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Guest Editorial:
Special Issue on Causal Discovery and
Causality-Inspired Machine Learning

CAUSALITY is a fundamental notion in science and
engineering. It has attracted much interest across research

communities in statistics, machine learning (ML), healthcare,
and artificial intelligence (AI), and is becoming increasingly
recognized as a vital research area. One of the fundamental
problems in causality is how to find the causal structure or
the underlying causal model. Accordingly, one focus of this
Special Issue is on causal discovery, i.e., how can we discover
causal structure over a set of variables from observational
data with automated procedures? Besides learning causality,
another focus is on using causality to help understand and
advance ML, that is, causality-inspired ML.

There has been impressive progress in theoretical and
algorithmic developments on causal discovery from various
types of data, including independent and identically distributed
(i.i.d.) data with or without latent confounding or selection
bias, and non-i.i.d. data under distribution shifts, in nonstation-
ary settings, or with missing data. Moreover, recent years have
also seen its practical applications in several scientific fields,
such as neuroscience, climate, biology, and epidemiology.
However, a number of practical issues, including confounding
effects, the large scale of the data, the presence of mea-
surement error, and complex causal mechanisms, are still to
be properly addressed, in order to achieve reliable causal
discovery in real-world scenarios.

On the other hand, causality-inspired ML (in the context of
transfer learning, reinforcement learning, deep learning (DL),
etc.) leverages ideas from causality to improve generalization,
adaptivity, robustness, interpretability, and sample efficiency
and is attracting more and more interest in ML and AI.
For instance, off-policy evaluation, which is fundamentally a
causal intervention issue, has received much attention in the
deep reinforcement learning community. Despite the benefit of
the causal view in transfer learning and reinforcement learning,
several tasks in ML, such as dealing with adversarial attacks
and learning disentangled representations, are closely related
to the causal view and worth careful investigation, and cross-
disciplinary efforts may facilitate the anticipated progress.

Inspired by such achievements and challenges, this Spe-
cial Issue aims at reporting progress in fundamental princi-
ples, practical methodologies, efficient implementations, and
applications of causal discovery and inference methods. The
Special Issue also welcomes contributions to causality-inspired
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ML. We thank the authors of the 53 submissions to the
special issues, some of which were extended versions of the
papers accepted to the 2020 Conference on Neural Information
Processing Systems (NeurIPS 2020) Workshop on Causal
Discovery & Causality-Inspired Machine Learning. Thanks to
the reviewers of the Special Issue, after their careful reviews,
this Special Issue finally selected 13 papers to publish.

Six of them are on the classical problem of causal discovery,
aiming to address various practical issues. Constraint-based
causal discovery aims to find a Markov equivalence class,
which may contain multiple directed acyclic graphs (DAGs), to
satisfy conditional independence constraints discovered from
data [3], and is usually applied to find causal relations among
random variables. In contrast, Thams and Hansen [A1] are
concerned with constraint-based causal structure learning for
point processes and develop a test of local independence in
point process data. The test relies on approximating point
process intensities by basis expansions and using higher order
interaction terms of events to fit intensities. The authors
applied their approach to a real-world dataset on neuron
spiking in turtles and found that their test led to sparser, more
informative estimated networks.

Finding a causal direction between two variables is a
fundamental causal discovery problem. The developments
in this line of research made in the past 20 years mainly
deal with continuous variables. In [A2], Wei et al. consider
the causal direction between discrete variables. It exploits a
discrete additive noise model, compares the dissimilarity of
conditional distributions of the estimated noise across the two
possible directions, and chooses the direction with a smaller
dissimilarity as the correct causal direction.

Despite several advances in recent years, learning causal
structures represented by DAGs remains a very challenging
task in high-dimensional settings when the graphs to be
learned are not sparse. In [A3], Fang et al. exploit a low-
rank assumption regarding the (weighted) adjacency matrix
of a DAG causal model to address this problem. Specifi-
cally, it establishes several useful results relating interpretable
graphical conditions to the low-rank assumption and shows
that interestingly, the maximum rank is highly related to
hubs, suggesting that scale-free networks, which are frequently
encountered in practice, tend to be low-rank.

In causal analysis, given two variables, a basic problem is
to distinguish between direct causal influences, confounding
effects (dependence between them because of their unmea-
sured common causes), and dependence induced by selection
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bias. This Special Issue has two papers to address the issue
of latent confounders. In [A4], Gilligan-Lee et al. develop
a general heuristic that takes a causal discovery algorithm
that can only distinguish purely directed causal relations
and modifies it to also detect latent common causes. Their
experimental results demonstrate that the modified algorithms
can not only detect latent confounders but also preserve the
performance in causal direction determination.

In addition to the detection of latent confounders, the
discovery of true causal relations in the confounding case is an
essential problem in causal discovery. Bellot and Schaar [A5]
focus on applications where latent variables are known to have
a widespread effect on many measured ones and shows that
latent confounders, in this setting, leave a statistical footprint
in the measured data distribution that allows for disentan-
gling spurious and causal effects. It, accordingly, demon-
strates that a sparse linear Gaussian DAG among measured
variables may be recovered approximately and proposes a
modified score-based algorithm, which may be implemented
with general-purpose solvers and scale to high-dimensional
problems.

The development of causal discovery is continually being
enriched with new algorithms for learning causal graphs; each
one of them usually requires a set of hyperparameters to tune.
Given that the true graph is unknown and the learning task
is unsupervised, the challenge to a practitioner is how to tune
these choices. To address this challenge, Biza et al. [A6] pro-
pose out-of-sample causal tuning (OCT) that aims to select an
optimal combination of hyperparameters.Technically, it treats
a causal model as a set of predictive models and uses out-of-
sample protocols for supervised methods. The method adopts
an information-theoretic approach to be able to generalize to
mixed data types and a penalty for dense graphs to penalize
for complexity.

Thanks to the temporal constraint that effects cannot precede
causes, causal discovery from time series is a traditional,
natural way to find causality, as pioneered by the so-called
Granger causal analysis [1]. Gao et al. [A7] notice both
the directed and hierarchical features of brain functional
networks and propose a new approach called stepwise mul-
tivariate Granger causality (SMGC) to estimate them. Their
simulation studies demonstrate that the diverse and complex
hierarchical organization can be embedded in simple directed
networks, and the proposed SMGC could capture the multiple
hierarchies of the directed network. It successfully revealed
interesting properties of the multilevel hierarchical brain
network.

Multivariate time series prediction is a classical problem
closely related to causality in time series, and it relies on
how to extract and exploit temporal dependence patterns in
the multivariate time series. Yuan et al. [A8] propose a joint
spatiotemporal feature learning framework for multivariate
time series prediction, leveraging both temporal and spatial
dependencies to enhance prediction accuracy. It consists of
a module with multiple sparse autoencoders to extract latent
spatial features and another module with multiple high-order
fuzzy cognitive maps to model these spatial features and
capture their temporal dynamics, and shows better/competitive
results on four real-world datasets.

Observational studies of causal effects (often known as
causal inference) and counterfactual inference [2], as tradi-
tional problems in the causality field, aim to estimate causal
effects at the group or individual level even without random
trials. Grecov et al. [A9] introduce a new method to estimate
the causal effects of an intervention over multiple treated
units by combining the techniques of probabilistic forecast-
ing with global forecasting methods using DL models. The
paper presents a framework for producing accurate quantile
probabilistic forecasts for the counterfactual outcome, based
on training a global autoregressive recurrent neural network
model with conditional quantile functions on a large set of
related time series. The authors further demonstrate how this
probabilistic methodology added to the global DL technique
to forecast the counterfactual trend and distribution outcomes
overcomes many challenges faced by the baseline approaches
to the policy evaluation problem.

In causal inference via randomized trials, one splits the
population into control and treatment groups and then com-
pares the average response across the two groups. To ensure
that the difference between the two groups is caused by
only the treatment, it is required that the control and the
treatment groups have similar statistics. Covariate balancing
methods have been widely adopted to increase such similarity.
Interestingly, Babaei et al. [A10] empirically demonstrate
that covariate balancing with the standardized mean differ-
ence covariate balancing measure is susceptible to worst-
case treatment assignments. The authors further provide an
optimization-based algorithm to find the adversarial treatment
assignments. The findings suggest researchers be more cau-
tious when using covariate balancing methods to investigate
causal effects.

A traditional application of causal inference is to identify
treatment effects. Rao et al. [A11] investigate causal modeling
of a randomized clinical trial (RCT)-established causal asso-
ciation: the effect of classes of antihypertensive on incident
cancer risk. The authors develop a transformer-based model,
targeted bidirectional EHR transformer (T-BEHRT), coupled
with doubly robust estimation to estimate the average risk
ratio. They tested the model on simulated data and situations of
limited data and found that their model provides more accurate
estimates of relative risk least sum absolute error from ground
truth, compared with benchmark estimations.

Causality-inspired ML is an emerging research direction
in the field of ML, benefiting from the (causal) process
perspective or well-designed causal techniques. Neto [A12]
is concerned with static anticausal ML tasks (i.e., prediction
tasks where the outcome causally influences the inputs), and
proposes a counterfactual approach to train “causality-aware”
predictive models that are able to leverage causal information
in the anticausal setting. In applications plagued by confound-
ing, it can generate predictions free from the influence of
observed confounders. In the presence of observed mediators,
it generates predictions that only capture the direct or the
indirect causal influences. It is achieved by training supervised
learners on (counterfactually) simulated inputs that retain only
the associations generated by the causal relations of interest.
The authors validated their approach on various synthetic data
and illustrated its application to a real dataset.
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Current ML schema typically uses a one-pass model infer-
ence (e.g., forward propagation) to make predictions in the
testing phase. It is inherently different from human stu-
dents who double-check their answers during examinations
especially when the confidence is low. To bridge this gap,
Deng et al. [A13] propose a learning to double-check (L2D)
framework, which formulates double-check as a learnable
procedure with two core operations: recognizing unreliable
predictions and revising predictions. To judge the correctness
of a prediction, it resorts to counterfactual faithfulness in
causal theory and designs a contrastive faithfulness measure.
Furthermore, the authors design a simple and effective revision
module to revise the original model prediction according to
faithfulness. The effectiveness of L2D in prediction correct-
ness judgment and revision was validated on three classifica-
tion models and two public datasets for image classification.

It is becoming increasingly clear that causal modeling ben-
efits many tasks such as disease treatment, decision-making,
recommender systems, adaptive/robust prediction, anomaly
detection, and data generation. They involve finding causality
from data, identifying causal effects, and reformulating and
addressing ML problems with a causal view, which are the
focus of this Special Issue. This collection of papers showcases
an overview of the current development in those directions. We
hope that the work presented here can motivate more exciting
future works from readers to push causality research and its
applications to a new height.
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