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Information Diffusion in Social Networks in Two
Phases

Swapnil Dhamal, Prabuchandran K.J., and Y. Narahari

Abstract—The problem of maximizing information diffu-
sion, given a certain budget expressed in terms of the number
of seed nodes, is an important topic in social networks
research. Existing literature focuses on single phase diffusion
where all seed nodes are selected at the beginning of diffusion
and all the selected nodes are activated simultaneously. This
paper undertakes a detailed investigation of the effect of select-
ing and activating seed nodes in multiple phases. Specifically,
we study diffusion in two phases assuming the well-studied
independent cascade model. First, we formulate an objective
function for two-phase diffusion, investigate its properties,
and propose efficient algorithms for finding seed nodes in
the two phases. Next, we study two associated problems: (1)
budget splitting which seeks to optimally split the total budget
between the two phases and (2) scheduling which seeks to
determine an optimal delay after which to commence the
second phase. Our main conclusions include: (a) under strict
temporal constraints, use single phase diffusion, (b) under
moderate temporal constraints, use two-phase diffusion with
a short delay while allocating most of the budget to the first
phase, and (c) when there are no temporal constraints, use
two-phase diffusion with a long delay while allocating roughly
one-third of the budget to the first phase.

Index Terms—Social networks, viral marketing, informa-
tion diffusion, influence maximization, independent cascade
model.

I. INTRODUCTION

Social networks play a fundamental role in the spread
of information on a large scale. An information can be of
various types: opinions, behaviors, innovations, diseases,
rumors, etc. Depending on whether we aim to maximize
or restrict the spread of information, the objective function
can be defined accordingly. One of the central questions in
information diffusion is: given a certain budget k expressed
in terms of the number of seed nodes, which k nodes in the
social network should be selected to trigger the diffusion
so as to maximize a suitably defined objective function?

In this paper, we focus on the problem of influence
maximization, where the objective function is the extent of
information or influence spread. For example, if a company
wishes to do viral marketing of its product, its objective
would be to spread the information through the network
so that it reaches large number of potential customers. So
the company would try to select the seed nodes (nodes to
whom free samples, discounts, or other such incentives are
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to be provided) such that the number of influenced nodes
and hence the product sales, would be maximized.

A. Model for Information Diffusion
We represent social network as a weighted and directed

graph G = (N,E,P), where N is the set of n nodes,
E is the set of m directed edges, and P is the set of
weights associated with the edges. For studying diffusion
in such a network, several models have been proposed in
the literature [1]. The Independent Cascade (IC) model and
the Linear Threshold (LT) model are two of the most well-
studied models. In this paper, our focus will be on the IC
model; we later provide a note on the LT model.
• The Independent Cascade (IC) model: In this model, for

each directed edge (u, v) ∈ E, there is an associated weight
or influence probability puv that specifies the probability
with which source node u influences target node v. The
diffusion starts at time step 0 with simultaneous triggering
of a set of initially activated or influenced seed nodes,
following which, it proceeds in discrete time steps. In
each time step, nodes which got influenced in the previous
time step (call them recently activated nodes) attempt to
influence their neighbors, and succeed with the influence
probabilities associated with the edges. These neighbors,
if successfully influenced, now become recently activated
nodes for the next time step. In any given time step, only
recently activated nodes contribute to diffusing information.
After this time step, such nodes are no longer recently
activated (call them already activated nodes). Nodes, once
activated, remain activated for the rest of the diffusion. In
short, when node u gets activated at a certain time step,
it gets exactly one chance to activate each of its inactive
neighbors (that too in the immediately following time step),
with probability puv for each neighbor v. The diffusion
terminates when no further nodes can be activated.
• Notion of Live Graph: The notion of live graph is

crucial to the analysis of the IC model. A live graph X
is an instance of graph G, obtained by sampling the edges;
an edge (u, v) is present in the live graph with probability
puv and absent with probability 1 − puv , independent of
the presence of other edges in the live graph (so a live
graph is directed and unweighted). The probability p(X)
of occurrence of any live graph X , can be obtained as∏

(u,v)∈X(puv)
∏

(u,v)/∈X(1 − puv). It can be seen that
as long as a node u, when influenced, in turn influences
node v with probability puv that is independent of time,
sampling the edge (u, v) in the beginning of the diffusion
is equivalent to sampling it when u is activated [2].
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• Special Cases of the IC model: In this paper, when there
is a need for transforming an undirected unweighted net-
work (dataset) into a directed weighted network for study-
ing the diffusion, we consider two popular, well-accepted
special cases of the IC model, namely, the weighted cascade
(WC) model and the trivalency (TV) model. The WC model
does the transformation by making all edges bidirectional
and assigning a weight to every directed edge (u, v) equal
to the reciprocal of v’s degree in the undirected network [2].
The TV model makes all edges bidirectional and assigns a
weight to every directed edge by uniformly sampling from
the set of values {0.001, 0.01, 0.1}.

B. Relevant Properties of Set Functions

In the considered problem, we need to select a set of seed
nodes based on its value (the extent of influence spread)
which can be given by a set function. A set function f(·)
is a function that takes a subset of N as input and outputs
a real number, that is, f : 2N → R where 2N is the power
set of N . f(·) is said to be:
• Non-negative if f(S) ≥ 0, ∀S ⊆ N .
• Monotone increasing if f(S) ≤ f(T ), ∀S ⊂ T ⊆ N .
• Submodular if f(S ∪ {i}) − f(S) ≥ f(T ∪ {i}) −

f(T ), ∀i ∈ N \ T, ∀S ⊂ T ⊂ N , that is, the marginal
value added by a node to a superset of a set is not more
than the marginal value added by that node to that set
(diminishing returns property). It is said to be supermodular
if the inequality is reversed.
• Subadditive if f(S ∪ T ) ≤ f(S) + f(T ), ∀S, T ⊆ N ,

that is, the value of a union of any two sets is at most the
sum of their individual values. It is said to be superadditive
if the inequality is reversed. It can be shown that a non-
negative submodular function is subadditive, while a non-
negative superadditive function is supermodular.

These properties have implications on which algorithms
are likely to find a set with a good function value. For in-
stance, the greedy hill-climbing algorithm (selecting nodes
one at a time, each time choosing a node that provides the
largest marginal increase in the function value, until the
budget is exhausted) provides an approximation guarantee
of (1 − 1

e ) for maximizing a non-negative, monotone
increasing, submodular function [3]. Also there exists an
algorithm that provides an approximation guarantee of 1

2
for maximizing a subadditive function [4].

C. Relevant work

The problem of influence maximization in social net-
works has been extensively studied in the literature [1], [5].
Chen, Wang, and Yang [6] show that obtaining the exact
value of the objective function for a seed set (the expected
number of influenced nodes at the end of the diffusion
that was triggered at the nodes of that set), under the IC
model, is #P-hard. They show that the value can be obtained
with high accuracy using a sufficiently large number of
Monte-Carlo simulations. Kempe, Kleinberg, and Tardos
[2] show that maximizing the objective function under the
IC model is NP-hard, and present a (1− 1

e−ε)-approximate

algorithm, where ε is small for sufficiently large number
of Monte-Carlo simulations. Chen, Wang, and Yang [7]
propose fast heuristics for influence maximization in the IC
model. There have been attempts to relax the assumption
that influence probabilities are known [8].

Narayanam and Narahari [9] provide an algorithm that
gives satisfactory performance irrespective of whether or
not the objective function is submodular. Franks et al. [10]
use influencer agents effectively to manipulate the emer-
gence of conventions and increase convention adoption and
quality. Shakarian et al. [11] introduce a logical framework
designed to describe cascades in complex networks.

Another well-studied problem is the problem of influence
limitation in social networks [12], [13], where the objective
is to minimize the spread of a negative campaign by
triggering a positive campaign.

Time related constraints in the context of diffusion have
also been studied in the literature. Chen, Lu, and Zhang
[14] consider the problem where the goal is to maximize
influence spread within a given deadline. Nguyen et al.
[15] aim to find the smallest set of influential nodes whose
decontamination with good information would help contain
the viral spread of misinformation, that was initiated from
a given set, to a desired ratio in a given number of time
steps.

The above papers address only single phase diffusion.
The idea of using multiple phases for maximizing an
objective function has been presented in [16]; the study
is a preliminary one. To the best of our knowledge, ours
is the first detailed effort to study multi-phase information
diffusion in social networks. A previous, very preliminary,
concise version of this paper appears in [17]. In the next
section, we bring out the motivation for this work, present a
motivating example, and describe the agenda of this work.

II. MOTIVATION AND AGENDA

Most of the existing literature on information diffusion
works with the assumption that the diffusion is triggered
at all the k seed nodes in one go, that is, the budget is
exhausted in one single instalment. We consider triggering
the diffusion in multiple phases by appropriately splitting
the budget k across the phases.

In the IC model, the diffusion is a random process.
Since the general problem addressed in the literature aims
to maximize influence spread in expectation, it is possible
that the spread in certain instances is much less than the
expected one. This is a vital practical issue because a
company or organization investing in selecting seed nodes
cannot afford awkward instances where the spread is dis-
appointingly low. Multi-phase diffusion seems an attractive
and natural approach wherein, the company can modulate
its decisions at intermediate times during the diffusion
process, in order to avoid such instances. This happens
because the company would be more certain about the
diffusion and hence would hopefully select better seed
nodes in the second and subsequent phases. However, there
is a delay in activating the second and subsequent seed sets
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and the overall diffusion process may be delayed, leading
to compromise of time. This may be undesirable when the
value of the product or information decreases with time,
or when there is a competing diffusion and people get
influenced by the product or information which reaches
them first.

There is thus a natural trade-off between (a) using better
knowledge of influence spread to increase the number of
influenced nodes at the end of the diffusion and (b) the
accompanying delay in the activation of seed sets from the
second phase onwards.

For multi-phase diffusion to be implemented effectively,
it is necessary that the company is able to observe the
status of nodes in the social network (inactive, recently
activated, or already activated), that is, the company needs
to link its customers to the corresponding nodes in the
social network. To make such an observation, it would
be useful to get the online social networking identity (say
Facebook ID) of a customer as soon as the customer buys
the product. This could be done using a product registration
website (say for activating warranty) where a customer, on
buying the product, needs to login using a popular social
networking website (say Facebook), or needs to provide an
email address that can be linked to a Facebook ID. Thus the
time step when the node buys the product, can be obtained,
and hence the node can be classified as already activated
or recently activated.

In this paper, to obtain a firm grounding on multi-phase
diffusion, we focus our attention on two-phase diffusion.
We believe that much of the intuition from this work carries
over to multi-phase diffusion.

Note that the start of the second phase does not kill
the diffusion that commenced in the first phase. When
the second phase commences, the recently activated nodes
(due to the first phase) effectively act as seed nodes for
the second phase (in addition to the seed nodes that are
separately selected for second phase).

A. A Motivating Example
We now illustrate two-phase diffusion with a simple

stylized example. Consider the graph in Figure 1(a) where
the influence probabilities are as shown. Activation of
node A or B or C results in activation of 100 additional
nodes each, in the following time step, with probability 1.
Consider a total budget of k = 2. Assume that the live
graph in Figure 1(b) is destined to occur (we do not have
this information at time step 0). Consider a typical influence
maximization algorithm.

Let us study single-phase diffusion on this graph. Let A
and B be the two seed nodes selected by the algorithm in
time step 0. In time step 1 as per IC model, 200 additional
nodes get influenced. Since the realized live graph is as
shown in Figure 1(b), the diffusion stops as there is no
outgoing edge from the recently activated nodes to any
inactive node. So the diffusion stops at time step 1, with
202 influenced nodes.

For two-phase diffusion, let the total budget of 2 be split
as 1 each for the two phases, and let the second phase be

100 nodes

A

C B

1

1 1

0.50.5

0.5

100 nodes 100 nodes

100 nodes

A

C B

100 nodes 100 nodes

(a) input graph (b) live graph
Fig. 1. Multi-phase diffusion: a motivating example

scheduled to start in time step 3. Now let us say that at time
step 0, the algorithm selects A as the only seed node for
first phase. In time step 1, it influences its set of 100 nodes
and also node B. In time step 2, B’s set of 100 nodes get
influenced. But more importantly, we know that C is not
influenced, thus deducing the absence of edge BC in the
live graph. So we are more certain about which live graph
is likely to occur than we were in the beginning (having
eliminated live graphs containing edge BC). Based on this
observation, the algorithm would select C as seed node
for second phase (in time step 3), which in turn, would
influence its set of 100 nodes in the following time step.
Thus the process stops at time step 4 with 303 influenced
nodes. Note that during its first phase, two-phase diffusion
is expected to be slower than the single phase one, because
of using only partial budget.

If the algorithm had selected B as seed node for first
phase, the diffusion observed after 2 time steps would have
guided the algorithm to select C as seed node for second
phase, since it would influence A with probability 0.5 (also,
given that B is already influenced, selection of A would
not influence C), thus leading to all 303 nodes getting
influenced. In another case, if C gets selected as seed node
for first phase, it would influence all the nodes without
having to utilize the entire budget of 2. So multi-phase
diffusion can help determine redundancy in seed selection
owing to an intermediate check regarding the extent of
influence spread. Thus it can also help achieve a desired
spread with a reduced budget.

In short, the idea behind two-phase diffusion is that,
for influence maximization algorithms (especially those
predicting expected spread over live graphs), reducing the
space of possible live graphs results in a better estimate of
expected spread, leading to selection of a better seed set. In
fact, two-phase diffusion would facilitate an improvement
while using a general influence maximization algorithm,
owing to knowledge of already and recently activated
nodes, and hence a refined search space for the second
phase seed nodes.

B. The Agenda

This paper makes the following specific contributions.
• Focusing on two-phase diffusion in social networks

under IC model, we formulate an appropriate objective
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function and investigate its properties. We then propose
an alternative objective function for ease and efficiency of
practical implementation. (Section III)
• We investigate different candidate algorithms for two-

phase influence maximization including extensions of ex-
isting ones that are popular for single phase diffusion. In
particular, we propose the use of cross entropy method and
a Shapley value based method as promising algorithms for
the considered problem. Seed selection for the two phases
could be done in two natural ways: (a) myopic or (b)
farsighted. (Section IV)
• With extensive simulations on real-world datasets, we

study the performance of the proposed algorithms to get an
idea how two-phase diffusion would perform, even when
used most naı̈vely. (Section V)
• To achieve the best performance out of two-phase

diffusion, we focus on two constituent problems, namely,
(a) budget splitting: how to split the total available budget
between the two phases and (b) scheduling: when to com-
mence the second phase. Through a deep investigation of
the nature of observations, we propose efficient algorithms
for the combined optimization problem of budget splitting,
scheduling, and seed sets selection. We then present key
insights from a detailed simulation study. (Section VI)
• We conclude the paper with some notes and possible

future directions to this work. (Section VII)

III. TWO PHASE DIFFUSION: A MODEL AND ANALYSIS

Let k ≤ n be the total budget, that is, the sum of the
number of seed nodes that can be selected in the two phases
put together. At time step 0, suppose k1 seed nodes are
selected for the first phase and at time step, say d, k2
(where k2 = k−k1) seed nodes are selected for the second
phase. Our objective is to maximize the expected number
of influenced nodes at the end of two-phase diffusion. In
what follows, we assume k1, k2, d to be given. We study the
problem of optimizing over these parameters in Section VI.

A. Objective Function

Let X be a live graph obtained by sampling edges for
a given graph G. Let σX(S) be the number of nodes
reachable from seed set S in X , that is, the number of
nodes influenced at the end of the diffusion process that
starts at S, if the resulting live graph is X . Let p(X)
be the probability of occurrence of X . So the number of
influenced nodes at the end of the process, in expectation, is
σ(S) =

∑
X p(X)σX(S). It has been shown that σX(S),

and hence σ(S), are non-negative, monotone increasing,
and submodular [2].

We now formulate an appropriate objective function that
measures the expected number of influenced nodes at the
end of two-phase diffusion. Let S1 be the seed set for the
first phase and X be the live graph that is destined to occur
(X is not known at the beginning of diffusion, but we know
p(X) from edge probabilities in G). Let Y be the partial
observation at time step d, owing to the observed diffusion.
As we will be able to classify activated nodes as already

activated and recently activated at time step d, we assume
that Y conveys this information. That is, from Y , the set of
already activated nodes AY and the set of recently activated
nodes RY at time step d, can be determined. Given Y , we
can now update the probability of occurrence of a live graph
X by p(X|Y ).

Now at time step d, we should select a seed set that
maximizes the final influence spread, considering that nodes
in RY will also be effectively acting like seed nodes for
second phase. Let SO(Y,k2)

2 be an optimal set of k2 nodes
to be selected as seed set, given the occurrence of partial
observation Y (which implicitly gives AY ,RY ). So for all
S′2 ⊆ N \ S1 such that |S′2| ≤ k2 (it is optimal to have
|S′2| = k2 owing to monotone increasing property of σ(·)),
we have ∑

X

p(X|Y )σX\AY

(RY ∪ SO(Y,k2)
2 )

≥
∑
X

p(X|Y )σX\AY

(RY ∪ S′2)
(1)

where X \ AY is the graph derived from X by removing
nodes belonging to AY . Note that we can write SO(Y,k2)

2

as SO(X,S1,d,k2)
2 , since Y can be uniquely obtained for a

given d and particular X and S1.
So assuming that, given a Y , we will select an optimal

seed set for the second phase, our objective is to select an
optimal S1 (seed set for first phase). Now, as Y is unknown
at the beginning of the first phase, the objective function,
say F(S1, d, k2), is an expected value with respect to all
such Y ’s. Until Section VI, we assume k2 and d to be
given, and so we write F(S1, d, k2) as f(S1). So, f(S1) is∑

Y

p(Y )
{
|AY |+

∑
X

p(X|Y )σX\AY

(RY ∪ SO(Y,k2)
2 )

}
(2)

=
∑
Y

p(Y )
{
|AY |+

∑
X

p(X|Y )σX\AY

(RY ∪ SO(X,S1,d,k2)
2 )

}
=
∑
Y

p(Y )
∑
X

p(X|Y )
{
|AY |+ σX\AY

(RY ∪ SO(X,S1,d,k2)
2 )

}
(
∵ |AY | = |AY |

∑
X

p(X|Y ) =
∑
X

p(X|Y )|AY |
)

=
∑
Y

p(Y )
∑
X

p(X|Y )σX(S1 ∪ SO(X,S1,d,k2)
2 ) (3)

=
∑
X

∑
Y

p(Y )p(X|Y )σX(S1 ∪ SO(X,S1,d,k2)
2 )

∴ f(S1) =
∑
X

p(X)σX(S1 ∪ SO(X,S1,d,k2)
2 ) (4)

Note that at time step d, the choice of SO(X,S1,d,k2)
2

depends not only on X , but on partial observation Y , and
hence on all live graphs that could result from Y (just as
in single phase, choice of the best seed set depends on all
live graphs that could result from the given graph G). It is
easy to prove on similar lines as [2] that, the problem of
maximizing f(·) is NP-hard.

On both sides of Inequality (1), adding |AY | and tak-
ing convex combination over all Y ’s, LHS transforms to
Expression (2) which we have shown to be equivalent to
Expression (4). Transforming RHS in Inequality (1) on
similar lines, we have
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∑
X

p(X)σX(S1 ∪ SO(X,S1,d,k2)
2 ) ≥

∑
X

p(X)σX(S1 ∪ S′2)

We call this inequality, the optimality of SO(X,S1,d,k2)
2 .

We now show how to compute f(·) using an example.

0.5

0.90.8

A

B

C D

Fig. 2. Example

Example 1. (Figure 2) Consider
S1 = {A}, k2 = 1, and d = 1.
The table below lists the two pos-
sibilities of Y (AY ,RY ) at d = 1.
The set SO(Y,k2)

2 is easy to compute
for both the cases. So f({A}) =
F({A}, 1, 1) =

∑
X p(X)σX({A} ∪

S
O(X,{A},1,1)
2 ) = 3.8.

S1 = {A}, k2 = 1, d = 1

X p(X)
Y

S
O(Y,k2)
2

f(S1)AY RY

{AB,BC,BD} 0.36

{A} {B} {C}
4

{AB,BC} 0.04 3
{AB,BD} 0.09 4
{AB} 0.01 3

{BC,BD} 0.36

{A} {} {B}
4

{BC} 0.04 3
{BD} 0.09 3
{} 0.01 2

B. Properties of the Objective Function

Property 1. f(·) is non-negative and monotone increasing.

Proof: f(·) is non-negative since σX(·) is non-
negative. Consider S1 ⊂ T1. Then,

f(T1) =
∑
X

p(X)σX(T1 ∪ TO(X,T1,d,k2)
2 )

≥
∑
X

p(X)σX(T1 ∪ SO(X,S1,d,k2)
2 )

≥
∑
X

p(X)σX(S1 ∪ SO(X,S1,d,k2)
2 ) = f(S1)

The first inequality is from optimality of TO(X,T1,d,k2)
2 and

the second one from monotonicity of σX(·).
As f(·) is monotone increasing and |S1| ≤ k1, given a
fixed k1, it is optimal to select S1 such that |S1| = k1.

Property 2. f(·) is neither submodular nor supermodular.

Proof: We prove this using a simple counterexample
network in Figure 2. Consider d = 3 and k2 = 1.

Considering S1 = {}, T1 = {D}, i = C, we get f(S1 ∪
{i}) = 2.95, f(S1) = 2.7, f(T1∪{i}) = 3.5, f(T1) = 2.9.
So we have f(S1 ∪ {i}) − f(S1) < f(T1 ∪ {i}) − f(T1)
for some T1, S1 ⊂ T1, i /∈ T1, which proves that f(·) is
not submodular.

Considering S1 = {}, T1 = {B}, i = A, we get f(S1 ∪
{i}) = 3.84, f(S1) = 2.7, f(T1 ∪ {i}) = 3.98, f(T1) =
3.7. So we have f(S1∪{i})−f(S1) > f(T1∪{i})−f(T1)
for some T1, S1 ⊂ T1, i /∈ T1, which proves that f(·) is
not supermodular.

Remark 1. Simulations on test graphs showed the satis-
fiability of the diminishing returns property in most cases,

that is, for most S1, T1, i such that S1 ⊂ T1 ⊂ N and
i ∈ N \ T1, f(S1 ∪ {i})− f(S1) ≥ f(T1 ∪ {i})− f(T1).

Property 3. f(·) is subadditive.

Proof: Let V1 = S1 ∪ T1 and V
O(X,V1,d,k2)
2 be an

optimal set of k2 nodes given the observation corresponding
to X, d starting with seed set V1. So,

f(S1) + f(T1)

=
∑
X

p(X){σX(S1 ∪ SO(X,S1,d,k2)
2 ) + σX(T1 ∪ TO(X,T1,d,k2)

2 )}

≥
∑
X

p(X){σX(S1 ∪ V O(X,V1,d,k2)
2 ) + σX(T1 ∪ V O(X,V1,d,k2)

2 )}

≥
∑
X

p(X)σX(S1 ∪ T1 ∪ V O(X,V1,d,k2)
2 )

=
∑
X

p(X)σX(V1 ∪ V O(X,V1,d,k2)
2 ) = f(V1) = f(S1 ∪ T1)

The first inequality is from optimality of S
O(X,S1,d,k2)
2

and T
O(X,T1,d,k2)
2 , and the second one from subadditivity

of σX(·) (since submodularity and non-negativity implies
subadditivity).

Owing to the sequential nature of the considered prob-
lem, dynamic programming seems to be a natural approach.
However, there are two major issues with its usage. Owing
to NP-hardness of the single phase influence maximization
problem, it is impractical to compute S

O(X,S1,d,k2)
2 in

Equation (4). So the first issue is that finding an op-
timal solution to a subproblem itself is computationally
infeasible. Second, the number of possible subproblems is
exponential in the number of nodes (different S1’s would
almost certainly result in different Y ’s, for any given X and
d). So even if one solves the subproblem approximately,
the probability of reusing the stored solutions is negligible.
Also as stated earlier, there exists an approximation algo-
rithm for maximizing a subadditive function [4]. However,
owing to its relatively high running time, we leave it out of
our study. It would be interesting though to develop more
efficient algorithms that could exploit the subadditivity of
f(·).

As mentioned earlier, it is impractical to compute
S
O(X,S1,d,k2)
2 in Equation (4). We surmount this difficulty

by maximizing an alternative function instead of f(·). To
emphasize this point, note that this impractical computation
is for finding the objective function value itself, which
makes finding an optimal S1, a computationally infeasible
task. So the alternative function must be several orders of
magnitude faster to compute than f(·). We now address
this problem.

C. An Alternative Objective Function

1) Using Greedy Hill-climbing Algorithm: Given the
occurrence of the partial observation Y , let SG(Y,k2)

2 =

S
G(X,S1,d,k2)
2 be a set of size k2 obtained using the greedy

hill-climbing algorithm. Let

g(S1)
MC
=
∑
X

p(X)σX(S1 ∪ SG(X,S1,d,k2)
2 )
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(MC means obtained using Monte-Carlo simulations).

Theorem 1. For a non-negative, monotone increasing,
submodular function F , let SG be a set of size k obtained
using greedy hill-climbing. Let SO be a set that maximizes
the value of F over all sets of size k. Then for any ε > 0,
there is a γ > 0 such that by using (1 + γ)-approximate
values for F , we obtain a (1− 1

e − ε)-approximation [2].

So the greedy hill-climbing algorithm would provide an
approximation guarantee that is arbitrarily close to (1− 1

e )
for maximizing such a function, if we are able to compute
the function value with sufficient accuracy. The (1 + γ)-
approximate values for F with small γ can be obtained
using sufficiently large number of Monte-Carlo simulations
[2].

Lemma 1. g(·) gives a
(
1− 1

e − ε
)

approximation to f(·).

Proof: Let ΦT (S) = σ(T ∪S) and ΦXT (S) = σX(T ∪
S). It can be easily shown that ΦXT (S), and hence ΦT (S),
are non-negative, monotone increasing, and submodular. So
we have

g(S1)
MC
=
∑
X

p(X)ΦX
S1

(S
G(X,S1,d,k2)
2 )

≥
(
1−

1

e
− ε
)∑

X

p(X)ΦX
S1

(S
O(X,S1,d,k2)
2 )

=
(
1−

1

e
− ε
)
f(S1)

where the first inequality results from Theorem 1.
So one can aim to maximize g(·) instead of f(·).

However, greedy hill-climbing algorithm itself is expensive
in terms of running time (even after optimizations such as
in [7]), so we aim to maximize yet another function which
would act as a proxy for g(·).

2) Using Generalized Degree Discount Heuristic: Con-
sider the process of selecting seed nodes one at a time. At
a given time in the midst of the process, let X = set of in-
neighbors of node v already selected as seed nodes and Y =
set of out-neighbors of v not yet selected as seed nodes.
We develop Generalized Degree Discount (GDD) Heuristic
as an extension to the argument for Theorem 2 in [7]: if v
is not (directly) influenced by any of the already selected
seeds, which occurs with probability

∏
x∈X (1 − pxv), then

the additional expected number of nodes that it influences
directly (including itself) is

(
1 +

∑
y∈Y pvy

)
. So until the

budget is exhausted, GDD heuristic iteratively selects a
node v having the largest value of

wv =
( ∏

x∈X

(1− pxv)
)(

1 +
∑
y∈Y

pvy
)

(5)

Its time complexity is O(kn∆), where ∆ is the maxi-
mum degree in the graph.

Given the occurrence of the partial observation Y , let
S
H(Y,k2)
2 = S

H(X,S1,d,k2)
2 be a set of size k2 obtained using

the GDD heuristic. Let

h(S1)
MC
=
∑
X

p(X)σX(S1 ∪ SH(X,S1,d,k2)
2 ) (6)

We conducted simulations for checking how well h(·) acts
as a proxy for g(·), using both weighted cascade and
trivalency models. We observed the following.

Observation 1. For almost all S, T pairs:
• If g(T ) > g(S), then h(T ) > h(S) (in particular, this
is satisfied for almost all pairs of sets that give excellent
objective function values), which ensures that the selected
seed set remains unchanged in most cases when we have
h(·) as our objective function instead of g(·).
•
h(S)
h(T ) ≈

g(S)
g(T ) , which ensures that the seed set selected

by algorithms, which implicitly depend on the ratios of the
objective function values given by any two sets, remains un-
changed in most cases when we have h(·) as our objective
function instead of g(·); two of the algorithms we consider,
namely, FACE (Section IV-A5) and SPIC (Section IV-A6)
belong to this category of algorithms.

Remark 2. One could question, why not use a function
ĥ(S1)

MC
=

∑
X p(X)σX(S1 ∪ SĤ(X,S1,d,k2)

2 ) instead of
h(S1), where S

Ĥ(X,S1,d,k2)
2 is a set of size k2 obtained

using PMIA algorithm (it has been observed to perform
very close to greedy algorithm on practically all relevant
datasets, while running orders of magnitude faster [6]).
However, though PMIA is an efficient algorithm for single
phase influence maximization, it is highly undesirable to use
it for computation of objective function value alone (since
an algorithm designed to maximize ĥ(·) would require
computation of function values for a large number of sets).
On the other hand, GDD is orders of magnitude faster
than PMIA. Though we use moderately sized datasets for
making Observation 1, we could stretch the size of datasets
by aiming to observe how well h(·) acts as a proxy for ĥ(·).

Owing to the above justifications, we aim to maximize
h(·) instead of f(·), for two-phase influence maximization
in the rest of this paper.

IV. ALGORITHMS FOR TWO-PHASE INFLUENCE
MAXIMIZATION

In the previous section, we formulated the objective
function for two-phase influence maximization f(·) and
studied its properties. In addition to their theoretical rel-
evance, these properties have implications for as to which
algorithms are likely to perform well. We present them
while describing the algorithms.

Let T be the time taken for computing the objective
function value for a set.
• For σ(·), T = O(mM), where M is the number of
Monte-Carlo simulations.
• For h(·), T = O(k2n∆mM1M2), where M1 and M2

are the numbers of Monte-Carlo simulations for first and
second phases, respectively, and ∆ is the maximum out-
degree in the graph.

A. Candidate Algorithms for Seed Selection
Now we present the algorithms that we consider for seed

selection for single phase influence maximization, which
we later extend to the two-phase case.
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1) Greedy Algorithm: As described earlier, the greedy
(hill-climbing) algorithm for maximizing a function F ,
selects nodes one at a time, each time choosing a node that
provides the largest marginal increase in the value of F , un-
til the budget is exhausted. Its time complexity is O(knT ).
As noted earlier, though our two-phase objective function is
not submodular, we observed that the diminishing returns
property was satisfied in most cases; so even though the
condition in Theorem 1 is not satisfied, the greedy algo-
rithm is likely to perform well. Further, unlike in the case of
single phase influence maximization, we cannot use CELF
optimization for the two-phase case owing to its objective
function being non-submodular (though satisfiability of the
diminishing returns property in most cases may make it a
reasonable approach, we do not use it so as to preserve
performance accuracy of the greedy algorithm for two-
phase influence maximization).

2) Single/Weighted Discount Heuristics (SD/WD): The
single discount (SD) heuristic [7] for a graph G can be
described as follows: select the node having the largest
number of outgoing edges in G, then remove that node
and all of its incoming and outgoing edges to obtain a new
graph G′, again select the node having the largest number
of outgoing edges in the new graph G′, and continue until
the budget is exhausted. Weighted discount (WD) heuristic
is a variant of SD heuristic where, sum of outgoing edge
probabilities is considered instead of number of outgoing
edges. The time complexity of these heuristics is O(kn∆).
These heuristics run extremely fast and hence can be used
for efficient seed selection for very large networks.

3) Generalized Degree Discount (GDD) Heuristic: The
generalized degree discount (GDD) heuristic is as described
in Section III-C2.

4) PMIA: This heuristic, based on the arborescence
structure of influence spread, is shown to perform close
to greedy algorithm and runs orders of magnitude faster
[6].

5) Fully Adaptive Cross Entropy Method (FACE): It has
been shown that the cross entropy (CE) method provides
an efficient and general method for solving combinatorial
optimization problems [18]. In our context, the CE method
involves an iterative procedure where each iteration consists
of two steps, namely, (a) generating data samples (a vector
consisting of a sampled candidate seed set) according to
a specified distribution and (b) updating the distribution
based on the sampled data to produce better samples in
the next iteration. We use an adaptive version of the CE
method called the fully adaptive cross entropy (FACE)
algorithm [18]. Its time complexity is O(nT I), where
I is the number of iterations taken for the algorithm to
terminate. However, the running time can be drastically
reduced for single phase diffusion using preprocessing
similar to that for greedy algorithm as in [7]. An added
advantage of this algorithm is that it would not only find
an optimal seed set, but also implicitly determine how to
split the total budget between the two phases and also the
delay after which the second phase should be triggered (see
Section VI).

6) Shapley Value based - IC Model (SPIC): We consider
a Shapley value based method because it is shown to
perform well even when the objective function is non-
submodular [9]. It has been observed that, in order to
obtain the seed nodes after computing Shapley values
of the nodes, some post-processing is required. As the
post-processing step under the IC model, we propose the
following discounting scheme:
(a) Since node x would get directly activated because of
node y with probability pyx, we discount the value of x
by multiplying it with (1 − pyx) whenever any of its in-
neighbors y gets chosen in the seed set.
(b) As node z influences node y directly with probability
pzy , it gets a fractional share of y’s value (since z would
be influencing other nodes indirectly, through y). So when
y is chosen in the seed set, we subtract y’s share (pzyφy
where φy is the value of y during its selection) from the
current value of z. If the value becomes negative because
of oversubtraction, we assign zero value to it.
A node, not already in the seed set, with the highest value
after discounting, is then added to the seed set in a given
iteration. In our simulations, we observed that this discount-
ing scheme outperforms the SPIN algorithm (choosing seed
nodes one at a time while eliminating neighbors of already
chosen nodes [9]). Assuming O(n) permutations for ap-
proximate computation of Shapley value [9] (since exact
computation is #P-hard), the algorithm’s time complexity
is approximately O(nT ). It is to be noted, however, that the
SPIN algorithm [9] is not scalable to very large networks
even for single phase influence maximization [6], and so
isn’t SPIC.

7) Random Sampling and Maximizing (RMax): Here,
we sample O(n) number of sets that satisfy the budget
constraint, and then assign that set as the seed set which
gives the maximum function value among the sampled sets.
Note that this method is different from the random set
selection method [2], where only one sample is drawn. Its
time complexity is O(nT ). We consider this method as it is
very generic and agnostic to the properties of the objective
function, and can be used for optimizing functions with
arbitrary or no structure. This method is likely to perform
well when the number of samples is sufficiently large.

B. Extension of Algorithms to Two-phase Influence Maxi-
mization

Now we present how the aforementioned single phase
influence maximization algorithms can be extended for
two-phase influence maximization. Let F1(·) and F2(·)
be objective functions corresponding to seed selection in
first and second phases, respectively. Consider an influence
maximization algorithm A.

We explore two special cases of Algorithm 1 (the nota-
tion can be recalled from Sections III-A and III-C):

1. Farsighted : F1(S1) = h(S1) , F2(S2) = σ(RY ∪ S2)
2. Myopic : F1(S1) = σ(S1) , F2(S2) = σ(RY ∪ S2)
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Algorithm 1 Two-phase general algorithm (IC model)
Input: G = (N,E,P), k1, k2, d

First phase:
1: Find set of size k1 using A for maximizing F1(·) on G
2: Run the diffusion using IC model until time d

Second phase:
3: On observing Y , construct Gd from G by deleting AY

4: With RY forming partial seed set, find set of size k2 using
A for maximizing F2(·) on Gd

5: Continue running the diffusion using IC model until no further
nodes can be influenced

Output: Seed nodes for the first and second phases at time steps
0 and d, respectively

As explained earlier, the second phase objective function
assumes that RY forms a partial seed set, hence the above
form of F2(·). The farsighted objective function looks
ahead and accounts for the fact that there is going to
be a second phase and hence attempts to maximize h(·),
while the myopic function does not. Note that heuristics
such as PMIA, GDD, WD, SD do not consider the actual
objective function for seed selection, and so the myopic
and farsighted algorithms are the same for these heuristics.

We now formally prove the effectiveness of two-phase
diffusion for influence maximization.

Theorem 2. For any given values of k1 and k2, the
expected influence achieved using optimal two-phase al-
gorithm is at least as much as that achieved using optimal
single phase one.

Proof: Let S∗ be the optimal seed set of cardinality
k = k1 + k2 selected in single phase diffusion. Let sets
S∗1 and S∗2 be such that |S1| = k1, |S2| = k2, S∗ = S∗1 ∪
S∗2 , and S∗1 ∩ S∗2 = ∅. Now assuming any d, it is clear
from the optimality of SO(X,S∗

1 ,d,k2)
2 (see derivation of f(·)

preceding Equation (4)) that,∑
X

p(X)σX(S∗1 ∪ S
O(X,S∗

1 ,d,k2)
2 ) ≥

∑
X

p(X)σX(S∗1 ∪ S∗2 )

Note that the left hand side is f(S∗1 ) (Equation (4)) and
right hand side is σ(S∗). So we have,

max
S1

f(S1) ≥ f(S∗1 ) ≥ σ(S∗)

The leftmost and rightmost expressions are the expected
spreads using two-phase and single phase optimal algo-
rithms, respectively, hence the result. Note that this holds
for any d.

V. A STUDY TO DEMONSTRATE EFFICACY OF
TWO-PHASE DIFFUSION

In this section, we study how much improvement one
can expect by diffusing information in two phases over
a social network, even with a simple approach. To start
with, we assume that k1, k2, d are known and our objective
is to find the seed sets for the two phases (we study the
problem of optimizing over these parameters in Section VI).
As a simple and naı̈ve first approach, we consider an equal
budget split between the two phases, that is, k1 = k2 = k

2 .

Furthermore, we consider d = D, where D is the length
of the longest path in the network, so that by time step
D, the first phase would have completed its diffusion. In
practice, D could be the maximum delay that we are ready
to incur in absence of any temporal constraints. Intuitively,
it is clear that one should wait for as long as possible before
selecting the seed nodes for second phase, as it would give
a larger observation and a reduced search space. We now
prove this formally.

Lemma 2. For any given values of k1 and k2, the number
of nodes influenced using an optimal two-phase influence
maximization algorithm is a non-decreasing function of d.

Proof: Starting from a given first phase seed set S1, let
Yi’s be the partial observations at time step d. Also, let Yij’s
be the partial observations at time step d+ > d resulting
from a given Yi at time step d. By enumerating the partial
observations at time step d, the expected number of nodes
influenced at the end of diffusion, as given in Equation (3),
can be written as∑

i

p(Yi)
∑
X

p(X|Yi)σ
X(S1 ∪ SO(Yi,k2)

2 )

=
∑
i

∑
j

p(Yij)
∑
X

p(X|Yij)σ
X(S1 ∪ SO(Yi,k2)

2 )

≤
∑
i

∑
j

p(Yij)
∑
X

p(X|Yij)σ
X(S1 ∪ S

O(Yij ,k2)

2 )

which is the expected number of nodes influenced at the
end of diffusion, if the second phase starts at time step
d+ > d. The last inequality results from the optimality of
S
O(Yij ,k2)
2 for partial observation Yij .
The following result now follows directly.

Theorem 3. For any given values of k1 and k2, the number
of nodes influenced using an optimal two-phase influence
maximization algorithm is maximized when d = D.

Remark 3. Determining D exactly may be infeasible in
practice. For instance, checking whether the first phase has
completed its diffusion requires polling at every time step.
Also, finding the length of the longest path in the network is
known to be an NP-hard problem. However, for all practical
purposes, D can be approximated by a large enough value
based on the network in consideration.

A. Simulation Setup

For computing the objective function value and eval-
uating performance using single phase diffusion, we ran
104 Monte-Carlo iterations (standard in the literature). To
set a balance between running time and variance, we ran
103 Monte-Carlo iterations for each of the phases in two-
phase diffusion (equivalent to 106 live graphs); the observed
variance was negligible.

As mentioned earlier, for transforming an undirected
and unweighted network (dataset) into a directed and
weighted network for studying the diffusion process, we
consider two popular, well-accepted special cases of the
IC model, namely, the weighted cascade (WC) model and
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the trivalency (TV) model. We first conduct simulations
on the Les Miserables (LM) dataset [19] consisting of 77
nodes and 508 directed edges in order to study the perfor-
mances of computationally intensive farsighted algorithms
for two-phase influence maximization. For studying two-
phase diffusion on a larger dataset, we consider an academic
collaboration network obtained from co-authorships in the
“High Energy Physics - Theory” papers published on the
e-print arXiv from 1991 to 2003. It contains 15,233 nodes
and 62,774 directed edges, and is popularly denoted as
NetHEPT. This network exhibits many structural features
of large-scale social networks and is widely used for
experimental justifications, for example, in [2], [7], [6].
We also conducted experiments on a smaller collaboration
network Hep-Th having 7,610 nodes and 31,502 directed
edges [20]. As the results obtained were very similar, we
present the results for only the NetHEPT dataset. For two-
phase diffusion, as a naı̈ve first approach as mentioned
earlier, we consider equal budget split, k1 = k2 = k

2 , and
d = D.

Remark 4. In the two-phase influence maximization prob-
lem, seed selection is not computationally intensive, but
seed evaluation is. At the end of the first phase, only
one Y is possible in practice; however, for the purpose
of evaluation as part of simulations, we need to consider
M1 (Monte-Carlo iterations for first phase) number of Y ’s.
This severely restricts the size of network under study. We
believe the NetHEPT dataset suffices for our study owing
to its social networks-like features and its wide usage for
experimentation in the literature.

Remark 5. The simulations can also be run using a single
level of Monte-Carlo iterations instead of two levels as
described above. For instance, instead of deciding the
diffusion over each edge dynamically as in the above
approach, one can decide an entire live graph in advance
so that there is no requirement of separate Monte-Carlo
iterations for the two phases. However, the number of
Monte-Carlo iterations (live graphs) required to compute
the value with same variance as the above approach would
be Θ(M1M2).

We now list the parameter values for the considered
algorithms, specifically for the LM dataset. For the detailed
FACE algorithm, the reader is referred to [18]. We initialize
the method with distribution ( γn , . . . ,

γ
n ), that is, each node

has a probability of γ
n of getting selected in any sample

set in the first iteration (where γ is the budget which is
k, k1, k2 for single phase diffusion, first phase, and second
phase, respectively). In any iteration, the number of samples
(satisfying budget constraint) is bounded by Nmin = n
and Nmax = 20n, the number of elite samples (samples
that are deemed to have good enough function value) is
Nelite = dn4 e. We use a weighted update rule for the
distribution where, in any given iteration, the weight of
any elite sample is proportional to its function value. The
smoothing factor (telling how much weight is to be given to
the current iteration as against the previous iterations) that

TABLE I
GAIN OF TWO-PHASE DIFFUSION OVER SINGLE PHASE ONE ON LM

DATASET (WC MODEL) WITH k = 6, k1 = k2 = 3, d = D

Method

Expected spread Running Time for
seed selection (seconds)

Single Two- % Single Myopic Farsight
phase phase gain phase 2-phase 2-phase

FACE 46.2 50.7 9.7 15 29 1209
SPIC 45.9 50.4 9.8 16 31 1272

Greedy 46.2 49.7 7.6 10 11 390
PMIA 46.2 49.4 6.9 0.2 0.2 0.2
GDD 45.8 49.3 7.6 0.002 0.002 0.002
WD 45.7 48.7 6.6 0.002 0.002 0.002
SD 40.5 44.5 9.9 0.002 0.002 0.002

RMax 35.9 46.6 29.8 6 12 751

we consider is α = 0.6. In our simulations, we observed
that in most cases, the FACE algorithm converged in 5
iterations (extending till 7 at times) by giving a reliable
solution (reliable refers to the case wherein the method
deduces that it has successfully solved the problem). Also,
the total number of samples drawn in any iteration was n
in almost all cases (it did not exceed 2n in any iteration).
That is, the total number of samples over all iterations was
approximately 5n. So for direct comparison with SPIC and
RMax, we consider 5n permutations in order to compute
the approximate Shapley values of all the nodes [9], and
5n sampled sets for RMax.

B. Simulation Results

Throughout the rest of this paper, we present results for a
few representative settings. We have conducted simulations
over a large number of settings and the results presented
here are very general in nature.

Observation 2. FACE algorithm is very effective for sin-
gle phase influence maximization, performing at par with
greedy and PMIA or better for most values of k. SPIC
also performs almost at par with them. To justify the effec-
tiveness of two-phase diffusion process, it was necessary
to consider these high performing single phase algorithms.
Furthermore, GDD heuristic performs very closely to these
algorithms, while taking orders of magnitude less time.

Table I shows the improvement of the naı̈ve two-phase
diffusion over single phase one for the considered algo-
rithms on the LM dataset (WC model). The performances
of myopic and their farsighted counterparts were observed
to be almost same (the maximum difference in the ex-
pected spread was observed to be 0.2 on the scale of 77
nodes), so they share a common column for the expected
spread. These results, in conjunction with other results for
k1 6= k2 and d < D (which are not presented here),
show that the myopic algorithms perform at par with the
farsighted ones, while running orders of magnitude faster.
A possible reason for the excellent performance of myopic
algorithms is that, the first set of k1 nodes selected by
most influence maximization algorithms, are generally the
ones which would give a large enough observation and a
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Fig. 3. (a) Performance of algorithms for different values of k1 on LM dataset under WC model (k = 6, d = D), (b) Typical progression of diffusion
with time for different <k1, d> pairs on NetHEPT under WC model (k = 200), (c) 3D plot considering a range of <k1, d> pairs for δ = 1 on
NetHEPT under WC model (k = 200)

TABLE II
% IMPROVEMENT OF TWO-PHASE DIFFUSION OVER SINGLE PHASE

DEPENDING ON k

Model k → 50 100 200 300

WC
% Improvement (k1 = k2) 3.5 1.8 3.5 4.4

Opt. % improvement 4.5 2.0 4.0 4.5
Optimizing k1 15 35 70 105

TV
% improvement (k1 = k2) 5.0 5.4 5.4 4.8

Opt. % improvement 6.0 6.0 6.0 5.0
Optimizing k1 18 35 70 105

well refined search space for the second phase seed set.
Also, as mentioned earlier, there is no distinction between
myopic and farsighted algorithms for heuristics such as
PMIA, GDD, WD, SD, that do not consider the actual
objective function for seed selection, so their running times
also are the same. The results obtained using TV model
were qualitatively similar with a very slight dip in the %
gain with respect to the expected spread; the running times
were significantly lower for most algorithms owing to lower
edge probabilities in TV model as compared to WC model
(in the case of LM dataset) and so the diffusion/simulation
would terminate faster.

The results for NetHEPT are presented in Table II. For
the purpose of this section, we need to only look at the first
rows (k1 = k2) of both WC and TV models.

Observation 3. Though it is clear that two-phase diffusion
strictly performs better than single phase diffusion, the
amount of improvement depends on the value of k as well
as the diffusion model under consideration (see Table II).

Note that the amount of improvement is significant,
especially when the company is concerned with monetary
profits or a long-term customer base. We now attempt to
further improve what we can get by using the two-phase
diffusion.

VI. GETTING THE BEST OUT OF TWO-PHASE
DIFFUSION

Till now, we assumed k1 = k2 and d = D, and we
needed to determine the best seed sets (a) of size k1 for
first phase and (b) of size k2 for second phase based on the

observed diffusion after a delay of d time steps. However,
in practical situations, there is also a need to determine (c)
an appropriate split of the total budget k into k1 and k2
as well as (d) an appropriate delay d (we have proved that
d = D is optimal in absence of temporal constraints, but
this may not be the case in their presence). In this section,
we address these issues. Henceforth, we use only farsighted
algorithms, as they take the values of k2 and d into account
while computing the objective function value.

A. Budget Splitting

Here we address the problem of splitting k optimally
between the two phases, that is, determining an optimal k1
and hence k2. Note that when k2 is not fixed, the objective
function F(S1, d, k2) is no longer monotone with respect to
the first phase seed set S1. For instance, F({}, d, k−|{}|) =
F({}, d, k) = σ(SO) where SO is the optimal seed set
for single phase, while for any |S#| = k, F(S#, d, k −
|S#|) = F(S#, d, 0) = σ(S#). Unless S# is an optimal
seed set for single phase, we will have σ(SO) > σ(S#)
and hence F({}, d, k − |{}|) > F(S#, d, k − |S#|), even
though {} ⊂ S#.

Using FACE, we can implicitly optimize over k1 and S1

(such that |S1| = k1) simultaneously by allowing each data
sample to consist of a value of k1 sampled from {1, . . . , k},
as well as a sampled set S1 of size k1.

Remark 6. For faster convergence, in the first iteration,
instead of choosing each node i in the set with probability
k1
n , we choose it with probability qi = k1wi∑

i wi
, where wi is

as in Equation (5). In cases wherein the value of qi exceeds
1, we distribute the surplus to other nodes with values less
than 1, in proportion of their current values. We repeat
this until all nodes have values at most 1. This process of
distributing the surplus value is to ensure that the expected
size of the sampled set does not drop below k1. The rest of
the iterations follow as per the standard FACE algorithm.

In RMax method, for every sample, k1 is chosen u.a.r.
(uniformly at random) from {1, . . . , k} and hence a set S1

of cardinality k1 is sampled. The output set is one that
maximizes the objective function among the sampled sets.
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(b) δ = 0.95
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(c) δ = 1

Fig. 4. 3D plots considering a wide range of <k1, d> pairs for different values of δ on NetHEPT dataset under TV model (k = 200) (note the
reversed delay axis in (c) as compared to (a-b))

As there is no implicit way to optimize over k1 in rest of the
algorithms, we do the following: as we add nodes one by
one to construct the set S1, we keep track of the maximum
value attained so far, to determine a value maximizing set
S1 of size k1 ≤ k.

Figure 3(a) presents the results of different budget splits
for the considered algorithms on LM dataset (results are
for WC model, results for TV model were qualitatively
similar). We also studied various budget splits for NetHEPT
dataset using both WC and TV models, the results of which
are provided in Figures 3(c) and 4(c) (see d = 10; we have
limited d to 10 for the purpose of clarity; the observations
for d > 10 were almost same as that for d = 10) and
also Figure 5 (δ = 1.00). The results for different values
of k are provided in Table II. These results show that our
naı̈ve first guess of splitting the budget equally was a good
one, even though other splits give marginally higher values
(considering d = D).

Observation 4. For the datasets considered, under all
settings (different diffusion models and values of k), a split
of k1 : k2 ≈ 1

3 : 2
3 is observed to be optimal.

A possible reason for k1 ≈ k2 being a good guess is a
trade-off between (a) the size of the observed diffusion and
(b) the exploitation based on the observed diffusion. If the
value of k1 is too low, not many nodes may be influenced
and so we may not be able to observe the diffusion to
a considerable extent, leaving us with little information
for selecting the seed nodes for the second phase. On the
other hand, if the value of k2 is too low, we may not be
able to select enough number of seed nodes for the second
phase to exploit the information obtained from the observed
diffusion. The optimal split k1 : k2 ≈ 1

3 : 2
3 (a skew towards

lower values of k1) can perhaps be attributed to the fact that
the first set of seed nodes selected by most algorithms, are
very influential, and it is not necessary to allocate half of
the budget to first phase in order to obtain a large enough
observable diffusion.

B. Scheduling the Second Phase

It is clear that a two-phase diffusion would result in
a higher influence spread than the single-phase one. This
brings us to address the following questions: (a) why not
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Fig. 5. Typical results of splitting k = 200 with optimal d (≥ 1) for
different δ’s (d = D for δ = 1.00, d = 1 for other δ’s) on NetHEPT
(TV model) (2D views of plots in Figure 4 corresponding to the optimal
<k1, d> pairs)

use two-phase diffusion all the time? and (b) why not
wait for the first phase to complete its diffusion process
before starting the second phase? It is to be noted that
the standard IC model fails to capture the effects of time
taken for the diffusion process. A more realistic objective
function would capture not only the influence spread,
but also its rate. One such objective function could be
ν(S) =

∑∞
t=0 Γ(t)σ(t)(S), where Γ(·) is a non-increasing

function such that Γ(t) ≤ 1 for all values of t, and σ(t)(S)
is the expected number of newly activated nodes at time
step t.

Alternatively, let tX,Sj be the minimum number of time
steps in which node j can be reached from set S in live
graph X . Then Γ(tX,Sj ) is the value obtained for influencing
node j in live graph X , and

∑
X p(X)Γ(tX,Sj ) is the

expected value obtained for influencing node j. So the
expected influence value obtained starting from a seed set
S is ν(S) =

∑
j

∑
X p(X)Γ(tX,Sj ). Note that if Γ(t) = 1

for all t, then ν(·) reduces to σ(·). Thus we modify our
two-phase objective function by incorporating Γ(t).

Theorem 4. ν(·) is non-negative, monotone increasing, and
submodular, for any non-increasing function Γ(·) where
0 ≤ Γ(t) ≤ 1, ∀t.

Proof: The non-negativity of ν(·) is direct from the
non-negativity of σ(t)(·). Now, it is clear that tX,Sj ≥ tX,Tj

for any S ⊂ T , and owing to Γ(·) being a non-increasing
function, we have Γ(tX,Sj ) ≤ Γ(tX,Tj ). Since this is true
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TABLE III
PERFORMANCE OF FACE WITH IMPLICIT OPTIMIZATION VERSUS THAT

WITH EXHAUSTIVE SEARCH

δ
Single Two-phase with optimal <k1, d>
phase Implicit opt. Exhaustive
value k1 d value k1 d value

0.75 33.2 6 0 33.2 6 0 33.2
0.80 36.0 6 0 36.0 5 1 36.7
0.85 38.0 5 2 39.1 5 1 39.7
0.90 40.6 5 2 41.8 4 1 42.4
0.95 42.9 4 1 46.1 4 2 46.5
1.00 46.2 2 D 51.4 2 D 51.4

for any live graph X , we have
∑
X p(X)Γ(tX,Sj ) ≤∑

X p(X)Γ(tX,Tj ). Also, since this is true for any node j,
we have

∑
j

∑
X p(X)Γ(tX,Sj ) ≤

∑
j

∑
X p(X)Γ(tX,Tj )

or equivalently, ν(S) ≤ ν(T ). This proves the monotone
increasing property of ν(·).

For the purpose of proving its submodularity, let us
define another function ψXj (S) = Γ(tX,Sj ). So ν(S) =∑
j

∑
X p(X)ψXj (S), that is, ν(·) is a non-negative linear

combination of the functions ψXj (·). Consider arbitrary sets
S and T and an arbitrary node i such that S ⊂ T and
i ∈ N \ T . We first prove the submodularity of ψXj (·)
for an arbitrary node j and a live graph X using two
possible cases. In the first case, if addition of i to the
set T does not reduce the number of time steps required
to reach node j, then ψXj (T ∪ {i}) = ψXj (T ). In the
second case, if addition of i to the set T reduces the
number of time steps required to reach the node, then
ψXj (T ∪ {i}) = ψXj ({i}) = ψXj (S ∪ {i}). In both the
cases, ψXj (S ∪ {i}) − ψXj (S) ≥ ψXj (T ∪ {i}) − ψXj (T ).
This proves the submodularity of ψXj (·) and hence of their
non-negative linear combination ν(·).

Thus following argument similar to that in Section III-C,
the two-phase objective function (taking time into consid-
eration) can be well approximated using greedy algorithm
for seed selection in the second phase; and GDD heuristic
can be used as an effective proxy for greedy. Note that
GDD heuristic would perform very well for the temporal
objective function ν(·) because it maximizes the number of
nodes influenced in the immediately following time step. It
would be an excellent algorithm when Γ(1) is significantly
larger than Γ(t) for t ≥ 2. In our simulations, we consider
Γ(t) = δt where δ ∈ [0, 1] (this is generally the first guess
for a decay function in several problems).

Now our objective is to not only find an optimal k1,
but also an optimal delay d. We have seen that FACE
algorithm implicitly computes influential seed nodes while
simultaneously optimizing over k1. Now in addition to
a sampled value of k1 and a sampled set of cardinality
k1, we allow each data sample to also contain a value
of d, sampled from {1, . . . , D}. Table III shows that the
differences between (a) the spread achieved using this
implicit optimization method and (b) that achieved using
exhaustive search over k1 and d, for different δ’s on LM
dataset, are low. The time taken for implicit optimization
was observed to be approximately 1

kD of that taken for

exhaustive search. This shows the effectiveness of FACE
algorithm for getting the best out of two-phase diffusion
by addressing the combined optimization problem.

As mentioned earlier, for NetHEPT dataset also, we
observed that for δ = 1, it is optimal to allocate one-third
of the budget to first phase and delay d = D. For δ ≤ 0.85,
it is optimal to use single-phase diffusion. For intermediate
values of δ, it is optimal to allocate most of the budget to
the first phase with a delay of one time step; the necessity of
allocating most of the budget to the first phase increases as
δ decreases. Figures 4(a-c) and 5 show this in an elaborate
way.

Figure 3(b) shows how the expected spread progresses
with time for different <k1, d> pairs on NetHEPT dataset
under WC model, given k = 200. <200, 0> corresponds
to single phase diffusion, <10, 1> corresponds to two-
phase diffusion with a random <k1, d> pair, <100, 14>
corresponds to equal budget split k1 = k2 = k

2 with
d = D, and <70, 14> corresponds to optimal <k1, d> pair.
(We have D = 14 in the plots as the first phase diffusion
stagnated after 14 time steps for k1 = 70 and 100.) These
types of plots showing the progression of diffusion with
time may help a company to decide the ideal values of k1
and d based on its desired progression.

C. An Efficient Method for the Combined Optimization
Problem

We have seen that the performance of FACE algorithm
is excellent, however, it is computationally intensive and
hence impractical for large networks. With this in view,
we propose another algorithm that is based on empirical
observations in Figures 3(c) and 4(a-c).

We note that the plots are unimodal in nature for the
considered representative algorithms and datasets with re-
spect to either k1 (with a good enough interval between
consecutive k1’s) or d as variable. We could exploit this
nature for maximizing the objective function by using the
golden section search technique with k1 as the variable,
where the objective function itself is computed with an
optimal d for that particular k1 (which can be found
using golden section search). In the special case of the
considered exponential decay function, since the optimal
values of d would be very small for almost any δ < 1,
we find an optimal d for a particular k1 using sequential
search starting from d = 0. Note that as long as the
function does not change its value drastically within small
intervals (which would be true for the considered problem),
the golden section search technique will give an optimal
or near-optimal solution even when the function is not
perfectly unimodal, but unimodal when the interval between
consecutive k1’s is good enough.

We also explored whether the plots are unimodal with
respect to k1 and d simultaneously, so that faster methods
such as multidimensional direct search, can be used. How-
ever, though the plots are observed to be unimodal with
respect to k1 and d individually, they are not unimodal
with respect to them simultaneously.
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VII. DISCUSSION

We proposed and motivated two-phase diffusion in so-
cial networks, formulated an appropriate objective func-
tion, proposed an alternative objective function, developed
suitable algorithms for seed selection, and observed their
performances using simulations. We observed that myopic
algorithms perform closely to their farsighted counterparts,
while taking orders of magnitude less time. For the com-
bined optimization problem of budget splitting, scheduling,
and seed selection, we proposed the usage of FACE and
golden section search algorithms. We concluded that: (a)
under strict temporal constraints, use single-phase diffusion,
(b) under moderate temporal constraints, use two-phase
diffusion with a short delay while allocating most of the
budget to first phase, (c) in absence of temporal constraints,
use two-phase diffusion with a long enough delay with a
budget split of 1

3 : 2
3 between the two phases (one-third

budget for the first phase). We presented results for a few
representative settings; these results are very general in
nature.
• A Note on the Decay Function: We considered a

very strict decay function (exponential), which resulted
in humbling two-phase diffusion for most range of δ. In
practice, the decay function would be more lenient, where
the value would remain high for first few time steps and
then decay at a slow rate. Such a decay function would be
more suitable for two-phase diffusion. Note, however, that
our choice of a simple exponential decay function allowed
us to draw firm conclusions, which would not have been the
case with a sophisticated function. One could also account
for time by studying the problem in presence of competing
diffusions, where a delay may help competitors reach the
potential customers first.
• Extending to the Linear Threshold (LT) Model: In this

paper, we discussed multi-phase diffusion using IC model,
primarily because it is a natural setting for such a diffusion.
One can as well study multi-phase diffusion using the other
most popular model, the LT model [2]. In LT model, an
influence degree bu,v is associated with every directed edge
(v, u) and an influence threshold χu (uniformly distributed
in [0, 1]) is associated with every node u. The diffusion
proceeds in discrete time steps and a node u is activated
when

∑
v∈A bu,v ≥ χu, where A is the set of activated

nodes. The diffusion stops when no further nodes can be
activated. At the beginning of first phase, the thresholds
are assumed to be uniformly distributed in [0, 1]. When the
second phase is scheduled to start, we have the information
regarding whether a node is active or not. In addition, we
have the updated information regarding any inactive node
u that its threshold is greater than

∑
v∈A bu,v . So while

determining the seed set for second phase, we can exploit
this information by assuming its threshold to be uniformly
distributed in

(∑
v∈A bu,v, 1

]
, instead of a wider (and more

uncertain) range of [0, 1].
• Future work: This work can be extended to study

diffusion in more than two phases, with respect to the
influence spread and the time taken. We focused on the

well-studied IC model and provided a note regarding the LT
model; studying multi-phase diffusion under other diffusion
models is another direction to look at. It would be useful
to study how multi-phase diffusion can be harnessed to get
a desired expected spread with a reduced budget. It would
be of theoretical interest to prove or disprove if there exists
an algorithm that gives a constant factor approximation for
the problem of two-phase influence maximization. It would
also be interesting to study equilibria in a game theoretic
setting where multiple campaigns consider the possibility
of multi-phase diffusion.
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