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Abstract—Flexible manufacturing has given rise to complex
scheduling problems such as the flexible job shop scheduling
problem (FJSP). In FJSP, operations can be processed on
multiple machines, leading to intricate relationships between
operations and machines. Recent works have employed deep
reinforcement learning (DRL) to learn priority dispatching rules
(PDRs) for solving FJSP. However, the quality of solutions
still has room for improvement relative to that by the exact
methods such as OR-Tools. To address this issue, this paper
presents a novel end-to-end learning framework that weds the
merits of self-attention models for deep feature extraction and
DRL for scalable decision-making. The complex relationships
between operations and machines are represented precisely and
concisely, for which a dual-attention network (DAN) comprising
several interconnected operation message attention blocks and
machine message attention blocks is proposed. The DAN exploits
the complicated relationships to construct production-adaptive
operation and machine features to support high-quality decision-
making. Experimental results using synthetic data as well as
public benchmarks corroborate that the proposed approach
outperforms both traditional PDRs and the state-of-the-art DRL
method. Moreover, it achieves results comparable to exact meth-
ods in certain cases and demonstrates favorable generalization
ability to large-scale and real-world unseen FJSP tasks.

Index Terms—Flexible job-shop scheduling, self-attention
mechanism, deep reinforcement learning, graph attention net-
works

I. INTRODUCTION

Industry 4.0 is transforming the way companies manufac-
ture, improve, and distribute their products, by moving towards
rapid, intelligent, and flexible manufacturing, which leads to
a fundamental change in production capabilities of enterprises
[1], [2]. The flexible job-shop scheduling problem (FJSP) is a
classic problem that represents the typical scenarios faced by
flexible manufacturing. FJSP has gained increasing attention in
diverse fields, such as cyber-physical manufacturing [3], cloud
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computing [4], and intelligent transportation [5]. The job-
shop scheduling problem (JSP), which is a simpler and easier
instance of FJSP, is also a core issue in the manufacturing
industry [6]. JSP involves a set of jobs and machines, where
each job consists of multiple operations that must be processed
on a given machine in a pre-defined order. The goal is to
generate a processing sequence of operations that achieves
a meaningful production goal, such as minimum completion
time, lateness/tardiness, or production cost. Compared to JSP,
FJSP is a more challenging problem as it allows each operation
to be processed on multiple different machines.In addition
to the operation sequencing problem in JSP, the machine
assignment problem adds further manufacturing flexibility,
rendering FJSP a more complex topology and a much larger
solution space.

In fact, it has been shown that FJSP is a strongly NP-
hard problem [7]. The combinatorial nature of FJSP makes it
challenging to find (near-)optimal solutions using traditional
operation research methods such as constraint programming
[8]. These methods have intractable computation costs that
increase dramatically with the problem size, making them
impractical for large-scale applications [9]. To strike a bal-
ance between the solution quality and the computation cost,
research in the field has gradually shifted from traditional
heuristic and meta-heuristic methods to intelligent methods
such as deep learning [6] and particularly deep reinforcement
learning (DRL) [10].

Meta-heuristics, including genetic algorithms [11], [12],
particle swarm optimization [13], differential evolution [14],
and artificial bee colony [15], have been widely employed for
scheduling problems, and they often find high-quality solutions
by means of a complex solution search procedure. In con-
trast, rule-based heuristics, such as priority dispatching rules
(PDRs), are more practical due to their ease of implementation
and high efficiency [16]. PDRs repeatedly select the operation
or machine with the highest priority based on some prescribed
rules until a complete plan is generated. Nonetheless, design-
ing effective PDRs often requires significant expertise and
research effort, and they may only perform well in specific
tasks.

DRL methods have emerged as promising approaches to
solve JSP and FJSP [17], which model the scheduling process
as a Markov decision process (MDP). In these methods, a
parameterized neural network model is designed to receive
information about the production environment as state and
output the priority of each feasible scheduling action, such as
assigning an operation to a machine, forming an end-to-end
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learning approach [18]. Through training on a set of produc-
tion process data, the DRL model learns to adaptively select
the best action at a state to maximize the total reward, which
is related to the production goal. However, the effectiveness
and efficiency of these methods heavily depend on the design
of the state representation, which is a challenging task. As the
problem size increases, the amount of production information
grows significantly. Therefore, representing this information
and complex constraints in the scheduling environment in
a sufficiently and minimally expressive manner poses key
challenges for designing the state representation. However,
the trained DRL-based model is expected to be capable of
solving problems of different sizes based on a single unifying
architecture. Additionally, the structural information of the
problem, which comprises diverse sets of constraints, also
plays a critical role in making JSP and FJSP challenging. The
priority of operations or machines is strongly related to these
constraints, making it essential for the model to appropriately
express and exploit them.

Several attempts have been made to address these chal-
lenges. One approach is to use aggregated features of op-
erations or machines, such as average machine workload,
to represent the production state instead of separately rep-
resenting each operation or machine, to achieve a uniform
representation for problems of varying sizes. For example,
this approach is used in [19] to characterize the production
status of dynamic partial-no-wait FJSP. They designed 20
extracted features as the state and developed a hierarchical
DRL-based framework to learn from these features and choose
rules from a set of PDRs for the operation and machine
selection independently. Similarly, in [20], a similar approach
for state representation is used to describe FJSP with crane
transportation and setup times, and a non-fully connected deep
Q-network was employed for selecting compound rules to
solve this problem. Although this state representation approach
is generic for various production scenarios, such as FJSP with
additional production constraints, and simplifies the depiction
of FJSP, it compresses the information about the production
state and makes little use of the structural information.

Alternatively, the well-known disjunctive graph [21] has
been widely used in many studies to represent the state
of (F)JSP. This graph-based model represents operations as
nodes and uses directed edges between nodes to indicate the
processing order of operations, allowing it to describe features
of each operation and represent the structural information
of (F)JSP. Recent research has shown promising results in
leveraging representation learning methods such as graph
neural networks (GNNs) and self-attention mechanisms [22] to
handle combinatorial optimization problems with complicated
constraints, as these methods have the ability to capture the
inherent structure of the problem and are size-agnostic.

Integration of these methods with DRL has been explored in
various domains such as vehicle routing [23], [24], chip design
[25], and production scheduling [26], and has demonstrated
success in solving extremely large-scale problems [27]. In the
domain of JSP, for example, a learning framework that incor-
porates GNN and DRL was proposed in [28] for generating the
priority of operations at each step of the scheduling process

using a sparse graph as the state representation. Similarly, the
work of [29] incorporated dynamic attributes in node features
and designed a customized GNN for message passing to learn
operation embeddings. In [30], graph embedding techniques
were utilized to extract features of the disjunctive graph for
downstream decision-making, and an attention-based model
was proposed to generate solutions for JSP.

Recent works have extended these solutions to handle FJSP
by considering additionally machine features and improving
decision-making models to handle both operation sequencing
and machine assignment. For instance, the work of [31]
introduced a two-step decision-making framework that uses
a disjunctive graph for learning operation embeddings and a
multi-layer perceptron (MLP) for passing machine messages.
However, this approach may result in limited exploration
during training since the priority of machines is only computed
for the selected operation. On the other hand, [32] designed a
heterogeneous graph that considers operations and machines as
heterogeneous nodes and connects each machine to operations
that it can process. They proposed a two-stage GNN for learn-
ing machine and operation embeddings and a decision-making
model for selecting operations and machines simultaneously.

In general, albeit these DRL-based solutions yield better
performance than traditional PDRs, some challenging prob-
lems still remain to be tackled for further improving the
model’s performance and narrowing the gap with exact meth-
ods. First, a more precise state representation is required
which avoids to incorporate information that are irrelevant
to decision-making. For instances, completed operations have
no contributions to subsequent decision-making at a specific
scheduling step, for they will not affect the production status.
However, existing methods consider all operations at each
step, which may affect the performance and also reduce the
efficiency [33]. Second, diverse relationships between opera-
tions and machines require to be represented and exploited
more rationally. Although existing methods have considered
the operation-operation or operation-machine relationships,
they have not modeled the relationship between machines
yet. The relationship between machines can be viewed as the
competition for remaining unscheduled operations which is
crucial for discriminating high-priority machines.

In response to these challenges, we propose a novel end-to-
end learning framework for standard FJSP aiming to minimize
the completion time. First, a tight state representation is in-
troduced in the MDP formulation, which incorporates relevant
information about decision-relevant operations and machines.
Second, a dual attention network, comprising several operation
and machine message attention blocks, is proposed to express
the complicated relationships of operations and machines
concisely. The operation message attention blocks learn to
extract operation features by simply exploiting their prece-
dence constraints, and the machine message attention blocks
leverage the competitive relationships between machines to
extract machine features. Finally, a size-agnostic decision-
making framework is designed to simultaneously address
the two critical subproblems in FJSP: operation sequencing
and machine assignment. Experiment results show that our
approach outperforms traditional PDRs and the state-of-the-
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art DRL method by a considerable margin on two synthetic
data with different distributions. The performance is even
comparable to exact methods (with time limits) on some
tasks. Moreover, it exhibits favorable generalization ability, as
models trained on small-scale instances achieve high-quality
solutions when directly applied to solve large-scale or out-of-
distribution instances.

The contributions of this work are summarized as follows.
• A tight state representation for describing operations

and machines in FJSP that is minimal and sufficient
for downstream decision-making with the state space
decreasing as scheduling proceeds;

• A dual-attention network consisting of several operation
and machine message attention blocks for deep feature
extraction of operations and machines; and,

• A size-agnostic DRL-based approach with (markedly)
improved performance and generalization capability com-
pared to conventional PDRs and the state-of-the-art DRL
method.

The remainder of the paper is structured as below. Section
II introduces the necessary basics and the FJSP. Section III
provides the detailed formulation of the proposed method.
Section IV reports the experimental results with Section V
concluding the paper.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Flexible job-shop scheduling problem and disjunctive
graph

The FJSP can be formally stated as follows. Consider
a set of n jobs and m machines, represented by J and
M, respectively. We assume that all jobs arrive simultane-
ously at system production time Ts = 0. Each job Ji ∈
J consists of ni operations which must be assembled in
a specific order (i.e. precedence constraints) described by
Oi = {Oi1, Oi2, . . . , Oini

}. The set of all operations across
all jobs is denoted by O =

⋃
iOi. Each operation Oij

can be processable by multiple machines, but can only be
processed on a single machine from the set of available and
compatible machines Mij ⊆ M. The associated processing
time on machine Mk ∈ Mij is given by pkij > 0. FJSP
seeks to design a schedule that determines for each operation
an appropriate processing machine and the start time while
respecting the following constraints: c1) the operations of
Ji must be processed in the order in Oi (i.e. precedence
constraints); c2) each operation must be assigned to exactly
one compatible machine; and c3) each machine can process at
most an operation at a time. The goal of FJSP is to minimize
the maximum completion time of all jobs; that is, minimizing
the total makespan.

The disjunctive graph is a well-documented technique for
representing the scheduling problems such as JSP and FJSP.
In FJSP, a disjunctive graph G can be described by a tuple
(V = O∪ {Start, End}, C,D), see Fig. 1. The node set V is
composed of all operations (i.e., nodes) and two dummy nodes
(signifying the start and completion of production). The edge
set C = {⟨Oij , Oi,j+1⟩|1 ≤ i ≤ |J |, 1 ≤ j < ni} comprises
all directed edges called conjunctions, which models constraint
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Fig. 1: The disjunctive graph for FJSP.

c1) above; and D is the set of undirected edges or disjunc-
tions, which consists of m groups, denoted by D1, ...,Dm,
respectively. Disjunctions in group Dk connect operations that
machine Mk can process. Consequently, an operation can be
linked to disjunctions in different groups according to their
flexibility. A solution to FJSP can be obtained by updating
these disjunctions. Once an operation Oij is scheduled to
be processed on a machine Mk, all disjunctions linked to
Oij except for the ones in Dk are then deleted. Meanwhile,
disjunctions that link scheduled operations are converted into
directed edges, whose direction indicates the processing se-
quence of operations on corresponding machines. As a result,
the disjunctive graph becomes a directed acyclic graph when
scheduling is completed.

B. Graph attention network

Graph attention networks (GATs) [34] are one of the most
popular and effective architectures in the field of GNNs. The
graph attention layer (GAL) is the core block of GATs which
uses attention mechanisms to aggregate neighboring informa-
tion and compute node embeddings. Roughly speaking, a GAL
accepts as input a graph with a set H = {h⃗i ∈ RF }Ni=1 of
nodal feature vectors and outputs for each node a new feature
vector h⃗′

i ∈ RF ′
.

Letting Ni collect the first-hop neighbors of node i (in-
cluding node i itself), a GAL first computes the attention
coefficients eij for each node i and j ∈ Ni as follows

eij = LeakyReLU
(
a⃗⊤

[
(Wh⃗i)∥(Wh⃗j)

])
(1)

where W ∈ RF ′×F is a linear transformation shared by all
nodes, the operation [·∥·] concatenates two vectors to form a
larger vector, and a⃗ ∈ R2F ′×1 is the weight vector of a single-
layer neural network with a LeakyReLU(·) activation function.
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These attention coefficients are further normalized using the
softmax function as follows

αij = softmaxj(eij) =
exp(eij)∑

k∈Ni
exp(eik)

, ∀i. (2)

Finally, the weighted sum of transformed neighboring features
using the normalized attention coefficients is computed, which
is then fed into a nonlinear activation function σ : R → R
(e.g., the exponential linear unit or ELU) to yield a new feature
vector

h⃗′
i = σ

( ∑
j∈Ni

αijWh⃗j

)
, ∀i. (3)

A GAT can have multiple GALs connected one by one forward
similar to feedforward neural networks. The node embeddings
at the last layer are employed in downstream tasks.

III. THE PROPOSED METHOD

In this section, we present our main results including
the MDP formulation and a new end-to-end approach for
standard FJSP. To this aim, we first formulate FJSP as a
Markov decision process by defining its states, actions, state
transitions, and rewards. Then, we introduce the proposed
learning approach for FJSP, which is termed Dual Attention
Network based reInforcEment Learning and DANIEL for
short. It builds on GAT-style self-attention mechanisms and
deep reinforcement learning. The workflow of the proposed
method is depicted in Fig. 2. Specifically, our framework con-
sists of i) a dual attention network for deep feature extraction
of and between operations and machines; and, ii) a DRL-based
decision-making network that considers operation-selection
and machine-selection as a whole and outputs a probability
distribution prioritizing available operation-machine pairs. At
last, we demonstrate how to train the proposed model.

A. MDP formulation of FJSP

The scheduling process can be understood as dynamically
assigning a ready operation to a compatible and idle machine.
In this way, the decision point t is the production system time
Ts(t) when there is at least a compatible operation-machine
pair (Oij ,Mk) such that Oij can be processed on machine
Mk at time Ts(t). At step t, the DRL model receives a state
st from the environment and takes an action at that assigns a
compatible pair to start processing immediately at time Ts(t),
for which the FJSP environment returns a reward rt related to
the makespan. A solution of FJSP can be obtained by repeating
this procedure |O| times for the entire set of operations in the
task. The MDP is defined as follows.

State. We propose a tight state representation that suffi-
ciently characterizes the operations and machines relevant to
decision-making. Specifically, the operations can be catego-
rized into three groups according to their status at the time,
namely, completed operations, being processed operations, and
unscheduled operations. Since the decision at step t only
depends on the production status at system time Ts(t), all
operations, except for the completed ones which will not affect
subsequent scheduling, are referred to as relevant operations.

State Scheduling Agent FJSP Environment
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···

···
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Dual

Attention
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State: raw features of relevant operations and machines
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• Update production status

• Generate reward and the 

next state

Production schedule

Fig. 2: An overview of the proposed method.

Likewise, the machines that cannot process any of the re-
maining unscheduled operations are also termed irrelevant to
subsequent scheduling. Therefore, information about irrelevant
operations and machines are not meaningful for scheduling
and will not be recorded in the state. Let Ou(t) andMu(t) be
the set of relevant operations and machines at step t, and A(t)
the set of compatible operation-machine pairs. The state st is a
set of feature vectors, including hOij

∈ R10 for each operation
Oij ∈ Ou(t), hMk

∈ R8 for each machine Mk ∈ Mu(t),
and h(Oij ,Mk) ∈ R8 for each compatible operation-machine
pair (Oij ,Mk) ∈ A(t). They are carefully handcrafted to
provide a minimal yet sufficient description about the static
and dynamic properties of scheduling-relevant entities; see the
appendix for more details. It is worth stressing that, different
from existing works, the state space gets smaller as the pro-
duction/scheduling proceeds (until it becomes empty meaning
that all operations have been scheduled and processing ends),
making the representation computationally appealing for real-
time and large-scale applications.

Action. The set A(t) of all compatible operation-machine
pairs defines the action space at step t, which becomes smaller
as more operations get scheduled for processing across time.
We also refer to the operations in A(t) as the candidates, all
of which form the candidate set Jc(t).

State transition. An action at corresponds to the processing
of an operation on a machine. Upon taking the action, the
environment (i.e., the production status of all operations and
machines) changes. Then, the sets Ou(t),Mu(t) and A(t) as
well as features of relevant entities are updated, and a new
state st+1 is obtained.

Reward. The reward rt should be designed to guide the
agent to choose actions that are helpful in reducing the maxi-
mum completion time of all operations in the task, namely the
makespan, denoted by Cmax. Inspired by the design in [28],
we estimate a lower bound of the completion time C(Oij , st)
for each operation Oij at step t. If Oij has been scheduled,
the value equals to its actual completion time Cij which is
accurately known and can be computed. For all unscheduled
operations, the lower bound can be approximated by iteratively
running the recursion C(Oij , st) = C(Oi(j−1), st)+ min

k∈Mij

pkij

assuming without loss of generality that C(Oi,0) = 0. The
estimated maximum completion time max

Oij∈O
C(Oij , st) over all

operations can naturally be used as a measure of the makespan
at step t. The reward rt is defined as the difference between
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Fig. 3: The architecture of the dual attention network (DAN).

the estimated makespan values at step t and t+ 1

rt = max
Oij∈O

C(Oij , st)− max
Oij∈O

C(Oij , st+1). (4)

When the discounting factor γ = 1, one can obtain the
cumulative reward

∑|O|−1
t=0 rt = max

Oij∈O
C(Oij , s0) − Cmax. In

this way, maximizing the cumulative reward is equivalent to
minimizing the makespan.

Policy. We employ a stochastic policy π(at|st) whose
distribution is generated by an DRL algorithm (an actor-
critic network in our simulations) with trainable parameters
Θ. Given a state st, this distribution returns the probability of
choosing each action at ∈ A(t).

B. Dual attention network

Self-attention models can relate elements of input sequences
and find the significant ones by exploiting their relation-
ships, which are suitable for finding high priority opera-
tions and/or machines. In addition, self-attention models can
handle length-varying sequences (as inputs), which is well-
tailored for solving FJSP instances across different scales.
These considerations have motivated us to use self-attention
models to extract features for operations and machines. The
disjunctive graph of FJSP shows that there are multiple types
of connections among operations, such as conjunctions and
multiple groups of disjunctions. Each type can be seen as a
kind of relationship. Therefore, it is inappropriate to relate all
operations through a uniform attention model. Moreover, the
competitive relationship between machines is not explicitly
explored in a disjunctive graph, but it is intuitive that they are
crucial for modeling the priority of machines.

To bypass these drawbacks, this paper proposes the dual
attention network (DAN), an attention-based model for fea-
ture extraction of and between operations and machines in

FJSP. The overall framework of DAN is shown in Fig. 3.
DAN decomposes the complex relationships of operations and
machines into two parts and handles them separately using
two different attention blocks, which are called operation
message attention block and machine message attention block,
respectively. The former receives operation features as input
and simply relates them through precedence constraints. The
latter explicitly models the dynamic competitive relationships
between machines, which handles the production state of each
machine as well as its processing eligibility of the unscheduled
operations. The connected two blocks altogether constitute
a dual attention layer. Features of operations and machines
are refined through L layers in turn, which exhibit similar
structures but with a different number of attention heads and
parameters. Let ω collect all the parameters of DAN. Details
for updating the l-th layer’s parameters at step t are given
as below. In the following, the subscripts t and l are omitted
when clear from context.

1) Operation message attention block. This block aims to
relate operations in the same job so as to find the most
significant operations via their inherent properties. Concretely,
for each Oij ∈ Ou with input features hOij

∈ Rdo , this
block models the relationships between Oij , its predecessor
Oi,j−1, and its successor Oi,j+1 (if it exists), by computing
their attention coefficients as follows

ei,j,p = LeakyReLU
(
a⃗⊤

[
(WhOij

)∥(WhOip
)
])

(5)

where a⃗⊤ ∈ R2d′
o and W ∈ Rd′

o×do are linear transformations
and for all |p− j| ≤ 1.

Note that the computations are similar to those in GAT,
but we have narrowed its scope. Due to the fact that the
predecessor (or successor) of some operations may not exist or
will be removed at some step, a dynamic mask on the attention
coefficients of these predecessors and successors is performed.
A softmax function is employed to normalize all ei,j,p across
choices of p, obtaining normalized attention coefficients αi,j,p.
Finally, the output feature vector h′

Oij
∈ Rd′

o is obtained by
a weighted linear combination of transformed input features
WhOi,j−1 , WhOi,j and WhOi,j+1 followed by a nonlinear
activation function σ:

h′
Oij

= σ
( j+1∑

p=j−1

αi,j,pWhOip

)
(6)

By connecting multiple operation message attention blocks
one by one, the messages of Oij can be propagated to all
operations in Ji.

2) Machine message attention block. Two machines compete
for the unscheduled operations that they can both process. This
competitive relationship may change dynamically as produc-
tion proceeds. We define Ckq as the set of operations that
machines Mk and Mq compete for. Let Nk = {q | Ckq ̸= ∅}
denote the set of competing machines with Mk. Additionally,
we employ ckq =

∑
Oij∈Ckq∩Jc

hOij as a measure of the
intensity of competition between Mk and Mq , which makes
sense as the competition becomes more severe when their
competed candidates are more important. The machine mes-
sage attention block leverages ckq to compute the attention
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coefficients ukq (The ’filter’ operator in Fig. 3 is used for
obtaining ckq for each Mk and Mq). For each Mk ∈ Mu

with input features hMk
∈ Rdm , the attention coefficients ukq

for all q ∈ Nk are computed as follows

ukq = LeakyReLU
(
b⃗⊤[(Z1hMk

)∥(Z1hMq )∥(Z2ckq)
])

(7)

where Z1 ∈ Rd′
m×dm and Z2 ∈ Rd′

m×do are weight matrices
and b⃗⊤ ∈ R3d′

m is a linear transformation.
Note that Ckk is the set of unscheduled operations that Mk

can process and k is always in Nk. Therefore, (7) can be
applied to compute ukk, for ckk can be seen as a measure
of the processing capacity of Mk. When Ckq ∩ Jc is empty,
we fill ckq by zeros. Then, analogous softmax normalization
(across choices of q), combination, and activation steps are
conducted to obtain the output features h′

Mk
∈ Rd′

m .
3) Multi-head attention. We apply multiple attention heads

to both blocks for the purpose of learning a variety of
relationships between entities. This technique has been shown
effective in strengthening the learning ability of attention
models [22]. We specify its use in the operation message
attention block, which is the same for the machine message
attention block and thus omitted for brevity. Let H be the
number of attention heads in a dual attention layer and H
attention mechanisms with different parameters are applied.
First, the computation of attention coefficients and the com-
bination are performed in parallel. Then, their outputs are fed
into an aggregation operator for integration. Adopted from
GAT, the aggregation operator refers to a concatenation except
for the last layer which uses an averaging operator. Finally, the
activation function σ is applied to obtain the layer’s output.

4) Pooling. Let the raw (handcrafted) features of operation
Oij and machine Mk denoted by h

(0)
Oij

and h
(0)
Mk

, respectively.

Upon passing h
(0)
Oij

and h
(0)
Mk

through L dual attention layers,

the learned features h
(L)
Oij

and h
(L)
Mk

are ready for downstream
decision-making tasks. Similar to [24], we first apply an aver-
aging pooling to the operation features and machine features
separately, whose results are concatenated to form the global
features of an FJSP instance; that is,

h
(L)
G =

[( 1

|Ou|
∑

Oij∈Ou

h
(L)
Oij

)∥∥∥( 1

|Mu|
∑

Mk∈Mu

h
(L)
Mk

)]
. (8)

5) Analysis. Compared with the prior art [31], [32], our
method has advantages in the following aspects. First, we
model the time-varying competition between machines explic-
itly use and rely on this relationship to construct machine
features. On top of this, we employ the sum of processable
candidate features to represent the intensity of competition
and consider its influence on the machine’s priority. Moreover,
our design incurs a much smaller computational overhead,
since the learning process can be understood as handling
two (much) smaller graphs, one for operations and the other
for machines. The graph for operations can be seen as a
modified disjunctive graph with the node set Ou(t), where
conjunctions are maintained but replaced by undirected edges
and disjunctions are removed. The graph for machines is
used for describing information incorporated in disjunctions,

which takes compatible machines as nodes and characterizes
their competitions by means of incorporating dynamic edge
features. Such a representation features simplicity as well as
intuition, for the complex connections have been grouped into
two categories with O(3|O|+|M|2) connections in total. Since
|O| is often much larger than |M| in practice, the number
of connections is significantly reduced relative to existing
disjunctive graph based results in [31], [32]. Last but not
the least, irrelevant operations and machines get removed as
scheduling proceeds, contributing to a decreasing state space
and bringing computational efficiency.

C. Decision-making module

We design the decision-making network based on actor-
critic RL which maintains the size-agnostic property of atten-
tion models. Two MLPs are used as the actor and critic, whose
parameters are denoted by θ and ϕ, respectively. The actor
network aims to generate a stochastic policy πθ(at|st) in two
steps: it first produces a scalar µ(at|st) for each at ∈ A(t) and
uses the softmax function to output the desired distribution.
We concatenate all information related to at = (Oij ,Mk)
(including the extracted features of Oij and Mk, the global
features, and the compatible operation-machine pair features)
in a single vector which is subsequently fed into MLPθ to
yield

µ(at|st) = MLPθ

[
h
(L)
Oij

∥∥h(L)
Mk

∥∥h(L)
G

∥∥h(Oij ,Mk)

]
. (9)

Then, the probability of choosing action at is given by

πθ (at | st) =
exp(µ(at|st))∑

bt∈A(t) exp(µ(bt|st))
. (10)

The critic network is an estimator that takes the global
features h(L)

G as input to produce a scalar vϕ(st), as an estimate
of the state value.

D. Training procedure

We employ the proximal policy optimization (PPO) algo-
rithm [35] to train the proposed scheduling model. The gener-
alized advantage estimation (GAE) technique [36] is utilized
to stabilize training. The training procedure is summarized in
Algorithm 1. We train the model using Nep episodes. For each
episode nep, the agent interacts with a batch of same-scale
FJSP environments Etr in parallel and collects the transition
data, which are used for updating the model parameters Θ.
The environments are resampled every Nr episodes, according
to a fixed distribution. The policy is validated on some
fixed validation data Eval (with the same distribution as the
training data) every Nval episodes. Two strategies for the
action-selection are considered in our experiments. One is a
greedy strategy that always chooses the action with the highest
probability µ(at|st), used in validation. The other is an action-
sampling strategy, i.e., sampling an action from the distribution
πθ, used during training for sufficient exploration.
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Algorithm 1 Training DANIEL for FJSP

1: Input: A dual attention network with initial parameters
Θ = {ω, θ, ϕ}, behavior actor network θold, pre-sampled
training data Etr, and fixed validation data Eval;

2: for nep = 1, 2, ..., Nep do
3: θold ← θ
4: for i = 1, 2, ..., |Etr| do
5: for t = 0, 1, ..., T do
6: Sample ai,t using πθold(· | si,t);
7: Receive the reward ri,t and the new state si,t+1;
8: Collect the transition (si,t, ai,t, ri,t, si,t+1);
9: Update si,t ← si,t+1;

10: end for
11: Compute the generalized advantage estimates Âi,t for

t = 0, 1, ..., T using collected transitions;
12: end for
13: for k = 1, 2, ...,K do
14: Compute the total loss

∑|Etr|
i=1 ℓPPO

i (Θ);
15: Update all parameters Θ;
16: end for
17: if Every Nr episodes then
18: Resample |Etr| instances to form the training data;
19: end if
20: if Every Nval episodes then
21: Validate πθ on Eval;
22: end if
23: end for

IV. EXPERIMENTS

We numerically compare the proposed DANIEL algorithm
with several baselines including several popular PDRs, the
exact method Google OR-Tools 1, a genetic algorithm [12],
and the DRL-based method [32] in this section. Both syn-
thetically generated instances as well as popularly used FJSP
benchmarks are used to verify its effectiveness in scheduling
performance, generalization capability, and computational ef-
ficiency.

A. Datasets

An FJSP instance with n jobs and m machines is denoted
as “n×m” in short hereafter (the number of operations varies
in different instances). We consider two types of synthetic
data with distinct distributions to examine the learning as
well as generalization performance of the proposed DANIEL
algorithm.

The first is adapted from [32], which allows jobs to have
a varying number of operations, denoted by SD1 in the
Table. We refer interested readers to the original text [32]
for details. The second is a task with a wider range for the
random processing time of operations, denoted by SD2 in
the Table below. Specifically, for an n × m FJSP instance
generated for SD2, each job has m operations. For each Oij ,
the values |Mij | and pkij are integers sampled from U(1,m)
and U(1, 99), respectively. For a fair comparison with the

1https://developers.google.cn/optimization

approach in [32], we consider six different scales of FJSP
instances using the two data: 10×5, 20×5, 15×10, 20×10,
30×10, and 40×10. We train our model on four smaller sizes
of each data with randomly generated instances (8 models in
total), while testing is performed on two extra larger ones
in addition to those. Both the testing data (unseen) and the
validation data are generated in advance each having 100
instances. Furthermore, we evaluate the trained models on four
groups of public benchmarks to explore their capabilities on
cross-distribution tasks, including mk1-10 instances in [21] and
3 groups of la1-40 instances (except sdata) in [37].

B. Configurations

The training configurations were kept the same as in [32]
for comparison, with Nep = 1, 000, |Etr|, Nr = 20, and
Nval = 10. Hyperparameters of algorithms were tuned on SD2

instances of size 10×5 and kept the same for all 8 models. For
a trade-off between performance and computational efficiency,
our DAN used L = 2 dual attention layers and each block
used H = 4 attention heads per layer with ELU as activation
function σ. The output dimensions of each attention head
in the two blocks are d

(1)
o = d

(1)
m = 32 for the first layer

and d
(2)
o = d

(2)
m = 8 for the second layer. Both MLPθ

and MLPϕ have two hidden layers of dimension 64 with
tanh as activation. For the PPO parameters, the policy, value,
and entropy coefficient in the loss funciton were set to be
1, 0.5, and 0.01. The clipping parameter ϵ, GAE parameter
λ, and discounting factor γ were set to be 0.2, 0.98, and
1, respectively. During training, we updated the network for
K = 4 epochs per episode via the Adam optimizer [38] with
the learning rate lr = 3× 10−4. All experiments were carried
out on a machine with an Intel Xeon Platinum 8163 CPU and
a single NVIDIA Tesla T4 GPU. The code is available. 2

C. Baselines and performance metrics

First, we selected four PDRs for operation sequencing
that have been shown to yield good performance in [39],
and generalized them to solve FJSP. In the experiments, we
reported the results averaged over 5 independent runs for each
PDR due to their stochastic nature. Specifics regarding the
implementation are stated as follows.

• First in first out (FIFO): selecting the earliest ready
candidate operation and the earliest ready compatible
machine.

• Most operations remaining (MOPNR): selecting the can-
didate operation with the most remaining successors and
a machine which can immediately process it.

• Shortest processing time (SPT): selecting the compatible
operation-machine pair with the shortest processing time.

• Most work remaining (MWKR): selecting the candidate
operation with the most remaining successor average
processing time and a machine which can immediately
process it.

Second, the results from OR-Tools and an advanced genetic
algorithm were chosen as a reference line for time-consuming

2https://github.com/wrqccc/FJSP-DRL
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TABLE I: Performance on two synthetic data of small to medium training size.

PDRs Greedy strategy Sampling strategy
Size FIFO MORNR SPT MWKR [32] DANIEL [32] DANIEL OR-Tools1

SD
1

10× 5

Objective 119.40 115.38 129.82 113.23 111.67 106.71 105.59 101.67
96.32 (5%)Gap 24.06% 19.87% 34.76% 17.58% 16.03% 10.87% 9.66% 5.57%

Time (s) 0.16 0.16 0.16 0.16 0.45 0.45 1.11 0.74

20× 5
Objective 216.08 214.16 230.48 209.78 211.22 197.56 207.53 192.78

188.15 (0%)Gap 14.87% 13.85% 22.56% 11.51% 12.27% 5.03% 10.31% 2.46%
Time (s) 0.32 0.32 0.32 0.32 0.90 0.94 2.36 1.87

15× 10
Objective 184.55 173.15 198.33 171.25 166.92 161.28 160.86 153.22

143.53 (7%)Gap 28.65% 20.68% 38.22% 19.41% 16.33% 12.42% 12.13% 6.79%
Time (s) 0.51 0.51 0.50 0.50 1.43 1.35 3.98 3.89

20× 10

Objective 233.48 219.80 255.17 216.11 215.78 198.50 214.81 193.91
195.98 (0%)Gap 19.22% 12.20% 30.25% 10.30% 10.15% 1.31% 9.64% -1.03%

Time (s) 0.71 0.71 0.71 0.71 1.91 1.85 6.23 6.35

SD
2

10× 5

Objective 569.41 557.48 514.39 549.28 553.61 408.40 483.90 366.74
326.24 (96%)Gap 76.47% 72.52% 57.96% 70.01% 71.42% 25.68% 49.71% 12.57%

Time (s) 0.16 0.16 0.16 0.16 0.46 0.44 1.11 0.88

20× 5
Objective 1045.83 1045.94 835.94 1026.03 1059.04 671.03 962.90 629.94

602.04 (0%)Gap 74.59% 74.58% 38.91% 71.31% 76.79% 11.52% 60.70% 4.66%
Time (s) 0.33 0.33 0.33 0.33 0.94 0.90 2.37 1.84

15× 10
Objective 871.14 845.16 703.07 830.53 807.47 591.21 756.07 521.83

377.17 (28%)Gap 132.23% 125.32% 86.74% 121.45% 115.26% 57.16% 101.52% 38.70%
Time (s) 0.52 0.51 0.51 0.51 1.50 1.36 4.16 3.83

20× 10
Objective 1088.05 1059.68 829.14 1040.69 1045.82 610.16 990.37 552.64

464.16 (1%)Gap 135.27% 129.09% 78.82% 124.98% 126.12% 31.58% 114.15% 19.13%
Time (s) 0.70 0.70 0.70 0.71 1.95 1.79 6.03 5.97

1 For OR-Tools, the solution and the ratio of optimally solved instances are reported.

but high-performance methods. As an authoritative constrained
programming solver, OR-Tools was employed to generate
(near-)optimal solutions with 1, 800 seconds set as the time
limit. In [12], a two-stage genetic algorithm (2SGA) was
designed to solve FJSP with improved performance and ef-
ficiency than regular genetic algorithms, whose results on two
groups of benchmarks were directly imported due to lack of
open-source implementations. Last but not the least, we com-
pared DANIEL with the state-of-the-art DRL method recently
proposed in [32]. We used their open-source code 3 to perform
training and testing following their default settings. We directly
imported their results on SD1, including the trained models
and validation instances of four smaller sizes as well as testing
instances of all six sizes. We reported the results of DANIEL
and DRL for both greedy and sampling-based action-selection
strategies in testing as done in [32]. Specifically, the sampling
strategy uses action-sampling to solve an instance for 100
times in parallel and records the best one, to improve the
solution quality at the price of an acceptable computation
burden. Model’s performance was evaluated in terms of the
average makespan as well as the relative gap between its
makespan and the best-known solution, which is either the
solution of OR-Tools for synthetic instances or the best result
reported in [40] for public benchmarks. In our experiments,
performance of the two strategies was compared separately
and the best results for the DRL-based methods and PDRs are

3https://github.com/songwenas12/fjsp-drl

emphasized in bold for each problem.
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Fig. 4: Training curve of the DRL [32] and DANIEL algorithms on
10× 5 and 20× 10 FJSP instances using SD1 and SD2.

D. Results on synthetic data

In Table I, we reported each model’s average makespan and
gap on testing instances which are generated from the same
scales using the same distribution as its training instances. It
is clear from the bold numbers that, for both data across all
problem sizes, DANIEL not only outperforms all PDRs by
a significant margin, but also exhibits a notable improvement



9

TABLE II: Performance on two synthetic data of larger-sizes.

Top PDRs Greedy strategy Sampling strategy

SPT MWKR
[32] [32] DANIEL DANIEL [32] [32] DANIEL DANIEL

Size 10× 5 20× 10 10× 5 20× 10 10× 5 20× 10 10× 5 20× 10 OR-Tools1

SD
1

30× 10

Objective 350.07 312.93 314.71 313.04 288.61 281.49 308.55 312.59 286.77 279.20
274.67 (6%)Gap 27.47% 13.96% 14.61% 14.01% 5.10% 2.50% 12.36% 13.49% 4.43% 1.67%

Time (s) 1.09 1.09 2.86 2.84 2.78 2.76 12.79 12.80 12.37 12.37

40× 10

Objective 445.17 414.82 417.87 416.18 379.28 371.45 410.76 415.25 379.71 370.48
365.96 (3%)Gap 21.66% 13.37% 14.21% 13.75% 3.65% 1.52% 12.26% 13.49% 3.77% 1.14%

Time (s) 1.50 1.50 3.82 3.81 3.77 3.77 24.54 24.40 22.58 21.38

SD
2

30× 10

Objective 1105.99 1539.67 1564.57 1543.69 794.62 774.56 1486.56 1461.16 757.48 725.27
692.26 (0%)Gap 59.74% 122.89% 126.55% 123.57% 14.85% 11.95% 115.21% 111.51% 9.47% 4.80%

Time (s) 1.10 1.10 2.93 2.93 2.80 2.75 12.88 12.75 12.48 12.17

40× 10

Objective 1357.16 2037.65 2048.96 2032.54 983.37 962.58 1976.25 1945.53 951.21 914.02
998.39 (0%)Gap 38.74% 108.66% 109.87% 108.12% 0.52% -1.67% 102.45% 99.26% -2.74% -6.60%

Time (s) 1.50 1.51 3.87 3.93 3.76 3.74 24.55 24.50 21.45 21.09
1 For OR-Tools, the solution and the ratio of optimally solved instances are reported.

TABLE III: Performance on public benchmarks.

Top PDR Greedy-stategy Sampling-stategy
[32] [32] DANIEL DANIEL [32] [32] DANIEL DANIEL

Benchmark MWKR 10× 5 15× 10 10× 5 15× 10 10× 5 15× 10 10× 5 15× 10 2SGA OR-Tools

mk

Objective 201.74 201.40 198.50 185.70 184.40 190.30 190.60 180.80 180.90 175.20 174.20
Gap 28.91% 28.52% 26.77% 13.58% 12.97% 18.56% 19.0% 9.53% 8.95% 3.17% 1.5%

Time (s) 0.49 1.26 1.25 1.29 1.30 4.13 4.13 4.12 4.08 57.60 1447.08

la (rdata)

Objective 1053.10 1030.83 1031.33 1031.63 1040.05 985.30 988.38 978.28 983.33

-

935.80
Gap 13.86% 11.15% 11.14% 11.42% 12.07% 5.57% 5.95% 4.95% 5.49% 0.11%

Time (s) 0.52 1.40 1.40 1.37 1.36 4.81 4.82 4.71 4.73 1397.43

la (edata)

Objective 1219.01 1187.48 1182.08 1194.98 1175.53 1116.68 1119.43 1122.60 1119.73

-

1028.93
Gap 18.6% 15.53% 15.0% 16.33% 14.41% 8.17% 8.69% 9.08% 8.72% -0.03%

Time (s) 0.52 1.40 1.40 1.37 1.38 4.91 4.87 4.73 4.70 899.60

la (vdata)

Objective 952.01 955.90 954.33 944.85 948.73 930.80 931.33 925.40 925.68 812.201 919.60
Gap 4.22% 4.25% 4.02% 3.28% 3.75% 1.32% 1.34% 0.69% 0.72% 0.39% -0.01%

Time (s) 0.52 1.37 1.37 1.37 1.37 4.71 4.72 4.77 4.75 51.43 639.17

1 The makespan and gap of 2SGA on la(vdata) benchmark are computed on la1-30 instances, as reported in [12].

relative to the DRL solution in [32] for both action-selection
strategies. Moreover, the optimality gap of DANIEL is less
than 5% in three tasks when using the sampling strategy.
Most excitingly, DANIEL even beats OR-Tools by 1.03% on
the 20 × 10 FJSP instances on SD1 data, while all instances
in this data weren’t solved optimally by OR-Tools within
the time limits. The advantage of DANIEL becomes more
pronounced on SD2 data. When the processing time range
gets larger, performance of both PDRs and the DRL [32] are
affected, resulting in a considerable gap to the best solution. In
this case, DANIEL still performs well, especially when using
the sampling strategy. By means of the proposed tight state
representation, DANIEL has runtime comparable to PDRs and
is computationally efficient in general. Its runtime is close
to that of [32], although implementations of the simulation
environment of FJSP in the two algorithms are different.
Another interesting phenomenon from the results of PDRs
is that SPT consistently performs the worst for all problem
sizes on SD1 data but performs the best for all sizes on SD2,
demonstrating its unstable performance over varying tasks.

This may be caused by the very different processing time
ranges, since a compatible operation-machine pair with the
shortest processing time may have a high priority on SD2 but
a low priority on SD1 data.

The training curves of DANIEL and DRL [32] on 10 × 5
and 20× 10 FJSP instances using SD1 and SD2 are presented
in Fig. 4, where the averaged makespan over 100 validation
instances are shown. It is worth mentioning that our method
and [32] used the same training data, validation frequency, and
validation data. It can be observed that our method converges
to a better solution more smoothly for both data, corroborating
its powerful and stable performance.

Furthermore, we examined the generalization performance
of the models trained over 10 × 5 and 20 × 10 tasks on two
data using 30× 10 and 40× 10 testing instances, respectively.
DANIEL was compared with [32] and the best PDRs in
SD1 and SD2. As shown in Table II, DANIEL consistently
generates high-quality solutions for large-scale problems with
acceptable computation cost, which are considerably better
than all baseline methods and occasionally beat OR-Tools.
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Especially for the 40× 10 FJSP instances on SD1, the model
trained on 20 × 10 instances with the sampling strategy
outperforms OR-Tools by 6.60%. These results show that
DANIEL can learn general knowledge by training on small-
scale tasks, which can be employed to solve unseen large-scale
instances. Note that the model trained on 20×10 consistently
outperforms that trained on 10×5 instances, which is expected
because its size is closer to that of the testing data.

E. Results on benchmarks

Cross-distribution application is critical for a model in
practical use, as real-world problems may come from unknown
distributions. Therefore, we further explore the performance
of models (trained on synthetic data) on four groups public
benchmarks whose distributions are completely different from
the training instances. Each benchmark comprises instances
having different problem sizes. For example, the number of
jobs and machines in the mk benchmark ranges from 10 to
20 and from 5 to 15, respectively. We selected the models
trained on 10 × 5 and 15 × 10 using SD1 data for testing,
which achieved the best results on these benchmarks in [32].
The results of MWKR (the best among the four PDRs), the
OR-Tools, the GA baseline in [12], and the models of [32]
(with greedy and sampling strategies) trained on the same data
are presented in Table III. It can be seen that both OR-Tools
and 2SGA are generally far ahead in performance but take
quite a long time for computations. In contrast, the two DRL
methods achieve good performance which is better than the
best PDR with acceptable runtime. Again, DANIEL surpasses
[32] in most cases and exhibits comparable performance in the
remaining ones (the testing of greedy strategy on la (rdata) and
sampling strategy on la (edata), where the difference is less
than 0.6%). Particularly, DANIEL outperforms [32] by a big
margin for both action-selection strategies on mk instances.
These results showcase that DANIEL can genuinely capture
the inherent structural information of FJSP and discriminate
compatible pairs with high priority rather than only learning
the regularity behind a specific data distribution. We believe
that DANIEL can perform better on real-world problems with
unknown distributions upon a small amount of fine-tuning,
as DANIEL can outperform the exact methods on tasks with
known distributions, which is left for future research.

V. CONCLUSIONS

This study proposes DANIEL, a novel end-to-end learning
framework for addressing standard FJSPs. DANIEL combines
the attention mechanism and DRL while maintaining the size-
agnostic property, i.e., training on small-size problems and
deploying to larges-size ones. DANIEL builds on a concise
representation of the complex FJSP structure, by employing
two attention blocks to explore relationships between op-
erations within the job as well as between the competing
machines. The dual attention network receives abundant in-
formation about decision-relevant operations and machines
as input and extracts their features through GAT-style atten-
tion mechanisms. The downstream decision-making network
generates composite decisions for the operation sequencing

and machine assignment problems simultaneously using actor-
critic reinforcement learning, trained by the PPO algorithm.
Substantial numerical results on synthetic data as well as
publicly available benchmarks show that DANIEL performs
significantly better than traditional PDRs and the state-of-
the-art DRL method while being computationally efficient. In
several cases, DANIEL even beats the OR-Tools, which has
never been reported for end-to-end learning approaches in the
literature. Moreover, DANIEL demonstrates excellent gener-
alization performance to large-scale and real-world instances
when trained using small-size FJSP data relative to existing
DRL methods. In the future, extending DANIEL to address
dynamic FJSP with uncertainty, such as new job insertions,
and to the multi-agent setting constitutes interesting topics for
future research.

VI. APPENDIX

Here, details for the three types of feature vectors at state
st (t is omitted below) are provided.

1) Features of operations: 4 static attributes and 6 dynamic
properties are recorded for each Oij ∈ Ou:

• Minimum processing time among all machines.
• Average processing time among all machines.
• Span of processing time among all machines.
• Proportion of machines that Oij can be processed on.
• Scheduling tag: the value is 0 if Oij is unscheduled

otherwise 1.
• Estimated Lower bound of the completion time: C(Oij)

defined in the text.
• Job remaining number of operations: the number of

unscheduled operations in Ji.
• Job remaining workload: the sum of average processing

time of unscheduled operations in Ji.
• Waiting time: the time from the ready time until Ts. (0

for Oij that is not ready yet)
• Remaining processing time: the time from Ts until the

completion time. (0 for unscheduled Oij)
2) Features of machines: Each machine Mk ∈Mu owns a

feature vector with 8 elements and the first two are static:
• Minimum processing time among all operations.
• Average processing time of operations that Mk can

process.
• Number of unscheduled operations that Mk can process.
• Number of candidates that Mk can process.
• Free time: the moment when Mk is free.
• Waiting time: the time from the free time until Ts. (0 for

working Mk)
• Working tag: the value is 0 if Mk is free otherwise 1.
• Remaining processing time: the time from Ts until the

free time. (0 for free Mk)
3) Features of compatible operation-machine pairs: When a

compatible pair (Oij ,Mk) is considered, we record 8 features
for it and the first two are static:

• Processing time pkij .
• Ratio of pkij to the maximum processing time of Oij .
• Ratio of pkij to the maximum processing time of candi-

dates that Mk can process.
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• Ratio of pkij to the maximum processing time of unsched-
uled operations.

• Ratio of pkij to the maximum processing time of unsched-
uled operations that Mk can process.

• Ratio of pkij to the maximum processing time of compat-
ible pairs.

• Ratio of pkij to remaining workload of Ji.
• Summation of waiting time of Oij and Mk.
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