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The Coevolution of Appraisal and Influence
Networks Leads to Structural Balance

Peng Jia, Noah E. Friedkin, and Francesco Bullo, Fellow, IEEE

Abstract—In sociology, an appraisal structure, represented by a signed matrix or a signed network, describes an evaluative cognitive

configuration among individuals. In this article we argue that interpersonal influences originate from positive interpersonal appraisals

and, in turn, adjust individuals’ appraisals of others. This mechanism amounts to a coevolution process of interpersonal appraisals and

influences. We provide a mathematical formulation of the coevolutionary dynamics, characterize the invariant appraisal structures, and

establish the convergence properties for all possible initial appraisals. Moreover, we characterize the implications of our model to the

study of signed social networks. Specifically, our model predicts the convergence of the interpersonal appraisal network to a structure

composed of multiple factions with multiple followers. A faction is a group of individuals with positive-complete interpersonal appraisals

among them. We discuss how this factions-with-followers is a balanced structure with respect to an appropriate generalized model of

balance theory.

Index Terms—Appraisal evolution, macro-structural models, structural balance theory, mathematical sociology

Ç

1 INTRODUCTION

STRUCTURAL balance, a social psychological theory about
the network structure of interpersonal appraisals, has

attracted attention recently [1], [2], [3] in the studies of polit-
ical party networks, large-scale online social networks, and
cooperation evolution in social networks. Interpersonal
appraisal is a ubiquitous natural relation of evaluative (pos-
itive or negative) cognitive orientation of one individual
toward another. Cartwright and Harary’s seminal work [4]
on the signed digraph formalization of Heider’s analysis [5],
[6] of balanced cognitive configurations is now referred to
as the classical model of structural balance. This model posits
the existence of tensions corresponding to configurations of
appraisals among three individuals.

Based on empirical observations, a generalized model of
structural balance is introduced by Davis and Leinhardt [7]
and studied by Johnsen [8]: the tension assumptions are
relaxed and more complex realizations of structural balance
are allowed. While structural balance theory typically
focuses on the static appraisal networks, recent research [1],
[3], [9] has concentrated on dynamical models of structural
evolution. In what follows, we first review some relevant lit-
erature and later state our problem of interest.

Static Structural Balance Theory. In structural balance the-
ory, a complete signed matrix X 2 f�1;þ1gN�N , which we
call the appraisal matrix, represents the interpersonal ties in a
group ofN individuals, where xij, i; j 2 f1; . . . ; Ng; equals to
þ1 if individual i has a positive appraisal of individual j,
and xij equals to�1 if i has a negative appraisal of individual

j. The matrix X is used to describe the interpersonal
appraisal structure of the group. Any dyad fi; jg in the group
associated with X has three possible types: mutual (M),
asymmetric (A), or null (N). A dyad fi; jg is M-related if
xij ¼ xji ¼ 1; it is N-related if xij ¼ xji ¼ �1; and it is A-
related otherwise (i.e., xij � xji ¼ �1). Consequently, there
are 16 different types of triads for an appraisal structure.

The classical model of structural balance posits that an
appraisal structure is balanced if the following four state-
ments by Heider [6] are satisfied: “my friend’s friend is my
friend,” “my friend’s enemy is my enemy,” “my enemy’s
enemy is my friend,” and “my enemy’s friend is my enemy.”
Mathematically, a signed digraph is balanced under these
conditions if the value of all cycles (i.e., closed paths begin-
ning and endingwith the same node) are positivewith respect
to the product of all edges of the cycle. A remarkable implica-
tion of the classical theory of structural balance is that an
appraisal network is tension-free (balanced) if and only if it is
positive-complete or partitioned into two positive-complete
subgraphs. A positive-complete subgraph, also referred to as
a faction, is a social subgroup in which each individual has a
positive appraisal of each individual in the faction and a non-
positive appraisal of any other individual.

The generalized model of structural balance is proposed
by Davis and Leinhardt [7] and Johnsen [8], [10]. In this the-
ory, a micro-model specifies which subset of the 16 triad
types is permitted and, therefore, which resulting structural
networks (signed digraphs containing only permitted triad
types) are admissible. The resulting structural networks are
referred to as macro-structural models. In contrast with the
classical model, the generalized model of structural balance
(in many of its micro-model realizations) allows for arbi-
trary numbers of factions and directed acyclic graphical
structures among them. We review this theory in Section 2
and refer to [8] for a detailed treatment.

Dynamical Models for Social Balance. Classical structural bal-
ance theory and its generalizations do not specify the
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mechanisms that transform unbalanced appraisal networks
into balanced networks. However, as Marvel et al. [1] noted
“. . . its underlying motivation is dynamic, based on how
unbalanced triangles ought to resolve to balanced ones. This
situation has led naturally to a search for a full dynamic the-
ory of structural balance.”

In Ku»akowski’s work [9] a continuous-time model of
structural balance was presented: given an appraisal matrix

X 2 RN�N , the dynamical system

dX=dt ¼ X2; (1)

governs the evolution of the appraisal structure over time.
Here, the entry xij denotes the appraisal of individual j held
by individual i. Numerical simulations showed that, for
almost all initial Xð0Þ, the system reaches the structural bal-
ance postulated by the classical model in finite time.
Ku»akowski proved the convergence to this structural bal-
ance for anN ¼ 3 network. Marvel et al. [1] proved that for a
random initial symmetricmatrixXð0Þ, the classical structural
balance is obtained by the dynamical system (1) in finite time
with a probability converging to 1 as the population size goes
to infinity. Traag et al. [3] extended the convergence results to

normal initial matrices (X is normal if XTX ¼ XXT ). How-
ever, for generic initial appraisal matrices, the convergence to
structural balance is not necessarily observed [3] in the
dynamical system (1). Another interesting continuous-time
dynamical model presented by Traag et al. is

dX=dt ¼ XXT : (2)

For this model, there exists [3] a dense set of initial condi-
tions Xð0Þ 2 RN�N , such that a balanced structure is
achieved generically in finite time. In the first model (1), the
appraisal of the individual j held by the individual i is
adjusted based on the appraisals of j held by all other indi-
viduals. In the second model (2), the appraisal of the indi-
vidual j held by the individual i is adjusted based on
the appraisal of all individuals held by j. In other words,
the second model features a cooperative behavior in the
appraisal evolution: each individual tends to befriend other
individuals who think alike.

The literature on social structural balance also includes a
research stream on social energy landscape [2], [4], [11], [12].
Theseworks aremotivated by studieswhich suggest that cer-
tain triad types are more stable than others. In these works,
an energy landscape is defined to describe structural balance.
Numerical experiments show that energy landscapes often
feature local minima called jammed states [11], [12]. Antal
et al. [11] consider a discrete-time dynamical model, where
the signs of the edges of an appraisal network are optimally
adjusted under the constraint of a monotonic increase of bal-
anced triads. It is shown that the assumption of an optimal
monotonic increase of balanced triads does not suffice to gen-
erate the structural balance of the classical model.

In summary, we argue that it is of considerable interest
to postulate social psychological mechanisms of appraisal
dynamics and to characterize the conditions under which
they present outcomes consistent with structural balance
theory.

The Coevolution of Interpersonal Appraisals and Influences.
We propose a novel sociological model for the evolution of

interpersonal appraisals toward generalized structural bal-
ance. Our approach treats the evolution of interpersonal
appraisals as a special case of opinion dynamics: the evolv-
ing opinions are the individuals’ bundles of signed cogni-
tive appraisals toward the other individuals. In other
words, we ground dynamic structural balance theory in the
theory of opinion dynamics and influence networks. As
opinion and appraisal evolution mechanism, we adopt the
widely-established DeGroot averaging model [13]. Notably,
our dynamical model predicts general numbers of factions
and rich structure among faction and is consistent with a
particular micro-model from generalized balance theory.
Our work is also motivated by the coevolution process [14]
in which an influence network is associated with an
appraisal network, interpersonal influences adjust individu-
als’ appraisals, and these adjusted appraisals lead to an
adjusted influence network.

With this background motivation, we consider a discrete-
time dynamical model of structural balance, where the
dynamics combine both appraisal and influence structure
evolution. For a group of N � 2 individuals with initial

appraisals Xð0Þ 2 RN�N , the evolution of the appraisal
matrix XðtÞ is determined by a discrete-time DeGroot aver-
aging model:

Xðtþ 1Þ ¼ W ðXðtÞÞXðtÞ; t ¼ 0; 1; 2 . . . : (3)

Here, the row-stochastic influence matrix W ðXðtÞÞ depends
on the state XðtÞ as follows: interpersonal influences for
each individual are proportional to the positive appraisals
accorded to the individual by all other individuals. In other
words, the entry wijðXÞ, i 6¼ j, is proportional to xij if xij is
positive and zero otherwise. We provide a detailed mathe-
matical definition in the modeling section below. As the
dynamical processes of interpersonal appraisals and influ-
ences are interdependent, we refer to (3) as the coevolution
model of interpersonal appraisal and influence.

Our setup features several differences with the existing
dynamical models on structural balance (e.g., the models (1)
and (2)). First, our model (3) considers both appraisal and
influence evolution and a novel process to generate and
adjust the interpersonal influence network. Note that the
appraisal structure plays the role of the influence structure
in the previous work [1], [3], [9]. Second, in our model
appraisals are modified over time as convex combination of
existing appraisals; this guarantees that the appraisals never
diverge (by comparison, divergence occurs in the models
of (1) and (2)). Third, while positive and negative appraisals
with heterogeneous strengths are allowed in our model, our
basic assumption is that only positive interpersonal apprais-
als translate into interpersonal influences. Accordingly, we
expect the evolutions of the proposed coevolution model to
asymptotically satisfy two statements in the classic balance
model: “my friend’s enemy is my enemy” and “my friend’s
friend is my friend.” (On the contrary, there are a priori no
reasons why the other two structural balance theory state-
ments, “my enemy’s enemy is my friend” and “my enemy’s
friend is my enemy,” should be satisfied by the evolutions
of our model.) By comparison, the models (1) and (2) satisfy
all four statements in the classic balance model and predict
only one or two factions of structural balance given certain
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initial conditions. In other words, the classical model and
the models in Equations (1) and (2) are therefore not predic-
tive of the situations, empirically observed in [7], in which
more than two factions are often observed. Moreover, for
generic initial conditions, the solution of the model (1) con-
verges to a rank-1 matrix which is, in general, not structur-
ally balanced, even in the language of the generalized
structural balance. Finally, it is noted that our model (3) is a
discrete-time dynamical model, while the Equations (1) and
(2) are in continuous time.

Contributions. We propose and analyze the novel coevo-
lution model of interpersonal appraisal and influence given
in Equation (3). As a first step, we provide an explicit and
concise mathematical formulation for this discrete-time
nonlinear system. As the main set of contributions, we
study the asymptotic convergence and equilibrium proper-
ties of this nonlinear coevolution system. We provide a
mathematical analysis on the structural position properties
of the individuals; we predict the equilibrium appraisals for
individuals in a sink, intermediate or source strongly con-
nected component (SCC). We claim that (1) all individuals
in a sink SCC of the equilibrium positive digraph will reach
an appraisal consensus on each individual, (2) all intermedi-
ate SCCs vanish in the dynamical equilibrium, (3) each
source SCC is a singleton and the appraisal of individuals
in source SCCs are determined by the appraisals held by
the individuals from the sinks, and (4) all equilibrium
appraisal networks have a factions-followers-outsiders
structure. Here, a faction is a sink SCC with positive
appraisals within the component; a follower is a singleton
source SCC; and an outsider is an isolated singleton sink
SCC with a non-positive self-appraisal.

As the second set of contributions, we demonstrate that
all invariant macro-structures are the special cases of the
factions-followers-outsiders structure. This finding is
related to the concept of core-periphery structure, a preva-
lent notion in world systems [15], economics [16], and social
networks [17], [18]. In other words, the factions-followers-
outsiders structure exhibits the properties of a multi-core-
periphery structure: dense, cohesive cores (factions) and
sparse, unconnected peripheries (followers or outsiders).
Furthermore, all equilibrium appraisal structures via the
coevolution are discussed and the exclusive set of macro-
structural models are predicted to be structurally balanced
under our model.

Lastly, we illustrate our results by numerical simulations.
In particular, we inspect the different convergence and equi-
libria performances for different self-influence parameters.

These findings are of sociological interest in their advance-
ment of the dynamical foundations of structural balance in
social groups. Our rigorous results for the coevolutionmodel
of interpersonal appraisal and influence suggest that inter-
personal appraisal networks evolve toward a set of structural
equivalent bundles and predict the stable macro-structures
under the coevolution model. These findings contribute to
the rapidly-growing research on coevolutionary networks
[19], [20], to the literature on social network formation and
coordination games [21], [22] and, more broadly, to the study
of complex networks and evolutionary rules [23], [24].

Finally, we note that the interesting attractor topologies
admitted by the generalized balance theory in this paper

have important practical implications on the capacity of
interpersonal influence systems to resolve social conflicts
and disseminate innovations. The hierarchical topological
attractors we characterize provide a basis of population con-
sensus generation and diffusion of innovations. The theory
suggests that a small set of influential factions, and the
chains of positive appraisals that link other followers to
them, determine the beliefs, opinions, and behaviors of
large numbers of individuals on a variety of issues.

Organization. The rest of the paper is organized as fol-
lows. Section 2 introduces some notation and preliminary
concepts. Section 3 describes the coevolution model. Sec-
tions 4, 5 and 6 discuss, respectively, the topological,
asymptotic and structural balance properties of our model.
Section 7 contains our conclusions. All technical proofs are
in the Appendices, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TNSE.2016.2600058.

2 PRELIMINARY CONCEPTS

For a vector x 2 Rn, we let x � 0 and x > 0 denote compo-
nent-wise inequalities. We adopt the abbreviations 1n ¼
½1; . . . ; 1�T and 0n ¼ ½0; . . . ; 0�T . Given a column vector

½x1; . . . ; xn�T 2 Rn, we let diagðxÞ denote the diagonal n� n
matrix whose diagonal entries are x1; . . . ; xn. For signed
matrix pattern analysis, we let “�” represent a block matrix
with non-positive entries and let “þ” represent a block
matrix with positive entries for the simplicity of presenta-

tion. If two matrices A;B 2 RN�M have the same positive/
non-positive entry pattern, we denote A � B. For example,
one matrix A with all positive entries or all non-positive
entries is denoted by A � þ½ � or A � �½ �, respectively. For
x 2 R and A ¼ ½aij� 2 RN�M , we write xþ ¼ maxfx; 0g 2
R�0 and Aþ :¼ ½maxfaij; 0g� 2 RN�M

�0 .

Elements of Graph Theory. An undirected graph (in short,
graph) is an ordered pair G ¼ ðV;EÞ, where V is a set of
nodes and E is a set of unordered pairs of nodes. A directed
graph (in short, digraph) G ¼ ðV;EÞ consists of a node set V
and a set E of ordered pairs of nodes, i.e., E � V � V . For
i; j 2 V , the ordered pair ði; jÞ denotes a directed edge from i
to j, where i is called an in-neighbor of j, and j is called an
out-neighbor of i. The in-degree and out-degree of j are the
numbers of in-neighbors and out-neighbors of j, respec-
tively. Every node of in-degree (resp. out-degree) 0 is called
a source (resp. sink). A node with both non-zero in-degree
and out-degree is an intermediate node and a node with both
0 in-degree and out-degree is an isolated node.

A directed path in a digraph G is an ordered sequence of
nodes such that any pair of consecutive nodes in the
sequence is a directed edge. A directed path is simple if no
node appearsmore than once in it, except possibly for the ini-
tial and final node. G is strongly connected if there exists a
directed path from any node to any other nodes. A node ofG
is globally reachable if it can be reached from any other node
by traversing a directed path. A cycle inG is a simple directed
path that starts and ends at the same node. A directed acyclic
graph (DAG) is a digraph that has no cycles. G is aperiodic if
there exists no integer k > 1dividing the length of each cycle
in G. Given a digraph G ¼ ðV;EÞ, a linear ordering of nodes
is an inverse topological sorting if, for any edge ði; jÞ 2 E, j
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precedes i in the ordering. Any DAG has one inverse
topological sorting, whichmay not be unique [25].

A digraph ðV 0; E0Þ is a subgraph of ðV;EÞ if V 0 � V and
E0 � E. A subgraph H is a strongly connected component of G
if H is strongly connected and any other subgraph of G
strictly containing H is not strongly connected. The conden-
sation digraph of G, denoted CðGÞ, is a digraph whose nodes
are the SCCs of G and in which there exists a directed edge
from the SCC H1 to the SCC H2 if and only if there exists a
directed edge in G from a node of H1 to a node of H2. Each
CðGÞ is a DAG and has at least one sink and one source. We
say that H1 is directly connected to H2 in G if there exists a
directed edge in CðGÞ fromH1 toH2.

Elements of Matrix Theory. A non-negative matrix is row-
stochastic if all its row sums are equal to 1. Given a square
non-negative matrix M ¼ fmijgi;j2f1;...;ng, its associated
digraph GðMÞ is the digraph with node set f1; . . . ; ng and
with edge set defined as follows: ði; jÞ is a directed edge if
and only if mij > 0. M is irreducible if GðMÞ is strongly con-
nected; M is reducible if it is not irreducible. M is aperiodic if
GðMÞ is aperiodic. M is primitive if there exists k 2 N such

that Mk is a positive matrix. It is known (e.g., see Example
1.2 in [26]) that M is primitive if and only if M is irreducible
and aperiodic.

Generalized Models of Structural Balance. Micro-models
and macro-structural models were introduced in Johnsen [8]
(see also [27, Section 8.3]) to generalize the structural bal-
ance models studied in [4], [6]. A micro-model is defined to
be a subset of the 16 possible triad types. Associated with a
particular micro-model, a macro-structural model (or a macro-
structure in short) is defined to be the set of networks con-
taining only the triad types in the micro-model. We call
such a pair of the macro-structure and the micro-model con-
sistent and, equivalently, we say that a set of macro-struc-
ture networks is structurally balanced with respect to a
specified micro-model.

We rephrase and generalize the dyad types of interper-
sonal appraisals (the classical version of which was intro-
duced in [4] and briefly presented in the introduction) as
follows: dyad fi; jg are M-related if xij > 0 and xji > 0;
they are N-related if xij 	 0 and xji 	 0; and they are A-
related otherwise (i.e., one of fxij; xjig is strictly positive and
the other is non-positive). The triad types are then general-
ized by the rephrased dyad types such that the values of
the appraisal relations are not constrained to �1 or 1. AnM-
clique is a set of individuals who are completely connected
by M-links (i.e., links with M-relations).

3 MODEL OF APPRAISAL AND INFLUENCE
COEVOLUTION

In this section, we present a dynamical model which
investigates how an influence network may emerge from
interpersonal appraisals in a social network and how the
appraisal relations may be modified by interpersonal influ-
ences. We adopt the term “structure” for the non-positive/
positive (or zero/non-zero, respectively) pattern of the
appraisal (or influence, respectively) relations among the
network irrespective of their values. We adopt the term
“matrix” to describe the exact quantification of the interper-
sonal appraisals (or influence weights, respectively). In

other words, an appraisal structure is a set of appraisal
matrices with a certain sign pattern.

We consider a group of N � 2 individuals with interper-

sonal appraisals represented by a signed matrix X 2 RN�N .
Each entry xij; i; j 2 f1; . . . ; Ng; of the appraisal matrixX rep-
resents individual i’s interpersonal appraisal of individual j.
Additionally, we allow the entries of X equal to 0: xij ¼ 0

implies that individual i has neither positive nor negative
appraisal of individual j, or that i does not know j. Thus,
we relax the complete digraph or weakly connected digraph
assumption on appraisal structures, which was widely
adopted in the previous work (e.g., see [1], [3], [4]).

Individuals’ appraisals, i.e., signed evaluative orienta-
tions of particular strengths, are often automatically gener-
ated without conscious effort [28], [29], and these appraisals
are important antecedents of displayed cognitive and
behavioral orientations toward objects [30]. The available
empirical evidence is also consistent with the assumption
that individuals update their appraisals as convex combina-
tions of their own and others’ displayed appraisals. This
convex combination is based on weights that are automati-
cally generated by individuals in their responses to the dis-
played appraisals held by other individuals. This
specification appeared in the literature on opinion dynamics
in the early works by French [31], Harary [32], and DeG-
root [13]. Especially, in Anderson’s seminal information
integration theory [33], the convex combination mechanism
was regarded as a fundamental “cognitive algebra” of the
mind’s synthesis of heterogeneous information. Therefore,
in this article, we formulate individuals’ appraisals about
others by a trajectory t 7! XðtÞ that is determined by the
seminal DeGroot averaging model:

Xðtþ 1Þ ¼ WðtÞXðtÞ; t � 0; (4)

with initial appraisals Xð0Þ 2 RN�N , and with a sequence of
influence matricesfWðtÞgt�0. Here, each influence matrix

WðtÞ is assumed to be non-negative and its entry wijðtÞ,
i; j 2 f1; . . . ; Ng; represents the interpersonal influence weights
that the individual i accords to individual j at time t.

Our analysis of appraisal evolution (4) depends only
on the influence matrices fWðtÞgt�0. The key feature of
the proposed model is that WðtÞ is determined by the
appraisal matrix XðtÞ at each time t. Motivated by Fried-
kin and Johnsen’s work [14], we associate an influence
matrix to an appraisal matrix as follows: (i) the interper-
sonal influence wijðtÞ is strictly positive precisely when

the corresponding appraisal xijðtÞ is strictly positive, (ii)

non-positive appraisals lead to zero interpersonal influ-
ence weights, and (iii) each individual has a positive self-
weight in the influence network. Specifically, given a
small self-appraisal constant � > 0, individuals’ interper-
sonal influences are determined as functions of the inter-
personal appraisals X by

w�;ijðXÞ ¼
1Pn

j¼1 x
þ
ij þ �

ðxþ
ij þ �Þ; if j ¼ i;

1Pn
j¼1 x

þ
ij þ �

xþ
ij; if j 6¼ i:

8>><
>>:

(5)
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An equivalent definition ofW�ðXÞ ¼ ½w�;ij� is:

W�ðXÞ ¼ diag
�ðXþ þ �INÞ1N

��1�
Xþ þ �IN

�
: (6)

By continuity, we also define W0ðXÞ ¼ lim�!0þ W�ðXÞ.
Note that, if each entry of the ith row of X is negative or
zero, then w�;iiðXÞ ¼ 1. This equality implies that the ith
individual assigns zero weight to all other individuals and
that his appraisals are therefore unchanged after one step of
the evolution.

Definition 3.1 (Appraisal and influence coevolution
model). Given a group of N � 2 individuals, let XðtÞ 2
RN�N be the appraisal matrix and WðtÞ 2 ½0; 1�N�N be the
influence matrix at time t � 0. For t 2 Z�0, the interpersonal
appraisal and influence coevolution system is defined by:

(1) Appraisal evolution:

Xðtþ 1Þ ¼ WðtÞXðtÞ;
(2) Influence evolution:

WðtÞ ¼ W�ðXðtÞÞ:
For simplicity of presentation, the model assumes the

positive parameter � to be homogeneous among the individ-
uals. Nevertheless, this assumption is not necessary and is
relaxed in Section 5. Fig. 1 illustrates our proposed coevolu-
tion model as in Definition 3.1.

Lemma 3.1 (Properties of influence matrices). For any

� � 0 and any appraisal matrix X 2 RN�N , the influence
matrixW�ðXÞ is row-stochastic and, if � > 0, aperiodic.

4 TOPOLOGICAL PROPERTIES OF THE

COEVOLUTIONARY DYNAMICS

In this section we study the topological properties of the co-
evolution model of interpersonal appraisal and influence (4)
and (5), and focus on the long-term connectivity properties
of the graphs describing interpersonal influences.

We call the digraph GðW Þ associated to the influence
matrix W the influence digraph, and call the digraph GþðXÞ
associated to X the positive (appraisal) digraph for which a

directed edge ði; jÞ exists if and only if xij > 0. It is clear

that the adjacency matrix Xþ of GþðXÞ has the same posi-
tive/non-positive entry pattern asWðXÞ except possibly for
the diagonal entries. Consequently, the two digraphs
GþðXÞ and GðWÞ have the identical set of nodes and the
identical set of edges except possibly for self-loops. In what
follows we analyze the evolution of GþðXðtÞÞ along the tra-
jectoryXðtÞ of the dynamical system (4) and (5).

Since CðGÞ is a DAG, by relabelling its nodes from an
inverse topological sorting, the adjacency matrix of CðGÞ is
a block lower triangular non-negative matrix as follows

A ¼
D1 0 . . . 0
S21 D2 . . . 0

..

. ..
. . .

. ..
.

Sn1 Sn2 . . . Dn

2
6664

3
7775; (7)

where n nodes fHigi2f1;...;ng exist for the condensation
digraph CðGÞ. The matrix A can also be regarded as an adja-
cency matrix of G if we look at Di and Sij as block matrices
and fHigi2f1;...;ng represent the SCCs of G. The ordering of

nodes within an SCCHi is inessential.
As the topology of positive appraisal digraph or influ-

ence digraph may vary along the coevolution, we denote
the nodes of CðGþðXðtÞÞÞ or the SCCs of GþðXðtÞÞ as
fHiðtÞgi2f1;...;nðtÞg, where nðtÞ denotes the numbers of SCCs

associated with the positive digraphs. With a slight abuse of
notation, we refer toHiðtÞ as both a SCC of GþðXðtÞÞ at time
t and the subset of nodes of GþðXðtÞÞ belonging to that
SCC. That is, HiðtÞ may represent the same subset of nodes
in the digraph GþðXðtþ 1ÞÞ as those in the digraph
GþðXðtÞÞ forming the SCC HiðtÞ even though HiðtÞ may not
be an SCC of GþðXðtþ 1ÞÞ any more.

Theorem 4.1 (Finite-Time stability of the SCCs of posi-
tive digraphs). Let XðtÞ be a trajectory of the coevolution
system (4) and (5) with � � 0. Pick a time t 2 Z�0 and perform
an inverse topological sorting of the condensation digraph
CðGþðXðtÞÞÞ. For any two nodes HiðtÞ and HjðtÞ with labels
i < j in CðGþðXðtÞÞÞ,

(i) no directed edge can appear from a node of HiðtÞ to a
node ofHjðtÞ in GþðXðtþ 1ÞÞ; and

Fig. 1. Coevolution of appraisal and influence: the colormaps correspond to the signed appraisal matrices and influence matrices. In these colormaps
and what follows red colors are negative appraisals and blue colors are positive appraisals or influences. The various color depths represent different
appraisal or influence values.
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(ii) if CðGþðXðtÞÞÞ contains no directed path from HjðtÞ
to HiðtÞ with length 1 or 2, then no directed edge can
appear from a node of HjðtÞ to a node of HiðtÞ in
GþðXðtþ 1ÞÞ.

Therefore,

(iii) no two SCCs of GþðXðtÞÞ can merge at time tþ 1
(whereas an SCC of GþðXðtÞÞ may split into multiple
SCCs at time tþ 1);

(iv) the number nðtÞ of SCCs of GþðXðtÞÞ is non-decreas-
ing; and

(v) there exists a finite time t such that the SCCs of
GþðXðtÞÞ remain unchanged for all subsequent times
t � t.

As fHiðtÞg and nðtÞ remain unchanged for all t � t, we
denote Hi ¼ HiðtÞ and n ¼ nðtÞ for simplicity in the follow-
ing discussions. It is noted that the blocks below the diago-
nal in (7) are varying via the coevolution system (4) and (5)
even after time t, and therefore, the directed edges from the
node Hi to the node Hj for all i > j do not necessarily
remain unchanged in the condensation digraphs
CðGþðXðtÞÞÞ for t � t. That is, the topology evolution of the
positive digraphs may not stabilize at t. Moreover, due to
the discontinuity of GþðXðtÞÞ, although the SCCs of
GþðXðtÞÞ are unchanged after some finite time t, they are
not necessarily equal to the SCCs of Gþðlimt!1 XðtÞÞ.

Fig. 2 illustrates one example showing the appraisal
digraph evolution and the edge evolution as described in
Theorem 4.1. We may verify the claims of the theorem by
this example: Given N ¼ 3 and � ¼ 0:5, we observe that (1)
the positive appraisal digraph GþðXð0ÞÞ has only one SCC
but this SCC splits into three SCCs at time t ¼ 1, i.e., single-
ton SCC nodes H1ð1Þ; H2ð1Þ; H3ð1Þ; (2) no directed edge can
appear between the two SCCs H2ðtÞ and H3ðtÞ, and no edge
can appear from H2ðtÞ or H3ðtÞ to H1ðtÞ for t � 1; (3) the
three SCCs H1ðtÞ; H2ðtÞ; H3ðtÞ never merge for all t � 1 and
the number of the SCCs are non-decreasing. By simple cal-
culation, we know that the stability time for both the SCC
evolution and topology evolution of the positive digraphs
considered in Fig. 2 is t ¼ 1 and the number of the stable
SCCs is nðtÞ ¼ 3.

5 ASYMPTOTIC PROPERTIES OF THE

COEVOLUTIONARY DYNAMICS

In this section we study the asymptotic convergence proper-
ties of the coevolution model of interpersonal appraisal and
influence (4) and (5). Both analytic and numerical results
are presented.

5.1 Theoretical Results

We start with arbitrary initial conditions and subject to a
non-zero assumption on � and we show that each trajectory
converges asymptotically to an equilibrium matrix and we
characterize the structure of the equilibrium matrices. Sec-
ond, we discuss sufficient and necessary conditions such
that certain appraisal structures observed in finite time
remain unchanged in infinite-time limit.

Definition 5.1 (Factions-followers-outsiders structure).
An appraisal matrix X has a factions-followers-outsiders
structure if each strongly-connected component of GþðXÞ is
either

(i) a sink in CðGþðXÞÞ, called a faction, composed of an
arbitrary number of nodes, all of which are completely
connected and have positive self-loops in GþðXÞ; or

(ii) a source in CðGþðXÞÞ, called a follower, composed of
a single node with directed edges pointing to each node
in one or more factions and without self-loop in
GþðXÞ; or

(iii) an isolated node in CðGþðXÞÞ, called an outsider,
composed of a single node in GþðXÞ with zero in-
degree, zero out-degree and no self-loop.

The node in a follower component with directed edges
toward one or more factions is called a follower of that or those
factions. If there are only factions and followers associated
withGþðXÞ, it is called a factions-followers structure. This def-
inition is illustrated in Fig. 3: note that a faction can have
one or multiple nodes and can have zero, one or more fol-
lowers. A faction-follower-outsiders structure may includes
one or multiple copies of the set or a subset of the structures
shown in figure.

Fig. 2. Appraisal and influence coevolution in a triad: The digraphs formulated by solid directed edges correspond to positive appraisal digraphs (on
the top) and influence digraphs (on the bottom). The non-positive appraisals are also shown by dotted lines. The numbers on the edges are the val-
ues of the appraisals and influence weights, respectively. As stated in Theorem 4.1, regarding the positive appraisal digraphs, (1) the (positive) edges
from individual 1 to the individuals 2 and 3 disappear at time t ¼ 1 and these edges will never appear again; (2) the edges between the individuals 2
and 3 never appear. Hence, three SCCs remain unchanged after t ¼ 1.
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Theorem 5.1 (Asymptotic appraisal matrices). For the
coevolution system (4) and (5) with � > 0, each trajectory
XðtÞ converges asymptotically to an equilibrium X
 (function
of Xð0Þ and �). Moreover, each equilibrium matrix X
 has the
following properties:

(i) X
 has a factions-followers-outsiders structure;
(ii) for a faction of GþðX
Þ, the appraisals of each individ-

ual in the network held by all individuals in the faction
are the same: this faction’s appraisal of one individual
is positive if the individual belongs to this faction and
is non-positive otherwise;

(iii) for a follower of GþðX
Þ, the appraisal of each individ-
ual in the network held by the follower is a convex com-
bination of the appraisals of that individual held by the
factions the follower follows. In particular, if the fol-
lower follows only one faction, then its appraisal of
each individual in the network is identical to that held
by the faction;

(iv) for an outsider of GþðX
Þ, the appraisal of each indi-
vidual in the network held by the outsider is non-
positive.

Theorem 5.1 says that, subject to the coevolution (4) and
(5), the factions-followers-outsiders structure is the only
possible equilibrium structure of the appraisal matrixX
. In
particular, we know that: (i) the rows of X
, corresponding
to all individuals’ appraisals in a faction, are identical and

are equal to 1Nsv
T for some v ¼ ½vj� 2 RN , where Ns is the

cardinality of the faction, vj > 0 if node j is in the faction
and vj 	 0 otherwise; (ii) all followers, i.e., source strongly-
connected components, are singletons and their appraisals
are determined by the appraisals held by the factions, of
which the followers hold positive-complete appraisals in
the equilibria; and (iii) all outsiders have non-positive
appraisals of each individual in the group. The examples of
the convergence in Theorem 5.1 are presented in Figs. 4, 5,
and 6. The nodes of the right graphs are M-cliques. Mð1Þ in

these figures is a special M-clique with only one node. More
discussions of M-clique are referred to Section 6.

Next, we analyze when and what finite-time structures
(i.e., strongly-connected components of the positive
digraph) remain unchanged in the asymptotic limit. For
simple presentation, we denote the matrix corresponding to
interpersonal appraisals in a sink SCC Hs by Xs 2 RNs�Ns ,
whereNs is the node cardinality of the SCC.

Theorem 5.2 (Finite-time properties determining
asymptotic structures). For the coevolution system (4) and
(5) with � > 0, let the trajectory XðtÞ satisfy X
 ¼
limt!1 XðtÞ. Then

(i) a sink SCCHs of G
þðXðtÞÞ exponentially converges to

a faction in X
 if and only if there exists a time t1 � t
such that Xsðt1Þ has one column with all positive
entries;

(ii) GþðX
Þ has a globally reachable node if and only if
there exists a time t such that XðtÞ has one column
with all positive entries;

(iii) if all entries of XðtÞ are non-negative and GþðXðtÞÞ is
irreducible, thenGþðX
Þ is one faction and all individ-
uals have the same appraisal of each individual in the
group; and

(iv) an outsider ofGþðXðtÞÞ remains an outsider for all fol-
lowing times and in the limit GþðX
Þ.

The statement (ii) of Theorem 5.2 extends its statement (i)
to an appraisal structure of which the positive digraph is at
least weakly connected and has only one sink SCC. The pos-
itive digraph could be either reducible or irreducible. More-
over, in the equilibrium, such a structure has only one
faction, an arbitrary number of followers and no outsider.
Regarding the irreducibility assumption of the third state-
ment of Theorem 5.2, we can show that if GþðXð0ÞÞ is irre-
ducible, then GþðXðtÞÞ is irreducible for all t � 0 and
Gþðlimt!1 XðtÞÞ is irreducible. This statement can be
extended such that a sink SCC (with at least two nodes)
becomes a faction in the equilibrium.

Fig. 3. Faction-follower-outsiders structure: “F” components are factions,
“L” components are followers, “O” components are outsiders. The small
size components are singletons and the large size components are
SCCs with two or more nodes. On the left: Two factions and two out-
siders. In the middle: A factions-followers structure with a single faction.
On the right: A factions-followers structure with multiple factions.

Fig. 4. Convergence to three factions.

Fig. 5. Convergence to a factions-followers structure with a single
faction.

Fig. 6. Convergence to a factions-followers structure: Three discon-
nected factions-followers structures each of which has a single faction.
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5.2 Numerical Study on Empirical Networks

We now apply our results to empirical social network exam-
ples. To minimize the impact of the self-appraisal constant �
on the trajectory of the coevolution system, we select small
values of � in the simulations. We report trajectories com-
puted for strictly-positive small �, butwe comment that essen-
tially identical trajectories are generated by setting � to zero.

In our first example, we consider the appraisal evolution
on a Krackhardt’s advice network [34]; this network
describes a manufacturing organization with 21 managers
and 128 relationships in which a manager sought advice
from another manager. Because the available data about
this advice network does not include a complete set of inter-
personal appraisals, we set up an initial appraisal matrix
based on two ancillary assumptions: (1) each individual
holds initial interpersonal appraisals equal to 1 of the indi-
viduals she seeks advice from and has non-positive apprais-
als (uniformly randomly-selected from ½�0:5; 0�) of all other
individuals; (2) the initial self-appraisals are equal to the nor-
malized in-degree of the individuals in the advice network.
Note that the second ancillary assumption is grounded in the
theory of reflected appraisal as presented in [35]. Given
� ¼ 0:1, the trajectory of the appraisal evolution is shown in
Fig. 7. The equilibrium structure is a factions-followers struc-
ture with a single faction. Appraisal consensus of each indi-
vidual in the network is observed. Note that this
convergence to an appraisal structure with a single faction is
robust with respect to the initial non-positive appraisal
assignment among ½�0:5; 0�. Indeed, our initial appraisal
assignment guarantees that at least two (the 2nd and the
21st) columns ofXð1Þ are positive. Based on statement (ii) in
Theorem 5.2, there always exists a globally reachable node in
the equilibrium structure. That is to say, the equilibrium
must have a factions-followers structure with a single fac-
tion, with or without followers. However, this claim is not
true for an arbitrary initial appraisal assignment.

The second example considers the social interactions
among a group of monks in an isolated contemporary
American monastery observed by Sampson [36]. Based on
observations and experiments, Sampson collected a variety
of experimental information on four types of relations:
Affect, Esteem, Influence, and Sanctioning. Each of 18
respondent monks ranked their three first choices on these
relations, where 3 indicates the highest or first choice and 1
the last choice in the presented interaction matrices. Some
subjects offered tied ranks for their top five choices. Here

we focus on the monastery appraisal structures based on the
ranking of the affection (“like” and “dislike”) relations in
Sampson’s empirical data. Note that we apply data col-
lected directly from original PhD dissertation [36], where
“like” and “dislike” relations were both collected for three
times, while most Sampson’s “dislike” dataset available
online are incomplete.

Because the available data about this network does not
include a complete set of interpersonal appraisals, we set
up an initial appraisal matrix for our simulation based on
one ancillary assumption: the initial self-appraisal of each
individual is equal to the mean value of the appraisals of
this individual held by all other group members. Given
� ¼ 0:1, the trajectories of the appraisal evolution on
Sampson’s affection network measured for the third time
are shown in Fig. 8. The equilibrium structure illustrated in
Fig. 8 is still a factions-followers structure with a single
faction. Appraisal consensus of each individual in the
network is also observed along the trajectories. Moreover,
we observe a quick consolidation to approximately two
clusters (two factions-followers structures) on a short time-
scale, but then on a long time-scale, the bridging ties with
positive appraisals and influences bring the whole group
together slowly, and eventually, one faction with followers
emerges in the equilibrium.

The third example considers Zachary’s karate club net-
work. The interactions among the members of a university
karate club were recorded for 2 years by Zachary [37]. Dur-
ing observation, a conflict between the administrator and
the instructor of the club developed and eventually the club
broke into two clubs.

Because the available data about this network does not
include a complete set of interpersonal appraisals, we set up
an initial appraisal matrix for our simulation based on four
ancillary assumptions: (1) each individual in the group has
positive initial appraisals of the individuals that she inter-
acted with and the appraisal values are proportional to the
number of contexts in which interaction took place between
the two individuals; (2) each individual has non-positive
appraisals of the remaining individuals and the appraisal
values are uniformly randomly-selected from ½�0:5; 0�, while
the administrator and the instructor have �1 appraisal of
each other; (3) the initial self-appraisal of each individual is
equal to themean value of the positive appraisals of this indi-
vidual held by the others; moreover, (4) the self-influence

Fig. 7. Evolution of appraisal matrices on Krackhardt’s advice net-
work: The interpersonal appraisals converge to a rank-1 matrix of the
form 1Nv

T .

Fig. 8. Evolution of appraisal matrices on Sampson’s monastery
network: The appraisal matrix converges to a rank-1 matrix of the
form 1Nv

T .
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parameter for the two intransigent individuals (i.e., the
administrator and the instructor) is � ¼ 1, and � ¼ 0 for the
remaining individuals. The trajectory of the appraisal evolu-
tion on Zachary’s karate club network is shown in Fig. 9.
Consistent with Zachary’s analysis, we observe two factions-
followers structures emerged in the equilibrium and each
structure has a single faction consisting of either the instruc-
tor (node 1) or the administrator (node 34).

5.3 Theoretical and Numerical Analysis of the
Self-Influence Parameter

To complete the analysis, we discuss the self-influence
parameter � and show its impact on the appraisal and influ-
ence coevolution. In particular, for � ¼ 0, if we additionally
assume that the influence (and equivalently positive
appraisal) submatrices associated with the sink SCCs are
aperiodic for all time, then all results in Theorems 5.1
and 5.2 hold true. The proofs are similar and skipped here.
Moreover, even without an aperiodicity assumption, given
� ¼ 0,XsðtÞ in the statement (i) of Theorem 5.2 still exponen-
tially converges to a rank-1 positive matrix of the form

1Nsv
T , and consequentially the statement (ii) holds. That is,

aperiodicity is implicitly satisfied for these two cases if there
exists a positive column for the considered appraisal sub-
matrix XsðtÞ or matrix XðtÞ. In addition, � does not need to
be homogeneous for each individual and one may verify
that all results in this article hold for positive and heteroge-
neous f�igi2f1;...;Ng. Heterogeneous self-appraisal constants

are adopted in the simulation of Fig. 9.

By the following numerical simulations, we claim that the
equilibrium appraisal structure and the convergence rate
may vary for different �. Consider a coevolution system
with 10 individuals. Given a constant initial state, we show
the dynamical trajectories for three different �. For � ¼ 0, the
dynamical system converges to an Oð10�5Þ-neighborhood
of the equilibrium in 7 iterations, and the topology evolu-
tions of the positive appraisal digraphs and their condensa-
tion digraphs are shown in Fig. 10. For � ¼ 0:5, the system
converges in 28 iterations to an Oð10�5Þ-neighborhood of
the equilibrium as shown in Fig. 11. For � ¼ 0:9, the topol-
ogy evolutions of the digraphs are referred to Fig. 12. It
takes 41 iterations in this case to reach an Oð10�5Þ-neighbor-
hood of the equilibrium. The simulations illustrate that a
larger � essentially corresponds to a slower convergence
rate. It is easy to understand as � represents the self-influ-
ence parameter of individuals, which measures the stub-
bornness of each individual on its previous opinion. From
Figs. 10, 11, and 12, we also observe different trajectories of
the appraisal structure evolutions for different �.

Moreover, the number of factions at equilibrium may
also vary for different �. As illustrated in Fig. 13, given a
coevolution system with 10 individuals and a constant ini-
tial state, the equilibrium appraisal structure has one fac-
tions-followers structure with a single faction for � ¼ 0:1
and has two disconnected factions-followers structures each
of which has a single faction for � ¼ 0:9.

6 STRUCTURAL BALANCE PROPERTIES OF THE

COEVOLUTIONARY DYNAMICS

In this section we study the structural balance properties of
the coevolution model of interpersonal appraisal and influ-

Fig. 9. Evolution of appraisal matrices on Karate club network: The equi-
librium positive digraph includes two factions-followers structures. Node
1 corresponds to the instructor and Node 34 corresponds to the adminis-
trator. The appraisal submatrices associated with two structures con-
verge to two rank-1 matrices.

Fig. 10. Topology evolution of an appraisal structure with � ¼ 0: In this and
following three figures, the digraphs above (resp. below) correspond to
the evolution of GþðXðtÞÞ (resp. CðGþðXðtÞÞÞ). The equilibrium positive
digraph includes one faction (consisting of four nodes) and six followers.

Fig. 11. Topology evolution of an appraisal structure with � ¼ 0:5. The
equilibrium positive digraph has two disconnected components. The
component with nine nodes has one faction and six followers. Another
disconnected component includes an outsider.

Fig. 12. Topology evolution of an appraisal structure with � ¼ 0:9. The
equilibrium positive digraph has one outsider and one factions-followers
component. The factions-followers component includes nine nodes:
One faction (consisting of five nodes) and four followers.
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ence (4) and (5). In the previous two sections we have illus-
trated the topology evolution for the positive appraisal
digraphs and the convergence properties for the appraisal
and influence coevolution. Nowwe are able to combine these
results with macro-structural models: it is interesting to
study what macro-structural models the equilibrium fac-
tions-followers-outsiders structure is related to and which
class ofmacro-structures are invariant under the coevolution.
In what follows the word macro-structure is a synonym for
an appraisal structure, i.e., a set of all appraisal matrices with
a certain sign pattern. A macro-structure is invariant under
the coevolution if, given an initial appraisal matrix belonging
to themacro-structure, all trajectorymatrices via the coevolu-
tion system (4) and (5) remain in themacro-structure.

Our coevolution model approach does not pre-specify a
particular micro-model. Instead, it pre-specifies the condi-
tions of interpersonal influence relations and addresses the
implications of the model. Recall that our coevolution
model satisfies the two statements in the classic balance
model: “my friend’s enemy is my enemy” and “my friend’s
friend is my friend”, whereas the other two statements: “my
enemy’s enemy is my friend” and “my enemy’s friend is
my enemy” are not intuitively necessary for the coevolution
of appraisal and influence. By examining all 16 types of tri-
ads in an appraisal structure, the deduced micro-model of
permitted triad types by the first two statements is
f300; 120D; 102; 021U; 012; 003g (see Fig. 14 and [8] and [27,
Section 8.3] for the detailed description of these triad types).
Moreover, as we allow the interpersonal appraisal relation
to be 0, the triad type 021D is also permitted in our model if
the two bottom nodes of the positive digraph of 021D in
Fig. 14 have 0 appraisal of each other. Overall, the micro-
model associated with the coevolution model (4) and (5) is
Pco-evolv ¼ f300; 120D; 102; 021D; 021U; 012; 003g.

Furthermore, we examine the equilibrium structures
described in Theorem 5.1. It is clear that the factions-fol-
lowers-outsiders structure is the macro-structure defined by
the micro-model Pco-evolv, where only triad types in Pco-evolv
appear in the structure and all remaining triad types are for-
bidden. In particular, triad type 300 is a one-faction struc-
ture, 120D is a one-faction-one-follower structure, 102 is a
one-faction-one-outsider structure or a two-faction structure
(depending on the top individual’s self-appraisal), 021D is a
two-faction-one-follower structure (where the interpersonal
appraisals between the factions are 0), 021U is a one-faction-

two-follower structure, 012 is a one-faction-one-follower-
one-outsider/faction structure, and finally 003 includes
three factions or outsiders. Consequently, any appraisal net-
work including only triad types in Pco-evolv has a factions-fol-
lowers-outsiders structure.

Proposition 6.1. The factions-followers-outsiders structure, i.e.,
the equilibrium macro-structure of the coevolution system (4)
and (5), is consistent with the micro-model Pco-evolv.

In other words, the coevolution system bridges the static
micro-model and the dynamical convergence of the macro-
structure networks, and the factions-followers-outsiders
networks are then structurally balanced with respect to the
micro-model Pco-evolv.

6.1 Invariant Macro-Structures

We have studied the macro-structure associated with the
coevolution equilibrium appraisal networks. In the follow-
ing, we analyze the macro-structures which are invariant in
the coevolution system (4) and (5).

The implication of the classical model of structural balance is
a class of appraisal macro-structures where either all indi-
viduals have strictly positive appraisal relations, or there
are at most two subgroups such that individuals have
strictly positive appraisal relations in the same subgroup
but strictly negative appraisal relations between two sub-
groups. A classical balance structure has two possible block

matrix patterns: (1) ½þ� or (2) D1 �
� D2

� �
, where fDigi2f1;...;2g

are M-cliques. Moreover, Di � ½þ� if there are Ni � 2 indi-
viduals in this M-clique, and Di can be either “�” or “+” for
Ni ¼ 1. It is noted that “M-clique” and “faction” are two
similar but different concepts in this paper: the differences
lie on (1) an outsider is a stand-alone M-clique but not a fac-
tion, (2) there may exist A-relations between two M-cliques
but never between two factions. The classical balance struc-
ture is a special case of a factions-followers-outsiders struc-
ture, which includes at most two factions, may include
outsiders, but does not include any followers. The classical
balance macro-structure has been intensively studied, see
e.g., in [1], [2]. We also consider other two macro-structural
models: clustering structure and ranked clusters of M-clique
structure in the following analysis.

Lemma 6.2 (Invariance of classical balanced structure).
The classical balanced structure is invariant under the coevolu-
tion system (4) and (5).

Fig. 13. Topology evolutions of an appraisal structure with � ¼ 0:1 and
� ¼ 0:9, respectively. The equilibrium positive digraph has one faction for
� ¼ 0:1 but two factions for � ¼ 0:9:

Fig. 14. Permitted triads: The positive appraisal digraph representations
of the permitted triad types by the coevolution model.
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Define a clustering structure as an appraisal structure with
a representative matrix

X �
D1 � . . . �
� D2 . . . �
..
. ..

. . .
. ..

.

� � . . . Dn

2
6664

3
7775:

Here Di, i 2 f1; . . . ; ng are M-cliques (clusters), and all “�”
block submatrices represent complete N-relations among
these M-cliques. That is to say, the clustering structure
extends the classical balanced structure to a structure with
n > 2 M-cliques. This structure is also a factions-followers-
outsiders structure, with an arbitrary number of factions.

Lemma 6.3 (Invariance of clustering structure). The clus-
tering structure is invariant under the coevolution system (4)
and (5).

A ranked clusters of M-clique structure is defined by a block

matrix form: X �
D1 � . . . �
S21 D2 . . . �
..
. ..

. . .
. ..

.

Sn1 Sn2 . . . Dn

2
6664

3
7775; with n M-cliques

for n � 2. Here, without loss of generality, if i � j, the rank
of the ith M-clique is higher than or equal to the rank of the
jth M-clique. Sij is strictly positive if and only if the ith M-
clique ranks strictly higher than the jth M-clique; otherwise,
if the ith and the jth M-cliques have the same rank, then Sij

is non-positive. One may check the ranked clusters of M-
clique structure is not invariant under the coevolution sys-
tem (4) and (5) in general. However, we will show that a
subset of this structure is invariant under the coevolution.

Lemma 6.4 (Invariance of ranked clusters of M-Clique
structure). A ranked clusters of M-clique structure is not
invariant under the coevolution system (4) and (5) in general.
But, if an appraisal matrix X has both a ranked clusters of M-
clique structure and a factions-followers structure with only
one faction, then the structure of X is invariant under the
coevolution.

One may check thatX in Lemma 6.4 satisfies

X �
þ . . . þ � . . . �
þ . . . þ � . . . �
..
. . .

. ..
. ..

. . .
. ..

.

þ . . . þ � . . . �

2
664

3
775; (8)

that is, all entries in the same columns of X have the same
sign. It is noted that the structure ofX has totally two ranks:

only one M-clique is with the higher rank and it is a faction,
and the remaining n� 1 M-cliques have the same lower
rank and they are followers, as shown in Fig. 15.

Among all macro-structures introduced in [27, Section
8.3], the three classes of macro-structures discussed in Lem-
mas 6.2, 6.3, and 6.4 are all potentially stable balanced struc-
tures under our coevolution. It is noted that the equilibrium
appraisal structure also includes a ranked clusters of M-cli-
ques structure specified as in Fig. 16. Different from the
structure in Fig. 15, the structure in Fig. 16 has multiple fac-
tions and each follower may hold positive appraisals of
more than one faction. One simple example for the equilib-
rium appraisal matrix in this case is that X ¼

1 0 0
0 1 0
1=2 1=2 0

2
4

3
5 for any � � 0. However, this structure is

not invariant under the coevolution system in general.
Moreover, such an equilibrium is less-frequently observed
in simulations with random initial conditions. In the exam-
ple above, if the appraisal of node 1 held by the follower,
node 3, increases for a sufficiently small amount, then the
trajectory of the coevolution system leads to another equi-
librium where node 3 is only directly connected to node 1.

6.2 Convergence of Invariant Macro-Structures

Now we integrate the invariant structure results in Lem-
mas 6.2, 6.3, and 6.4 with the convergence results in Sec-
tion 5, which immediately implies the convergence
properties of the stable macro-structures as in Corollary 6.1.
In what follows we regard the classical balanced structure
with two M-cliques as a special case of a clustering structure
for the simplicity of presentation.

Corollary 6.1 (Convergence of generalized balanced
structures). For the coevolution system (4) and (5) with
� � 0, each trajectory XðtÞ converges exponentially fast to an
equilibriumX
 in the following three scenarios:

(i) (Convergence of a classical balanced structure
with one cluster) For a group of individuals with pos-
itive initial appraisals, GþðXðtÞÞ is a faction for all
t � 0 and so is GþðX
Þ. Moreover, a positive appraisal
consensus on each individual is achieved for the whole
group inX
.

(ii) (Convergence of a clustering structure) For a group
of individuals with a clustering appraisal structure ini-
tially, the factions and outsiders of GþðXð0ÞÞ remain
unchanged in GþðXðtÞÞ for all t � 0 and in GþðX
Þ.
An appraisal consensus of each individual of the group

Fig. 15. Positive digraph of the invariant ranked clusters of M-clique
structure: The nodes of the graph are M-cliques. The top M-clique is a
faction and all Mð1Þ are followers. The structure is a factions-followers
structure with a single faction.

Fig. 16. Positive digraph of another equilibrium ranked clusters of M-
clique structure: each sink M-clique is a faction; all source singleton
Mð1Þ, are followers that hold (complete) positive appraisals of one or
multiple factions. The structure is a factions-followers structure with
multiple factions.
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is achieved within each faction of GþðX
Þ: it is positive
if the individual belongs to the faction and non-positive
otherwise. An outsider occurs if and only if one cluster
includes one individual and its self-appraisal is non-
positive.

(iii) (Convergence of a ranked clusters of M-clique
structure with form (8)) For a group of individuals
with an initial appraisal structure (8), the factions-fol-
lowers structure with one faction remains unchanged
in GþðXðtÞÞ for all t � 0 and in GþðX
Þ. The signs of
all appraisals never change along the trajectory
XðtÞ; t � 0, and an appraisal consensus on each indi-
vidual is achieved for the whole group inX
.

Different from Theorem 5.2 (iii), the first statement (i) of
Corollary 6.1 assumes that all appraisals of the initial state
are strictly positive, which implies the aperiodicity and irre-
ducibility of all XðtÞ and WðtÞ along the trajectory. There-
fore, � could be equal to 0. Similarly, � could be 0 for the
second statement (ii). The third statement (iii) is a special
case of Theorem 5.2 (ii), and therefore, the aperiodicity is
satisfied implicitly and the statement holds for � ¼ 0.

7 CONCLUSION

This article studies appraisal structure evolution among a
group of individuals. Motivated by recent efforts on devel-
oping linkages between the major topics in sociological
social psychology, we believe that it is interesting and
meaningful to link social influence network theory with
structural balance theory. As appraisals are subject to
endogenous interpersonal influences, they may be influ-
enced by others’ appraisals. A network of such endogenous
interpersonal influences is often formed in social groups.
However, to the best of our knowledge, there are no dynam-
ical models of appraisal structure which are directly
evolved with the implications of such influence networks. It
is not theoretically clear how the fundamental appraisals
associated with persons’ social identities are modified by
the displayed influences of other group members, or how
endogenous interpersonal influences in a group may gener-
ate equilibrium appraisals that are quite different from the
initial array of appraisals.

We have presented novel results on the modeling and
analysis of the coevolution of appraisal and influence net-
works. We derived a concise explicit dynamical model for
the coevolution process and characterized completely its
convergence and equilibrium structure properties. Our
analysis also leads to several important implications to the
study of signed social networks and structural balance the-
ory. Specifically, our model shows that (i) for any initial
appraisal matrix, the set of strongly connected components
associated with the positive appraisal digraphs remains
constant after finite time; (ii) for any initial appraisal matrix,
the appraisal matrix trajectory converges asymptotically to
an equilibrium, which has a factions-followers-outsiders
structure: all individuals in a faction reach an appraisal con-
sensus on each individual, all followers’ appraisals are
determined by the appraisals held by the individuals from
the directly connected factions, and all outsiders have non-
positive appraisals of each individual; and (iii) the appraisal
structures according to the equilibria of the coevolution are

balanced in sense that the two statements “my friend’s
enemy is my enemy” and “my friend’s friend is my friend”
are always satisfied in the associated social networks. The
realizations of all possible equilibria of the coevolution fall
into four distinct social structural classes. Meanwhile, three
macro structural models are proved to be always stable sub-
ject to the proposed coevolution process. Overall, our model
predicts a tendency of social appraisal structures to a set of
structural equivalent bundles, i.e., a set of components
where individuals have aligned interpersonal appraisals.

This paper presents only an introduction to appraisal
evolution and structural balance models with implications
of social influence networks, and much work remains to be
done in order to understand the robustness of our formula-
tion and its results. We assume here that the influence
weights accorded by each individual are proportional to her
positive appraisals on individuals of the social group. How-
ever, a large literature exists in social psychology on condi-
tions that may affect individuals’ influence network and its
evolution (e.g., see our recent work [20]). We believe there
are opportunities for a discussion on useful alternative
mechanisms that adjust the relation between interpersonal
appraisals and influences. Future research will be directed
at validating our results with empirical data and identifying
the qualitative roles of appraisal and influence coevolution
mechanisms in the dynamics of signed social networks.
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