,
indeed learns a metric progressively, and performs better on
the benchmark datasets. Extensive experiments with different
settings have been conducted to verify these properties of the
proposed MLOML.

Index Terms—Online Metric Learning, Metric Layer, Passive-
Aggressive Strategy, Nonlinearity, Interpretability

I. INTRODUCTION

Learning a meaningful and quality metric on the original
instances is crucial to many classification and retrieval ap-
plications. In recent decades, many metric learning methods
based on Mahalanobis distance function and bilinear similarity
function have been proposed. Mahalanobis distance-based
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Fig. 1. An illustration of online hierarchical metric learning by learning new
metric spaces progressively.

methods [1]–[8] refer to learning a real-valued distance matrix
with a symmetric positive semi-definite (PSD) constraint.
Bilinear similarity-based methods [9]–[11] aim to learn a
form of bilinear similarity matrix without the PSD constraint.
Moreover, there are two kinds of constraints, i.e., pairwise and
triplet constraints, that have been widely used in these metric
learning methods. A pairwise constraint consists of two similar
or dissimilar instances, while a triplet constraint is of the form
⟨x,x+,x−⟩, where instance x is similar to instance x+, but
is dissimilar to instance x−.

In many real-world applications, a lot of data is streaming
data which is continuously produced in time, such as wind
power data [12], credit data [13], and ADs click data [14]. On-
line learning algorithm investigates how to learn in a streaming
setting [15]–[17]. Therefore, metric learning algorithms should
be able to learn metric in an online manner, i.e., online
metric learning (OML). In fact, multiple OML algorithms
have been proposed [9], [18]–[22]. However, the existing OML
algorithms mainly pay attention to rapid constraints construc-
tion [9], [21] or low update complexity [19]–[21], while rarely
consider the learning ability in the case where all the labeled
streaming data cannot be observed. In addition, most of these
OML algorithms only learn one linear metric space which
cannot learn well refined metrics for a complicated nonlinear
data distribution.

To tackle the above limitations of the existing OML al-
gorithms, we propose a Multi-Layer Online Metric Learning
(MLOML) framework, which is nonlinear and explainable. In
this framework, we attempt to design a metric-algorithm-based
layer, which is stacked by several OML algorithms along
with the corresponding nonlinear layers (e.g., ReLU, Sigmoid,
tanh). In this way, our proposed MLOML is able to learn a
progressively refined metric space by learning another new
metric in the former learnt feature space (see Fig. 1). Specif-
ically, in MLOML, one OML algorithm is taken as a metric
layer, followed by a nonlinear layer (i.e., ReLU, Sigmoid,
or tanh). These two layers are repeatedly stacked multiple
times. It is worth noting that each metric layer in MLOML
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is a relatively independent OML algorithm, as a result, the
parameters of each metric layer can be innovatively updated
according to its own local loss during forward propagation
(FP). It means that it is possible to train such a metric-
algorithm-based layer by only using the FP strategy. The
advantages of this FP updating are: (1) the parameter updating
is immediate, unlike the delayed updating of the commonly
used backward propagation (BP); (2) when additional BP is
adopted, FP updating can vastly accelerate the convergence.
Note that the second advantage has a similar effect of layer-
wise unsupervised pre-training [23]–[25]. However, there are
fundamental differences. The existing layer-wise training is
unsupervised and only acts as a pre-training operation (or a
regularizer [25]), which is not end-to-end. In contrast, the
FP updating in the proposed MLOML is supervised and
serves the primary training mode rather than a pre-training
role (elaborated in Section IV-D), which is end-to-end. In
fact, these two updating strategies (i.e., FP and BP) can be
combined to train this metric-algorithm-based layer. Ideally,
FP updating can explore new feature spaces sequentially, while
BP updating can amend the exploration in further.

Furthermore, to achieve a low computational cost when
performing MLOML, a new general Mahalanobis-based On-
line Metric Learning (MOML) algorithm is proposed as the
metric layer of MLOML. Since all the labeled streaming
data cannot be observed in online manner, MOML uses the
one-pass triplet construction [21] instead of triple constraints
obtained in advance. Simultaneously, MOML has a convex
objective function inspired by passive-aggressive learning and
enjoys a closed-form solution at each step. We also derive a
theoretical regret bound for MOML to prove its convergence.
Through stacking MOML hierarchically, the ability of learning
feature representation progressively can be explainable and
guaranteed.

Our main contributions can be summarized as follows:
• A Multi-Layer Online Metric Learning (MLOML) frame-

work is developed for streaming data through forward
propagation (FP) strategy or backward propagation (BP)
strategy, such that a metric space is learned progressively
and deeply, i.e., exploring and learning a new metric in
a nonlinear transformation space sequentially.

• Taking Mahalanobis-based Online Metric Learning
(MOML) as a metric layer, MLOML has theoretical
guarantees so that the classification performance will be
improved or at least well maintained as the depth of the
layers increases.

• MLOML is simple yet effective, as verified by extensive
experiments.

II. RELATED WORK

Online metric learning enjoys several practical and theo-
retical advantages, making it widely studied and applied in
data mining tasks, which can be roughly divided into two
categories: Mahalanobis distance-based and bilinear similarity-
based methods. In bilinear similarity-based methods, Online
Algorithm for Scalable Image Similarity (OASIS) [9] is pro-
posed based on Passive-Aggressive (PA) algorithm, aiming to

learn a similarity metric without PSD constraint. Following
a similar setting as OASIS, Sparse Online Metric Learning
(SOML) [10] learns a diagonal matrix instead of a full matrix
to deal with the high-dimensional data. Online Multiple Kernel
Similarity (OMKS) [11] has been proposed to handle the
multi-modal data. Through adopting an off-diagonal ℓ1 norm
to the similarity matrix, Sparse Online Relative Similarity
(SORS) [26] can obtain a sparse result. Online Similarity
Learning via Low Rank and Group Sparsity (OSLLR-GS) [27]
is designed to address the over-fitting problem for big data
by detecting the feature redundant in the metric matrix and
constraining the remaining matrix to a low rank space.

In the second kind of Mahalanobis distance-based meth-
ods, Pseudo-Metric Online Learning Algorithm (POLA) [18]
introduces the successive projection operation to update a
pseudo-metric and map it onto a positive semi-definite cone.
As an extended version of Information Theoretic Metric
Learning-Online (ITML-Online) [4], LogDet Exact Gradient
Online (LEGO) [19] updates a manalanobis metric based
on LogDet regularization and gradient descent. Regularized
Distance Metric Learning (RDML) [20] with appropriate
constraints has a provable regret bound. Mirror Descent for
Metric Learning (MDML) [28] is an unified approach which
updates a manalanobis metric by composite objective mirror
descent. Bellet and Habrard [29] utilize an adaptation of the
notion of algorithmic robustness [30] to derive generaliza-
tion bounds for metric learning. Low-Rank Similarity Metric
Learning (LRSM) [31] uses SVD-based projection to solve the
challenging high-dimensional learning task, and then employs
Alternating Direction Method of Multipliers (ADMM) [32] to
optimize the model. Based on the PA algorithm [15], Scalable
Large Margin Online Metric Learning (SLMOML) [33] adopts
the LogDet divergence to maintain the closeness between two
successively learned Mahalanobis matrices, and utilizes the
hinge loss to enforce a large margin between relatively dissim-
ilar samples. Fast Low-Rank Metric Learning (FLRML) [34]
is an unconstrained optimization on the Stiefel manifold to
handle datasets with both high dimensions and large num-
bers of instances. Large-Margin Distance Metric Learning
(LMDML) [35] employs the principle of margin maximization
and stochastic gradient descent method to learn the distance
metric with PSD constraint. These methods almost assume that
the pairwise or triplet constraints can be obtained in advance
except RDML, which exactly receives two adjacent samples
as a pairwise constraints at each time. In view of adapting the
pairwise and triplet constraints to streaming data, Li et al. [21]
present a one-pass triplet construction strategy and design
OPML and COPML algorithms with low time complexity. By
incorporating with a smoothed Wasserstein metric distance,
Evolving Metric Learning (EML) [36] can handle the instance
and feature evolutions simultaneously.

However, the above mentioned metric algorithms only learn
one linear metric space which cannot learn well refined metrics
for a complicated nonlinear data distribution. In order to
solve this issue, we propose MLOML which is developed
based on a newly designed Mahalanobis-based online metric
learning (MOML). Compared with the above OML algorithms,
MLOML has the following advantages: (1) MLOML is hi-
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Fig. 2. Framework of the proposed multi-layer online metric learning (MLOML), where each metric layer Mn is an online metric learning algorithm. Here
we take three metric layers and two ReLU layers as an example, i.e., n = 3.

erarchical and can learn feature representation progressively
(i.e., better and better) through FP and BP strategies; (2)
MLOML not only has theoretical guarantees by stacking
MOML algorithm as its metric layer, but also is nonlinear by
employing nonlinear functions; (3) MLOML enjoys a stronger
learning ability than traditional OML algorithms with the same
amount of data.

III. OUR FRAMEWORK

Our goal is to design a novel multi-layer online metric
learning framework (MLOML) for streaming data, which
is stacked by metric-algorithm-based layers along with the
corresponding nonlinear layers (e.g., ReLU, Sigmoid, tanh).
The framework is illustrated in Fig. 2.

A. Multi-Layer Online Metric Learning

In this section, we propose and explain our MLOML in
detail. MLOML is made up of multiple metric layers and
nonlinear layers, in which one metric layer is an OML
algorithm and one nonlinear layer is ReLU, Sigmoid or tanh.
To ensure the progressively learning ability of MLOML, we
should guarantee the convexity of each metric layer, which can
easily guarantee the convergence of each layer. Therefore, a
new Mahalanobis-based OML algorithm (MOML) is designed
specifically. MOML has a convex objective function and
enjoys a closed-form solution. Moreover, a tight regret bound
of MOML is also proved (see Theorem 2).

Specifically, MOML is built on triplet-based constraints
⟨x,x+,x−⟩, where instance x is similar to instance x+, but
is dissimilar to instance x−, and these triplets can encode the
proximity comparison information. Therefore, MLOML is also
learnt from triplet constraints. For computational efficiency, a
one-pass triplet construction strategy presented by OPML [21]
is also employed to construct triplets rapidly which can solve
the inability to observe all the streaming data and its labels.
In brief, for each new sample, two latest samples from both
the same and different classes in the past samples are selected.

By using this strategy, triplets can be constructed in an online
manner. There are two types of layers in MLOML, that are
OML layer and non-linear layer, where MLOML-r, MLOML-
s, MLOML-t correspond to MLOML with the ReLU, Sigmoid,
tanh layers respectively. If we design a three-layer MLOML-
r model, there should be three OML layers in this model.
Moreover, each OML layer is followed by a ReLU layer except
the last OML layer (i.e., the third OML layer). This principle
is also satisfied for the MLOML-s and MLOML-t models.

A loss layer can also be added, which can give a global
adjustment of the entire metric-algorithm-based model via
backward propagation. To adequately use the effect of each
local metric layer, the local loss is also utilized to update all
the former layers (i.e., the loss of the i-th metric layer can be
used to update the 1-st to the (i−1)-th layers). In this way,
vanishing gradient problem can also be alleviated. The novel
loss function can be formulated as follows:

Γ =
1

2
Γtriplet +

n∑

i=1

wiΓ
i
local +

λ

2

n∑

i=1

∥Li∥2F , (1)

where Γtriplet = [∥x(n)
t − x

(n)
p ∥22 + 1 − ∥x(n)

t − x
(n)
q ∥22]+

indicates the triplet loss of the final output of the model (where
[z]+ = max(0, z)), Γi

local denotes the local loss of the i-th
OML layer (i.e., Eq.(4)), and ∥Li∥2F represents the Frobenius
norm of parameter matrix Li, i.e., the transformation matrix
learnt in the i-th OML layer. Moreover, λ is the predefined
hyper-parameter. While wi, the weight of the i-th metric layer
can be learnt by SGD during training phase, indicating the
importance of each metric layer.

A New Mahalanobis-based OML (MOML): To build a
metric layer of the proposed MLOML, a new OML algorithm
named MOML is presented, which can act as a representa-
tive of Mahalanobis-based algorithms. Note that, in essence,
MLOML can be constructed by other Mahalanobis-based
algorithms. However, with MOML as a building component,
MLOML enjoys better theoretical properties. The goal of
MOML, learnt from triplet constraints, is to learn a Maha-
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lanobis distance function D that satisfies the following large
margin constraint:

DM (x,xq) > DM (x,xp) + r, ∀x,xp,xq ∈ Rd, (2)

where x and xp belong to the same class, while x and
xq come from different classes. DM (x1,x2) = (x1 −
x2)

⊤M(x1−x2), where M ∈Rd×d is a positive semi-definite
parameter matrix. Also, r is the margin. Naturally, the hinge
loss (i.e., r = 1) can be employed as below,

ℓ(M , ⟨x,xp,xq⟩)=max(0, 1+DM (x,xp)−DM (x,xq)) .
(3)

In a sequential manner, given a triplet ⟨xt,xp,xq⟩ at the t-th
time step. Inspired by the Passive-Aggressive (PA) algorithms
(i.e., a family of margin based online learning algorithms) [15],
we design a convex objective function at each time step as
follows,

Γ = argmin
M≽0

1

2
∥M −Mt−1∥2F + γ

[
1 +DM (x,xp)−DM (x,xq)

]
+(

DM (x,xp)=(x−xp)
⊤
M(x−xp), DM (x,xq)=(x−xq)

⊤
M(x−xq)

)
= argmin

M≽0

1

2
∥M −Mt−1∥2F + γ

[
1 + Tr(MAt)

]
+
,

(4)

where ∥·∥F is Frobenius norm, [z]+ = max(0, z) is the hinge
loss, Tr(·) denotes the trace operation, γ is the regularization
parameter and At=(xt−xp)(xt−xp)

⊤−(xt−xq)(xt−xq)
⊤.

We can easily get that Γ is a convex function for M , because
Tr(MAt) is a linear function of M which is convex, the
hinge loss function [1+z]+ is convex (not continuous at z=
−1), and ∥ · ∥F and the domain M ≽ 0 are convex too. It
can be shown that an optimal solution can be found within
the domain M ≽ 0 by properly setting the value of γ. Thus,
we can get the optimal solution of Eq. (4) by calculating the
gradient ∂Γ(M)

∂M =0:

∂Γ(M)

∂M
=

{
M −Mt−1 + γAt = 0 [z]+ > 0
M −Mt−1 = 0 [z]+ = 0 .

s.t. M ≽ 0

(5)

According to Theorem 1 (presented below), with a proper γ,
the semi-positive definitiveness of M can be guaranteed. Thus,
at the t-th time step, the parameter matrix Mt can be updated
as below,

Mt =

{
Mt−1 − γAt [z]+ > 0
Mt−1 [z]+ = 0.

(6)

From Eq. (6), we can see that the time complexity of MOML
is O(d2) at each time step. Using MOML as the base met-
ric layer of MLOML has the following advantages: (1) the
objective function of MOML is convex and enjoys a closed-
form solution, which is beneficial to theoretical analysis; (2)
without loss of generality, MOML can act as a representative
of Mahalanobis-based OML algorithms.

Theoretical Guarantee: Several theoretical guarantees are
given for the proposed algorithms. Theorem 1 is a positive-
definite guarantee of the parameter matrix M in MOML.
Moreover, Theorem 2 presents a regret bound of MOML.
Proposition 1 tries to analyze and explain the effectiveness

of the proposed framework i.e., MLOML. All the details of
the proofs can be found in the appendix.

Theorem 1. Suppose Mt is positive-definite, then Mt+1 given
by the MOML update, i.e., Mt+1 =Mt−γAt+1 is positive
definite by properly setting γ.

Theorem 2. Let ⟨x1,xp,xq⟩, · · · , ⟨xT ,xp,xq⟩ be a sequence
of triplet constraints where each sample xt|Tt=1 ∈ Rd has
∥xt∥2=1 for all t. Let Mt ∈ Rd×d be the solution of MOML
at the t-th time step, and U ∈ Rd×d denotes an arbitrary
parameter matrix. By setting γ = 1

Φ
√
T

(where Φ ∈ R+), the
regret bound is

R(U , T )=

T∑

t=1

ℓ(Mt)−
T∑

t=1

ℓ(U) ≤ 1

2
∥I−U∥2F +

32

Φ2
. (7)

Proposition 1. Let M1, · · · ,Mn be the parameter matrixes
learnt by each metric layer of MLOML. The subsequent metric
layer can learn a feature space that is at least as good as the
one learnt by the former metric layer. That is, the composite
feature space learnt by both M1 and M2 is better than the
feature space learnt only by M1 in most cases (i.e., the feature
space is more discriminating for classification).

Other OML Algorithms In addition to MOML, other OML
algorithms such as LEGO [19], RDML [20] and OPML [21]
etc., can also be adapted into the proposed multi-layer frame-
work (namely LEGO-Multi, RDML-Multi and OPML-Multi).
It is worth mentioning that both LEGO and RDML learn a
Mahalanobis parameter matrix M , while OPML just learns
a transformation matrix L. Hence, OPML doesn’t need an
additional matrix decomposition operation (i.e., M = L⊤L).
The experimental results of LEGO-Multi, RDML-Multi and
OPML-Multi will be discussed in Section IV-G.

B. Forward and Backward Propagation

The proposed MLOML (i.e., MLOML-r, MLOML-s,
MLOML-t) is made up of a series of OML algorithms (i.e.,
MOML metric layer) and nonlinear functions (i.e., ReLU,
Sigmoid, tanh). Then, MLOML attempts to explore a new way
to train the metric layer by introducing forward propagation
(FP) updating. In fact, MLOML can not only be learnt by for-
ward propagation, but also be learnt by backward propagation.
Moreover, these two strategies can be adopted simultaneously
too. During forward propagation, each metric layer can be
learnt immediately, through this way, new feature space can
be explored sequentially. When backward propagation, the
return gradients can be used to fine-tune all the metric layers,
amending the feature spaces learnt by the forward propagation.

Therefore, MLOML can be trained with three different
propagation strategies as follows: (1) MLOML-FP, which
is only trained by employing forward propagation strategy.
(2) MLOML-FBP, which utilizes forward and backward
propagation strategies simultaneously. Specifically, a loss layer
is added as the last layer to calculate the final loss, where the
loss function (i.e., Eq. (1)) is adopted. (3) MLOML-BP is
similar to MLOML-FBP, while MLOML-BP only utilizes the
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According to Theorem 1 (presented below), with a proper γ,
the semi-positive definitiveness of M can be guaranteed. Thus,
at the t-th time step, the parameter matrix Mt can be updated
as below,

Mt =

{
Mt−1 − γAt [z]+ > 0
Mt−1 [z]+ = 0.

(6)

From Eq. (6), we can see that the time complexity of MOML is
O(d2) at each time step. Using MOML as the base metric layer
of MLOML has the following advantages: (1) the objective
function of MOML is convex, which is beneficial to theoretical
analysis; (2) without loss of generality, MOML can act as a
representative of Mahalanobis-based OML algorithms.

Theoretical Guarantee: Several theoretical guarantees are
given for the proposed algorithms. Theorem 1 is a positive-
definite guarantee of the parameter matrix M in MOML.
Moreover, Theorem 2 presents a regret bound of MOML.
Proposition 1 tries to analyze and explain the effectiveness
of the proposed framework i.e., MLOML. All the details of
the proofs can be found in the appendix.

Theorem 1. Suppose Mt is positive-definite, then Mt+1 given
by the MOML update, i.e., Mt+1 = Mt−γAt+1 is positive
definite by properly setting γ.

Theorem 2. Let 〈x1,xp,xq〉, · · · , 〈xT ,xp,xq〉 be a sequence
of triplet constraints where each sample xt|Tt=1 ∈ Rd has
‖xt‖2 =1 for all t. Let Mt ∈ Rd×d be the solution of MOML
at the t-th time step, and U ∈ Rd×d denotes an arbitrary
parameter matrix. By setting γ = 1

Φ
√
T

(where Φ ∈ R+), the
regret bound is

R(U , T )=

T∑

t=1

`(Mt)−
T∑

t=1

`(U) ≤ 1

2
‖I−U‖2F +

32

Φ2
. (7)

Proposition 1. Let M1, · · · ,Mn be the parameter matrixes
learnt by each metric layer of MLOML. The subsequent metric
layer can learn a feature space that is at least as good as the
one learnt by the former metric layer. That is, the composite
feature space learnt by both M1 and M2 is better than the
feature space learnt only by M1 in most cases (i.e., the feature
space is more discriminative for classification).

Other OML Algorithms In addition to MOML, other OML
algorithms such as LEGO [11], RDML [12] and OPML [13]
etc., can also be adapted into the proposed deep frame-
work (namely LEGO-Deep, RDML-Deep and OPML-Deep).
It is worth mentioning that both LEGO and RDML learn a
Mahalanobis parameter matrix M , while OPML just learns
a transformation matrix L. Hence, OPML doesn’t need an
additional matrix decomposition operation (i.e., M = L>L).
The experimental results of LEGO-Deep, RDML-Deep and
OPML-Deep will be discussed in Section IV-F.

B. Forward and Backward Propagation

The proposed MLOML can be categorized as one specific
deep learning algorithm. The difference is that MLOML is
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Fig. 3. Flowcharts of MLOML-FP, MLOML-BP and MLOML-FBP, respec-
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made up of a series of OML algorithms (i.e., MOML metric
layer). As we know deep learning is strongly dependent
on SGD and backward propagation (BP). Particularly, our
proposed MLOML attempts to explore a new way to train this
metric-algorithm-based deep network by introducing forward
propagation (FP) updating. In fact, MLOML can not only
be learnt by forward propagation, but also be learnt by
backward propagation. Moreover, these two strategies can be
adopted simultaneously too. During forward propagation, each
metric layer can be learnt immediately, through this way, new
feature space can be explored sequentially. When backward
propagation, the return gradients can be used to fine-tune all
the metric layers, amending the feature spaces learnt by the
forward propagation.

Therefore, MLOML can be trained with three different
propagation strategies as follows: (1) MLOML-FP, which
is only trained by employing forward propagation strategy.
(2) MLOML-FBP, which utilizes forward and backward
propagation strategies simultaneously. Specifically, a loss layer
is added as the last layer to calculate the final loss, where the
loss function (i.e., Eq. (1)) is adopted. (3) MLOML-BP is
similar to MLOML-FBP, while MLOML-BP only utilizes the
final loss to train the entire network without the local losses
and without forward updating. The flowcharts of these three
variations can be seen in Fig. 3. The comparison between these
variations will be shown in Section IV-C.

C. Training

We will describe how to train MLOML in detail in this
section. Note that, MLOML is trained from scratch in an end-
to-end manner, which is totally different from the traditional
layer-by-layer training.

Initialization: Parameter matrix Mi (i = 1, 2, . . . , n) is
initialized as an identity matrix. The hyper-parameter γ in
MOML and the λ in loss layer need to be chosen by
cross-validation according to the specific task. All wi (i =
1, 2, . . . , n) is initialized as 1. The number of layers in
MLOML is also a hyper-parameter, which can be chosen
according to a specific task (3 or 5 layers are usually enough).

Forward Propagation: At the t-th time step, one triplet
〈x(0)
t ,x

(0)
p ,x

(0)
q 〉 is constructed. Then the triplet is fed into

Fig. 3. Flowcharts of MLOML-FP, MLOML-BP and MLOML-FBP, respec-
tively, where MLOML is the MLOML-r model.

TABLE I
TWELVE UCI DATASETS WITH DIFFERENT SCALES (i.e., #INST) AND

FEATURE DIMENSIONS (i.e., #FEAT).

Datasets #inst #feat #class Datasets #inst #feat #class
lsvt 126 310 2 balance 625 4 3
iris 150 4 3 breast 683 9 2
wine 178 13 3 pima 768 8 2
spect 267 22 2 diabetic 1151 19 2
ionophere 351 34 2 waveform 5000 21 3
pems 440 137710 7 mlprove 6118 57 6

final loss to train the entire model without the local losses
and without forward updating. The flowcharts of these three
variations can be seen in Fig. 3. The comparison between these
variations will be shown in Section IV-D.

IV. EXPERIMENTS

To verify the effectiveness and applicability of the pro-
posed MLOML, we conduct various experiments on the UCI
datasets, which include multiple real-world machine learning
tasks for which only vectorized features can be accessed, to
analyze and interpret the properties of MLOML. First, we
introduce the training process of MLOML.

A. Training

We will describe how to train MLOML in detail in this
section. Note that, MLOML is trained from scratch in an end-
to-end manner, which is totally different from the traditional
layer-by-layer training.

Initialization: Parameter matrix Mi (i = 1, 2, . . . , n) is
initialized as an identity matrix. The hyper-parameter γ in
MOML and the λ in loss layer need to be chosen by
cross-validation according to the specific task. All wi (i =
1, 2, . . . , n) is initialized as 1. The number of layers in
MLOML is also a hyper-parameter, which can be chosen
according to a specific task (3 or 5 layers are usually enough).

Forward Propagation: At the t-th time step, one triplet
⟨x(0)

t ,x
(0)
p ,x

(0)
q ⟩ is constructed. Then the triplet is fed into

the first OML layer, and the current local triplet loss (i.e.,
Eq. (4)) is calculated by using the current metric matrix M1.

According to the updating strategy of MOML (i.e., Eq. (6)),
the metric matrix M1 is updated for the first time. Then,
M1 is mathematically decomposed as L⊤

1 L1. After transfor-
mation by using L1, the new triplet ⟨x(1)

t = L1x
(0)
t ,x

(1)
p =

L1x
(0)
p ,x

(1)
q =L1x

(0)
q ⟩ is fed into the next ReLU, Sigmoid or

tanh layer. In a serial manner, the final output of the last layer
is ⟨x(n)

t ,x
(n)
p ,x

(n)
q ⟩. Through the linear (i.e., OML layer) and

nonlinear transformation (i.e., ReLU, Sigmoid, or tanh layer),
new feature spaces are sequentially explored. At the same time,
the metric matrix of each OML layer is also learnt.

Backward Propagation (optional): The final loss is cal-
culated according to Eq. (1) by using the output of the last
OML layer. By using chain rule, SGD is adopted to update
all the decomposed transformation matrix Li (i = 1, 2, . . . , n).
Then each metric matrix Mi (i = 1, 2, . . . , n) can be obtained
naturally by Mi = L⊤

i Li. Note that all these three samples
in a triplet are used to calculate the gradients. Ideally, forward
updating can explore new feature spaces, while backward
updating can amend the exploration. In this way, that is,
exploration with amendment, a much better feature space
can be found. In practice, the backward propagation indeed
can further slightly improve the feature space learnt by the
forward propagation in some cases, but this could also bring
additional computation load. As a trade-off between time
and performance, if not specified, we will train the proposed
MLOML only by forward propagation, similar to the Deep
forest [37]. More details can be seen in Section IV-D.

B. Datasets

We pick twelve commonly used datasets from UCI Machine
Learning Repository [38], which vary in the dimensionality
and size. The details of these twelve datasets can be seen in
Table I. The reason of choosing these datasets is that they
are all vectorized data and can be representative data for the
real-world applications. For example, lsvt is a real voice re-
habilitation treatment dataset. pems contains 15 months worth
of daily data that describes the occupancy rate of different car
lanes of the San Francisco bay area freeways. Also, ionophere
is real radar data, which is collected by a system in Goose
Bay, Labrador.

Classification task will be conducted on these datasets. For
each dataset, 50% samples are randomly sampled as training
set, and the rest is taken as test set. Each dataset will be
resampled 30 times, and each algorithm will be tested on
all these sampled datasets. When the feature dimensionality
d≥ 200, the d-dimensional feature will be reduced to a 100-
dimensional feature by principal component analysis (PCA)
for easier handling. All datasets are normalized by ℓ2 normal-
ization. Error rate is adopted as the evaluation criterion.

C. Comparison with the State of the Art

To evaluate the effectiveness of the family of MLOML
(MLOML-r, MLOML-s and MLOML-t), six state-of-the-art
online metric learning (OML) algorithms, i.e., RDML [20],
LEGO [19], OASIS [9], OPML [21], SLMOML [33] and the
new designed MOML are employed as comparisons. Note
that all of these compared OML algorithms are single layer
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TABLE II
ERROR RATES (MEAN ± STD. DEVIATION) ON THE UCI DATASETS. •/◦ INDICATES THAT MLOML-R, MLOML-S, MLOML-T ARE SIGNIFICANTLY
BETTER/WORSE THAN THE RESPECTIVE ALGORITHM ACCORDING TO THE t-TESTS AT 95% SIGNIFICANCE LEVEL. THE STATISTICS OF WIN/TIE/LOSS

BETWEEN MLOML-R AND OTHER ALGORITHMS IS ALSO COUNTED.

Datasets Euclidean
Batch Online

LMNN KISSME LMDML ML-CC RDML LEGO

Isvt .369±.051• .387±.057• .403±.098• .374±.064• .384±.047• .400±.055• .369±.051•
iris .038±.016• .040±.018• .039±.020• .028±.015 .058±.034• .028±.019 .037±.016•
wine .218±.039 .170±.044◦ .069±.021◦ .229±.041 .112±.031◦ .350±.028• .231±.041•
spect .354±.031• .357±.032• .365±.031• .342±.036• .409±.044• .347±.035• .326±.035
ionophere .180±.017• .157±.016• .156±.023• .115±.012• .104±.022• .096±.015• .129±.019•
pems .498±.033• .402±.038 .188±.028◦ .352±.028◦ .227±.025◦ .421±.030• .461±.033•
balance .108±.013• .088±.013• .101±.011• .075±.010• .066±.011 .070±.011 .091±.011•
breast .106±.012 .107±.012 .106±.014 .107±.013 .113±.012• .115±.015• .104±.016
pima .324±.018 .326±.020 .333±.021• .330±.019• .322±.022 .357±.022• .322±.020
diabetic .343±.018 .335±.017◦ .288±.018◦ .316±.014◦ .338±.011 .353±.015• .322±.006◦
waveform .195±.006• .190±.005• .158±.006◦ .176±.007◦ .208±.006• .166±.006◦ .198±.006•
mlprove .084±.005• .037±.004• .234±.273• .007±.002• .032±.025• .027±.011• .024±.003•

win/tie/loss 8/4/0 7/3/2 7/1/4 6/3/3 7/3/2 9/2/1 8/3/1

Datasets
Online

OASIS OPML SLMOML MOML MLOML-t MLOML-s MLOML-r

Isvt .333±.000 .370±.051• .369±.051• .369±.051• .369±.054• .369±.052• .326±.053
iris .333±.000• .035±.016• .038±.016• .028±.018 .027±.015 .025±.017 .026±.017
wine .586±.061• .220±.040 .225±.040 .226±.041 .214±.038◦ .216±.039 .219±.039
spect .385±.033• .321±.029 .355±.032• .331±.032• .323±.028 .317±.024 .320±.025
ionophere .183±.017• .107±.020• .107±.020• .108±.032• .102±.021• .086±.013• .081±.016
pems .651±.036• .331±.029◦ .495±.033• .416±.057• .319±.032◦ .407±.030 .397±.036
balance .125±.010• .073±.012• .077±.012• .070±.010• .064±.013 .066±.011 .066±.012
breast .175±.050• .109±.014• .106±.012 .112±.014• .106±.013 .104±.013 .105±.012
pima .349±.003• .324±.022 .334±.022• .323±.020 .322±.019 .321±.017 .323±.018
diabetic .451±.021• .322±.019◦ .348±.016• .342±.016 .341±.015 .341±.014 .342±.017
waveform .298±.049• .175±.006◦ .161±.005◦ .173±.006◦ .168±.006◦ .162±.005◦ .187±.006
mlprove .002±.001◦ .006±.002• .011±.004• .001±.001◦ .002±.001◦ .002±.001◦ .004±.001

win/tie/loss 10/1/1 6/3/3 9/2/1 6/4/2 2/6/4 2/8/2

algorithms, while the proposed famliy of MLOML (MLOML-
r, MLOML-s and MLOML-t) are built on MOML is multi-
layer algorithm. Euclidean distance is adopted as the baseline
algorithm. Besides, four batch metric learning algorithms i.e.,
LMNN [2], KISSME [39], LMDML [35] and ML-CC [40] are
also employed for reference. Note that these three algorithms
(i.e., Euclidean, LMNN and KISSME) are offline.

Cross-validation is used for hyper-parameter selection for
all algorithms. Specifically, the regularization parameter γ
for the family of MLOML (i.e., the γ in MOML metric
layer, γ ∈ {10−4, 10−3, 10−2, 10−1}), the learning rate λ for
RDML (λ ∈ {10−4, 10−3, 10−2, 10−1}), the regularization
parameter η for LEGO (η ∈ {10−4, 10−3, 10−2, 10−1}),
the regularization parameter γ for OPML (γ ∈
{10−4, 10−3, 10−2, 10−1}), the weighting parameter µ for
LMNN (µ ∈ {0.125, 0.25, 0.5}), the parameters K and µ for
ML-CC (K ∈ {2, 4, 8} and µ ∈ {0.1, 0.3, 0.5, 0.7, 0.9},
and the aggressiveness parameter C for SLMOML
(C ∈ {10−4, 10−3, 10−2, 10−1}) are all set up in this

way.
For fair comparison, all OML algorithms adopt the same

triplet construction strategy introduced by OPML to construct
the pairwise or triplet constraints. The difference is that, in
OPML the triplet construction strategy is one-pass, while
here multiple-scan strategy is employed to construct more
constraints for adequately training (the scanning number is
set to 20). Note that, all OML algorithms are still trained in
an online manner. Moreover, three metric layers MLOML is
adopted in this experiment. A k-NN classifier (i.e., k = 5)
is used to get the final classification results. The results are
summarized in Table II. For each dataset, the mean and stan-
dard deviation of error rate are calculated, and pairwise t-tests
between MLOML and other algorithms at 95% significance
level are also performed. Then the win/tie/loss is counted
according to the t-test. From this table, we can see that the
family of MLOML can not only achieve superior performance
compared with other state-of-the-art OML algorithms, but also
better than batch metric learning algorithms except KISSME
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TABLE III
ERROR RATES ON TWELVE UCI DATASETS BY EMPLOYING DIFFERENT PROPAGATION STRATEGIES FOR MLOML.

Datasets
MLOML-r MLOML-s MLOML-t

BP FBP FP BP FBP FP BP FBP FP

Isvt .354±.053• .325±.055 .326±.053 .369±.051 .369±.052 .369±.052 .369±.051 .369±.051 .369±.054
iris .032±.015• .026±.017 .026±.017 .040±.017• .025±.017 .025±.017 .039±.019• .027±.015 .027±.015
wine .220±.040 .220±.040 .219±.039 .216±.039 .216±.039 .216±.039 .216±.041 .214±.041 .214±.038
spect .358±.029• .319±.026 .320±.025 .352±.030• .314±.025• .317±.024 .346±.030• .321±.025 .323±.028
ionophere .128±017• .081±.017 .081±.016 .175±.016• .088±.013 .086±.013 .150±.016• .102±.021 .102±.021
pems .466±.036• .396±.033 .397±.036 .500±.032• .408±.030 .407±.030 .496±.032• .319±.031 .319±.032
balance .070±.013• .066±.011 .066±.012 .109±.012• .066±.012 .066±.011 .066±.011• .064±.013 .064±.013
breast .109±.015• .107±.014 .105±.012 .106±.012 .104±.013 .104±.013 .106±.016 .104±.014 .106±.013
pima .323±.017 .324±.017 .323±.018 .322±.017 .321±.017 .321±.017 .323±.018 .323±.020 .322±.019
diabetic .340±.017 .340±.014 .342±.017 .342±.016 .340±.014 .341±.014 .341±.015 .342±.015 .341±.015
waveform .180±.006◦ .175±.006◦ .187±.006 .194±.006• .163±.004 .162±.005 .169±.005 .166±.005• .168±.006
mlprove .006±.002• .003±.001◦ .004±.001 .084±.005• .002±.001 .002±.001 .007±.002• .001±.001• .002±.001

win/tie/loss 8/3/1 0/10/2 7/5/0 0/11/1 6/6/0 0/10/2
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Fig. 4. Running time of OPML and MOML on the spect and waveform
datasets.

algorithm. A possible reason is that KISSME learns a distance
metric from equivalence constraints which is easier to specify
labels. We can also see that MLOML is robust on small
datasets, e.g., lsvt, iris, spect and ionophere, which means that
MLOML can handle small-scale data very well.

The traditional online metric learning algorithms, RDML,
LEGO, OASIS, OPML and SLMOML algorithms, like our
proposed MOML algorithm, can be used as metric layers
for multi-layer online metric learning algorithms. However,
in the literature of the RDML, LEGO, OASIS and SLMOML
algorithms, they need to first sample triplets, and then apply
these triplets to the training process. Because of this, their
running time are relatively long. In order to guarantee the
fairness of the comparison, Fig. 4 shows the running time
of OPML and MOML on the spect and waveform datasets,
where OPML and MOML use the one-pass triplet construction
strategy. We can see that the proposed MOML has a shorter
running time than OPML.

D. Forward and Backward Propagation

In this section, we analyze the learning ability of MLOML
by adopting different propagation strategies, i.e., MLOML-
FP, MLOML-BP and MLOML-FBP. Specifically, we conduct
classification task on the twelve UCI datasets to compare these
three variations of MLOML, each of which contains three
metric layers. The results are exhibited in Table III. From
the results, we can see that MLOML-FP performs better than

MLOML-BP. The reason is not difficult to perceive, because
BP may suffer from the vanishing gradient problem. Taking
advantage of the fact that each metric layer of MLOML is a
MOML algorithm, it can learn a good metric in each layer
during FP. We can also observe that MLOML-FP performs
similarly to MLOML-FBP. The reason may be that MLOML-
FP has achieved quite good classification performance on some
datasets, so additional BP updating cannot further improve the
performance. However, on other datasets, MLOML-FBP in-
deed achieves the best classification performance as expected,
such as iris, spect and mlprove etc. It is worth mentioning that
MLOML-FP is the fastest one among these three variations
with a time complexity of O(nd2), where n is the number
of metric layers. Overall, for the proposed MLOML, the FP
training strategy is the best one when considering both training
performance and training efficiency. It should be noted that
in the following chapters, MLOML refers specifically to the
MLOML-r model, and the three-layer and five-layer MLOML
networks are denoted by MLOML-3L and MLOML-5L.

E. Progressive Feature Representation
In this section, we will analyze the progressive feature

representation ability of each metric layer in MLOML and
verify that the metric space can become better and better by
adding metric layer gradually. Particularly, an MLOML-5L
model is employed. To test the feature representation ability of
each metric layer, we perform classification task on the output
features of each metric layer respectively. We choose nine UCI
datasets and take Euclidean distance, MOML and LMNN as
the baseline algorithms. Note that only the test sets of these
datasets are used to perform this experiment. From Fig. 5,
we can see that the classification performance of MLOML-
5L becomes better with the increase of the number of metric
layers. Besides, in some datasets, the curve of error rate can
converge smoothly. Moreover, we apply PCA to four UCI
datasets to obtain the new space with 2-dimensional features,
and then visualize the feature space learnt by each metric
layer for more intuition (shown in Fig. 6). The four UCI
datasets are picked and entered into one learnt MLOML-3L
model. Next, all output samples of each metric layer are ℓ2
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Fig. 5. Results of different metric layers of MLOML. Moreover, Euclidean, MOML and LMNN are taken as the baseline algorithms.
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Fig. 7. Error rates on nine UCI datasets by changing the number of scans for MOML and MLOML.

normalized and reduced to a two-dimensional space by PCA.
As seen, in original feature space, the distribution of samples
is disordered. As the number of metric layers increases, the
intra-class distance becomes smaller, the inter-class distance
becomes larger, and the distribution of samples becomes more
separable.

F. Learning Ability of MLOML

Since the multiple-scan strategy is performed in the training
phase, it is necessary to test the learning ability of MLOML by
setting different numbers of scans. Note that m times scanning
will scan the training data m times. Therefore, we set the
number of scans from 1 to 20, and compare the classification
performance between MLOML and MOML under different
scans. Specifically, nine datasets are picked, and Euclidean
distance is taken as the baseline. The results are presented in
Fig. 7. From the figure, we can see that as the number of
scans increases, the classification performance of MLOML is
significantly improved and then converge, which can reflect the
ability of MLOML for reusing data. Compared with MOML,
with the same amount of data (i.e., the same scan), MLOML
can learn better feature representation (i.e., lower error rate). In
other words, the learning ability of MLOML is stronger than
MOML, which means that MLOML can gain more learning
ability from the multi-layer architecture.

G. Extendability of MLOML

In order to verify the extendability of the proposed frame-
work, we take the other three OML algorithms (e.g., LEGO,
RDML and OPML) as the base OML layer followed by
the ReLU layer and construct their corresponding multi-
layer versions, respectively (i.e., LEGO-multi, RDML-multi
and OPML-multi). Note that these three algorithms are all
Mahalanobis-based OML algorithms. For simplicity, FP strat-
egy is employed for these three algorithms. Other settings are
similar to the ones in Section IV-E. From Fig. 8, we can see
that LEGO-multi, RDML-multi and OPML-multi have similar
characteristic to MLOML. In most cases, multi-layer versions
of these algorithms perform better than their corresponding
shallow versions. Moreover, the progressive learning ability
of feature representation is demonstrated. Therefore, the ef-
fectiveness and extendability of the proposed framework are
verified.

V. DISCUSSIONS AND CONCLUSIONS

In this study, we propose a multi-layer framework for
online metric learning. Specifically, we implement multi-layer
online metric learning (MLOML) by stacking a set of OML
algorithms. Extensive experiments have been conducted to
analyze and verify the properties of MLOML. For future work,
we will analyze and discuss this framework from three aspects
as follows.

• Extendability: Although only OML-based algorithms are
implemented (e.g., MLOML), the proposed framework is
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Fig. 8. Results of different metric layers of RDML-multi, LEGO-multi and OPML-multi (marked by hollow shapes), which are stacked by online metric
algorithms RDML, LEGO and OPML (marked by corresponding solid shapes) along with the ReLU layers, respectively.

extensible, such as: a) mini-batch or batch metric learning
based metric layer can be constructed; b) different metric
learning algorithms can be combined as different metric
layers.

• Advantages: The proposed MLOML has many nice
properties: a) it is online; b) it can be trained by either
forward or backward propagation; c) it is quite fast
and effective, which can be trained by CPU; d) it can
progressively learn feature representation.

• Drawbacks: Because MLOML is based on MOML, the
performance of MLOML depends on the performance
of MOML. Currently, MLOML cannot efficiently handle
high dimensional data well due to a full matrix M
learned in MOML. This problem can be tackled by
learning a diagonal matrix or employing dimensionality
reduction through online feature selection, which will be
investigated in the next work. Meanwhile, the number
of metric layers in MLOML is uniformly specified ac-
cording to the experimental results. However, the optimal
number of layers is often different for different tasks. The
another question is how many metric layers is sufficient
for a task will be studied in the future.
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APPENDIX

A. Proof of Theorem 1

Proof. As At+1=(xt+1−xp)(xt+1−xp)
⊤−(xt+1−xq)(xt+1−

xq)
⊤, whose rank is 1 or 2, it has at most 2 non-zero

eigenvalues. That is to say, Tr(At+1) = λ1+λ2. Specifically,
we can also easily get that,

−∥xt+1 − xq∥22 ≤ λ(At+1) ≤ ∥xt+1 − xp∥22 , (8)

where λ(At+1) means the eigenvalue of At+1 (i.e., λ1 or λ2).
For each sample x is ℓ2 normalized, the ranges of ∥xt+1 −
xp∥22 and ∥xt+1 − xq∥22 vary from [0, 4]. Thus,

λmin(Mt)− 4γ ≤ λ(Mt − γAt+1) ≤ λmax(Mt) + 4γ . (9)

When γ ≤ 1
4λmin(Mt), it is guaranteed that the minimum

eigenvalue of Mt − γAt+1 is greater than zero. As the initial
matrix M1 = I is positive definite (i.e., λmin(M1) = 1).
By properly setting a small γ, the minimum eigenvalue of
Mt − γAt+1 is generally large than zero. Thus, the positive
definiteness of Mt+1 = Mt−γAt+1 can be guaranteed. Same
theoretical guarantee (i.e., the small pertubations of positive
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definite matrix) can also be found in the chapter 9.6.12 of
[41].

B. Proof of Theorem 2

Proof. According to the objective function of MOML, i.e.,

Γ = argmin
M≽0

1

2
∥M −Mt−1∥2F + γ

[
1 + Tr(MAt)

]
+
, (10)

we denote ℓt as the instantaneous loss suffered by MOML at
each t-time step with the learnt Mt ∈ Rd×d, and denote by ℓ∗t
the loss suffered by an arbitrary parameter matrix U ∈ Rd×d,
which can be formalized as below:

ℓt =ℓ(Mt; ⟨xt,xp,xq⟩) = [1 + Tr (MtAt)]+

ℓ∗t =ℓ(U ; ⟨xt,xp,xq⟩) = [1 + Tr (UAt)]+ ,
(11)

where At = (xt−xp)(xt−xp)
⊤− (xt−xq)(xt−xq)

⊤, Tr
denotes trace and [z]+ = max(0, z). As Tr(MtAt) is a linear
function, it is convex w.r.t Mt by natural. Besides, the hinge
loss function [z]+ is a convex function (but not continuous at
z = 0) w.r.t z. Hence, the resulting composite function ℓt(Mt)
is convex w.r.t Mt. As ℓ is a convex function, we can introduce
the first-order condition as follow:

ℓ(Y ) ≥ ℓ(X) + VEC(▽ℓ(X))⊤ VEC(Y −X) , (12)

where X,Y ∈ Rd×d, VEC denotes vectorization of a matrix,
and ▽ℓ(X) is the gradient of function ℓ at X .

Inspired by [15], we define ∆t to be ∥Mt−U∥2F−∥Mt+1−
U∥2F . Then calculating the cumulative sum of ∆t over all
t ∈ {1, 2, · · · , T}, we can easily obtain

∑
t ∆t,

T∑

t=1

∆t =

T∑

t=1

(∥Mt −U∥2F − ∥Mt+1 −U∥2F )

=∥M1 −U∥2F − ∥MT+1 −U∥2F
≤∥M1 −U∥2F .

(13)

For simplicity, we employ stochastic gradient descent
(SGD) to update the parameter matrix Mt. Hence, according
to the definition of SGD, Mt+1 = Mt − η ▽ ℓ(Mt), where
η is the learning rate, and ▽ℓ(Mt) = γAt+1. Then, we can
rewrite the ∆t as,

∆t =∥Mt−U∥2F −∥Mt+1−U∥2F
=∥Mt−U∥2F −∥Mt−η ▽ ℓ(Mt)−U∥2F
=∥Mt∥2F −2⟨Mt,U⟩F +∥U∥2F −∥Mt−U∥2F

+ 2⟨Mt−U , η ▽ ℓ(Mt)⟩F −η2∥▽ℓ(Mt)∥2F
=2ηVEC(Mt−U)⊤ VEC(▽ℓ(Mt))−η2∥▽ℓ(Mt)∥2F(

employ the Eq. (12) i.e., ℓ(U)≥ℓ(Mt)+VEC(▽ℓ(Mt))
⊤

VEC(U−Mt)
)

≥2η(ℓt − ℓ∗t )− η2∥▽ℓ(Mt)∥2F .
(14)

We can easily get that,

T∑

t=1

[
2η(ℓt − ℓ∗t )− η2∥▽ℓ(Mt)∥2F

]
≤ ∥M1 −U∥2F . (15)

As all samples are ℓ2 normalized, the 2-norm of each sample
is 1, namely ∥xt∥2 ≡ 1, t ∈ {1, 2, · · · , T}. We can easily
calculate the Frobenius norm of At+1.

∥At+1∥F ≤∥(xt+1−xp)(xt+1−xp)
⊤∥F +∥(xt+1−xq)(xt+1−xq)

⊤∥F(
employ ∥ab⊤∥2

F =(
d∑

i=1

|ai|2)(
d∑

j=1

|bj |2), where a, b ∈ Rd)
=∥xt+1−xp∥2 · ∥x⊤

t+1−x⊤
p ∥2+∥xt+1−xq∥2 · ∥x⊤

t+1−x⊤
q ∥2

=∥xt+1 − xp∥22 + ∥xt+1 − xq∥22(
for ∥a − b∥2

2 ≤ (∥a∥2 + ∥b∥2)
2)

≤8 .
(16)

Thus,

T∑

t=1

(ℓt − ℓ∗t ) ≤
1

2η
∥M1 −U∥2F +

η

2

T∑

t=1

∥▽ℓ(Mt)∥2F

=
1

2η
∥M1 −U∥2F +

η

2

T∑

t=1

∥γAt+1∥2F

≤ 1

2η
∥M1 −U∥2F + 32Tηγ2

(M1 is initialized to an identity matrix I)

=
1

2η
∥I −U∥2F + 32Tηγ2 .

(17)

In particular, setting η = 1
Φ
√
T

(where Φ > 0 is a constant)

yields the regret bound R(U , T ) ≤
(
Φ
2 ∥I−U∥2F + 32γ2

Φ

)√
T .

In fact, in this study, as a closed-form solution is employed
(i.e., η = 1), the regret bound is R(U , T ) ≤ 1

2∥I − U∥2F +
32Tγ2. By setting γ in a decreasing way with the iteration
number T , for example, γ = 1

Φ
√
T

, we can obtain a regret
bound R(U , T ) ≤ 1

2∥I −U∥2F + 32
Φ2 . Hence proved.

C. Theoretical analysis of Proposition 1

Proof. For simplicity, we just consider to analyze and prove
this proposition of MLOML-FP that only uses forward prop-
agation strategy. In fact, as MLOML-FP only has forward
propagation, each metric layer is a relatively independent
MOML algorithm. Thus, Theorem 2 is applicable to each
metric layer. In other words, each metric layer (i.e., a MOML
algorithm) has its own tight regret bound. As the subsequent
metric layer is learnt based on the output of the former metric
layer, the metric space should not be worse according to
the theoretical guarantee of regret bound. Moreover, ReLU,
Sigmoid, tanh activation functions can introduce nonlinear and
sparsity into the feature mapping, which is also beneficial to
the exploration of feature space. In some cases, if the latter
metric layer is in the wrong direction, backward propagation
can be chosen to correct and adjust the direction to some
extent.
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