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Robust Network Routing under Cascading

Failures
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Abstract

We propose a dynamical model for cascading failures in single-commodity network flows. In the proposed model,

the network state consists of flows and activation status of the links. Network dynamics is determined by a, possibly

state-dependent and adversarial, disturbance process that reduces flow capacity on the links, and routing policies at

the nodes that have access to the network state, but are oblivious to the presence of disturbance. Under the proposed

dynamics, a link becomes irreversibly inactive either due to overload condition on itself or on all of its immediate

downstream links. The coupling between link activation and flow dynamics implies that links to become inactive

successively are not necessarily adjacent to each other, and hence the pattern of cascading failure under our model is

qualitatively different than standard cascade models. The magnitude of a disturbance process is defined as the sum

of cumulative capacity reductions across time and links of the network, and the margin of resilience of the network

is defined as the infimum over the magnitude of all disturbance processes under which the links at the origin node

become inactive. We propose an algorithm to compute an upper bound on the margin of resilience for the setting

where the routing policy only has access to information about the local state of the network. For the limiting case

when the routing policies update their action as fast as network dynamics, we identify sufficient conditions on network

parameters under which the upper bound is tight under an appropriate routing policy. Our analysis relies on making

connections between network parameters and monotonicity in network state evolution under proposed dynamics.

I. INTRODUCTION

Resilience is becoming a key consideration in the design and operation of many critical infrastructure systems

such as transportation, power, water, and data networks. Due to their increasing scale and interconnectedness,

these systems tend to exhibit complex behaviors that pose several new challenges in their design and operation.

In particular, while exhibiting good trade-off between performance and robustness in the business-as-usual regime,

such systems could be fragile to small local disruptions that may give rise to cascading failures with potentially

systemic effects. The problem is further exacerbated by the fact that local actions aimed at mitigating disruptions

can increase vulnerability of the other parts of the system.
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Models for cascading phenomena in infrastructure networks have been proposed in the statistical physics literature

and studied mainly through numerical simulations, e.g., see [1], [2], [3], [4], [5]. Simpler models, based on

percolation and other interacting particle systems describing the activation status of nodes and links as dependent

on the activation status of their neighbors in the network, have lend themselves to more analytical studies, [6], [7],

[8]. While largely used to model the spread of epidemics and rumors in social and economic networks, cascading

failures in financial networks and in wireless networks [9], [10], [11], [12], the applicability of the latter models to

the design and control of actual physical networks is severely limited because of their simplistic description of the

causal relationship between failures of successive nodes and links. In particular, an inherent characteristic of such

percolation- and interacting particles-based models is that the successive nodes and links to fail are constrained to

be adjacent to each other, which is typically not the case in infrastructure networks. (see, e.g., [13]) Recently, more

physically motivated dynamical models for cascading failures overcoming such limitations have been proposed

and analyzed in the context of power networks [14], [15], even allowing for control in between successive failure

events [16].

This paper is concerned with dynamical model for cascading failures in single-commodity flow networks, and

with the characterization of maximally resilient routing policies. When considering dynamical models for cascading

failures in physical infrastructure networks, there are several possibilities for time scale separation between link

inactivation dynamics under overload, flow dynamics and reaction time of routing (control) policies that can

simplify the analysis. For example, in the case of power networks, flow dynamics is typically much faster than

the link inactivation dynamics and reaction time of control policies. The rate of information propagation among

geographically distributed routing policies relative to the dynamics can add further complexity. In this paper, we

focus our analysis on the limiting case when the rate of information propagation is slow (i.e., routing policies are

distributed), and the link inactivation and flow dynamics under routing policies evolve at the same and much faster

time scale. Our ability to analyze the dynamical model relies on identifying conditions under which the network

state evolves monotonically. Irreversibility in link inactivation in our model naturally implies monotonicity in the

link activation status. However, monotonicity in the link flows requires additional restrictions on the routing policy.

We study these restrictions under flow monotonicity and link monotonicity which refer to the sensitivity of the

action of a distributed routing policy with respect to changes in inflow (due to changes in the upstream part of the

network) and activation status of outgoing links, respectively.

The contributions of the paper are as follows. First, we propose a dynamical model for cascading failures in

network flows and formally state the problem of designing maximally resilient routing policies. Second, we propose

a backward propagation algorithm for computing an upper bound on the margin of resilience and to motivate the

design of a maximally resilient routing policy. Third, we introduce the properties of flow and link monotonicity for

distributed routing policies, and show that these are sufficient conditions for the upper bound to be tight. Finally,

we identify sufficient conditions on network parameters under which these monotonicity conditions are satisfied.

The paper is organized as follows. In Section II, we present our dynamical model for cascading failures in network

flow under routing policies. Section III contains main results of this paper in terms of upper bound computation,
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monotonicity conditions on the routing policies and sufficient conditions on network parameters to guarantee these

monotonicity properties. The proofs of the main results are collected in Section IV. Section V provides concluding

remarks. The appendix contains a technical lemma which is used heavily in the proofs in Section IV.

Before proceeding, we define some preliminary notations to be used throughout the paper. Let R be the set of

real numbers, R+ := {x ∈ R : x ≥ 0} be the set of nonnegative real numbers, and N be the set of natural numbers.

When A is a finite set, |A| will denote the cardinality of A, RA (respectively, RA+) will stay for the space of

real-valued (nonnegative-real-valued) vectors whose components are indexed by elements of A. For x ∈ RA and

y ∈ RB+, x′ stands for the transpose of x, and x ≤ y means that xi ≤ yi for all i ∈ A ∩ B. When A = B, x′y

stands for the dot product of x and y. The all-one and all-zero vectors will be denoted by 1 and 0, respectively,

their size being clear from the context. A directed multigraph is the pair (V, E) of a finite set V of nodes, and

of a multiset E of links consisting of ordered pairs of nodes (i.e., we allow for parallel links between a pair of

nodes). If e = (v, w) ∈ E is a link, where v, w ∈ V , we shall write σe = v and τe = w for its tail and head node,

respectively. The sets of outgoing and incoming links of a node v ∈ V will be denoted by E+v := {e ∈ E : σe = v}
and E−v := {e ∈ E : τe = v}, respectively. For x ∈ R, we shall use the notation [x]+ to mean max{0, x}.

II. DYNAMICAL MODEL FOR NETWORK FLOWS AND PROBLEM FORMULATION

In this section, we propose a dynamical model for cascading failure in network flows under distributed routing

policies. We model flow networks as finite weighted directed multi-graphs N = (V, E , C), where V and E stand

for the sets of nodes and links, respectively, and C ∈ RE is the vector of link capacities, all assumed to be strictly

positive. We refer to nodes with no incoming links as origin nodes and to those with no outgoing links as destination

nodes. The set of destination nodes is denoted by D. Nodes which are neither origin nor destination are referred

to as intermediate nodes and are assumed to lie on a path from some origin to some destination.

Let an external inflow λo ≥ 0 be associated to every origin node o ∈ V , and, by convention, put λv = 0 for

every other node v. Then, the max-flow min-cut theorem, e.g., see [17], implies that a necessary and sufficient

condition for the existence of a feasible equilibrium flow is that the capacity of every cut in the network is larger

than the aggregate inflow associated to the non-destination side of the cut. Here, a feasible equilibrium flow refers

to a vector f ∈ RE+ satisfying capacity constraints fe < Ce on every link e ∈ E , and mass conservation at every

non-destination node, i.e, λv +
∑
e∈E+v fe =

∑
e∈E−v fe for all v ∈ V \ D. On the other hand, a cut refers to a

subset of non-destination nodes U ⊆ V \ D , with CU :=
∑
e∈E:σe∈U,τe∈V\U Ce standing for its capacity and

λU :=
∑
v∈U λv for the associated aggregate external inflow. Then, the necessary and sufficient condition for the

existence of a feasible equilibrium flow is

max
U
{λU − CU} < 0, (1)

with the index U running over all possible cuts.

We now describe network flow dynamics, evolving in discrete time. Let N = (V, E , C) be a network as above,

with inflows λo at the origin nodes satisfying condition (1). At every time t = 0, 1, . . ., the state of the system
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is described by a tuple (V(t), E(t), f(t), C(t)) where: V(t) ⊆ V \ D and E(t) ⊆ E are the subsets of active non-

destination nodes, and links, respectively; f(t) ∈ RE+ is the vector of link flows; and C(t) ∈ RE , with 0 ≤ Ce(t) ≤
Ce, is the vector of residual link capacities. The initial condition (V(0), E(0), C(0), f(0)) is such that V(0) = V \D,

E(0) = E , i.e., all non-destination nodes and all links start active, C(0) = C, and f(0) is a feasible equilibrium

flow for N .

Given its current state (V(t), E(t), f(t), C(t)) at time t = 0, 1, 2, . . ., the network evolves as follows. All currently

active links which become overloaded, i.e., whose current flow exceeds the current residual capacity, along with all

those whose head node is currently inactive, become irreversibly inactive, i.e.,

E(t+ 1) = E(t) \ {e ∈ E(t) : fe(t) ≥ Ce(t)} \ {e ∈ E(t) : τe(t) /∈ V(t)} . (2)

All currently active nodes v that have no active outgoing link become irreversibly inactive, i.e.,

V(t+ 1) = V(t) \ {v ∈ V(t) : E+v (t) = ∅} . (3)

At every currently active node v ∈ V(t), a routing policy determines how to split the current inflow λv(t) :=

λv +
∑
e∈E−v (t) fe(t) among the set E+v (t) of its currently active outgoing links, so that

fe(t+ 1) = Ge
(
E+v (t), λv(t)

)
, e ∈ E+v (t) . (4)

Finally, the residual capacity vector is reduced by a disturbance δ(t) ∈ RE+ so that

Ce(t+ 1) = Ce(t)− δe(t+ 1) , e ∈ E(t). (5)

The sequence (δ(1), δ(2), . . .) ⊆ RE+ of incremental flow capacity reductions is meant to represent an external,

possibly adversarial and network state dependent, process that, without any loss of generality, will be assumed to

satisfy

∆(t) :=
∑

1≤s≤t

δ(s) ≤ C , ∀t ≥ 1 . (6)

Observe that, in writing (4), we have assumed that the routing at node v is determined only by the local observation

of the current inflow λv(t) and the currently active set of outgoing links E+v (t). In particular, the routing policies

have no information about the residual link capacities, or equivalently about the disturbance process. The formal

definition of distributed oblivious routing policies is as follows.

Definition 1. Given a network N = (V, E , C), a distributed oblivious routing policy G is a family of functions

Gv(J , · ) : R+ → RJ+ , v ∈ V \ D , ∅ 6= J ⊆ E+v ,

such that, for every µ ≥ 0,
∑
e∈J G

v
e(J , µ) = µ, and, for all K ⊆ J ⊆ E+v ,

Gv(J , µ) ≤ Gv(K, µ). (7)

In reading (7), recall our notation established at the end of Section I that, for x ∈ RA and y ∈ RB+, x ≤ y

implies xi ≤ yi for all i ∈ A∩B. Definition 1 implicitly implies that Gve(J , µ) = 0 for all e ∈ E+v \ J . Moreover,
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we will assume throughout that the initial equilibrium flow f(0) is consistent with the given distributed oblivious

routing policy, i.e., Gve(E+v , λv(0)) = fe(0) for all e ∈ E+v , v ∈ V \ D. In other words, the initial equilibrium flow

is specified by the routing policy and, as long as there is no perturbation, i.e., δ(t) = 0, the network state does

not change. The term oblivious in distributed routing policies is meant to emphasize that routing policies have no

information about the disturbance process. Hereafter, unless explicitly stated otherwise, we shall refer to a routing

policy satisfying Definition 1 simply as a distributed routing policy. Equation (7) implies that, at every node, for a

fixed inflow, shrinking of the set of active links results in increase in flow assigned to each of the remaining active

outgoing links. We shall refer to (7) as the link monotonicity property. While (7) represents a natural condition

for distributed routing policies, the maximally resilient routing policies designed in this paper have been found to

satisfy it. Alternately, one could regard the results in this paper to be optimal within this class of distributed routing

policies. We provide additional comments on this aspect in Remark 7.

Remark 1. (7) is satisfied by any routing policy at a node v if |E+v | ≤ 2.

A simple example of a distributed routing policy is the proportional policy: for every ∅ 6= J ⊆ E+v , v ∈ V \ D,

µ ≥ 0:

Gve(J , µ) =


(
Ce/

∑
j∈J Cj

)
µ if e ∈ J ,

0 if e /∈ J .
(8)

The model in (2)-(5) has several salient features worth emphasizing. First, note that the transition from active to

inactive status of a link is irreversible. Second, note that a link could become inactive either because it is overloaded

or because its downstream node becomes inactive. The mismatch between flow and residual capacity of a link,

which gives rise to overload condition, depends on the disturbance process and the action of a distributed routing

policy. Therefore, the links to fail successively are not necessarily adjacent to each other. Finally, note that in

our model, routing policy updates its action at the same time scale as flow and link inactivation dynamics. An

implication of this is that the flow vector f may not be an equilibrium flow at all time instants because of violation

of flow conservation at some nodes. This is in contrast to the setting of power networks, where the time scale for

flow dynamics is much faster than the link failure dynamics and control action. It is possible to extend (2)-(5) to

model scenarios representing a combination of centralized and non-oblivious routing, link recovery after finite time

and long range coupling between failure of links. However, the analysis presented in this paper is restricted to the

model in (2)-(5).

The following example illustrates cascading failure under the dynamics in (2)-(5).

Example 1. Consider the graph topology depicted in Figure 1, where the flow capacities are given by Ci = 4 for

i = 1, 2, Ci = 3 for i = 3, 4, 6, 7, 10, Ci = 1.5 for i = 5, 9 and C8 = 0.75. Let the arrival rate at the origin be

λ = 4. We consider proportional routing policies, specified in (8), at all the nodes, under which the initial flow

on all links are given by fi(0) = 2 for i = 1, 2, 10, fi(0) = 1 for i = 3, 4, 5, and fi(0) = 0.5 for i = 6, 7, 8, 9.

We now consider the network dynamics under a disturbance process for which δ5(1) = 0.55, δe(t) = 0 for all
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Figure 1. A simple graph for the illustration of cascading failure under the proposed network dynamics.

t ≥ 2 and δi(t) ≡ 0 for all i ∈ {1, . . . , 10} \ {5}. Since C5(1) = 1.5 − 0.55 = 0.95 < f1(1) = 1, e5 /∈ E(2).

This is followed by 3 /∈ V(3) and e3 /∈ E(4). Therefore, f4(5) = 2, f6(6) = f7(6) = f8(7) = f9(7) = 1. Since

C8(7) = C8(0) = 0.75 < f8(7), e8 /∈ E(9). By continuing along these lines, the order of links to become inactivated

is e5, e3, e8, e6, e9, e7, e4, e1, e10, e2. This clearly demonstrates that the links to fail successively under our proposed

network dynamics are not necessarily adjacent to each other.

Remark 2. The model in (2)-(5) is to be contrasted with the dynamical flow network formulation in our previous

work [18], [19] where every link has infinite buffer capacity, and hence there are no cascading effects under link

overload. This feature is relaxed in our subsequent work [20], where the links are modeled to have finite buffer

capacity, and the control policy at every node implements routing as well as flow control under information about

the densities and the disturbances on the links incoming and outgoing from that node. Such a framework allows for

backward cascade effect, which was proven to increase the resilience of the network with respect to the framework

in [18], [19]. Such control policies were also shown to exhibit graceful collapse, i.e., when the inflow to the network

exceed its capacity, then all the critical links saturate simultaneously. In this paper, we constrain the actions of the

control policies to only routing, and under no information about the disturbance. We emphasize that, although the

routing policies have no explicit information about disturbance on the links, they have information about its effect

on the activation status on the local links. On the other hand, due to cascade effects, the change in the activation

status of a link may not be exclusively due to disturbance on that link.

A. Problem Formulation

In this paper, the performance criterion of interest is the ability of a network to transfer flow from the origin

nodes to the destination nodes, under a wide range of disturbance processes. We formalize this notion as follows.

Definition 2. Let N be a network, λ a vector of inflows at the origin nodes, G a distributed routing policy, and
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(δ(t))t≥1 a disturbance process. Then, the associated network flow dynamics in (2)-(5) is said to be transferring if

lim
t→+∞

∑
d∈D

∑
e∈E−d

fe(t) =
∑
v

λv , (9)

where the summation in v is over the origin nodes.

Observe that, since f(0) is assumed to be a feasible equilibrium flow, one has that, at time 0, the aggregate

outflow from and inflow to the network match, i.e.,
∑
d∈D

∑
e∈E−d

fe(t) = λ for t = 0. Definition 2 requires

that, for a network N and a distributed routing policy G to be transferring under a disturbance process (δ(t))t≥1,

aggregate inflow in and outflow from the network also match asymptotically. For disturbance processes that are

active only over finite time, (9) can be rephrased to require the inflow and the outflow to match at all times with the

possible exception of a finite transient. We shall use this latter formulation in Section III, where the setup allows

to focus only on finite time disturbance processes without loss of generality.

The magnitude of a disturbance process δ is defined as (see (6)):

D(δ) :=
∑
e∈E
4e(∞).

Definition 3. Let N be a network, λ a vector of inflows at the origin nodes, and G a distributed routing policy.

The margin of resilience of the network, denoted as R(N , λ,G), is defined as the infimum of the magnitude of

disturbance processes under which the associated dynamics is not transferring, i.e.,

R(N , λ,G) := inf
δ
{D(δ) | network flow dynamics in (2)-(5) for N , λ,G, δ is not transferring}.

We are now ready to formally state the problem. Our objective in this paper is to (i) compute the margin

of resilience under distributed routing policies; and (ii) identify maximally resilient distributed routing policies.

Formally, we consider the following optimization problem:

R∗(N , λ) = sup
G
R(N , λ,G), (10)

where the supremum is over the class of distributed routing policies. A distributed routing policy G is called

maximally resilient if R(N , λ,G) = R∗(N , λ).

III. MAIN RESULTS

In this section, we present our main results addressing problem (10). From now on, we will be restricted to

networks N = (V, E , C) with a single origin destination pair. We will identify the node set V with the integer

set {0, 1, . . . , n}, with 0 and n associated with the unique origin and destination nodes, respectively. Moreover, let

λ > 0 be the constant inflow at the unique origin node. While extensions to multiple destinations is straightforward,

extensions to multiple origin nodes is not trivial. We start by giving simple bounds on the margin of resilience.
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A. Simple Bounds

It is straightforward to obtain the following upper and lower bounds on the margin of resilience, valid for every

routing policy G
min
e∈E
{Ce − fe(0)} ≤ R(N , λ,G) ≤ min

U
CU − λ , (11)

where the minimization in the upper bound is over all the cuts in N . The lower bound in (11) is due to the fact that at

least one link needs to become inactive to ensure non transferring of the network, possibly under cascading failure,

and mine∈E (Ce − fe(0)), which is the minimum among all link residual capacities, corresponds to the disturbance

process with minimum magnitude that can cause a link to become inactive. The upper bound in (11), which is

usually referred to as the network residual capacity, is obtained by noting that the network is non-transferring under

a disturbance process that removes residual capacity at t = 1 from the links that constitute a min cut of N . As it

may be expected, the gap between the upper and lower bounds can be arbitrarily large in general networks. As an

illustration, in Example 1, the minimum link residual capacity is 0.25, corresponding to link e8, and the network

residual capacity is 2.75, corresponding to the cut {3, 5, 6, 2}. However the example also constructs a disturbance

process of magnitude 0.55 under which the network is not transferring (under proportional routing policy).

We now describe a recursive procedure to compute a sharper upper bound. The quantity computed by this

procedure can be intuitively related to the margin of resilience when there is a clear time-scale separation between

the flow dynamics (fastest), speed of control action (intermediate) and the link inactivation dynamics (slowest),

and the routing policy is centralized but oblivious to disturbance. In our current setup, it will provide an upper

bound. Let X (J , λ) be the set of equilibrium flow vectors when the inflow at the origin node is λ and the set of

active links is J ⊆ E , i.e., the set of f ∈ RJ+ satisfying fe < Ce on every link e ∈ J ,
∑
e∈E0+∩J fe = λ and∑

e∈E+v ∩J fe =
∑
e∈E−v ∩J fe for all v ∈ V \ {n}. Let S(J , λ) correspond to the margin of resilience when the

network starts with active link set J ⊆ E . The computation of S(E , λ), which corresponds to margin of resilience

of interest, is based on values of S(J , λ) for all J ⊆ E as follows. Starting with sets J ⊆ E of size one, i.e.,

|J | = 1, and then increasing in size, perform the following recursion: if X (J , λ) = ∅, then S(J , λ) = 0, else

S(J , λ) := max
x∈X (J ,λ)

min
e∈J

(
Ce − xe + S (J \ {e}, λ)

)
. (12)

In (12), Ce − xe is the difference between the original capacity of link e and the flow on its under control action

x by a (centralized) routing policy. Therefore, it represents the minimum disturbance on link e that will make it

inactive. Since S (J \ {e}, λ) represents the margin of resilience once link e is removed, the whole term inside

the minimum in (12) is the magnitude of the smallest disturbance required to make the network with J links to

become non-transferring staring with removal of link e. The minimization in (12) over all e ∈ J searches for the

initial link e whose inactivation will minimize the disturbance required to make the network non-transferring. The

outer maximization over the feasible action set of the (centralized) routing policy maximizes the magnitude of the

worst-case disturbance process that will make the network non-transferring. The next results states the the output

of the iterations in (12) is indeed an upper bound on the margin of resilience under any distributed routing policy.
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Proposition 1. Let N = (V, E , C) be a network with λ > 0 a constant total outflow at the origin node. Then, for

any distributed routing policy, there exists a disturbance process (δ(t))t≥1 with D(δ) ≤ S(E , λ) under which the

associated network flow dynamics (2)-(5) is not transferring.

Remark 3. (i) It is easy to prove that S(E , λ) is a tighter upper bound than the one in (11).

(ii) The computation of S(E , λ) involves recursion over all sets J in 2E . However, for each e ∈ J ⊆ E and

λ ≥ 0, the term inside the minimization in (12) is affine in x ∈ X (J , λ). Hence, computing S(J , λ) is a

convex optimization problem.

For Example 1, by simulations, we find that S(E , λ) = 1.14, which is less than 2.75, the value corresponding

to the upper bound in (11). However, it is still greater than 0.55, the magnitude of disturbance in Example 1,

under which the network is not transferring. This conservatism is because the recursions in (12) implicitly assume

centralized routing, and do not take into account the possibility of link inactivation due to the inactivation of the

corresponding head node. In Section III-C, we propose an algorithm, the Backward Propagation Algorithm (BPA),

that addresses these limitations to provide a tighter upper bound, and we identify conditions under which this upper

bound is provably tight. The BPA is designed for network topologies satisfying the following acyclicity assumption.

Assumption 1. (V, E) contains no cycles.

A consequence of Assumption 1, the oblivious property of routing policies and the finiteness of V and E is that,

we can assume without loss of generality that, for every e ∈ E , there exists at most one te ≥ 0 such that δe(te) > 0,

and that δ(t) = 0 after some finite time. Therefore, it is sufficient to restrict our attention to disturbance processes

δ that are non-zero only for a finite time, and hence there exists a finite time after which (V(t), E(t), f(t), C(t))

comes to a steady state under any such disturbance process δ. Let T denote that finite termination time. In this

case, Definition 2 simplifies as: network flow dynamics is transferring if λn(T ) = λ.

The formulation and analysis of the BPA implicitly relies on the following simple result showing an equivalence

between a network being transferring and its origin node being active all the time.

Proposition 2. Let N be a network satisfying Assumption 1 with λ a constant inflow at the origin node, G a routing

policy, and (δ(t))t≥1 a disturbance process. Then, the associated network flow dynamics (2)-(5) is transferring if

and only if 0 ∈ V(T ). Moreover, λn(T ) ∈ {0, λ}.

Remark 4. The analyses of conventional models for cascading failure focus primarily on the connectivity of the

residual graph (V(T ), E(T )). For the setting of this paper, the proof of Proposition 2 can be used to easily show

that there exists a directed path from 0 to n in (V(T ), E(T )) if and only if the associated network flow dynamics

is transferring.
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B. Simple settings

Before describing the BPA, we present results for the maximal margin of resilience and the maximally resilient

routing policy in simple settings. We use these calculations merely to motivate the key steps in the construction of

BPA, and refer to Theorems 1 and 2 for their rigorous justification.
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Figure 2. Illustrative simple network topologies.

Let N1 denote the flow network illustrated in Figure 2(a), with E1 = {e1, e2} maximum link flow capacities Ci,

i = 1, 2. Following Remark 1, the routing policy at node 0 is completely specified by any vector x ∈ X (E1, λ).

Considering all the possible outcomes of the disturbance process, the margin of resilience is given by:

R(λ,N1, x) = min
{

[C1 − x1]+ + [C2 − λ]+, [C2 − x2]+ + [C1 − λ]+, [C1 − x1]+ + [C2 − x2]+
}

(13)

= min
{

[C1 − x1]+ + [C2 − λ]+, [C2 − x2]+ + [C1 − λ]+
}
,

where first term inside the min in the right hand side of (13) corresponds to the inactivation of link e1 at t = 2

under δ(1) = [[C1 − x1]+ 0]
′ followed by inactivation of e2 at t = 3 under δ(2) = [0 [C2 − λ]+]

′, the second term

corresponds to inactivation of e2 at t = 2 followed by inactivation of e1 at t = 3, and the third term corresponds

to the simultaneous inactivation of links e1 and e2 at t = 2 under δ(1) = [[C1 − x1]+ [C2 − x2]+]
′. Therefore, the

maximum possible margin of resilience, and the corresponding maximally resilient routing policy are, respectively,

given by R∗(N1, λ) = maxx∈X (E1,λ)R(N1, λ, x) and x∗ = argmaxx∈X (E1,λ)R(N1, λ, x), which, using simple

algebra, can be computed as (see Figure 3 (a) for an illustration):

R∗(N1, λ) =



C1 + C2 − 3λ/2 if λ ∈ [0,C] ,

C/2 + C̄ − λ if λ ∈
[
C, C̄

]
,

(C1 + C2)/2− λ/2 if λ ∈
[
C̄, C1 + C2

]
,

0 if λ ≥ C1 + C2 ,

(14)

where C := min {C1, C2} and C̄ := max {C1, C2}, and (see Figure 3 (b) for an illustration)

x∗1(λ) =


λ/2 if λ ∈ [0,C]

C1/2 + (λ− (C1 + C2) /2) 1C1>C2
if λ ∈

[
C, C̄

]
λ/2 + (C1 − C2) /2 if λ ∈

[
C̄, C1 + C2

]
.

(15)

Figure 3 (b) illustrates that proportional routing policies (e.g., see (8)) where the proportionality constants are

independent of the arrival rate are in general not maximally resilient. For N1, comparing (13) and (12), we see that

R∗(N1, λ) = S(E1, λ).
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Figure 3. Illustrations of (a) R∗(N1, λ) and (b) x∗1(λ) for C1 = 10 and C2 = 14; and (c) R∗(N2, λ) for C3 = 20, C1 = 10 and C2 = 14.

Let N2 denote the flow network illustrated in Figure 2(b), with maximum link flow capacities Ci, i = 1, 2, 3.

Following the dynamics in (2)-(5), link e3 can become inactivate because of saturation of link e3 or because of

deactivation of node τe3 = 1. Accordingly, the maximum margin of resilience is the minimum of [C3−λ]+ and the

maximum margin of resilience of the sub-network rooted at node 1 when the inflow at node 1. From our analysis

of N1, the latter is equal to R∗(N1, λ), and hence the maximally resilient routing policy at node 1 is the same

as in (15). An illustration of R∗(N2, λ) is given in Figure 3 (c). In this case, S(E , λ) from (12) is in general not

equal to R∗(N2, λ). This is because (12) does not take into account the fact link e3 could become inactive due to

inactivation of node 1.

Before proceeding with our next example, we define feasible flow vectors over active local links at node v. This

will be the set of feasible control actions for the routing policy at node v. For J ⊆ E+v , r ∈ RE
+
v

+ , v ∈ V \ {n} and

µ ≥ 0, let

Xv(J , r, µ) :=
{
x ∈ RJ+ : r ≤ x ≤ C; 1′x = µ

}
. (16)

(16) is a local version of the set X (J , λ) used in (12) with two exceptions. First, (16) is defined for a generic inflow

µ, since the inflow at v is time-varying. Second, as will become clear in the construction of BPA, the presence of

element-wise lower bound r allows one to impose the link monotonicity property defined in (7).

Let N3 denote the flow network illustrated in Figure 2(c), with maximum link flow capacities Ci, i = 1, 2, 3. Let

S(J , r, λ) be the margin of resilience when the set of active links at node v is J ⊆ E+v , and when the action of

routing policy is constrained to be element-wise greater than r. For all e ∈ E+v , S(e, r, λ) = 0 if λ < re or λ ≥ Ce,
and S(e, r, λ) = Ce − λ otherwise. For |J | ≥ 2 in N3, one can write the following recursion:

S(J , r, λ) = max
x∈X0(J ,r,µ)

min
e∈J

(
Ce − xe + S(J \ {e}, x, λ)

)
. (17)

Inside the minimization in (17), the term Ce − xe is the difference between the capacity of link e when the flow

on it is xe, and hence represents the minimal disturbance required to make link e inactive under routing action x.

The term S(J \ {e}, x, λ) is the magnitude of disturbance that is sufficient to make the network non-transferring
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after link e has become inactive, under the constraint that the flows on links in J \ {e} can not be element-wise

less than the flow x on them when e was active. The margin of resilience for N3 is then S(E ,0, λ). The ability of

(17) to incorporate link monotonicity constraints yields a sharper upper bound in comparison to (12).

The recursion in (17) can be used to derive margin of resilience for a network with arbitrary number of links

between nodes 0 and 1 in Figure 2 (c). However, in order to handle networks with arbitrary number of links between

nodes 1 and 2 in Figure 2 (b), we need to include the effect of inactivation of downstream nodes into (17). This

is the basis of the Backward Propagation Algorithm, which we describe next.

C. The Backward Propagation Algorithm (BPA)

We now describe the Backward Propagation Algorithm (BPA) to compute a tighter upper bound on the margin

of resilience in comparison to Proposition 1. The same algorithm will also motivate the design of BPA routing

which will be proven to be maximally resilient under certain sufficient conditions.

Assumption 1 implies that one can find a (not necessarily unique) topological ordering of the node set V =

{0, . . . , n} (see, e.g., [21]). We shall assume to have fixed one such ordering in such a way that E−v ⊆
⋃

0≤u<v E+u
for all v = 1, . . . , n. We recall that the depth of a graph (V, E) satisfying Assumption 1 is the length of the longest

directed path in (V, E).

Algorithm 1: The Backward Propagation Algorithm (BPA)

1: S(E+n , r, µ) := +∞ for all r ∈ RE
+
n

+ and µ ≥ 0 {destination node}
2: for v = n− 1, n− 2, . . . , 0 do {construct a series of intermediate functions for every node starting with

n− 1, and going backward up to the origin}
3: for all r ∈ RE

+
v

+ and µ ≥ 0,

S(∅, r, µ) = 0

S(J , r, µ) := 0 if Xv(J , r, µ) = ∅, ∀ ∅ 6= J ⊆ E+v ,

Se(µ) = S(e, r, µ) := min
{
Ce − µ, S(E+τe ,0, µ)

}
∀ e ∈ E+v . (18)

4: iteratively compute S(J , r, µ) for J ⊆ E+v of increasing size, starting with sets of size 2:

S(J , r, µ) := max
x∈Xv(J ,r,µ)

min
e∈J

(
Se(xe) + S

(
J \ {e}, x, µ

))
(19)

5: end for

Note that r appears only in the constraint set in the right hand side of (19). The fundamental difference between

the recursions in (19) and (17) is in the first term inside the minimization in (19). This term represents the minimum

magnitude of disturbance required to make a link inactive. While it was sufficient to consider the disturbance on

link e for this purpose in N3, for general networks, (18) implies that the minimal disturbance could correspond to

making the downstream node inactive. Therefore, the recursive computations at node v depend on the outcome of
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the computations done for nodes downstream to v. The Backward Propagation Algorithm derives its name from

the central feature of the algorithm, where an intermediate node collects S(J , r, µ) functions from its downstream

nodes, performs updates with respect to local network parameters, and transmits it to upstream nodes. As such, the

BPA can be executed in a distributed fashion.

Complementary to the maximization in (19) is the set of corresponding maximizers:

g (J , r, µ) := argmax
x∈Xv(J ,r,µ)

min
e∈J

(
Se(xe) + S (J \ {e}, x, µ)

)
. (20)

A simple implication of (20) which is used heavily in the paper is:

z ∈ g (J , r, µ) =⇒ z ≥ r. (21)

D. Upper bound on the margin of resilience

The quantity S(E+0 ,0, λ) computed by BPA is next shown to be an upper bound on the margin of resilience

under any distributed routing policy. For brevity in notation, we let S∗(N , λ) := S(E+0 ,0, λ).

Theorem 1. Let N be a network satisfying Assumption 1 and with λ a constant inflow at the origin node. Then, for

any distributed routing policy G, there exists a disturbance process (δ(t))t≥1 with D(δ) ≤ S∗(N , λ) under which

the associated network flow dynamics (2)-(5) is not transferring.

Remark 5. (i) Theorem 1 implies that R(N , λ,G) ≤ S∗(N , λ) for all distributed routing policies G, and hence

R∗(N , λ) ≤ S∗(N , λ).

(ii) While the statement of Theorem 1 merely suggests the existence of a worst-case disturbance process, its proof

in Section IV-C explicitly constructs one such disturbance process. Therefore, in scenarios when the upper

bound in Theorem 1 is tight, this constructive procedure can also be used to identify the most vulnerable

links of the network for adversarial setting.

(iii) The computational complexity of BPA has tradeoffs in comparison to (12). On one hand, while the recursion

in (12) involves all elements in 2E , BPA involves all elements only in ∪v2E
+
v , which is much smaller in

comparison, especially when |V| is large. On the other hand, (12) involves computation only for a fixed λ,

whereas BPA involves computations, in general, for all µ ∈ [0, λ] and r ∈ Xv(J ,0, µ). Moreover, whereas

each recursion in (12) is a convex optimization problem (see Remark 3 (ii)), BPA does not enjoy this property

in general. This is because, under (18), the expression inside the minimization in (19) is in general not affine

in x, e.g., see Figure 3 (c) for an illustration.

E. BPA routing and lower bound on the margin of resilience

In this section, we develop lower bounds for R∗(N , λ). This will be done by analyzing a specific distributed

routing policy, called BPA-routing, whose construction is inspired by the Backward Propagation Algorithm. BPA
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routing is a routing policy that satisfies the following for all v ∈ V \ {n}, µ ≥ 0:

r∗ := Gv(E+v , µ) ∈ g
(
E+v ,0, µ

)
,

Gv (J , µ) ∈ g (J , r∗, µ) , J ⊂ E+v .
(22)

BPA routing derives its name from the fact that it relies on the function g(J , r, µ) from (20), which is directly

related to the central computation in the BPA. However, note that the lower bound r∗ in (22) is independent of J
and µ, and is always equal to the action of the routing policy under the same inflow µ, when all local links are

active, and with no lower bound constraint. Following (21), Gv(J , µ) ≥ Gv(E+v , µ) for all J ⊆ E+v and µ ≥ 0.

The following lemma formally states conditions under which BPA routing satisfies the link monotonicity in (7).

Lemma 1. Let N be a network satisfying Assumption 1 with |E+v | ≤ 3 for all v ∈ V \ {n}. Then BPA routing

defined in (22) and (20) satisfies (7), and hence is a distributed routing policy as per Definition 1.

Proof: The only non-trivial case to prove is that, for every j ∈ J ⊆ E+v , µ ≥ 0, BPA routing satisfies:

Gv(E+v , µ) ≤ Gv(E+v \ {j}, µ).

This is straightforward since (21) implies Gv(E+v \ {j}, µ) ≥ r∗ = Gv(E+v , µ).

In general, BPA routing is not readily maximally resilient for general networks which are not directed trees 1.

This is because if a node v has multiple incoming links, then inactivation of v results in inactivation of all the

incoming links. However, the BPA algorithm does not take into account such correlations between link inactivations

and hence the upper bound in Theorem 1 is conservative for networks which are not trees. While it is possible

to modify BPA algorithm to reduce this conservatism, this comes with additional computational complexity and

additional difficulty in formulating the corresponding maximally resilient routing policy. Therefore, we make the

following directed tree assumption in this paper for deriving lower bound on the margin of resilience.

Assumption 2. (V \ {n}, E \ E−n ) is a directed tree.

With a slight abuse of terminology, we refer to N satisfying Assumption 2 as a tree. Note that, N satisfying

Assumption 2 is a tree rooted at the unique origin node.

Remark 6. For a network satisfying Assumption 2, if λ is less than the min cut capacity, then f(0) under BPA

routing is an equilibrium flow. Recall that the max flow min cut theorem implies that this is also a necessary

condition for the existence of an equilibrium flow.

BPA routing is maximally resilient on flow networks which are trees and symmetric. Recall that a weighted

rooted tree of depth one is called symmetric if all the links outgoing from the root node have equal weights. A

weighted rooted tree of depth greater than one is called symmetric if all the sub-trees rooted at the children2 nodes

1Recall that (V, E) is a directed tree if the undirected graph underlying (V, E) is a tree.
2In a directed tree (V, E), u ∈ V is called a children node of v ∈ V if E−

u ∩ E+
v 6= ∅.
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are symmetric, and identical to each other.

Proposition 3. Let N be a symmetric network satisfying Assumption 2 with λ > 0 a constant inflow at the

origin node and BPA routing policy. Then, the associated network flow dynamics (2)-(5) is transferring for every

disturbance process (δ(t))t≥1 with D(δ) < S∗(N , λ).

The tree assumption is not sufficient for BPA routing to match the upper bound S∗(N , λ) given by the BPA for

networks which are not symmetric, as illustrated in the following example.

Example 2. Consider the graph topology from Figure 1, with λ = 2, Ce1 = 2.5, Cei = 3 for i = 2, 3, Cei = 2 for

i = 4, 7, Cei = 0.6 for i = 5, 6, Ce8 = 0.75, Ce9 = 1.5 and Ce10 = 0.17. The plot of x∗3(µ) := Ge3(E+1 (0), µ) vs.

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

µ

x
∗ 3
(µ

)

Figure 4. Plot of x∗3(µ) := Ge3 (E
+
1 (0), µ) vs. µ.

µ under BPA routing for these values is given in Figure 4, which shows that x∗3(µ) is decreasing in µ over [1.9, 2].

Also, for these values, S∗(N , λ) = 0.3. Consider a disturbance process such that δ5(1) = 0.2, δ10(1) = 0.07,

δi(1) = 0 for i ∈ {1, . . . , 15} \ {2, 4, 5} and δ(t) ≡ 0 for all t ≥ 2. The magnitude of such a disturbance process

is 0.27, which is strictly less than S∗(N , λ) = 0.3. We now describe how such a disturbance process makes the

associated network flow dynamics (2)-(5) not transferring.

Under BPA routing, f(0) is such that: 2 − f2(0) = f1(0) = 1.9. Figure 4 then implies that 1.9 − f4(0) =

f3(0) = f5(0) = 0.4. Therefore, under the given disturbance process, {e10, e5} /∈ E(2), and {e2, e3} /∈ E(3).

Hence f1(4) = 2 and f4(5) = 2 = Ce4 . This implies that e4 /∈ E(6), and hence e1 /∈ E(8), which leads to the

dynamics being not-transferring.

On the other hand, it is easy to see that the dynamics would be transferring under this disturbance process if

the routing policy at node 1 is such that f3(0) < 0.4, and f3(0) = x∗3(2) = 0.35 (see Figure 4) in particular. This

would correspond to the routing policy at node 1 anticipating its inflow in advance, which is not feasible under

the oblivious and distributed setting for routing policies.
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Example 2 suggests that the non-monotonicity in the control action of BPA routing, and hence in the evolution

of flows on the links, under point-wise (with respect to inflow) optimization could lead to its sub optimality. This

motivates consideration of the following additional constraint.

Definition 4. A distributed routing policy G is called flow-monotone at node v ∈ V \ {n} if, for every J ⊆ E+v :

0 ≤ µ1 ≤ µ2 =⇒ Gv(J , µ1) ≤ Gv(J , µ2), (23)

Under a flow-monotone routing policy, if the inflow at a node increases, then the flow assigned to every active

outgoing link from that node does not decrease. A routing policy which is flow monotone over all v ∈ V \ {0, n},
is said to be flow monotone over N . We exclude the origin node because the inflow λ at the origin node is fixed.

Remark 7. Note that, unlike the link monotonicity condition in (7), we did not include the flow monotonicity

condition in (23) as part of the definition of distributed routing policies. This is because, while Example 2 illustrates

that BPA routing is not necessarily flow monotone, we have not been able to find an example where link monotonicity

is violated by BPA routing with r∗ = 0 in (22). However, a mathematical proof to support this observation is lacking

at this point.

Under a flow monotone distributed routing policy, the network dynamics can be easily shown to possess the

following simple property (which we state without proof), which simplifies the analysis considerably.

Lemma 2. Let N be a network with |E+v | ≤ 3 for all v ∈ V \ {n} and satisfying Assumption 2, λ > 0 a constant

intflow at the origin node and BPA routing policy that is flow monotone. Then,

t1 ≤ t2 =⇒ fe(t1) ≤ fe(t2) ∀ e ∈ E(t2).

The following is a key result, which, along with Theorem 1, identifies conditions under which BPA routing is

maximally resilient.

Theorem 2. Let N be a network with |E+v | ≤ 3 for all v ∈ V \ {n} and satisfying Assumption 2, λ > 0 a constant

inflow at the origin node and BPA routing policy that is flow monotone. Then, the associated network flow dynamics

(2)-(5) is transferring for every disturbance process (δ(t))t≥1 with D(δ) < S∗(N , λ).

Since BPA routing is completely specified by network parameters (V, E , C), flow monotonicity is a condition

on the network parameters. BPA routing is flow monotone at v trivially if |E+v | = 1. One could perform extensive

(offline) numerical tests to check flow-monotonicity of BPA routing over a given flow network N . However, it is

possible to identify a few flow networks over which BPA routing is provably flow-monotone. In order to characterize

such networks in Proposition 4 and Remark 8, we need the concept of d-expansion of a network: given N , its

d-expanded version N d is obtained by creating multiple copies of the destination node in N , one for each incoming

link. For example, the network in Figure 5(a) is d-expanded version of the network in Figure 2 (a). It is easy to

recover the original flow network from its d-expanded version.
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Figure 5. d-expanded flow networks that induce flow-monotonicity of BPA routing at the root node v0.

Proposition 4. Let N be a network satisfying Assumption 2 with λ > 0 a constant inflow at the origin node. Then,

BPA routing is flow-monotone at v ∈ V if the the sub-tree in the d-expanded version N d rooted at v is either (a),

or (b) with Ce2 ≥ Ce1 or (c) with Ce1 = Ce2 in Figure 5.

Remark 8. Let N̄ d denote the set of d-expanded versions of “simple” flow networks over which BPA routing is

known to be flow monotone, either from explicit analysis as in Proposition 4, or through extensive simulations.

One can use N̄ d as a basis to form arbitrarily large networks over which BPA routing is flow monotone, using

an iterative procedure as follows. Initialize N d to be an element of N̄ d. At each iteration, execute the following

concatenation step. Take any destination node in N d, say v, with a single incoming link E−v = {e} and a member

N̄ d
i from N̄ d whose origin node is v0,i. If [Ce − µ]+ ≤ S(E+v0,i ,0, µ) for all µ ∈ [0, Ce], then concatenate N̄ d

i to

N d at v, i.e., v = v0,i and the the sub-network downstream of v is N̄ d
i . BPA routing on the flow network obtained

at the end of every iteration of this procedure is guaranteed to be flow monotone, because (18) implies that Se(µ)

is equal to [Ce − µ]+ even in the concatenated network.

Flow monotonicity of BPA routing over a given network N is maintained even after replacing any link, say

e = (u, v), in N d (at any iteration) with a non-branching chain e1, . . . , ek such that σe1 = u, τem = v and

mini∈{1,...,m} Cei = Ce.

One can also devise a procedure which is counterpart to the expansion procedure described above to check if

the d-expanded version of a given network N d can be decomposed into elements of N̄ d, in which case the BPA

routing over N d is flow monotone. As one keeps enriching the basis N̄ d, these procedures allow to construct or

to verify large networks over which BPA routing is flow monotone, and hence maximally resilient by Theorem 2.

IV. PROOFS OF THE MAIN RESULTS

In this section, we provide proofs of the main results presented in Section III. Some of the proofs rely on certain

analytical properties of S(J , r, µ) defined in (19). We state and prove these properties in Lemma 6 in the Appendix.

A. Proof of Proposition 1

We first show that, for any λ ≥ 0, K ⊆ J ⊆ E ,

S(K, λ) ≤ S(J , λ). (24)
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It suffices to show that S(J \ {e}, λ) ≤ S(J , λ) for all e ∈ J . It is trivially true for |J | = 1. Assume it to be

true for all |J | ≤ k for some k ≥ 1. (12) implies that, for all x ∈ X (J , λ):

S(J , λ) ≥ min
j∈J

(
Cj − xj + S(J \ {j}, λ)

)
= min

(
Ce − xe + S(J \ {e}, λ), min

j∈J\{e}

(
Cj − xj + S(J \ {j}, λ)

))
≥ min

(
S(J \ {e}, λ), min

j∈J\{e}

(
Cj − xj + S(J \ {j}, λ)

))
≥ min

(
S(J \ {e}, λ), min

j∈J\{e}

(
Cj − xj + S(J \ {j, e}, λ)

))
, (25)

where the second inequality follows the fact that xe ≤ Ce, whereas the third inequality follows from the inductive

argument on J \{i}. For x ∈ argmaxx∈X (J\{e},λ) minj∈J\{e}
(
Cj−xj+S(J \{j, e}, λ)

)
we get S(J \{e}, λ) =

minj∈J\{e}
(
Cj−xj +S(J \{j, e}, λ), which when used in (25), finishes the proof for |J | = k+1. By induction,

(24) is then true for all J ⊆ E .

We now prove the proposition by induction on |J |. When J = {e}, (12) implies that S(J , λ) ≤ [Ce − λ]+.

It is easy to see that under a disturbance process δe(1) = [Ce − λ]+ and δe(t) = 0 for all t ≥ 1, the associated

network dynamics will be non-transferring. Assume that the proposition is true for all J ⊆ E with |J | ≤ k for

some k ≥ 1. Let E(0) = J , with |J | = k + 1. Pick e ∈ argminj∈J (Cj − fj(0) + S(J \ {j}, λ)). Therefore,

S(J , λ) ≥ Ce − fe(0) + S(J \ {e}, λ). (26)

Consider a disturbance process such that δe(1) = Ce − fe(0) and δj(1) = 0 for all j ∈ J \ {e}. Under this

disturbance, link e becomes inactive, followed by a possible cascading failure. Let the network state come to

a steady state after a finite time T1. Since, |E(T1)| ≤ k, one can use induction to extend δ after T1 to ensure

that the network dynamics is not transferring. By induction, the total magnitude of δ is then upper bounded

as D(δ) ≤ δe(1) + S(E(T1), λ). Since E(T1) ( J , using (24), this can be further upper bounded as D(δ) ≤
δe(1) + S(J \ {e}, λ) = Ce − fe(0) + S(J \ {e}, λ), which combined with (26) implies that D(δ) ≤ S(J , λ).

B. Proof of Proposition 2

If 0 /∈ V(T ), then the flow across links outgoing from every cut U in (V(T ), E(T )), and V(T )\{n} in particular,

is zero at T . This implies that λn(T ) = 0. This also proves that λn(T ) ∈ {0, λ}.
If 0 ∈ V(T ), then J := E(T )∩E+0 is non-empty, and

∑
e∈J fe(T ) = λ. Let U = 0∪{v ∈ V(T ) : (0, v) ∈ J }.

It is clear that U ⊆ V(T ), and that U is in fact a cut in (V(T ), E(T )). Since f(T ) is an equilibrium flow, the total

flow across the links outgoing from U is λ. One can continue along these lines to claim that the flow across links

outgoing from any cut in (V(T ), E(T )), and V(T ) \ {n} in particular, is equal to λ. That is, λn(T ) = λ.

C. Proof of Theorem 1

Theorem 1 is a corollary of the following lemma, where we allow the possibility that (V(0), E(0)) 6= (V, E).
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Lemma 3. Consider a node v in a network N with initial condition (V(0), E(0)) ⊆ (V, E), satisfying Assumption 1,

with a constant inflow µ ≥ 0, and operating under a distributed routing policy satisfying Gv(E+v (0), µ) ≥ r for

some r ∈ RE
+
v

+ . Then, for any h ∈ N, there exists a finite Tv ≥ h, and a disturbance process (δv(t))t≥h satisfying

D(δv) ≤ S(E+v (0), r, µ), under which v /∈ V(Tv).

Proof: It is sufficient to prove the lemma for h = 1. For brevity in notation, we let f(t) := Gv(E+v (t), µ) be

the action of the control policy at t ≥ 0. By assumption and the link monotonicity property of routing policy in

(7), f(t2) ≥ f(t1) ≥ r for all t2 ≥ t1 ≥ 0. We follow the convention that, unless specified otherwise, δve (t) = 0

for all e ∈ E and t ≥ 1.

The proof is by double induction, on the number of nodes n + 1 and the cardinality of |E+v (0)|. The proof

is easy to verify for acyclic networks with n = 1 node and |E+v (0)| = 1, since in that case, with E+v (0) = {e},
Se(µ) = [Ce−µ]+, and therefore, one can apply δve (1) = [Ce−µ]+, under which v /∈ V(2) and D(δv) = [Ce−µ]+.

Assume the lemma to be true for arbitrary acyclic networks with n+ 1 nodes and |E+v (0)| ≤ k for some k ≥ 1.

For |E+v (0)| = k + 1, pick e in argminj∈E+v (0)

(
[Cj − fj(0)]+ + S (E+v (0) \ {j}, y, µ)

)
. Consider a disturbance

process δv such that δve (1) = [Ce − fe(0)]+, in which case

S(E+v (0), r, µ) ≥ [Ce − ye]+ + S(E+v (0) \ {e}, f(0), µ). (27)

Let the times at which links fail simultaneously be 2 = t1 ≤ . . . ≤ tm. Let St(J , r, µ) denote the functions

computed by the BPA in (19) for the residual graph (V(t), E(t), C(t)) at t ≥ 0. By convention, we set S0 ≡ S.

Since links in E+v (ti−1) \ E+v (ti) fail simultaneously at ti, Sti−1j (fj(ti − 1)) = 0 for all j ∈ E+v (ti−1) \ E+v (ti).

Therefore, using Lemma 6, for all i ∈ {2, . . . ,m}:

Sti(E+v (ti), f(ti), µ) ≤ Sti(E+v (ti), f(ti − 1), µ) ≤ Sti−1(E+v (ti), f(ti − 1), µ)

= Sti−1(E+v (ti − 1), f(ti − 1), µ) ≤ Sti−1(E+v (ti−1), f(ti−1), µ),
(28)

where we have used the fact that f(ti) ≥ f(ti− 1) = f(ti−1) and E(ti− 1) ⊆ E(ti−1). Using the same arguments,

since S1
e (f1(1)) = 0, we have that

St1
(
E+v (t1), f(t1), µ

)
≤ S1

(
E+v (1), f(1), µ

)
= S1

(
E+v (0) \ {e}, f(1), µ

)
≤ S

(
E+v (0) \ {e}, r, µ

)
. (29)

Combining (28) and (29), we get that

Stm
(
E+v (tm), f(tm), µ

)
≤ S

(
E+v (0) \ {e}, r, µ

)
. (30)

Using induction on the residual graph at t = tm, where |E+v (tm)| < |E+v (0)|, one can construct a disturbance

process (δ̃v(t))t≥tm such that v /∈ V(T ), and

D(δ̃v) ≤ Stm
(
E+v (tm), f(tm), µ

)
. (31)

Augmenting δv with δ̃v , i.e., (δv(t))t≥tm = (δ̃v(t))t≥tm , and applying (27), (30) and (31), we get that

D(δv) = [Ce − fe(0)]+ +D(δ̃v) ≤ S(E+v (0), f(0), µ) ≤ S(E+v (0), r, µ),
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which proves the lemma for acyclic networks with n + 1 nodes and |E+v (0)| = k + 1. The proof can be easily

extended to acyclic networks with n+ 2 nodes and |E+v (0)| = k, after which the lemma follows from induction.

Theorem 1 follows by combining Lemma 3 for v = 0, h = 1, µ = λ, r = 0 and (V(0), E(0)) = (V, E) with

Proposition 2.

D. Proof of Proposition 3 and Theorem 2

Proposition 3 follows from Theorem 2 by recalling that, for symmetric flow networks that are directed trees, BPA

routing satisfies flow monotonicity. Theorem 2 follows from the following lemmas. The following simple property

of the functions S(J , r, µ) computed in (19) will be useful in the proofs in this subsection. We recall the definition

of g(J , r, µ) from (20).

Lemma 4. For any x ∈ g(J , r, µ), J ⊆ E+v , r ∈ RE
+
v

+ , v ∈ V \ {n} and µ ≥ 0,

S(J , r, µ) ≤
∑
e∈K

Se(xe) + S(J \ K, x, µ) ∀K ⊆ J .

Proof: The lemma is trivially true from (19) and (20) for |K| = 1. Assume it to be true for all K ⊂ J with

|K| ≤ k for some k ≥ 1. Consider the case |K| = k + 1. Induction implies that, for any j ∈ K:

S(J , r, µ) ≤
∑

e∈K\{j}

Se(xe) + S(J ∪ {j} \ K, x, µ). (32)

Applying induction to the second term in (32), for every z ∈ g(J ∪ {j} \ K, x, µ) we get

S(J ∪ {j} \ K, x, µ) ≤ Sj(zj) + S(J \ K, z, µ). (33)

z ∈ g(J ∪{j}\K, x, µ) implies z ≥ x, which in turn implies Sj(zj) ≤ Sj(xj) and S(J \K, z, µ) ≤ S(J \K, x, µ)

Lemma 6. Combining this with (32) and (33) establishes the lemma for |K| = k + 1, and hence for all K ⊆ J by

induction.

For the next lemma, we again allow the possibility that (V(0), E(0)) 6= (V, E).

Lemma 5. Consider a node v ∈ V \ {n} with |E+v | ≤ 3 in a flow network N with initial condition (V(0), E(0)) ⊆
(V, E), satisfying Assumption 2, and operating under BPA routing. Let the inflow λv(t) be non-decreasing and

satisfy maxt≥0 λv(t) = µ ≥ 0. If λv(t) ≡ µ , or if BPA routing at v is flow monotone, then v ∈ V(T ) under any

disturbance process δv satisfying D(δv) < S(E+v (0), r∗, µ), with r∗ = Gv(E+v , µ).

Proof: Let E+v = {e1, e2, e3} and f∗i := Gvei(E+v (0), µ) for all ei ∈ E+v (0). We consider three possible scenarios

for |E+v (0)| separately. We prove by backward induction on v in {0, . . . , n − 1}. First consider v = n − 1. When

E+v (0) = {e1}, (18) implies that Se1(µ) = C1 − µ ≤ C1 − λv(t). Therefore, for all t ≥ 0, 4e1(t) ≤ 4e1(T ) ≤
D(δv) < Se1(µ) = C1 − µ ≤ C1 − λv(t). That is, fe1(t) = λv(t) < C1 −4e1(t) = C1(t) for all t ≥ 0, and hence

v ∈ V(T ).

When E+v (0) = {e1, e2}, let t1 := min{t ≥ 0 | E+v (t) 6= E+v (0)}. To avoid triviality, assume t1 < ∞,

and let K := E+v (0) \ E+v (t1) be the set of links to become inactive simultaneously at t1. Then, necessarily
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4e(t1) ≥ [Ce− fe(t1)]+ ≥ [Ce− f∗e ]+ for all e ∈ K, where the second inequality follows from flow monotonicity.

Therefore, ∑
e∈K
4e(T ) ≥

∑
e∈K
4e(t1) ≥

∑
e∈K

[Ce − f∗e ]+. (34)

Let δ̃K be such that δ̃Ke (t) ≡ 0 for all e ∈ K and δ̃Ke (t) ≡ δve (t) for all e ∈ E+v (t1). Therefore,

D(δv) = D(δ̃K) +
∑
e∈K
4e(T ). (35)

Combining (34) with Lemma 4, where we note that f∗ := Gv(E+v (0), µ) ∈ g(E+v (0), r∗, µ) (from (22)), we get

S(E+v (0), r∗, µ) ≤
∑
e∈K
4e(T ) + S(E+v (t1), f∗, µ) (36)

Combining (36) and (35) with D(δv) < S(E+v (0), r∗, µ), we get

D(δ̃K) < S(E+v (t1), f∗, µ). (37)

If |E+v (t1)| = 0, then (37) is a contradiction, and if |E+v (t1)| = 1, the proof is then completed by using the

|E+v (0)| = 1 case since S(E+v (t1), f∗, µ) = S(E+v (t1),0, µ).

For E+v (0) = {e1, e2, e3}, one follows the same argument as before to arrive at (37). If |E+v (t1)| ≤ 1, then we use

the same arguments as before. If |E+v (t1)| = 2, then necessarily E+v (0) = E+v , in which case f∗ = r∗. Therefore,

one can continue with the |E+v (0)| = 2 case to complete the proof. This proves the lemma for v = n− 1.

Assume that the lemma is true for all v ≥ ` for some ` ≥ 1. Let v = `−1. We recall Lemma 2 for monotonicity

of fi(t). As for the v = n − 1, we consider three cases depending on the value of |E+v (0)| and provide proof

using similar arguments. We provide a few details only for E+v (0) = E+v = {e1, e2, e3}. Lemma 2 implies that

fi(t) ≤ f∗i = Gvi (E+v , µ) for all i = 1, 2, 3. Let δv =
∑3
i=0 δ

v
i , where, for i = 1, 2, 3, δvi is the component of δv on

links consisting of ei and the sub-tree rooted at τei , and δv0 is the component on the rest of the links in the network.

Let 4i(t), i = 0, 1, 2, 3, be defined accordingly. Let t1 := min{t ≥ 0 | E+v (t) 6= E+v }. To avoid triviality, assume

t1 < ∞, and let K := E+v \ E+v (t1) be the set of links to become inactive simultaneously at t1. Then, necessarily

4e(t1) ≥ Se(fe(t1)) ≥ Se(f
∗
e ) for all e ∈ K, where the second inequality follows from Lemma 6. Following

similar arguments as before, we arrive at (37), after which we use the relevant case depending on the value of

|E+v (t1)| ≤ 2. This establishes the proof for v = `−1, and hence by backward induction for all v ∈ {0, . . . , n−1}.

Theorem 2 is obtained from Lemma 5 by substituting v = 0, (V(0), E(0)) = (V, E), λv(t) ≡ λ, and noting that

S(E+0 , r∗, λ) = S(E+0 ,0, λ) = S∗(N , λ).

E. Proof of Proposition 4

The BPA routing for case (a) is explicitly computed in (15), which readily implies flow-monotonicity. The proof

for case (c) follows from the constructs used in the proof of case (b). Therefore, we provide details only for case

(b).
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For brevity in notation, let y(µ) ≡ Gv0(E+v0 , µ) be the flow under BPA routing. For brevity in notation, and since

the lower bound constraints imposed by r are redundant in this case, we drop the dependence of S(.r, .) on r.

Following Figure 3(b), the general relationship between Se1(µ) and S(E+v1 , µ) can be written as:

Se1(µ) =

 S(E+v1 , µ) if µ ∈ [µ̄1, µ̄2],

[C1 − µ]
+ if µ ∈ [0, µ̄1] ∪ [µ̄2, C1] ,

(38)

where µ̄1 = 2 (C3 + C4 − C1), µ̄2 = 2C1 − (C3 + C4) and one can write an expression for S(E+v1 , µ) similar to

(14). We prove flow-monotonicity by showing that d
dµy(µ) ≥ 0. Let Γi = sup{µ : Sei(µ) > 0} for i = 1, 2 be

the effective flow capacity of link ei. When y(µ) is on the boundary of the feasible set Xv0(E+v0 , µ), without loss

of generality, assume that y1(µ) = [µ − Γ2]+ and y2(µ) = min{µ,Γ2}, which is trivially flow-monotone. When

y(µ) is in the interior of the feasible set, y2 satisfies Se2(y2) + Se1(µ) = Se1(µ− y2) + Se2(µ). Therefore, by the

implicit function theorem,3 we have that

d

dµ
y2(µ) =

S′e2(µ) + S′e1(µ− y2)− S′e1(µ)

S′e2(y2) + S′e1(µ− y2)
, (39)

where S′ei(y) ≡ d
dySei(y), i = 1, 2. The strictly decreasing property of Sei , i = 1, 2 from Lemma 6 implies that

the denominator of (39) is negative for all µ ∈ (0,Γ1 + Γ2). (14) and (38) imply that S′e1(µ− y2)−S′e1(µ) ≤ 1/2

if µ < C1 and equal to zero if µ > C1. This combined with Se2(µ) ≡ [C2−µ]+ and the assumption that C2 ≥ C1

implies that the numerator of (39) is non positive for all µ < Γ1 + Γ2. Hence, d
dµy2(µ) ≥ 0. The proof for

d
dµy1(µ) ≥ 0 follows along similar lines.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a dynamical model for cascading failures in single-commodity network flows, where the

network dynamics is governed by a deterministic and possibly adversarial disturbance process which incrementally

reduces flow capacity on the links, and distributed oblivious routing policies that have information only about the

local inflow and active status of outgoing links, and in particular no information about the disturbance process.

The salient feature of this model is to couple the flow dynamics with the link and node inactivation dynamics. An

immediate outcome of this coupling is that, links and nodes to fail successively are not necessarily adjacent to each

other. We quantified margin of resilience to be the minimum cumulative capacity reductions across time and links

of the network, under which the network looses its transferring property. We presented an algorithm that provides

an upper bound on the margin of resilience for directed acyclic graphs between a single origin-destination pair. The

same algorithm motivates a routing policy which provably matches the upper bound for networks which are tree

like, have out-degree at most 3, and induce monotonicity in the flow dynamics.

In future, we plan to extend our analysis to networks with general graph topologies, multi-commodity flows,

non-oblivious routing policies with possibly multi hop information, stochastic disturbance processes, reversible link

3Se1 (µ) and Se2 (µ) are continuous piecewise linear functions, e.g., see Figure 3 (c). Therefore, one can find analytic functions that can

approximate Se1 (µ) and Se2 (µ), as well as their derivative arbitrarily closely at almost all points. We implicitly assume that Se1 (µ) and

Se2 (µ) are replaced with such analytic approximations.
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activation dynamics under finite time link recovery, and exogenous coupling between failure and recovery of distant

links due to coupling between the given network and other exogeneous networks. We also plan to investigate

computationally efficient, and possibly distributed, algorithms for (approximate) computation of the margin of

resilience. Finally, we plan to extend our formulation to the physics of other networks such as power, gas, water

and supply chains.
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APPENDIX

In this section, we state and prove certain useful properties of S(J , r, µ) defined in (19).

Lemma 6. Consider two networks N 1 = (V, E1, C1) and N 2 = (V, E2, C2), each satisfying Assumption 1. Let

S1 and S2 be the functions computed by the Backward Propagation Algorithm for N 1 and N 2 respectively. For
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any v ∈ V \ {n}, let J be any subset of links common to N 1 and N 2, and outgoing from v . Then,

0 ≤ µ2 ≤ µ1, 0 ≤ r2 ≤ r1, E1 ⊆ E2 and C1 ≤ C2 =⇒ S1(K, r1, µ1) ≤ S2(J , r2, µ2),

where K := {e ∈ J | S1
e (r1e) > 0}.

Proof: We split the lemma as follows:

(i) S1(K, r1, µ1) = S1(J , r1, µ1);

(ii) S1(J , r1, µ1) ≤ S2(J , r1, µ1);

(iii) S2(J , r1, µ1) ≤ S2(J , r1, µ2); and

(iv) S2(J , r1, µ2) ≤ S2(J , r2, µ2).

Out of these, (iv) is trivial, and hence we omit its proof. We prove (i)-(iii) by double induction, on the number of

nodes n+1 and the cardinality of J . It is immediate to verify that the claim holds true for n = 1 and |J | = 1, since

with J = {e}, Si(e, r, µ) = Sie1(µ) = [Cie1 −µ]+ for all r, i = 1, 2. Assume that the claim is true for |V| = n+ 1

and for |J | ≤ k. Consider a J of cardinality k + 1. (19) and (20) imply that, for all z ∈ g(K ∪ {j}, r1, µ1),

j ∈ J \ K:

S1(K ∪ {j}, r1, µ1) ≤ S1
j (zj) + S1(K, z, µ1) ≤ S1(K, r1, µ1), (40)

where the second inequality follows from the fact that z ≥ r1 implies 0 ≤ S1
j (zj) ≤ S1

j (r1j ) = 0, and using (iv)

from induction. On the other hand, consider y such that ye = r1e for all e ∈ K and yj = µ1−
∑
e∈K r

1
e ≥ r1j , where

the inequality follows from the feasibility of y. For such a y, (19) implies that there exists i ∈ K ∪ {j} such that

S1(K ∪ {j}, r1, µ1) ≥ S1
i (yi) + S1(K ∪ {j} \ {i}, y, µ1) (41)

Consider (41) under two cases. (a) i = j. In this case, since S1
j (yj) = 0, (41) gives S1(K ∪ {j}, r1, µ1) ≥

S1(K ∪ {j} \ {j}, y, µ1) = S1(K, r1, µ1), where the last equality follows from the fact that the components of r1

and y along K are the same. (b) i 6= j. In this case, recalling that ye = r1e for all e ∈ K, and applying (i) from

induction to the second term in (41), we get that

S1(K ∪ {j}, r1, µ1) ≥ S1
i (r1i ) + S1(K \ {i}, y, µ1) = S1

i (r1i ) + S1(K \ {i}, r1, µ1). (42)

For every z ∈ g(K, r1, µ1), we have

S1
i (r1i ) + S1(K \ {i}, r1, µ1) ≥ S1

i (zi) + S1(K \ {i}, z, µ1) ≥ S1(K, r1, µ1), (43)

where the first inequality follows from z ≥ r1 and (iii) from induction. Combining (42) and (43), we arrive at the

same conclusion as case (a), i.e.,

S1(K ∪ {j}, r1, µ1) ≥ S1(K, r1, µ1). (44)

Combining (40) and (44), we establish (ii) when |J \K| = 1. The proof for arbitrary |J \K| follows from repetitive

application of this procedure.

July 15, 2014 DRAFT



25

The proof for (ii) easily follows from induction since, for every x, and e ∈ J ,

S1
e (xe) + S1(J \ {e}, x, µ1) ≤ S2

e (xe) + S2(J \ {e}, x, µ1).

In order to prove (iii), using the fact that S2
e (µ) is non-increasing in µ and S2(J \ {e}, r, µ) non-increasing in

r from induction, one gets that, for all r1 such that 1′r1 ≤ µ2,

max
x≥r1

1′x≥µ2

min
e∈J

{
S2
e (xe) + S2(J \ {e}, x, µ2)

}
= max

x≥r1
1′x=µ2

min
e∈J

{
S2
e (xe) + S2(J \ {e}, x, µ2)

}
= S2(J , r1, µ2) .

Specifically, to see why the first equality above holds true, let the maximum in the rightmost side be achieved in some

x ≥ r1 such that 1′x ≥ µ2, and let λ ∈ [0, 1] be such that (1− λ)1′x+ λ1′r1 = µ2 (such λ exists since 1′x ≥ µ2

and 1′r1 ≤ µ2). Then, y := (1 − λ)x + λr1 satisfies x ≥ y ≥ r1, 1′y = µ2, and S2
e (ye) + S2(J \ {e}, y, µ2) ≥

S2
e (xe) + S2(J \ {e}, x, µ2) for all e. Then, for µ1 ≥ µ2,

S2(J , r1, µ1) = max
x≥r1

1′x=µ1

min
e∈J

{
S2
e (xe) + S2(J \ {e}, x, µ1)

}
≤ max

x≥r1
1′x≥µ2

min
e∈J

{
S2
e (xe) + S2(J \ {e}, x, µ2)

}
= S2(J , r1, µ2) .

This concludes the proof for |V| = n+ 1 and |J | ≤ k+ 1. A similar argument allows one to extend the validity

of the result to |V| = n+ 2 with |J | = 1. The lemma then follows by induction.
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